1719 lines
73 KiB
C++
1719 lines
73 KiB
C++
/*
|
|
Open Asset Import Library (assimp)
|
|
----------------------------------------------------------------------
|
|
|
|
Copyright (c) 2006-2022, assimp team
|
|
|
|
All rights reserved.
|
|
|
|
Redistribution and use of this software in source and binary forms,
|
|
with or without modification, are permitted provided that the
|
|
following conditions are met:
|
|
|
|
* Redistributions of source code must retain the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer in the documentation and/or other
|
|
materials provided with the distribution.
|
|
|
|
* Neither the name of the assimp team, nor the names of its
|
|
contributors may be used to endorse or promote products
|
|
derived from this software without specific prior
|
|
written permission of the assimp team.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
----------------------------------------------------------------------
|
|
*/
|
|
|
|
#if !defined(ASSIMP_BUILD_NO_GLTF_IMPORTER) && !defined(ASSIMP_BUILD_NO_GLTF2_IMPORTER)
|
|
|
|
#include "AssetLib/glTF2/glTF2Importer.h"
|
|
#include "AssetLib/glTF2/glTF2Asset.h"
|
|
#include "PostProcessing/MakeVerboseFormat.h"
|
|
|
|
#if !defined(ASSIMP_BUILD_NO_EXPORT)
|
|
#include "AssetLib/glTF2/glTF2AssetWriter.h"
|
|
#endif
|
|
|
|
#include <assimp/CreateAnimMesh.h>
|
|
#include <assimp/DefaultIOSystem.h>
|
|
#include <assimp/StringComparison.h>
|
|
#include <assimp/StringUtils.h>
|
|
#include <assimp/ai_assert.h>
|
|
#include <assimp/commonMetaData.h>
|
|
#include <assimp/importerdesc.h>
|
|
#include <assimp/scene.h>
|
|
#include <assimp/DefaultLogger.hpp>
|
|
#include <assimp/Importer.hpp>
|
|
|
|
#include <memory>
|
|
#include <unordered_map>
|
|
|
|
#include <rapidjson/document.h>
|
|
#include <rapidjson/rapidjson.h>
|
|
|
|
using namespace Assimp;
|
|
using namespace glTF2;
|
|
using namespace glTFCommon;
|
|
|
|
namespace {
|
|
// generate bi-tangents from normals and tangents according to spec
|
|
struct Tangent {
|
|
aiVector3D xyz;
|
|
ai_real w;
|
|
};
|
|
} // namespace
|
|
|
|
//
|
|
// glTF2Importer
|
|
//
|
|
|
|
static constexpr aiImporterDesc desc = {
|
|
"glTF2 Importer",
|
|
"",
|
|
"",
|
|
"",
|
|
aiImporterFlags_SupportTextFlavour | aiImporterFlags_SupportBinaryFlavour | aiImporterFlags_LimitedSupport | aiImporterFlags_Experimental,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
"gltf glb"
|
|
};
|
|
|
|
glTF2Importer::glTF2Importer() :
|
|
mScene(nullptr) {
|
|
// empty
|
|
}
|
|
|
|
const aiImporterDesc *glTF2Importer::GetInfo() const {
|
|
return &desc;
|
|
}
|
|
|
|
bool glTF2Importer::CanRead(const std::string &filename, IOSystem *pIOHandler, bool checkSig) const {
|
|
const std::string extension = GetExtension(filename);
|
|
if (!checkSig && (extension != "gltf") && (extension != "glb")) {
|
|
return false;
|
|
}
|
|
|
|
if (pIOHandler) {
|
|
glTF2::Asset asset(pIOHandler);
|
|
return asset.CanRead(
|
|
filename,
|
|
CheckMagicToken(
|
|
pIOHandler, filename, AI_GLB_MAGIC_NUMBER, 1, 0,
|
|
static_cast<unsigned int>(strlen(AI_GLB_MAGIC_NUMBER))));
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static inline aiTextureMapMode ConvertWrappingMode(SamplerWrap gltfWrapMode) {
|
|
switch (gltfWrapMode) {
|
|
case SamplerWrap::Mirrored_Repeat:
|
|
return aiTextureMapMode_Mirror;
|
|
|
|
case SamplerWrap::Clamp_To_Edge:
|
|
return aiTextureMapMode_Clamp;
|
|
|
|
case SamplerWrap::UNSET:
|
|
case SamplerWrap::Repeat:
|
|
default:
|
|
return aiTextureMapMode_Wrap;
|
|
}
|
|
}
|
|
|
|
static inline void SetMaterialColorProperty(Asset & /*r*/, vec4 &prop, aiMaterial *mat,
|
|
const char *pKey, unsigned int type, unsigned int idx) {
|
|
aiColor4D col;
|
|
CopyValue(prop, col);
|
|
mat->AddProperty(&col, 1, pKey, type, idx);
|
|
}
|
|
|
|
static inline void SetMaterialColorProperty(Asset & /*r*/, vec3 &prop, aiMaterial *mat,
|
|
const char *pKey, unsigned int type, unsigned int idx) {
|
|
aiColor4D col;
|
|
glTFCommon::CopyValue(prop, col);
|
|
mat->AddProperty(&col, 1, pKey, type, idx);
|
|
}
|
|
|
|
static void SetMaterialTextureProperty(std::vector<int> &embeddedTexIdxs, Asset & /*r*/,
|
|
glTF2::TextureInfo prop, aiMaterial *mat, aiTextureType texType,
|
|
unsigned int texSlot = 0) {
|
|
if (prop.texture && prop.texture->source) {
|
|
aiString uri(prop.texture->source->uri);
|
|
|
|
int texIdx = embeddedTexIdxs[prop.texture->source.GetIndex()];
|
|
if (texIdx != -1) { // embedded
|
|
// setup texture reference string (copied from ColladaLoader::FindFilenameForEffectTexture)
|
|
uri.data[0] = '*';
|
|
uri.length = 1 + ASSIMP_itoa10(uri.data + 1, MAXLEN - 1, texIdx);
|
|
}
|
|
|
|
mat->AddProperty(&uri, AI_MATKEY_TEXTURE(texType, texSlot));
|
|
const int uvIndex = static_cast<int>(prop.texCoord);
|
|
mat->AddProperty(&uvIndex, 1, AI_MATKEY_UVWSRC(texType, texSlot));
|
|
|
|
if (prop.textureTransformSupported) {
|
|
aiUVTransform transform;
|
|
transform.mScaling.x = prop.TextureTransformExt_t.scale[0];
|
|
transform.mScaling.y = prop.TextureTransformExt_t.scale[1];
|
|
transform.mRotation = -prop.TextureTransformExt_t.rotation; // must be negated
|
|
|
|
// A change of coordinates is required to map glTF UV transformations into the space used by
|
|
// Assimp. In glTF all UV origins are at 0,1 (top left of texture) in Assimp space. In Assimp
|
|
// rotation occurs around the image center (0.5,0.5) where as in glTF rotation is around the
|
|
// texture origin. All three can be corrected for solely by a change of the translation since
|
|
// the transformations available are shape preserving. Note the importer already flips the V
|
|
// coordinate of the actual meshes during import.
|
|
const ai_real rcos(cos(-transform.mRotation));
|
|
const ai_real rsin(sin(-transform.mRotation));
|
|
transform.mTranslation.x = (static_cast<ai_real>(0.5) * transform.mScaling.x) * (-rcos + rsin + 1) + prop.TextureTransformExt_t.offset[0];
|
|
transform.mTranslation.y = ((static_cast<ai_real>(0.5) * transform.mScaling.y) * (rsin + rcos - 1)) + 1 - transform.mScaling.y - prop.TextureTransformExt_t.offset[1];
|
|
|
|
mat->AddProperty(&transform, 1, _AI_MATKEY_UVTRANSFORM_BASE, texType, texSlot);
|
|
}
|
|
|
|
if (prop.texture->sampler) {
|
|
Ref<Sampler> sampler = prop.texture->sampler;
|
|
|
|
aiString name(sampler->name);
|
|
aiString id(sampler->id);
|
|
|
|
mat->AddProperty(&name, AI_MATKEY_GLTF_MAPPINGNAME(texType, texSlot));
|
|
mat->AddProperty(&id, AI_MATKEY_GLTF_MAPPINGID(texType, texSlot));
|
|
|
|
aiTextureMapMode wrapS = ConvertWrappingMode(sampler->wrapS);
|
|
aiTextureMapMode wrapT = ConvertWrappingMode(sampler->wrapT);
|
|
mat->AddProperty(&wrapS, 1, AI_MATKEY_MAPPINGMODE_U(texType, texSlot));
|
|
mat->AddProperty(&wrapT, 1, AI_MATKEY_MAPPINGMODE_V(texType, texSlot));
|
|
|
|
if (sampler->magFilter != SamplerMagFilter::UNSET) {
|
|
mat->AddProperty(&sampler->magFilter, 1, AI_MATKEY_GLTF_MAPPINGFILTER_MAG(texType, texSlot));
|
|
}
|
|
|
|
if (sampler->minFilter != SamplerMinFilter::UNSET) {
|
|
mat->AddProperty(&sampler->minFilter, 1, AI_MATKEY_GLTF_MAPPINGFILTER_MIN(texType, texSlot));
|
|
}
|
|
} else {
|
|
// Use glTFv2 default sampler
|
|
const aiTextureMapMode default_wrap = aiTextureMapMode_Wrap;
|
|
mat->AddProperty(&default_wrap, 1, AI_MATKEY_MAPPINGMODE_U(texType, texSlot));
|
|
mat->AddProperty(&default_wrap, 1, AI_MATKEY_MAPPINGMODE_V(texType, texSlot));
|
|
}
|
|
}
|
|
}
|
|
|
|
inline void SetMaterialTextureProperty(std::vector<int> &embeddedTexIdxs, Asset &r,
|
|
NormalTextureInfo &prop, aiMaterial *mat, aiTextureType texType,
|
|
unsigned int texSlot = 0) {
|
|
SetMaterialTextureProperty(embeddedTexIdxs, r, (glTF2::TextureInfo)prop, mat, texType, texSlot);
|
|
|
|
if (prop.texture && prop.texture->source) {
|
|
mat->AddProperty(&prop.scale, 1, AI_MATKEY_GLTF_TEXTURE_SCALE(texType, texSlot));
|
|
}
|
|
}
|
|
|
|
inline void SetMaterialTextureProperty(std::vector<int> &embeddedTexIdxs, Asset &r,
|
|
OcclusionTextureInfo &prop, aiMaterial *mat, aiTextureType texType,
|
|
unsigned int texSlot = 0) {
|
|
SetMaterialTextureProperty(embeddedTexIdxs, r, (glTF2::TextureInfo)prop, mat, texType, texSlot);
|
|
|
|
if (prop.texture && prop.texture->source) {
|
|
std::string textureStrengthKey = std::string(_AI_MATKEY_TEXTURE_BASE) + "." + "strength";
|
|
mat->AddProperty(&prop.strength, 1, textureStrengthKey.c_str(), texType, texSlot);
|
|
}
|
|
}
|
|
|
|
static aiMaterial *ImportMaterial(std::vector<int> &embeddedTexIdxs, Asset &r, Material &mat) {
|
|
aiMaterial *aimat = new aiMaterial();
|
|
|
|
try {
|
|
if (!mat.name.empty()) {
|
|
aiString str(mat.name);
|
|
|
|
aimat->AddProperty(&str, AI_MATKEY_NAME);
|
|
}
|
|
|
|
// Set Assimp DIFFUSE and BASE COLOR to the pbrMetallicRoughness base color and texture for backwards compatibility
|
|
// Technically should not load any pbrMetallicRoughness if extensionsRequired contains KHR_materials_pbrSpecularGlossiness
|
|
SetMaterialColorProperty(r, mat.pbrMetallicRoughness.baseColorFactor, aimat, AI_MATKEY_COLOR_DIFFUSE);
|
|
SetMaterialColorProperty(r, mat.pbrMetallicRoughness.baseColorFactor, aimat, AI_MATKEY_BASE_COLOR);
|
|
|
|
SetMaterialTextureProperty(embeddedTexIdxs, r, mat.pbrMetallicRoughness.baseColorTexture, aimat, aiTextureType_DIFFUSE);
|
|
SetMaterialTextureProperty(embeddedTexIdxs, r, mat.pbrMetallicRoughness.baseColorTexture, aimat, aiTextureType_BASE_COLOR);
|
|
|
|
// Keep AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_METALLICROUGHNESS_TEXTURE for backwards compatibility
|
|
SetMaterialTextureProperty(embeddedTexIdxs, r, mat.pbrMetallicRoughness.metallicRoughnessTexture, aimat, AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_METALLICROUGHNESS_TEXTURE);
|
|
SetMaterialTextureProperty(embeddedTexIdxs, r, mat.pbrMetallicRoughness.metallicRoughnessTexture, aimat, aiTextureType_METALNESS);
|
|
SetMaterialTextureProperty(embeddedTexIdxs, r, mat.pbrMetallicRoughness.metallicRoughnessTexture, aimat, aiTextureType_DIFFUSE_ROUGHNESS);
|
|
|
|
aimat->AddProperty(&mat.pbrMetallicRoughness.metallicFactor, 1, AI_MATKEY_METALLIC_FACTOR);
|
|
aimat->AddProperty(&mat.pbrMetallicRoughness.roughnessFactor, 1, AI_MATKEY_ROUGHNESS_FACTOR);
|
|
|
|
float roughnessAsShininess = 1 - mat.pbrMetallicRoughness.roughnessFactor;
|
|
roughnessAsShininess *= roughnessAsShininess * 1000;
|
|
aimat->AddProperty(&roughnessAsShininess, 1, AI_MATKEY_SHININESS);
|
|
|
|
SetMaterialTextureProperty(embeddedTexIdxs, r, mat.normalTexture, aimat, aiTextureType_NORMALS);
|
|
SetMaterialTextureProperty(embeddedTexIdxs, r, mat.occlusionTexture, aimat, aiTextureType_LIGHTMAP);
|
|
SetMaterialTextureProperty(embeddedTexIdxs, r, mat.emissiveTexture, aimat, aiTextureType_EMISSIVE);
|
|
SetMaterialColorProperty(r, mat.emissiveFactor, aimat, AI_MATKEY_COLOR_EMISSIVE);
|
|
|
|
aimat->AddProperty(&mat.doubleSided, 1, AI_MATKEY_TWOSIDED);
|
|
aimat->AddProperty(&mat.pbrMetallicRoughness.baseColorFactor[3], 1, AI_MATKEY_OPACITY);
|
|
|
|
aiString alphaMode(mat.alphaMode);
|
|
aimat->AddProperty(&alphaMode, AI_MATKEY_GLTF_ALPHAMODE);
|
|
aimat->AddProperty(&mat.alphaCutoff, 1, AI_MATKEY_GLTF_ALPHACUTOFF);
|
|
|
|
// KHR_materials_specular
|
|
if (mat.materialSpecular.isPresent) {
|
|
MaterialSpecular &specular = mat.materialSpecular.value;
|
|
// Default values of zero disables Specular
|
|
if (std::memcmp(specular.specularColorFactor, defaultSpecularColorFactor, sizeof(glTFCommon::vec3)) != 0 || specular.specularFactor != 0.0f) {
|
|
SetMaterialColorProperty(r, specular.specularColorFactor, aimat, AI_MATKEY_COLOR_SPECULAR);
|
|
aimat->AddProperty(&specular.specularFactor, 1, AI_MATKEY_SPECULAR_FACTOR);
|
|
SetMaterialTextureProperty(embeddedTexIdxs, r, specular.specularTexture, aimat, aiTextureType_SPECULAR, 0);
|
|
SetMaterialTextureProperty(embeddedTexIdxs, r, specular.specularColorTexture, aimat, aiTextureType_SPECULAR, 1);
|
|
}
|
|
}
|
|
// pbrSpecularGlossiness
|
|
else if (mat.pbrSpecularGlossiness.isPresent) {
|
|
PbrSpecularGlossiness &pbrSG = mat.pbrSpecularGlossiness.value;
|
|
|
|
SetMaterialColorProperty(r, pbrSG.diffuseFactor, aimat, AI_MATKEY_COLOR_DIFFUSE);
|
|
SetMaterialColorProperty(r, pbrSG.specularFactor, aimat, AI_MATKEY_COLOR_SPECULAR);
|
|
|
|
float glossinessAsShininess = pbrSG.glossinessFactor * 1000.0f;
|
|
aimat->AddProperty(&glossinessAsShininess, 1, AI_MATKEY_SHININESS);
|
|
aimat->AddProperty(&pbrSG.glossinessFactor, 1, AI_MATKEY_GLOSSINESS_FACTOR);
|
|
|
|
SetMaterialTextureProperty(embeddedTexIdxs, r, pbrSG.diffuseTexture, aimat, aiTextureType_DIFFUSE);
|
|
|
|
SetMaterialTextureProperty(embeddedTexIdxs, r, pbrSG.specularGlossinessTexture, aimat, aiTextureType_SPECULAR);
|
|
}
|
|
|
|
// glTFv2 is either PBR or Unlit
|
|
aiShadingMode shadingMode = aiShadingMode_PBR_BRDF;
|
|
if (mat.unlit) {
|
|
aimat->AddProperty(&mat.unlit, 1, "$mat.gltf.unlit", 0, 0); // TODO: Remove this property, it is kept for backwards compatibility with assimp 5.0.1
|
|
shadingMode = aiShadingMode_Unlit;
|
|
}
|
|
|
|
aimat->AddProperty(&shadingMode, 1, AI_MATKEY_SHADING_MODEL);
|
|
|
|
// KHR_materials_sheen
|
|
if (mat.materialSheen.isPresent) {
|
|
MaterialSheen &sheen = mat.materialSheen.value;
|
|
// Default value {0,0,0} disables Sheen
|
|
if (std::memcmp(sheen.sheenColorFactor, defaultSheenFactor, sizeof(glTFCommon::vec3)) != 0) {
|
|
SetMaterialColorProperty(r, sheen.sheenColorFactor, aimat, AI_MATKEY_SHEEN_COLOR_FACTOR);
|
|
aimat->AddProperty(&sheen.sheenRoughnessFactor, 1, AI_MATKEY_SHEEN_ROUGHNESS_FACTOR);
|
|
SetMaterialTextureProperty(embeddedTexIdxs, r, sheen.sheenColorTexture, aimat, AI_MATKEY_SHEEN_COLOR_TEXTURE);
|
|
SetMaterialTextureProperty(embeddedTexIdxs, r, sheen.sheenRoughnessTexture, aimat, AI_MATKEY_SHEEN_ROUGHNESS_TEXTURE);
|
|
}
|
|
}
|
|
|
|
// KHR_materials_clearcoat
|
|
if (mat.materialClearcoat.isPresent) {
|
|
MaterialClearcoat &clearcoat = mat.materialClearcoat.value;
|
|
// Default value 0.0 disables clearcoat
|
|
if (clearcoat.clearcoatFactor != 0.0f) {
|
|
aimat->AddProperty(&clearcoat.clearcoatFactor, 1, AI_MATKEY_CLEARCOAT_FACTOR);
|
|
aimat->AddProperty(&clearcoat.clearcoatRoughnessFactor, 1, AI_MATKEY_CLEARCOAT_ROUGHNESS_FACTOR);
|
|
SetMaterialTextureProperty(embeddedTexIdxs, r, clearcoat.clearcoatTexture, aimat, AI_MATKEY_CLEARCOAT_TEXTURE);
|
|
SetMaterialTextureProperty(embeddedTexIdxs, r, clearcoat.clearcoatRoughnessTexture, aimat, AI_MATKEY_CLEARCOAT_ROUGHNESS_TEXTURE);
|
|
SetMaterialTextureProperty(embeddedTexIdxs, r, clearcoat.clearcoatNormalTexture, aimat, AI_MATKEY_CLEARCOAT_NORMAL_TEXTURE);
|
|
}
|
|
}
|
|
|
|
// KHR_materials_transmission
|
|
if (mat.materialTransmission.isPresent) {
|
|
MaterialTransmission &transmission = mat.materialTransmission.value;
|
|
|
|
aimat->AddProperty(&transmission.transmissionFactor, 1, AI_MATKEY_TRANSMISSION_FACTOR);
|
|
SetMaterialTextureProperty(embeddedTexIdxs, r, transmission.transmissionTexture, aimat, AI_MATKEY_TRANSMISSION_TEXTURE);
|
|
}
|
|
|
|
// KHR_materials_volume
|
|
if (mat.materialVolume.isPresent) {
|
|
MaterialVolume &volume = mat.materialVolume.value;
|
|
|
|
aimat->AddProperty(&volume.thicknessFactor, 1, AI_MATKEY_VOLUME_THICKNESS_FACTOR);
|
|
SetMaterialTextureProperty(embeddedTexIdxs, r, volume.thicknessTexture, aimat, AI_MATKEY_VOLUME_THICKNESS_TEXTURE);
|
|
aimat->AddProperty(&volume.attenuationDistance, 1, AI_MATKEY_VOLUME_ATTENUATION_DISTANCE);
|
|
SetMaterialColorProperty(r, volume.attenuationColor, aimat, AI_MATKEY_VOLUME_ATTENUATION_COLOR);
|
|
}
|
|
|
|
// KHR_materials_ior
|
|
if (mat.materialIOR.isPresent) {
|
|
MaterialIOR &ior = mat.materialIOR.value;
|
|
|
|
aimat->AddProperty(&ior.ior, 1, AI_MATKEY_REFRACTI);
|
|
}
|
|
|
|
// KHR_materials_emissive_strength
|
|
if (mat.materialEmissiveStrength.isPresent) {
|
|
MaterialEmissiveStrength &emissiveStrength = mat.materialEmissiveStrength.value;
|
|
|
|
aimat->AddProperty(&emissiveStrength.emissiveStrength, 1, AI_MATKEY_EMISSIVE_INTENSITY);
|
|
}
|
|
|
|
return aimat;
|
|
} catch (...) {
|
|
delete aimat;
|
|
throw;
|
|
}
|
|
}
|
|
|
|
void glTF2Importer::ImportMaterials(Asset &r) {
|
|
const unsigned int numImportedMaterials = unsigned(r.materials.Size());
|
|
ASSIMP_LOG_DEBUG("Importing ", numImportedMaterials, " materials");
|
|
Material defaultMaterial;
|
|
|
|
mScene->mNumMaterials = numImportedMaterials + 1;
|
|
mScene->mMaterials = new aiMaterial *[mScene->mNumMaterials];
|
|
std::fill(mScene->mMaterials, mScene->mMaterials + mScene->mNumMaterials, nullptr);
|
|
mScene->mMaterials[numImportedMaterials] = ImportMaterial(mEmbeddedTexIdxs, r, defaultMaterial);
|
|
|
|
for (unsigned int i = 0; i < numImportedMaterials; ++i) {
|
|
mScene->mMaterials[i] = ImportMaterial(mEmbeddedTexIdxs, r, r.materials[i]);
|
|
}
|
|
}
|
|
|
|
static inline void SetFaceAndAdvance1(aiFace *&face, unsigned int numVertices, unsigned int a) {
|
|
if (a >= numVertices) {
|
|
return;
|
|
}
|
|
face->mNumIndices = 1;
|
|
face->mIndices = new unsigned int[1];
|
|
face->mIndices[0] = a;
|
|
++face;
|
|
}
|
|
|
|
static inline void SetFaceAndAdvance2(aiFace *&face, unsigned int numVertices,
|
|
unsigned int a, unsigned int b) {
|
|
if ((a >= numVertices) || (b >= numVertices)) {
|
|
return;
|
|
}
|
|
face->mNumIndices = 2;
|
|
face->mIndices = new unsigned int[2];
|
|
face->mIndices[0] = a;
|
|
face->mIndices[1] = b;
|
|
++face;
|
|
}
|
|
|
|
static inline void SetFaceAndAdvance3(aiFace *&face, unsigned int numVertices, unsigned int a,
|
|
unsigned int b, unsigned int c) {
|
|
if ((a >= numVertices) || (b >= numVertices) || (c >= numVertices)) {
|
|
return;
|
|
}
|
|
face->mNumIndices = 3;
|
|
face->mIndices = new unsigned int[3];
|
|
face->mIndices[0] = a;
|
|
face->mIndices[1] = b;
|
|
face->mIndices[2] = c;
|
|
++face;
|
|
}
|
|
|
|
#ifdef ASSIMP_BUILD_DEBUG
|
|
static inline bool CheckValidFacesIndices(aiFace *faces, unsigned nFaces, unsigned nVerts) {
|
|
for (unsigned i = 0; i < nFaces; ++i) {
|
|
for (unsigned j = 0; j < faces[i].mNumIndices; ++j) {
|
|
unsigned idx = faces[i].mIndices[j];
|
|
if (idx >= nVerts) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
#endif // ASSIMP_BUILD_DEBUG
|
|
|
|
template <typename T>
|
|
aiColor4D *GetVertexColorsForType(Ref<Accessor> input, std::vector<unsigned int> *vertexRemappingTable) {
|
|
constexpr float max = std::numeric_limits<T>::max();
|
|
aiColor4t<T> *colors;
|
|
input->ExtractData(colors, vertexRemappingTable);
|
|
auto output = new aiColor4D[input->count];
|
|
for (size_t i = 0; i < input->count; i++) {
|
|
output[i] = aiColor4D(
|
|
colors[i].r / max, colors[i].g / max,
|
|
colors[i].b / max, colors[i].a / max);
|
|
}
|
|
delete[] colors;
|
|
return output;
|
|
}
|
|
|
|
void glTF2Importer::ImportMeshes(glTF2::Asset &r) {
|
|
ASSIMP_LOG_DEBUG("Importing ", r.meshes.Size(), " meshes");
|
|
std::vector<std::unique_ptr<aiMesh>> meshes;
|
|
|
|
meshOffsets.clear();
|
|
meshOffsets.reserve(r.meshes.Size() + 1);
|
|
mVertexRemappingTables.clear();
|
|
|
|
// Count the number of aiMeshes
|
|
unsigned int num_aiMeshes = 0;
|
|
for (unsigned int m = 0; m < r.meshes.Size(); ++m) {
|
|
meshOffsets.push_back(num_aiMeshes);
|
|
num_aiMeshes += unsigned(r.meshes[m].primitives.size());
|
|
}
|
|
meshOffsets.push_back(num_aiMeshes); // add a last element so we can always do meshOffsets[n+1] - meshOffsets[n]
|
|
|
|
std::vector<unsigned int> reverseMappingIndices;
|
|
std::vector<unsigned int> indexBuffer;
|
|
meshes.reserve(num_aiMeshes);
|
|
mVertexRemappingTables.resize(num_aiMeshes);
|
|
|
|
for (unsigned int m = 0; m < r.meshes.Size(); ++m) {
|
|
Mesh &mesh = r.meshes[m];
|
|
|
|
for (unsigned int p = 0; p < mesh.primitives.size(); ++p) {
|
|
Mesh::Primitive &prim = mesh.primitives[p];
|
|
|
|
Mesh::Primitive::Attributes &attr = prim.attributes;
|
|
|
|
// Find out the maximum number of vertices:
|
|
size_t numAllVertices = 0;
|
|
if (!attr.position.empty() && attr.position[0]) {
|
|
numAllVertices = attr.position[0]->count;
|
|
}
|
|
|
|
// Extract used vertices:
|
|
bool useIndexBuffer = prim.indices;
|
|
std::vector<unsigned int> *vertexRemappingTable = nullptr;
|
|
|
|
if (useIndexBuffer) {
|
|
size_t count = prim.indices->count;
|
|
indexBuffer.resize(count);
|
|
reverseMappingIndices.clear();
|
|
vertexRemappingTable = &mVertexRemappingTables[meshes.size()];
|
|
vertexRemappingTable->reserve(count / 3); // this is a very rough heuristic to reduce re-allocations
|
|
Accessor::Indexer data = prim.indices->GetIndexer();
|
|
if (!data.IsValid()) {
|
|
throw DeadlyImportError("GLTF: Invalid accessor without data in mesh ", getContextForErrorMessages(mesh.id, mesh.name));
|
|
}
|
|
|
|
// Build the vertex remapping table and the modified index buffer (used later instead of the original one)
|
|
// In case no index buffer is used, the original vertex arrays are being used so no remapping is required in the first place.
|
|
const unsigned int unusedIndex = ~0u;
|
|
for (unsigned int i = 0; i < count; ++i) {
|
|
unsigned int index = data.GetUInt(i);
|
|
if (index >= numAllVertices) {
|
|
// Out-of-range indices will be filtered out when adding the faces and then lead to a warning. At this stage, we just keep them.
|
|
indexBuffer[i] = index;
|
|
continue;
|
|
}
|
|
if (index >= reverseMappingIndices.size()) {
|
|
reverseMappingIndices.resize(index + 1, unusedIndex);
|
|
}
|
|
if (reverseMappingIndices[index] == unusedIndex) {
|
|
reverseMappingIndices[index] = static_cast<unsigned int>(vertexRemappingTable->size());
|
|
vertexRemappingTable->push_back(index);
|
|
}
|
|
indexBuffer[i] = reverseMappingIndices[index];
|
|
}
|
|
}
|
|
|
|
aiMesh *aim = new aiMesh();
|
|
meshes.push_back(std::unique_ptr<aiMesh>(aim));
|
|
|
|
aim->mName = mesh.name.empty() ? mesh.id : mesh.name;
|
|
|
|
if (mesh.primitives.size() > 1) {
|
|
ai_uint32 &len = aim->mName.length;
|
|
aim->mName.data[len] = '-';
|
|
len += 1 + ASSIMP_itoa10(aim->mName.data + len + 1, unsigned(MAXLEN - len - 1), p);
|
|
}
|
|
|
|
switch (prim.mode) {
|
|
case PrimitiveMode_POINTS:
|
|
aim->mPrimitiveTypes |= aiPrimitiveType_POINT;
|
|
break;
|
|
|
|
case PrimitiveMode_LINES:
|
|
case PrimitiveMode_LINE_LOOP:
|
|
case PrimitiveMode_LINE_STRIP:
|
|
aim->mPrimitiveTypes |= aiPrimitiveType_LINE;
|
|
break;
|
|
|
|
case PrimitiveMode_TRIANGLES:
|
|
case PrimitiveMode_TRIANGLE_STRIP:
|
|
case PrimitiveMode_TRIANGLE_FAN:
|
|
aim->mPrimitiveTypes |= aiPrimitiveType_TRIANGLE;
|
|
break;
|
|
}
|
|
|
|
if (!attr.position.empty() && attr.position[0]) {
|
|
aim->mNumVertices = static_cast<unsigned int>(attr.position[0]->ExtractData(aim->mVertices, vertexRemappingTable));
|
|
}
|
|
|
|
if (!attr.normal.empty() && attr.normal[0]) {
|
|
if (attr.normal[0]->count != numAllVertices) {
|
|
DefaultLogger::get()->warn("Normal count in mesh \"", mesh.name, "\" does not match the vertex count, normals ignored.");
|
|
} else {
|
|
attr.normal[0]->ExtractData(aim->mNormals, vertexRemappingTable);
|
|
|
|
// only extract tangents if normals are present
|
|
if (!attr.tangent.empty() && attr.tangent[0]) {
|
|
if (attr.tangent[0]->count != numAllVertices) {
|
|
DefaultLogger::get()->warn("Tangent count in mesh \"", mesh.name, "\" does not match the vertex count, tangents ignored.");
|
|
} else {
|
|
// generate bitangents from normals and tangents according to spec
|
|
Tangent *tangents = nullptr;
|
|
|
|
attr.tangent[0]->ExtractData(tangents, vertexRemappingTable);
|
|
|
|
aim->mTangents = new aiVector3D[aim->mNumVertices];
|
|
aim->mBitangents = new aiVector3D[aim->mNumVertices];
|
|
|
|
for (unsigned int i = 0; i < aim->mNumVertices; ++i) {
|
|
aim->mTangents[i] = tangents[i].xyz;
|
|
aim->mBitangents[i] = (aim->mNormals[i] ^ tangents[i].xyz) * tangents[i].w;
|
|
}
|
|
|
|
delete[] tangents;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (size_t c = 0; c < attr.color.size() && c < AI_MAX_NUMBER_OF_COLOR_SETS; ++c) {
|
|
if (attr.color[c]->count != numAllVertices) {
|
|
DefaultLogger::get()->warn("Color stream size in mesh \"", mesh.name,
|
|
"\" does not match the vertex count");
|
|
continue;
|
|
}
|
|
|
|
auto componentType = attr.color[c]->componentType;
|
|
if (componentType == glTF2::ComponentType_FLOAT) {
|
|
attr.color[c]->ExtractData(aim->mColors[c], vertexRemappingTable);
|
|
} else {
|
|
if (componentType == glTF2::ComponentType_UNSIGNED_BYTE) {
|
|
aim->mColors[c] = GetVertexColorsForType<unsigned char>(attr.color[c], vertexRemappingTable);
|
|
} else if (componentType == glTF2::ComponentType_UNSIGNED_SHORT) {
|
|
aim->mColors[c] = GetVertexColorsForType<unsigned short>(attr.color[c], vertexRemappingTable);
|
|
}
|
|
}
|
|
}
|
|
for (size_t tc = 0; tc < attr.texcoord.size() && tc < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++tc) {
|
|
if (!attr.texcoord[tc]) {
|
|
DefaultLogger::get()->warn("Texture coordinate accessor not found or non-contiguous texture coordinate sets.");
|
|
continue;
|
|
}
|
|
|
|
if (attr.texcoord[tc]->count != numAllVertices) {
|
|
DefaultLogger::get()->warn("Texcoord stream size in mesh \"", mesh.name,
|
|
"\" does not match the vertex count");
|
|
continue;
|
|
}
|
|
|
|
attr.texcoord[tc]->ExtractData(aim->mTextureCoords[tc], vertexRemappingTable);
|
|
aim->mNumUVComponents[tc] = attr.texcoord[tc]->GetNumComponents();
|
|
|
|
aiVector3D *values = aim->mTextureCoords[tc];
|
|
for (unsigned int i = 0; i < aim->mNumVertices; ++i) {
|
|
values[i].y = 1 - values[i].y; // Flip Y coords
|
|
}
|
|
}
|
|
|
|
std::vector<Mesh::Primitive::Target> &targets = prim.targets;
|
|
if (!targets.empty()) {
|
|
aim->mNumAnimMeshes = (unsigned int)targets.size();
|
|
aim->mAnimMeshes = new aiAnimMesh *[aim->mNumAnimMeshes];
|
|
std::fill(aim->mAnimMeshes, aim->mAnimMeshes + aim->mNumAnimMeshes, nullptr);
|
|
for (size_t i = 0; i < targets.size(); i++) {
|
|
bool needPositions = targets[i].position.size() > 0;
|
|
bool needNormals = (targets[i].normal.size() > 0) && aim->HasNormals();
|
|
bool needTangents = (targets[i].tangent.size() > 0) && aim->HasTangentsAndBitangents();
|
|
// GLTF morph does not support colors and texCoords
|
|
aim->mAnimMeshes[i] = aiCreateAnimMesh(aim,
|
|
needPositions, needNormals, needTangents, false, false);
|
|
aiAnimMesh &aiAnimMesh = *(aim->mAnimMeshes[i]);
|
|
Mesh::Primitive::Target &target = targets[i];
|
|
|
|
if (needPositions) {
|
|
if (target.position[0]->count != numAllVertices) {
|
|
ASSIMP_LOG_WARN("Positions of target ", i, " in mesh \"", mesh.name, "\" does not match the vertex count");
|
|
} else {
|
|
aiVector3D *positionDiff = nullptr;
|
|
target.position[0]->ExtractData(positionDiff, vertexRemappingTable);
|
|
for (unsigned int vertexId = 0; vertexId < aim->mNumVertices; vertexId++) {
|
|
aiAnimMesh.mVertices[vertexId] += positionDiff[vertexId];
|
|
}
|
|
delete[] positionDiff;
|
|
}
|
|
}
|
|
if (needNormals) {
|
|
if (target.normal[0]->count != numAllVertices) {
|
|
ASSIMP_LOG_WARN("Normals of target ", i, " in mesh \"", mesh.name, "\" does not match the vertex count");
|
|
} else {
|
|
aiVector3D *normalDiff = nullptr;
|
|
target.normal[0]->ExtractData(normalDiff, vertexRemappingTable);
|
|
for (unsigned int vertexId = 0; vertexId < aim->mNumVertices; vertexId++) {
|
|
aiAnimMesh.mNormals[vertexId] += normalDiff[vertexId];
|
|
}
|
|
delete[] normalDiff;
|
|
}
|
|
}
|
|
if (needTangents) {
|
|
if (!aiAnimMesh.HasNormals()) {
|
|
// prevent nullptr access to aiAnimMesh.mNormals below when no normals are available
|
|
ASSIMP_LOG_WARN("Bitangents of target ", i, " in mesh \"", mesh.name, "\" can't be computed, because mesh has no normals.");
|
|
} else if (target.tangent[0]->count != numAllVertices) {
|
|
ASSIMP_LOG_WARN("Tangents of target ", i, " in mesh \"", mesh.name, "\" does not match the vertex count");
|
|
} else {
|
|
Tangent *tangent = nullptr;
|
|
attr.tangent[0]->ExtractData(tangent, vertexRemappingTable);
|
|
|
|
aiVector3D *tangentDiff = nullptr;
|
|
target.tangent[0]->ExtractData(tangentDiff, vertexRemappingTable);
|
|
|
|
for (unsigned int vertexId = 0; vertexId < aim->mNumVertices; ++vertexId) {
|
|
tangent[vertexId].xyz += tangentDiff[vertexId];
|
|
aiAnimMesh.mTangents[vertexId] = tangent[vertexId].xyz;
|
|
aiAnimMesh.mBitangents[vertexId] = (aiAnimMesh.mNormals[vertexId] ^ tangent[vertexId].xyz) * tangent[vertexId].w;
|
|
}
|
|
delete[] tangent;
|
|
delete[] tangentDiff;
|
|
}
|
|
}
|
|
if (mesh.weights.size() > i) {
|
|
aiAnimMesh.mWeight = mesh.weights[i];
|
|
}
|
|
if (mesh.targetNames.size() > i) {
|
|
aiAnimMesh.mName = mesh.targetNames[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
aiFace *faces = nullptr;
|
|
aiFace *facePtr = nullptr;
|
|
size_t nFaces = 0;
|
|
|
|
if (useIndexBuffer) {
|
|
size_t count = indexBuffer.size();
|
|
|
|
switch (prim.mode) {
|
|
case PrimitiveMode_POINTS: {
|
|
nFaces = count;
|
|
facePtr = faces = new aiFace[nFaces];
|
|
for (unsigned int i = 0; i < count; ++i) {
|
|
SetFaceAndAdvance1(facePtr, aim->mNumVertices, indexBuffer[i]);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case PrimitiveMode_LINES: {
|
|
nFaces = count / 2;
|
|
if (nFaces * 2 != count) {
|
|
ASSIMP_LOG_WARN("The number of vertices was not compatible with the LINES mode. Some vertices were dropped.");
|
|
count = nFaces * 2;
|
|
}
|
|
facePtr = faces = new aiFace[nFaces];
|
|
for (unsigned int i = 0; i < count; i += 2) {
|
|
SetFaceAndAdvance2(facePtr, aim->mNumVertices, indexBuffer[i], indexBuffer[i + 1]);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case PrimitiveMode_LINE_LOOP:
|
|
case PrimitiveMode_LINE_STRIP: {
|
|
nFaces = count - ((prim.mode == PrimitiveMode_LINE_STRIP) ? 1 : 0);
|
|
facePtr = faces = new aiFace[nFaces];
|
|
SetFaceAndAdvance2(facePtr, aim->mNumVertices, indexBuffer[0], indexBuffer[1]);
|
|
for (unsigned int i = 2; i < count; ++i) {
|
|
SetFaceAndAdvance2(facePtr, aim->mNumVertices, indexBuffer[i - 1], indexBuffer[i]);
|
|
}
|
|
if (prim.mode == PrimitiveMode_LINE_LOOP) { // close the loop
|
|
SetFaceAndAdvance2(facePtr, aim->mNumVertices, indexBuffer[static_cast<int>(count) - 1], faces[0].mIndices[0]);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case PrimitiveMode_TRIANGLES: {
|
|
nFaces = count / 3;
|
|
if (nFaces * 3 != count) {
|
|
ASSIMP_LOG_WARN("The number of vertices was not compatible with the TRIANGLES mode. Some vertices were dropped.");
|
|
count = nFaces * 3;
|
|
}
|
|
facePtr = faces = new aiFace[nFaces];
|
|
for (unsigned int i = 0; i < count; i += 3) {
|
|
SetFaceAndAdvance3(facePtr, aim->mNumVertices, indexBuffer[i], indexBuffer[i + 1], indexBuffer[i + 2]);
|
|
}
|
|
break;
|
|
}
|
|
case PrimitiveMode_TRIANGLE_STRIP: {
|
|
nFaces = count - 2;
|
|
facePtr = faces = new aiFace[nFaces];
|
|
for (unsigned int i = 0; i < nFaces; ++i) {
|
|
// The ordering is to ensure that the triangles are all drawn with the same orientation
|
|
if ((i + 1) % 2 == 0) {
|
|
// For even n, vertices n + 1, n, and n + 2 define triangle n
|
|
SetFaceAndAdvance3(facePtr, aim->mNumVertices, indexBuffer[i + 1], indexBuffer[i], indexBuffer[i + 2]);
|
|
} else {
|
|
// For odd n, vertices n, n+1, and n+2 define triangle n
|
|
SetFaceAndAdvance3(facePtr, aim->mNumVertices, indexBuffer[i], indexBuffer[i + 1], indexBuffer[i + 2]);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case PrimitiveMode_TRIANGLE_FAN:
|
|
nFaces = count - 2;
|
|
facePtr = faces = new aiFace[nFaces];
|
|
SetFaceAndAdvance3(facePtr, aim->mNumVertices, indexBuffer[0], indexBuffer[1], indexBuffer[2]);
|
|
for (unsigned int i = 1; i < nFaces; ++i) {
|
|
SetFaceAndAdvance3(facePtr, aim->mNumVertices, indexBuffer[0], indexBuffer[i + 1], indexBuffer[i + 2]);
|
|
}
|
|
break;
|
|
}
|
|
} else { // no indices provided so directly generate from counts
|
|
|
|
// use the already determined count as it includes checks
|
|
unsigned int count = aim->mNumVertices;
|
|
|
|
switch (prim.mode) {
|
|
case PrimitiveMode_POINTS: {
|
|
nFaces = count;
|
|
facePtr = faces = new aiFace[nFaces];
|
|
for (unsigned int i = 0; i < count; ++i) {
|
|
SetFaceAndAdvance1(facePtr, aim->mNumVertices, i);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case PrimitiveMode_LINES: {
|
|
nFaces = count / 2;
|
|
if (nFaces * 2 != count) {
|
|
ASSIMP_LOG_WARN("The number of vertices was not compatible with the LINES mode. Some vertices were dropped.");
|
|
count = (unsigned int)nFaces * 2;
|
|
}
|
|
facePtr = faces = new aiFace[nFaces];
|
|
for (unsigned int i = 0; i < count; i += 2) {
|
|
SetFaceAndAdvance2(facePtr, aim->mNumVertices, i, i + 1);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case PrimitiveMode_LINE_LOOP:
|
|
case PrimitiveMode_LINE_STRIP: {
|
|
nFaces = count - ((prim.mode == PrimitiveMode_LINE_STRIP) ? 1 : 0);
|
|
facePtr = faces = new aiFace[nFaces];
|
|
SetFaceAndAdvance2(facePtr, aim->mNumVertices, 0, 1);
|
|
for (unsigned int i = 2; i < count; ++i) {
|
|
SetFaceAndAdvance2(facePtr, aim->mNumVertices, i - 1, i);
|
|
}
|
|
if (prim.mode == PrimitiveMode_LINE_LOOP) { // close the loop
|
|
SetFaceAndAdvance2(facePtr, aim->mNumVertices, count - 1, 0);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case PrimitiveMode_TRIANGLES: {
|
|
nFaces = count / 3;
|
|
if (nFaces * 3 != count) {
|
|
ASSIMP_LOG_WARN("The number of vertices was not compatible with the TRIANGLES mode. Some vertices were dropped.");
|
|
count = (unsigned int)nFaces * 3;
|
|
}
|
|
facePtr = faces = new aiFace[nFaces];
|
|
for (unsigned int i = 0; i < count; i += 3) {
|
|
SetFaceAndAdvance3(facePtr, aim->mNumVertices, i, i + 1, i + 2);
|
|
}
|
|
break;
|
|
}
|
|
case PrimitiveMode_TRIANGLE_STRIP: {
|
|
nFaces = count - 2;
|
|
facePtr = faces = new aiFace[nFaces];
|
|
for (unsigned int i = 0; i < nFaces; ++i) {
|
|
// The ordering is to ensure that the triangles are all drawn with the same orientation
|
|
if ((i + 1) % 2 == 0) {
|
|
// For even n, vertices n + 1, n, and n + 2 define triangle n
|
|
SetFaceAndAdvance3(facePtr, aim->mNumVertices, i + 1, i, i + 2);
|
|
} else {
|
|
// For odd n, vertices n, n+1, and n+2 define triangle n
|
|
SetFaceAndAdvance3(facePtr, aim->mNumVertices, i, i + 1, i + 2);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case PrimitiveMode_TRIANGLE_FAN:
|
|
nFaces = count - 2;
|
|
facePtr = faces = new aiFace[nFaces];
|
|
SetFaceAndAdvance3(facePtr, aim->mNumVertices, 0, 1, 2);
|
|
for (unsigned int i = 1; i < nFaces; ++i) {
|
|
SetFaceAndAdvance3(facePtr, aim->mNumVertices, 0, i + 1, i + 2);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (faces) {
|
|
aim->mFaces = faces;
|
|
const unsigned int actualNumFaces = static_cast<unsigned int>(facePtr - faces);
|
|
if (actualNumFaces < nFaces) {
|
|
ASSIMP_LOG_WARN("Some faces had out-of-range indices. Those faces were dropped.");
|
|
}
|
|
if (actualNumFaces == 0) {
|
|
throw DeadlyImportError("Mesh \"", aim->mName.C_Str(), "\" has no faces");
|
|
}
|
|
aim->mNumFaces = actualNumFaces;
|
|
ai_assert(CheckValidFacesIndices(faces, actualNumFaces, aim->mNumVertices));
|
|
}
|
|
|
|
if (prim.material) {
|
|
aim->mMaterialIndex = prim.material.GetIndex();
|
|
} else {
|
|
aim->mMaterialIndex = mScene->mNumMaterials - 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
CopyVector(meshes, mScene->mMeshes, mScene->mNumMeshes);
|
|
}
|
|
|
|
void glTF2Importer::ImportCameras(glTF2::Asset &r) {
|
|
if (!r.cameras.Size()) {
|
|
return;
|
|
}
|
|
|
|
const unsigned int numCameras = r.cameras.Size();
|
|
ASSIMP_LOG_DEBUG("Importing ", numCameras, " cameras");
|
|
mScene->mNumCameras = numCameras;
|
|
mScene->mCameras = new aiCamera *[numCameras];
|
|
std::fill(mScene->mCameras, mScene->mCameras + numCameras, nullptr);
|
|
|
|
for (size_t i = 0; i < numCameras; ++i) {
|
|
Camera &cam = r.cameras[i];
|
|
|
|
aiCamera *aicam = mScene->mCameras[i] = new aiCamera();
|
|
|
|
// cameras point in -Z by default, rest is specified in node transform
|
|
aicam->mLookAt = aiVector3D(0.f, 0.f, -1.f);
|
|
|
|
if (cam.type == Camera::Perspective) {
|
|
aicam->mAspect = cam.cameraProperties.perspective.aspectRatio;
|
|
aicam->mHorizontalFOV = 2.0f * std::atan(std::tan(cam.cameraProperties.perspective.yfov * 0.5f) * ((aicam->mAspect == 0.f) ? 1.f : aicam->mAspect));
|
|
aicam->mClipPlaneFar = cam.cameraProperties.perspective.zfar;
|
|
aicam->mClipPlaneNear = cam.cameraProperties.perspective.znear;
|
|
} else {
|
|
aicam->mClipPlaneFar = cam.cameraProperties.ortographic.zfar;
|
|
aicam->mClipPlaneNear = cam.cameraProperties.ortographic.znear;
|
|
aicam->mHorizontalFOV = 0.0;
|
|
aicam->mOrthographicWidth = cam.cameraProperties.ortographic.xmag;
|
|
aicam->mAspect = 1.0f;
|
|
if (0.f != cam.cameraProperties.ortographic.ymag) {
|
|
aicam->mAspect = cam.cameraProperties.ortographic.xmag / cam.cameraProperties.ortographic.ymag;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void glTF2Importer::ImportLights(glTF2::Asset &r) {
|
|
if (!r.lights.Size()) {
|
|
return;
|
|
}
|
|
|
|
const unsigned int numLights = r.lights.Size();
|
|
ASSIMP_LOG_DEBUG("Importing ", numLights, " lights");
|
|
mScene->mNumLights = numLights;
|
|
mScene->mLights = new aiLight *[numLights];
|
|
std::fill(mScene->mLights, mScene->mLights + numLights, nullptr);
|
|
|
|
for (size_t i = 0; i < numLights; ++i) {
|
|
Light &light = r.lights[i];
|
|
|
|
aiLight *ail = mScene->mLights[i] = new aiLight();
|
|
|
|
switch (light.type) {
|
|
case Light::Directional:
|
|
ail->mType = aiLightSource_DIRECTIONAL;
|
|
break;
|
|
case Light::Point:
|
|
ail->mType = aiLightSource_POINT;
|
|
break;
|
|
case Light::Spot:
|
|
ail->mType = aiLightSource_SPOT;
|
|
break;
|
|
}
|
|
|
|
if (ail->mType != aiLightSource_POINT) {
|
|
ail->mDirection = aiVector3D(0.0f, 0.0f, -1.0f);
|
|
ail->mUp = aiVector3D(0.0f, 1.0f, 0.0f);
|
|
}
|
|
|
|
vec3 colorWithIntensity = { light.color[0] * light.intensity, light.color[1] * light.intensity, light.color[2] * light.intensity };
|
|
CopyValue(colorWithIntensity, ail->mColorAmbient);
|
|
CopyValue(colorWithIntensity, ail->mColorDiffuse);
|
|
CopyValue(colorWithIntensity, ail->mColorSpecular);
|
|
|
|
if (ail->mType == aiLightSource_DIRECTIONAL) {
|
|
ail->mAttenuationConstant = 1.0;
|
|
ail->mAttenuationLinear = 0.0;
|
|
ail->mAttenuationQuadratic = 0.0;
|
|
} else {
|
|
// in PBR attenuation is calculated using inverse square law which can be expressed
|
|
// using assimps equation: 1/(att0 + att1 * d + att2 * d*d) with the following parameters
|
|
// this is correct equation for the case when range (see
|
|
// https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_lights_punctual)
|
|
// is not present. When range is not present it is assumed that it is infinite and so numerator is 1.
|
|
// When range is present then numerator might be any value in range [0,1] and then assimps equation
|
|
// will not suffice. In this case range is added into metadata in ImportNode function
|
|
// and its up to implementation to read it when it wants to
|
|
ail->mAttenuationConstant = 0.0;
|
|
ail->mAttenuationLinear = 0.0;
|
|
ail->mAttenuationQuadratic = 1.0;
|
|
}
|
|
|
|
if (ail->mType == aiLightSource_SPOT) {
|
|
ail->mAngleInnerCone = light.innerConeAngle;
|
|
ail->mAngleOuterCone = light.outerConeAngle;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void GetNodeTransform(aiMatrix4x4 &matrix, const glTF2::Node &node) {
|
|
if (node.matrix.isPresent) {
|
|
CopyValue(node.matrix.value, matrix);
|
|
return;
|
|
}
|
|
|
|
if (node.translation.isPresent) {
|
|
aiVector3D trans;
|
|
CopyValue(node.translation.value, trans);
|
|
aiMatrix4x4 t;
|
|
aiMatrix4x4::Translation(trans, t);
|
|
matrix = matrix * t;
|
|
}
|
|
|
|
if (node.rotation.isPresent) {
|
|
aiQuaternion rot;
|
|
CopyValue(node.rotation.value, rot);
|
|
matrix = matrix * aiMatrix4x4(rot.GetMatrix());
|
|
}
|
|
|
|
if (node.scale.isPresent) {
|
|
aiVector3D scal(1.f);
|
|
CopyValue(node.scale.value, scal);
|
|
aiMatrix4x4 s;
|
|
aiMatrix4x4::Scaling(scal, s);
|
|
matrix = matrix * s;
|
|
}
|
|
}
|
|
|
|
static void BuildVertexWeightMapping(Mesh::Primitive &primitive, std::vector<std::vector<aiVertexWeight>> &map, std::vector<unsigned int>* vertexRemappingTablePtr) {
|
|
|
|
Mesh::Primitive::Attributes &attr = primitive.attributes;
|
|
if (attr.weight.empty() || attr.joint.empty()) {
|
|
return;
|
|
}
|
|
if (attr.weight[0]->count != attr.joint[0]->count) {
|
|
return;
|
|
}
|
|
|
|
size_t num_vertices = 0;
|
|
|
|
struct Weights {
|
|
float values[4];
|
|
};
|
|
Weights **weights = new Weights*[attr.weight.size()];
|
|
for (size_t w = 0; w < attr.weight.size(); ++w) {
|
|
num_vertices = attr.weight[w]->ExtractData(weights[w], vertexRemappingTablePtr);
|
|
}
|
|
|
|
struct Indices8 {
|
|
uint8_t values[4];
|
|
};
|
|
struct Indices16 {
|
|
uint16_t values[4];
|
|
};
|
|
Indices8 **indices8 = nullptr;
|
|
Indices16 **indices16 = nullptr;
|
|
if (attr.joint[0]->GetElementSize() == 4) {
|
|
indices8 = new Indices8*[attr.joint.size()];
|
|
for (size_t j = 0; j < attr.joint.size(); ++j) {
|
|
attr.joint[j]->ExtractData(indices8[j], vertexRemappingTablePtr);
|
|
}
|
|
} else {
|
|
indices16 = new Indices16 *[attr.joint.size()];
|
|
for (size_t j = 0; j < attr.joint.size(); ++j) {
|
|
attr.joint[j]->ExtractData(indices16[j], vertexRemappingTablePtr);
|
|
}
|
|
}
|
|
//
|
|
if (nullptr == indices8 && nullptr == indices16) {
|
|
// Something went completely wrong!
|
|
ai_assert(false);
|
|
return;
|
|
}
|
|
|
|
for (size_t w = 0; w < attr.weight.size(); ++w) {
|
|
for (size_t i = 0; i < num_vertices; ++i) {
|
|
for (int j = 0; j < 4; ++j) {
|
|
const unsigned int bone = (indices8 != nullptr) ? indices8[w][i].values[j] : indices16[w][i].values[j];
|
|
const float weight = weights[w][i].values[j];
|
|
if (weight > 0 && bone < map.size()) {
|
|
map[bone].reserve(8);
|
|
map[bone].emplace_back(static_cast<unsigned int>(i), weight);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (size_t w = 0; w < attr.weight.size(); ++w) {
|
|
delete[] weights[w];
|
|
if(indices8)
|
|
delete[] indices8[w];
|
|
if (indices16)
|
|
delete[] indices16[w];
|
|
}
|
|
delete[] weights;
|
|
delete[] indices8;
|
|
delete[] indices16;
|
|
}
|
|
|
|
static std::string GetNodeName(const Node &node) {
|
|
return node.name.empty() ? node.id : node.name;
|
|
}
|
|
|
|
void ParseExtensions(aiMetadata *metadata, const CustomExtension &extension) {
|
|
if (extension.mStringValue.isPresent) {
|
|
metadata->Add(extension.name, aiString(extension.mStringValue.value));
|
|
} else if (extension.mDoubleValue.isPresent) {
|
|
metadata->Add(extension.name, extension.mDoubleValue.value);
|
|
} else if (extension.mUint64Value.isPresent) {
|
|
metadata->Add(extension.name, extension.mUint64Value.value);
|
|
} else if (extension.mInt64Value.isPresent) {
|
|
metadata->Add(extension.name, static_cast<int32_t>(extension.mInt64Value.value));
|
|
} else if (extension.mBoolValue.isPresent) {
|
|
metadata->Add(extension.name, extension.mBoolValue.value);
|
|
} else if (extension.mValues.isPresent) {
|
|
aiMetadata val;
|
|
for (auto const &subExtension : extension.mValues.value) {
|
|
ParseExtensions(&val, subExtension);
|
|
}
|
|
metadata->Add(extension.name, val);
|
|
}
|
|
}
|
|
|
|
void ParseExtras(aiMetadata* metadata, const Extras& extras) {
|
|
for (auto const &value : extras.mValues) {
|
|
ParseExtensions(metadata, value);
|
|
}
|
|
}
|
|
|
|
aiNode *glTF2Importer::ImportNode(glTF2::Asset &r, glTF2::Ref<glTF2::Node> &ptr) {
|
|
Node &node = *ptr;
|
|
|
|
aiNode *ainode = new aiNode(GetNodeName(node));
|
|
|
|
try {
|
|
if (!node.children.empty()) {
|
|
ainode->mNumChildren = unsigned(node.children.size());
|
|
ainode->mChildren = new aiNode *[ainode->mNumChildren];
|
|
std::fill(ainode->mChildren, ainode->mChildren + ainode->mNumChildren, nullptr);
|
|
|
|
for (unsigned int i = 0; i < ainode->mNumChildren; ++i) {
|
|
aiNode *child = ImportNode(r, node.children[i]);
|
|
child->mParent = ainode;
|
|
ainode->mChildren[i] = child;
|
|
}
|
|
}
|
|
|
|
if (node.customExtensions || node.extras.HasExtras()) {
|
|
ainode->mMetaData = new aiMetadata;
|
|
if (node.customExtensions) {
|
|
ParseExtensions(ainode->mMetaData, node.customExtensions);
|
|
}
|
|
if (node.extras.HasExtras()) {
|
|
ParseExtras(ainode->mMetaData, node.extras);
|
|
}
|
|
}
|
|
|
|
GetNodeTransform(ainode->mTransformation, node);
|
|
|
|
if (!node.meshes.empty()) {
|
|
// GLTF files contain at most 1 mesh per node.
|
|
if (node.meshes.size() > 1) {
|
|
throw DeadlyImportError("GLTF: Invalid input, found ", node.meshes.size(),
|
|
" meshes in ", getContextForErrorMessages(node.id, node.name),
|
|
", but only 1 mesh per node allowed.");
|
|
}
|
|
int mesh_idx = node.meshes[0].GetIndex();
|
|
int count = meshOffsets[mesh_idx + 1] - meshOffsets[mesh_idx];
|
|
|
|
ainode->mNumMeshes = count;
|
|
ainode->mMeshes = new unsigned int[count];
|
|
|
|
if (node.skin) {
|
|
for (int primitiveNo = 0; primitiveNo < count; ++primitiveNo) {
|
|
unsigned int aiMeshIdx = meshOffsets[mesh_idx] + primitiveNo;
|
|
aiMesh *mesh = mScene->mMeshes[aiMeshIdx];
|
|
unsigned int numBones = static_cast<unsigned int>(node.skin->jointNames.size());
|
|
std::vector<unsigned int> *vertexRemappingTablePtr = mVertexRemappingTables[aiMeshIdx].empty() ? nullptr : &mVertexRemappingTables[aiMeshIdx];
|
|
|
|
std::vector<std::vector<aiVertexWeight>> weighting(numBones);
|
|
BuildVertexWeightMapping(node.meshes[0]->primitives[primitiveNo], weighting, vertexRemappingTablePtr);
|
|
|
|
mesh->mNumBones = static_cast<unsigned int>(numBones);
|
|
mesh->mBones = new aiBone *[mesh->mNumBones];
|
|
std::fill(mesh->mBones, mesh->mBones + mesh->mNumBones, nullptr);
|
|
|
|
// GLTF and Assimp choose to store bone weights differently.
|
|
// GLTF has each vertex specify which bones influence the vertex.
|
|
// Assimp has each bone specify which vertices it has influence over.
|
|
// To convert this data, we first read over the vertex data and pull
|
|
// out the bone-to-vertex mapping. Then, when creating the aiBones,
|
|
// we copy the bone-to-vertex mapping into the bone. This is unfortunate
|
|
// both because it's somewhat slow and because, for many applications,
|
|
// we then need to reconvert the data back into the vertex-to-bone
|
|
// mapping which makes things doubly-slow.
|
|
|
|
mat4 *pbindMatrices = nullptr;
|
|
node.skin->inverseBindMatrices->ExtractData(pbindMatrices, nullptr);
|
|
|
|
for (uint32_t i = 0; i < numBones; ++i) {
|
|
const std::vector<aiVertexWeight> &weights = weighting[i];
|
|
aiBone *bone = new aiBone();
|
|
|
|
Ref<Node> joint = node.skin->jointNames[i];
|
|
if (!joint->name.empty()) {
|
|
bone->mName = joint->name;
|
|
} else {
|
|
// Assimp expects each bone to have a unique name.
|
|
static const std::string kDefaultName = "bone_";
|
|
char postfix[10] = { 0 };
|
|
ASSIMP_itoa10(postfix, i);
|
|
bone->mName = (kDefaultName + postfix);
|
|
}
|
|
GetNodeTransform(bone->mOffsetMatrix, *joint);
|
|
CopyValue(pbindMatrices[i], bone->mOffsetMatrix);
|
|
bone->mNumWeights = static_cast<uint32_t>(weights.size());
|
|
|
|
if (bone->mNumWeights > 0) {
|
|
bone->mWeights = new aiVertexWeight[bone->mNumWeights];
|
|
memcpy(bone->mWeights, weights.data(), bone->mNumWeights * sizeof(aiVertexWeight));
|
|
} else {
|
|
// Assimp expects all bones to have at least 1 weight.
|
|
bone->mWeights = new aiVertexWeight[1];
|
|
bone->mNumWeights = 1;
|
|
bone->mWeights->mVertexId = 0;
|
|
bone->mWeights->mWeight = 0.f;
|
|
}
|
|
mesh->mBones[i] = bone;
|
|
}
|
|
|
|
if (pbindMatrices) {
|
|
delete[] pbindMatrices;
|
|
}
|
|
}
|
|
}
|
|
|
|
int k = 0;
|
|
for (unsigned int j = meshOffsets[mesh_idx]; j < meshOffsets[mesh_idx + 1]; ++j, ++k) {
|
|
ainode->mMeshes[k] = j;
|
|
}
|
|
}
|
|
|
|
if (node.camera) {
|
|
mScene->mCameras[node.camera.GetIndex()]->mName = ainode->mName;
|
|
}
|
|
|
|
if (node.light) {
|
|
mScene->mLights[node.light.GetIndex()]->mName = ainode->mName;
|
|
|
|
// range is optional - see https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_lights_punctual
|
|
// it is added to meta data of parent node, because there is no other place to put it
|
|
if (node.light->range.isPresent) {
|
|
if (!ainode->mMetaData) {
|
|
ainode->mMetaData = aiMetadata::Alloc(1);
|
|
ainode->mMetaData->Set(0, "PBR_LightRange", node.light->range.value);
|
|
} else {
|
|
ainode->mMetaData->Add("PBR_LightRange", node.light->range.value);
|
|
}
|
|
}
|
|
}
|
|
|
|
return ainode;
|
|
} catch (...) {
|
|
delete ainode;
|
|
throw;
|
|
}
|
|
}
|
|
|
|
void glTF2Importer::ImportNodes(glTF2::Asset &r) {
|
|
if (!r.scene) {
|
|
throw DeadlyImportError("GLTF: No scene");
|
|
}
|
|
ASSIMP_LOG_DEBUG("Importing nodes");
|
|
|
|
std::vector<Ref<Node>> rootNodes = r.scene->nodes;
|
|
|
|
// The root nodes
|
|
unsigned int numRootNodes = unsigned(rootNodes.size());
|
|
if (numRootNodes == 1) { // a single root node: use it
|
|
mScene->mRootNode = ImportNode(r, rootNodes[0]);
|
|
} else if (numRootNodes > 1) { // more than one root node: create a fake root
|
|
aiNode *root = mScene->mRootNode = new aiNode("ROOT");
|
|
|
|
root->mChildren = new aiNode *[numRootNodes];
|
|
std::fill(root->mChildren, root->mChildren + numRootNodes, nullptr);
|
|
|
|
for (unsigned int i = 0; i < numRootNodes; ++i) {
|
|
aiNode *node = ImportNode(r, rootNodes[i]);
|
|
node->mParent = root;
|
|
root->mChildren[root->mNumChildren++] = node;
|
|
}
|
|
} else {
|
|
mScene->mRootNode = new aiNode("ROOT");
|
|
}
|
|
}
|
|
|
|
struct AnimationSamplers {
|
|
AnimationSamplers() :
|
|
translation(nullptr),
|
|
rotation(nullptr),
|
|
scale(nullptr),
|
|
weight(nullptr) {
|
|
// empty
|
|
}
|
|
|
|
Animation::Sampler *translation;
|
|
Animation::Sampler *rotation;
|
|
Animation::Sampler *scale;
|
|
Animation::Sampler *weight;
|
|
};
|
|
|
|
aiNodeAnim *CreateNodeAnim(glTF2::Asset &, Node &node, AnimationSamplers &samplers) {
|
|
aiNodeAnim *anim = new aiNodeAnim();
|
|
|
|
try {
|
|
anim->mNodeName = GetNodeName(node);
|
|
|
|
static const float kMillisecondsFromSeconds = 1000.f;
|
|
|
|
if (samplers.translation && samplers.translation->input && samplers.translation->output) {
|
|
float *times = nullptr;
|
|
samplers.translation->input->ExtractData(times);
|
|
aiVector3D *values = nullptr;
|
|
samplers.translation->output->ExtractData(values);
|
|
anim->mNumPositionKeys = static_cast<uint32_t>(samplers.translation->input->count);
|
|
anim->mPositionKeys = new aiVectorKey[anim->mNumPositionKeys];
|
|
unsigned int ii = (samplers.translation->interpolation == Interpolation_CUBICSPLINE) ? 1 : 0;
|
|
for (unsigned int i = 0; i < anim->mNumPositionKeys; ++i) {
|
|
anim->mPositionKeys[i].mTime = times[i] * kMillisecondsFromSeconds;
|
|
anim->mPositionKeys[i].mValue = values[ii];
|
|
ii += (samplers.translation->interpolation == Interpolation_CUBICSPLINE) ? 3 : 1;
|
|
}
|
|
delete[] times;
|
|
delete[] values;
|
|
} else if (node.translation.isPresent) {
|
|
anim->mNumPositionKeys = 1;
|
|
anim->mPositionKeys = new aiVectorKey[anim->mNumPositionKeys];
|
|
anim->mPositionKeys->mTime = 0.f;
|
|
anim->mPositionKeys->mValue.x = node.translation.value[0];
|
|
anim->mPositionKeys->mValue.y = node.translation.value[1];
|
|
anim->mPositionKeys->mValue.z = node.translation.value[2];
|
|
}
|
|
|
|
if (samplers.rotation && samplers.rotation->input && samplers.rotation->output) {
|
|
float *times = nullptr;
|
|
samplers.rotation->input->ExtractData(times);
|
|
aiQuaternion *values = nullptr;
|
|
samplers.rotation->output->ExtractData(values);
|
|
anim->mNumRotationKeys = static_cast<uint32_t>(samplers.rotation->input->count);
|
|
anim->mRotationKeys = new aiQuatKey[anim->mNumRotationKeys];
|
|
unsigned int ii = (samplers.rotation->interpolation == Interpolation_CUBICSPLINE) ? 1 : 0;
|
|
for (unsigned int i = 0; i < anim->mNumRotationKeys; ++i) {
|
|
anim->mRotationKeys[i].mTime = times[i] * kMillisecondsFromSeconds;
|
|
anim->mRotationKeys[i].mValue.x = values[ii].w;
|
|
anim->mRotationKeys[i].mValue.y = values[ii].x;
|
|
anim->mRotationKeys[i].mValue.z = values[ii].y;
|
|
anim->mRotationKeys[i].mValue.w = values[ii].z;
|
|
ii += (samplers.rotation->interpolation == Interpolation_CUBICSPLINE) ? 3 : 1;
|
|
}
|
|
delete[] times;
|
|
delete[] values;
|
|
} else if (node.rotation.isPresent) {
|
|
anim->mNumRotationKeys = 1;
|
|
anim->mRotationKeys = new aiQuatKey[anim->mNumRotationKeys];
|
|
anim->mRotationKeys->mTime = 0.f;
|
|
anim->mRotationKeys->mValue.x = node.rotation.value[0];
|
|
anim->mRotationKeys->mValue.y = node.rotation.value[1];
|
|
anim->mRotationKeys->mValue.z = node.rotation.value[2];
|
|
anim->mRotationKeys->mValue.w = node.rotation.value[3];
|
|
}
|
|
|
|
if (samplers.scale && samplers.scale->input && samplers.scale->output) {
|
|
float *times = nullptr;
|
|
samplers.scale->input->ExtractData(times);
|
|
aiVector3D *values = nullptr;
|
|
samplers.scale->output->ExtractData(values);
|
|
anim->mNumScalingKeys = static_cast<uint32_t>(samplers.scale->input->count);
|
|
anim->mScalingKeys = new aiVectorKey[anim->mNumScalingKeys];
|
|
unsigned int ii = (samplers.scale->interpolation == Interpolation_CUBICSPLINE) ? 1 : 0;
|
|
for (unsigned int i = 0; i < anim->mNumScalingKeys; ++i) {
|
|
anim->mScalingKeys[i].mTime = times[i] * kMillisecondsFromSeconds;
|
|
anim->mScalingKeys[i].mValue = values[ii];
|
|
ii += (samplers.scale->interpolation == Interpolation_CUBICSPLINE) ? 3 : 1;
|
|
}
|
|
delete[] times;
|
|
delete[] values;
|
|
} else if (node.scale.isPresent) {
|
|
anim->mNumScalingKeys = 1;
|
|
anim->mScalingKeys = new aiVectorKey[anim->mNumScalingKeys];
|
|
anim->mScalingKeys->mTime = 0.f;
|
|
anim->mScalingKeys->mValue.x = node.scale.value[0];
|
|
anim->mScalingKeys->mValue.y = node.scale.value[1];
|
|
anim->mScalingKeys->mValue.z = node.scale.value[2];
|
|
}
|
|
|
|
return anim;
|
|
} catch (...) {
|
|
delete anim;
|
|
throw;
|
|
}
|
|
}
|
|
|
|
aiMeshMorphAnim *CreateMeshMorphAnim(glTF2::Asset &, Node &node, AnimationSamplers &samplers) {
|
|
auto *anim = new aiMeshMorphAnim();
|
|
|
|
try {
|
|
anim->mName = GetNodeName(node);
|
|
|
|
static const float kMillisecondsFromSeconds = 1000.f;
|
|
|
|
if (samplers.weight && samplers.weight->input && samplers.weight->output) {
|
|
float *times = nullptr;
|
|
samplers.weight->input->ExtractData(times);
|
|
float *values = nullptr;
|
|
samplers.weight->output->ExtractData(values);
|
|
anim->mNumKeys = static_cast<uint32_t>(samplers.weight->input->count);
|
|
|
|
// for Interpolation_CUBICSPLINE can have more outputs
|
|
const unsigned int weightStride = (unsigned int)samplers.weight->output->count / anim->mNumKeys;
|
|
const unsigned int numMorphs = (samplers.weight->interpolation == Interpolation_CUBICSPLINE) ? weightStride - 2 : weightStride;
|
|
|
|
anim->mKeys = new aiMeshMorphKey[anim->mNumKeys];
|
|
unsigned int ii = (samplers.weight->interpolation == Interpolation_CUBICSPLINE) ? 1 : 0;
|
|
for (unsigned int i = 0u; i < anim->mNumKeys; ++i) {
|
|
unsigned int k = weightStride * i + ii;
|
|
anim->mKeys[i].mTime = times[i] * kMillisecondsFromSeconds;
|
|
anim->mKeys[i].mNumValuesAndWeights = numMorphs;
|
|
anim->mKeys[i].mValues = new unsigned int[numMorphs];
|
|
anim->mKeys[i].mWeights = new double[numMorphs];
|
|
|
|
for (unsigned int j = 0u; j < numMorphs; ++j, ++k) {
|
|
anim->mKeys[i].mValues[j] = j;
|
|
anim->mKeys[i].mWeights[j] = (0.f > values[k]) ? 0.f : values[k];
|
|
}
|
|
}
|
|
|
|
delete[] times;
|
|
delete[] values;
|
|
}
|
|
|
|
return anim;
|
|
} catch (...) {
|
|
delete anim;
|
|
throw;
|
|
}
|
|
}
|
|
|
|
std::unordered_map<unsigned int, AnimationSamplers> GatherSamplers(Animation &anim) {
|
|
std::unordered_map<unsigned int, AnimationSamplers> samplers;
|
|
for (unsigned int c = 0; c < anim.channels.size(); ++c) {
|
|
Animation::Channel &channel = anim.channels[c];
|
|
if (channel.sampler < 0 || channel.sampler >= static_cast<int>(anim.samplers.size())) {
|
|
continue;
|
|
}
|
|
|
|
auto &animsampler = anim.samplers[channel.sampler];
|
|
|
|
if (!animsampler.input) {
|
|
ASSIMP_LOG_WARN("Animation ", anim.name, ": Missing sampler input. Skipping.");
|
|
continue;
|
|
}
|
|
|
|
if (!animsampler.output) {
|
|
ASSIMP_LOG_WARN("Animation ", anim.name, ": Missing sampler output. Skipping.");
|
|
continue;
|
|
}
|
|
|
|
if (animsampler.input->count > animsampler.output->count) {
|
|
ASSIMP_LOG_WARN("Animation ", anim.name, ": Number of keyframes in sampler input ", animsampler.input->count, " exceeds number of keyframes in sampler output ", animsampler.output->count);
|
|
continue;
|
|
}
|
|
|
|
const unsigned int node_index = channel.target.node.GetIndex();
|
|
|
|
AnimationSamplers &sampler = samplers[node_index];
|
|
if (channel.target.path == AnimationPath_TRANSLATION) {
|
|
sampler.translation = &anim.samplers[channel.sampler];
|
|
} else if (channel.target.path == AnimationPath_ROTATION) {
|
|
sampler.rotation = &anim.samplers[channel.sampler];
|
|
} else if (channel.target.path == AnimationPath_SCALE) {
|
|
sampler.scale = &anim.samplers[channel.sampler];
|
|
} else if (channel.target.path == AnimationPath_WEIGHTS) {
|
|
sampler.weight = &anim.samplers[channel.sampler];
|
|
}
|
|
}
|
|
|
|
return samplers;
|
|
}
|
|
|
|
void glTF2Importer::ImportAnimations(glTF2::Asset &r) {
|
|
if (!r.scene) return;
|
|
|
|
const unsigned numAnimations = r.animations.Size();
|
|
ASSIMP_LOG_DEBUG("Importing ", numAnimations, " animations");
|
|
mScene->mNumAnimations = numAnimations;
|
|
if (mScene->mNumAnimations == 0) {
|
|
return;
|
|
}
|
|
|
|
mScene->mAnimations = new aiAnimation *[numAnimations];
|
|
std::fill(mScene->mAnimations, mScene->mAnimations + numAnimations, nullptr);
|
|
|
|
for (unsigned int i = 0; i < numAnimations; ++i) {
|
|
aiAnimation *ai_anim = mScene->mAnimations[i] = new aiAnimation();
|
|
|
|
Animation &anim = r.animations[i];
|
|
|
|
ai_anim->mName = anim.name;
|
|
ai_anim->mDuration = 0;
|
|
ai_anim->mTicksPerSecond = 0;
|
|
|
|
std::unordered_map<unsigned int, AnimationSamplers> samplers = GatherSamplers(anim);
|
|
|
|
uint32_t numChannels = 0u;
|
|
uint32_t numMorphMeshChannels = 0u;
|
|
|
|
for (auto &iter : samplers) {
|
|
if ((nullptr != iter.second.rotation) || (nullptr != iter.second.scale) || (nullptr != iter.second.translation)) {
|
|
++numChannels;
|
|
}
|
|
if (nullptr != iter.second.weight) {
|
|
++numMorphMeshChannels;
|
|
}
|
|
}
|
|
|
|
ai_anim->mNumChannels = numChannels;
|
|
if (ai_anim->mNumChannels > 0) {
|
|
ai_anim->mChannels = new aiNodeAnim *[ai_anim->mNumChannels];
|
|
std::fill(ai_anim->mChannels, ai_anim->mChannels + ai_anim->mNumChannels, nullptr);
|
|
int j = 0;
|
|
for (auto &iter : samplers) {
|
|
if ((nullptr != iter.second.rotation) || (nullptr != iter.second.scale) || (nullptr != iter.second.translation)) {
|
|
ai_anim->mChannels[j] = CreateNodeAnim(r, r.nodes[iter.first], iter.second);
|
|
++j;
|
|
}
|
|
}
|
|
}
|
|
|
|
ai_anim->mNumMorphMeshChannels = numMorphMeshChannels;
|
|
if (ai_anim->mNumMorphMeshChannels > 0) {
|
|
ai_anim->mMorphMeshChannels = new aiMeshMorphAnim *[ai_anim->mNumMorphMeshChannels];
|
|
std::fill(ai_anim->mMorphMeshChannels, ai_anim->mMorphMeshChannels + ai_anim->mNumMorphMeshChannels, nullptr);
|
|
int j = 0;
|
|
for (auto &iter : samplers) {
|
|
if (nullptr != iter.second.weight) {
|
|
ai_anim->mMorphMeshChannels[j] = CreateMeshMorphAnim(r, r.nodes[iter.first], iter.second);
|
|
++j;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Use the latest key-frame for the duration of the animation
|
|
double maxDuration = 0;
|
|
unsigned int maxNumberOfKeys = 0;
|
|
for (unsigned int j = 0; j < ai_anim->mNumChannels; ++j) {
|
|
auto chan = ai_anim->mChannels[j];
|
|
if (chan->mNumPositionKeys) {
|
|
auto lastPosKey = chan->mPositionKeys[chan->mNumPositionKeys - 1];
|
|
if (lastPosKey.mTime > maxDuration) {
|
|
maxDuration = lastPosKey.mTime;
|
|
}
|
|
maxNumberOfKeys = std::max(maxNumberOfKeys, chan->mNumPositionKeys);
|
|
}
|
|
if (chan->mNumRotationKeys) {
|
|
auto lastRotKey = chan->mRotationKeys[chan->mNumRotationKeys - 1];
|
|
if (lastRotKey.mTime > maxDuration) {
|
|
maxDuration = lastRotKey.mTime;
|
|
}
|
|
maxNumberOfKeys = std::max(maxNumberOfKeys, chan->mNumRotationKeys);
|
|
}
|
|
if (chan->mNumScalingKeys) {
|
|
auto lastScaleKey = chan->mScalingKeys[chan->mNumScalingKeys - 1];
|
|
if (lastScaleKey.mTime > maxDuration) {
|
|
maxDuration = lastScaleKey.mTime;
|
|
}
|
|
maxNumberOfKeys = std::max(maxNumberOfKeys, chan->mNumScalingKeys);
|
|
}
|
|
}
|
|
|
|
for (unsigned int j = 0; j < ai_anim->mNumMorphMeshChannels; ++j) {
|
|
const auto *const chan = ai_anim->mMorphMeshChannels[j];
|
|
|
|
if (0u != chan->mNumKeys) {
|
|
const auto &lastKey = chan->mKeys[chan->mNumKeys - 1u];
|
|
if (lastKey.mTime > maxDuration) {
|
|
maxDuration = lastKey.mTime;
|
|
}
|
|
maxNumberOfKeys = std::max(maxNumberOfKeys, chan->mNumKeys);
|
|
}
|
|
}
|
|
|
|
ai_anim->mDuration = maxDuration;
|
|
ai_anim->mTicksPerSecond = 1000.0;
|
|
}
|
|
}
|
|
|
|
static unsigned int countEmbeddedTextures(glTF2::Asset &r) {
|
|
unsigned int numEmbeddedTexs = 0;
|
|
for (size_t i = 0; i < r.images.Size(); ++i) {
|
|
if (r.images[i].HasData()) {
|
|
numEmbeddedTexs += 1;
|
|
}
|
|
}
|
|
|
|
return numEmbeddedTexs;
|
|
}
|
|
|
|
void glTF2Importer::ImportEmbeddedTextures(glTF2::Asset &r) {
|
|
mEmbeddedTexIdxs.resize(r.images.Size(), -1);
|
|
const unsigned int numEmbeddedTexs = countEmbeddedTextures(r);
|
|
if (numEmbeddedTexs == 0) {
|
|
return;
|
|
}
|
|
|
|
ASSIMP_LOG_DEBUG("Importing ", numEmbeddedTexs, " embedded textures");
|
|
|
|
mScene->mTextures = new aiTexture *[numEmbeddedTexs];
|
|
std::fill(mScene->mTextures, mScene->mTextures + numEmbeddedTexs, nullptr);
|
|
|
|
// Add the embedded textures
|
|
for (size_t i = 0; i < r.images.Size(); ++i) {
|
|
Image &img = r.images[i];
|
|
if (!img.HasData()) {
|
|
continue;
|
|
}
|
|
|
|
int idx = mScene->mNumTextures++;
|
|
mEmbeddedTexIdxs[i] = idx;
|
|
|
|
aiTexture *tex = mScene->mTextures[idx] = new aiTexture();
|
|
|
|
size_t length = img.GetDataLength();
|
|
void *data = img.StealData();
|
|
|
|
tex->mFilename = img.name;
|
|
tex->mWidth = static_cast<unsigned int>(length);
|
|
tex->mHeight = 0;
|
|
tex->pcData = reinterpret_cast<aiTexel *>(data);
|
|
|
|
if (!img.mimeType.empty()) {
|
|
const char *ext = strchr(img.mimeType.c_str(), '/') + 1;
|
|
if (ext) {
|
|
if (strcmp(ext, "jpeg") == 0) {
|
|
ext = "jpg";
|
|
} else if (strcmp(ext, "ktx2") == 0) { // basisu: ktx remains
|
|
ext = "kx2";
|
|
} else if (strcmp(ext, "basis") == 0) { // basisu
|
|
ext = "bu";
|
|
}
|
|
|
|
size_t len = strlen(ext);
|
|
if (len <= 3) {
|
|
strcpy(tex->achFormatHint, ext);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void glTF2Importer::ImportCommonMetadata(glTF2::Asset &a) {
|
|
ASSIMP_LOG_DEBUG("Importing metadata");
|
|
ai_assert(mScene->mMetaData == nullptr);
|
|
const bool hasVersion = !a.asset.version.empty();
|
|
const bool hasGenerator = !a.asset.generator.empty();
|
|
const bool hasCopyright = !a.asset.copyright.empty();
|
|
const bool hasSceneMetadata = a.scene->customExtensions;
|
|
if (hasVersion || hasGenerator || hasCopyright || hasSceneMetadata) {
|
|
mScene->mMetaData = new aiMetadata;
|
|
if (hasVersion) {
|
|
mScene->mMetaData->Add(AI_METADATA_SOURCE_FORMAT_VERSION, aiString(a.asset.version));
|
|
}
|
|
if (hasGenerator) {
|
|
mScene->mMetaData->Add(AI_METADATA_SOURCE_GENERATOR, aiString(a.asset.generator));
|
|
}
|
|
if (hasCopyright) {
|
|
mScene->mMetaData->Add(AI_METADATA_SOURCE_COPYRIGHT, aiString(a.asset.copyright));
|
|
}
|
|
if (hasSceneMetadata) {
|
|
ParseExtensions(mScene->mMetaData, a.scene->customExtensions);
|
|
}
|
|
}
|
|
}
|
|
|
|
void glTF2Importer::InternReadFile(const std::string &pFile, aiScene *pScene, IOSystem *pIOHandler) {
|
|
ASSIMP_LOG_DEBUG("Reading GLTF2 file");
|
|
|
|
// clean all member arrays
|
|
meshOffsets.clear();
|
|
mVertexRemappingTables.clear();
|
|
mEmbeddedTexIdxs.clear();
|
|
|
|
this->mScene = pScene;
|
|
|
|
// read the asset file
|
|
glTF2::Asset asset(pIOHandler, static_cast<rapidjson::IRemoteSchemaDocumentProvider *>(mSchemaDocumentProvider));
|
|
asset.Load(pFile,
|
|
CheckMagicToken(
|
|
pIOHandler, pFile, AI_GLB_MAGIC_NUMBER, 1, 0,
|
|
static_cast<unsigned int>(strlen(AI_GLB_MAGIC_NUMBER))));
|
|
if (asset.scene) {
|
|
pScene->mName = asset.scene->name;
|
|
}
|
|
|
|
// Copy the data out
|
|
ImportEmbeddedTextures(asset);
|
|
ImportMaterials(asset);
|
|
|
|
ImportMeshes(asset);
|
|
|
|
ImportCameras(asset);
|
|
ImportLights(asset);
|
|
|
|
ImportNodes(asset);
|
|
|
|
ImportAnimations(asset);
|
|
|
|
ImportCommonMetadata(asset);
|
|
|
|
if (pScene->mNumMeshes == 0) {
|
|
pScene->mFlags |= AI_SCENE_FLAGS_INCOMPLETE;
|
|
}
|
|
}
|
|
|
|
void glTF2Importer::SetupProperties(const Importer *pImp) {
|
|
mSchemaDocumentProvider = static_cast<rapidjson::IRemoteSchemaDocumentProvider *>(pImp->GetPropertyPointer(AI_CONFIG_IMPORT_SCHEMA_DOCUMENT_PROVIDER));
|
|
}
|
|
|
|
#endif // ASSIMP_BUILD_NO_GLTF_IMPORTER
|