assimp/code/M3D/m3d.h

4566 lines
186 KiB
C++

/*
* m3d.h
*
* Copyright (C) 2019 bzt (bztsrc@gitlab)
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy,
* modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* @brief ANSI C89 / C++11 single header importer / exporter SDK for the Model 3D (.M3D) format
* https://gitlab.com/bztsrc/model3d
*
* PNG decompressor included from (with minor modifications to make it C89 valid):
* stb_image - v2.13 - public domain image loader - http://nothings.org/stb_image.h
*
* @version: 1.0.0
*/
#ifndef _M3D_H_
#define _M3D_H_
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
/*** configuration ***/
#ifndef M3D_MALLOC
# define M3D_MALLOC(sz) malloc(sz)
#endif
#ifndef M3D_REALLOC
# define M3D_REALLOC(p,nsz) realloc(p,nsz)
#endif
#ifndef M3D_FREE
# define M3D_FREE(p) free(p)
#endif
#ifndef M3D_LOG
# define M3D_LOG(x)
#endif
#ifndef M3D_APIVERSION
#define M3D_APIVERSION 0x0100
#ifndef M3D_DOUBLE
typedef float M3D_FLOAT;
#else
typedef double M3D_FLOAT;
#endif
#if !defined(M3D_SMALLINDEX)
typedef uint32_t M3D_INDEX;
#define M3D_INDEXMAX 0xfffffffe
#else
typedef uint16_t M3D_INDEX;
#define M3D_INDEXMAX 0xfffe
#endif
#ifndef M3D_NUMBONE
#define M3D_NUMBONE 4
#endif
#ifndef M3D_BONEMAXLEVEL
#define M3D_BONEMAXLEVEL 8
#endif
#ifndef _MSC_VER
#define _inline __inline__
#define _pack __attribute__((packed))
#define _unused __attribute__((unused))
#else
#define _inline
#define _pack
#define _unused
#endif
#ifndef __cplusplus
#define _register register
#else
#define _register
#endif
/*** File format structures ***/
/**
* M3D file format structure
* 3DMO m3dchunk_t file header chunk, may followed by compressed data
* HEAD m3dhdr_t model header chunk
* n x m3dchunk_t more chunks follow
* CMAP color map chunk (optional)
* TMAP texture map chunk (optional)
* VRTS vertex data chunk (optional if it's a material library)
* BONE bind-pose skeleton, bone hierarchy chunk (optional)
* n x m3db_t contains propably more, but at least one bone
* MTRL* material chunk(s), can be more (optional)
* n x m3dp_t each material contains propapbly more, but at least one property
* the properties are configurable with a static array, see m3d_propertytypes
* n x m3dchunk_t at least one, but maybe more face chunks
* PROC* procedural face, or
* MESH* triangle mesh (vertex index list)
* ACTN* action chunk(s), animation-pose skeletons, can be more (optional)
* n x m3dfr_t each action contains probably more, but at least one frame
* n x m3dtr_t each frame contains probably more, but at least one transformation
* ASET* inlined asset chunk(s), can be more (optional)
* OMD3 end chunk
*/
typedef struct {
char magic[4];
uint32_t length;
float scale; /* deliberately not M3D_FLOAT */
uint32_t types;
} _pack m3dhdr_t;
typedef struct {
char magic[4];
uint32_t length;
} _pack m3dchunk_t;
/*** in-memory model structure ***/
/* textmap entry */
typedef struct {
M3D_FLOAT u;
M3D_FLOAT v;
} m3dti_t;
/* texture */
typedef struct {
char *name; /* texture name */
uint32_t *d; /* pixels data */
uint16_t w; /* width */
uint16_t h; /* height */
} _pack m3dtx_t;
typedef struct {
M3D_INDEX vertexid;
M3D_FLOAT weight;
} m3dw_t;
/* bone entry */
typedef struct {
M3D_INDEX parent; /* parent bone index */
char *name; /* name for this bone */
M3D_INDEX pos; /* vertex index position */
M3D_INDEX ori; /* vertex index orientation (quaternion) */
M3D_INDEX numweight; /* number of controlled vertices */
m3dw_t *weight; /* weights for those vertices */
M3D_FLOAT mat4[16]; /* transformation matrix */
} m3db_t;
/* skin: bone per vertex entry */
typedef struct {
M3D_INDEX boneid[M3D_NUMBONE];
M3D_FLOAT weight[M3D_NUMBONE];
} m3ds_t;
/* vertex entry */
typedef struct {
M3D_FLOAT x; /* 3D coordinates and weight */
M3D_FLOAT y;
M3D_FLOAT z;
M3D_FLOAT w;
uint32_t color; /* default vertex color */
M3D_INDEX skinid; /* skin index */
} m3dv_t;
/* material property formats */
enum {
m3dpf_color,
m3dpf_uint8,
m3dpf_uint16,
m3dpf_uint32,
m3dpf_float,
m3dpf_map
};
typedef struct {
uint8_t format;
uint8_t id;
#ifdef M3D_ASCII
#define M3D_PROPERTYDEF(f,i,n) { (f), (i), (char*)(n) }
char *key;
#else
#define M3D_PROPERTYDEF(f,i,n) { (f), (i) }
#endif
} m3dpd_t;
/* material property types */
/* You shouldn't change the first 8 display and first 4 physical property. Assign the rest as you like. */
enum {
m3dp_Kd = 0, /* scalar display properties */
m3dp_Ka,
m3dp_Ks,
m3dp_Ns,
m3dp_Ke,
m3dp_Tf,
m3dp_Km,
m3dp_d,
m3dp_il,
m3dp_Pr = 64, /* scalar physical properties */
m3dp_Pm,
m3dp_Ps,
m3dp_Ni,
m3dp_map_Kd = 128, /* textured display map properties */
m3dp_map_Ka,
m3dp_map_Ks,
m3dp_map_Ns,
m3dp_map_Ke,
m3dp_map_Tf,
m3dp_map_Km, /* bump map */
m3dp_map_D,
m3dp_map_il, /* reflection map */
m3dp_map_Pr = 192, /* textured physical map properties */
m3dp_map_Pm,
m3dp_map_Ps,
m3dp_map_Ni
};
enum { /* aliases */
m3dp_bump = m3dp_map_Km,
m3dp_refl = m3dp_map_Pm
};
/* material property */
typedef struct {
uint8_t type; /* property type, see "m3dp_*" enumeration */
union {
uint32_t color; /* if value is a color, m3dpf_color */
uint32_t num; /* if value is a number, m3dpf_uint8, m3pf_uint16, m3dpf_uint32 */
float fnum; /* if value is a floating point number, m3dpf_float */
M3D_INDEX textureid; /* if value is a texture, m3dpf_map */
} value;
} m3dp_t;
/* material entry */
typedef struct {
char *name; /* name of the material */
uint8_t numprop; /* number of properties */
m3dp_t *prop; /* properties array */
} m3dm_t;
/* face entry */
typedef struct {
M3D_INDEX materialid; /* material index */
M3D_INDEX vertex[3]; /* 3D points of the triangle in CCW order */
M3D_INDEX normal[3]; /* normal vectors */
M3D_INDEX texcoord[3]; /* UV coordinates */
} m3df_t;
/* frame transformations / working copy skeleton entry */
typedef struct {
M3D_INDEX boneid; /* selects a node in bone hierarchy */
M3D_INDEX pos; /* vertex index new position */
M3D_INDEX ori; /* vertex index new orientation (quaternion) */
} m3dtr_t;
/* animation frame entry */
typedef struct {
uint32_t msec; /* frame's position on the timeline, timestamp */
M3D_INDEX numtransform; /* number of transformations in this frame */
m3dtr_t *transform; /* transformations */
} m3dfr_t;
/* model action entry */
typedef struct {
char *name; /* name of the action */
uint32_t durationmsec; /* duration in millisec (1/1000 sec) */
M3D_INDEX numframe; /* number of frames in this animation */
m3dfr_t *frame; /* frames array */
} m3da_t;
/* inlined asset */
typedef struct {
char *name; /* asset name (same pointer as in texture[].name) */
uint8_t *data; /* compressed asset data */
uint32_t length; /* compressed data length */
} m3di_t;
/*** in-memory model structure ***/
#define M3D_FLG_FREERAW (1<<0)
#define M3D_FLG_FREESTR (1<<1)
#define M3D_FLG_MTLLIB (1<<2)
typedef struct {
m3dhdr_t *raw; /* pointer to raw data */
char flags; /* internal flags */
char errcode; /* returned error code */
char vc_s, vi_s, si_s, ci_s, ti_s, bi_s, nb_s, sk_s, fi_s; /* decoded sizes for types */
char *name; /* name of the model, like "Utah teapot" */
char *license; /* usage condition or license, like "MIT", "LGPL" or "BSD-3clause" */
char *author; /* nickname, email, homepage or github URL etc. */
char *desc; /* comments, descriptions. May contain '\n' newline character */
M3D_FLOAT scale; /* the model's bounding cube's size in SI meters */
M3D_INDEX numcmap;
uint32_t *cmap; /* color map */
M3D_INDEX numtmap;
m3dti_t *tmap; /* texture map indices */
M3D_INDEX numtexture;
m3dtx_t *texture; /* uncompressed textures */
M3D_INDEX numbone;
m3db_t *bone; /* bone hierarchy */
M3D_INDEX numvertex;
m3dv_t *vertex; /* vertex data */
M3D_INDEX numskin;
m3ds_t *skin; /* skin data */
M3D_INDEX nummaterial;
m3dm_t *material; /* material list */
M3D_INDEX numface;
m3df_t *face; /* model face, triangle mesh */
M3D_INDEX numaction;
m3da_t *action; /* action animations */
M3D_INDEX numinlined;
m3di_t *inlined; /* inlined assets */
M3D_INDEX numunknown;
m3dchunk_t **unknown; /* unknown chunks, application / engine specific data probably */
} m3d_t;
/*** export parameters ***/
#define M3D_EXP_INT8 0
#define M3D_EXP_INT16 1
#define M3D_EXP_FLOAT 2
#define M3D_EXP_DOUBLE 3
#define M3D_EXP_NOCMAP (1<<0)
#define M3D_EXP_NOMATERIAL (1<<1)
#define M3D_EXP_NOFACE (1<<2)
#define M3D_EXP_NONORMAL (1<<3)
#define M3D_EXP_NOTXTCRD (1<<4)
#define M3D_EXP_FLIPTXTCRD (1<<5)
#define M3D_EXP_NORECALC (1<<6)
#define M3D_EXP_IDOSUCK (1<<7)
#define M3D_EXP_NOBONE (1<<8)
#define M3D_EXP_NOACTION (1<<9)
#define M3D_EXP_INLINE (1<<10)
#define M3D_EXP_EXTRA (1<<11)
#define M3D_EXP_NOZLIB (1<<14)
#define M3D_EXP_ASCII (1<<15)
/*** error codes ***/
#define M3D_SUCCESS 0
#define M3D_ERR_ALLOC -1
#define M3D_ERR_BADFILE -2
#define M3D_ERR_UNIMPL -65
#define M3D_ERR_UNKPROP -66
#define M3D_ERR_UNKMESH -67
#define M3D_ERR_UNKIMG -68
#define M3D_ERR_UNKFRAME -69
#define M3D_ERR_TRUNC -70
#define M3D_ERR_CMAP -71
#define M3D_ERR_TMAP -72
#define M3D_ERR_VRTS -73
#define M3D_ERR_BONE -74
#define M3D_ERR_MTRL -75
#define M3D_ERR_ISFATAL(x) ((x) < 0 && (x) > -65)
/* callbacks */
typedef unsigned char *(*m3dread_t)(char *filename, unsigned int *size); /* read file contents into buffer */
typedef void (*m3dfree_t)(void *buffer); /* free file contents buffer */
typedef int (*m3dtxsc_t)(const char *name, const void *script, uint32_t len, m3dtx_t *output); /* interpret texture script */
typedef int (*m3dprsc_t)(const char *name, const void *script, uint32_t len, m3d_t *model); /* interpret surface script */
#endif /* ifndef M3D_APIVERSION */
/*** C prototypes ***/
/* import / export */
m3d_t *m3d_load(unsigned char *data, m3dread_t readfilecb, m3dfree_t freecb, m3d_t *mtllib);
unsigned char *m3d_save(m3d_t *model, int quality, int flags, unsigned int *size);
void m3d_free(m3d_t *model);
/* generate animation pose skeleton */
m3dtr_t *m3d_frame(m3d_t *model, M3D_INDEX actionid, M3D_INDEX frameid, m3dtr_t *skeleton);
m3db_t *m3d_pose(m3d_t *model, M3D_INDEX actionid, uint32_t msec);
/* private prototypes used by both importer and exporter */
m3ds_t *_m3d_addskin(m3ds_t *skin, uint32_t *numskin, m3ds_t *s, uint32_t *idx);
m3dv_t *_m3d_addnorm(m3dv_t *vrtx, uint32_t *numvrtx, m3dv_t *v, uint32_t *idx);
char *_m3d_safestr(char *in, int morelines);
/*** C implementation ***/
#ifdef M3D_IMPLEMENTATION
#if !defined(M3D_NOIMPORTER) || defined(M3D_EXPORTER)
/* material property definitions */
static m3dpd_t m3d_propertytypes[] = {
M3D_PROPERTYDEF(m3dpf_color, m3dp_Kd, "Kd"), /* diffuse color */
M3D_PROPERTYDEF(m3dpf_color, m3dp_Ka, "Ka"), /* ambient color */
M3D_PROPERTYDEF(m3dpf_color, m3dp_Ks, "Ks"), /* specular color */
M3D_PROPERTYDEF(m3dpf_float, m3dp_Ns, "Ns"), /* specular exponent */
M3D_PROPERTYDEF(m3dpf_color, m3dp_Ke, "Ke"), /* emissive (emitting light of this color) */
M3D_PROPERTYDEF(m3dpf_color, m3dp_Tf, "Tf"), /* transmission color */
M3D_PROPERTYDEF(m3dpf_float, m3dp_Km, "Km"), /* bump strength */
M3D_PROPERTYDEF(m3dpf_float, m3dp_d, "d"), /* dissolve (transparency) */
M3D_PROPERTYDEF(m3dpf_uint8, m3dp_il, "il"), /* illumination model (informational, ignored by PBR-shaders) */
M3D_PROPERTYDEF(m3dpf_float, m3dp_Pr, "Pr"), /* roughness */
M3D_PROPERTYDEF(m3dpf_float, m3dp_Pm, "Pm"), /* metallic, also reflection */
M3D_PROPERTYDEF(m3dpf_float, m3dp_Ps, "Ps"), /* sheen */
M3D_PROPERTYDEF(m3dpf_float, m3dp_Ni, "Ni"), /* index of refraction (optical density) */
/* aliases, note that "map_*" aliases are handled automatically */
M3D_PROPERTYDEF(m3dpf_map, m3dp_map_Km, "bump"),
M3D_PROPERTYDEF(m3dpf_map, m3dp_map_Pm, "refl")
};
#endif
#include <stdlib.h>
#include <string.h>
#if !defined(M3D_NOIMPORTER) && !defined(STBI_INCLUDE_STB_IMAGE_H)
/* PNG decompressor from
stb_image - v2.23 - public domain image loader - http://nothings.org/stb_image.h
*/
static const char *stbi__g_failure_reason;
enum
{
STBI_default = 0,
STBI_grey = 1,
STBI_grey_alpha = 2,
STBI_rgb = 3,
STBI_rgb_alpha = 4
};
enum
{
STBI__SCAN_load=0,
STBI__SCAN_type,
STBI__SCAN_header
};
typedef unsigned char stbi_uc;
typedef unsigned short stbi_us;
typedef uint16_t stbi__uint16;
typedef int16_t stbi__int16;
typedef uint32_t stbi__uint32;
typedef int32_t stbi__int32;
typedef struct
{
stbi__uint32 img_x, img_y;
int img_n, img_out_n;
void *io_user_data;
int read_from_callbacks;
int buflen;
stbi_uc buffer_start[128];
stbi_uc *img_buffer, *img_buffer_end;
stbi_uc *img_buffer_original, *img_buffer_original_end;
} stbi__context;
typedef struct
{
int bits_per_channel;
int num_channels;
int channel_order;
} stbi__result_info;
#define STBI_ASSERT(v)
#define STBI_NOTUSED(v) (void)sizeof(v)
#define STBI__BYTECAST(x) ((stbi_uc) ((x) & 255))
#define STBI_MALLOC(sz) M3D_MALLOC(sz)
#define STBI_REALLOC(p,newsz) M3D_REALLOC(p,newsz)
#define STBI_FREE(p) M3D_FREE(p)
#define STBI_REALLOC_SIZED(p,oldsz,newsz) STBI_REALLOC(p,newsz)
_inline static stbi_uc stbi__get8(stbi__context *s)
{
if (s->img_buffer < s->img_buffer_end)
return *s->img_buffer++;
return 0;
}
_inline static int stbi__at_eof(stbi__context *s)
{
return s->img_buffer >= s->img_buffer_end;
}
static void stbi__skip(stbi__context *s, int n)
{
if (n < 0) {
s->img_buffer = s->img_buffer_end;
return;
}
s->img_buffer += n;
}
static int stbi__getn(stbi__context *s, stbi_uc *buffer, int n)
{
if (s->img_buffer+n <= s->img_buffer_end) {
memcpy(buffer, s->img_buffer, n);
s->img_buffer += n;
return 1;
} else
return 0;
}
static int stbi__get16be(stbi__context *s)
{
int z = stbi__get8(s);
return (z << 8) + stbi__get8(s);
}
static stbi__uint32 stbi__get32be(stbi__context *s)
{
stbi__uint32 z = stbi__get16be(s);
return (z << 16) + stbi__get16be(s);
}
#define stbi__err(x,y) stbi__errstr(y)
static int stbi__errstr(const char *str)
{
stbi__g_failure_reason = str;
return 0;
}
_inline static void *stbi__malloc(size_t size)
{
return STBI_MALLOC(size);
}
static int stbi__addsizes_valid(int a, int b)
{
if (b < 0) return 0;
return a <= 2147483647 - b;
}
static int stbi__mul2sizes_valid(int a, int b)
{
if (a < 0 || b < 0) return 0;
if (b == 0) return 1;
return a <= 2147483647/b;
}
static int stbi__mad2sizes_valid(int a, int b, int add)
{
return stbi__mul2sizes_valid(a, b) && stbi__addsizes_valid(a*b, add);
}
static int stbi__mad3sizes_valid(int a, int b, int c, int add)
{
return stbi__mul2sizes_valid(a, b) && stbi__mul2sizes_valid(a*b, c) &&
stbi__addsizes_valid(a*b*c, add);
}
static void *stbi__malloc_mad2(int a, int b, int add)
{
if (!stbi__mad2sizes_valid(a, b, add)) return NULL;
return stbi__malloc(a*b + add);
}
static void *stbi__malloc_mad3(int a, int b, int c, int add)
{
if (!stbi__mad3sizes_valid(a, b, c, add)) return NULL;
return stbi__malloc(a*b*c + add);
}
static stbi_uc stbi__compute_y(int r, int g, int b)
{
return (stbi_uc) (((r*77) + (g*150) + (29*b)) >> 8);
}
static unsigned char *stbi__convert_format(unsigned char *data, int img_n, int req_comp, unsigned int x, unsigned int y)
{
int i,j;
unsigned char *good;
if (req_comp == img_n) return data;
STBI_ASSERT(req_comp >= 1 && req_comp <= 4);
good = (unsigned char *) stbi__malloc_mad3(req_comp, x, y, 0);
if (good == NULL) {
STBI_FREE(data);
stbi__err("outofmem", "Out of memory");
return NULL;
}
for (j=0; j < (int) y; ++j) {
unsigned char *src = data + j * x * img_n ;
unsigned char *dest = good + j * x * req_comp;
#define STBI__COMBO(a,b) ((a)*8+(b))
#define STBI__CASE(a,b) case STBI__COMBO(a,b): for(i=x-1; i >= 0; --i, src += a, dest += b)
switch (STBI__COMBO(img_n, req_comp)) {
STBI__CASE(1,2) { dest[0]=src[0], dest[1]=255; } break;
STBI__CASE(1,3) { dest[0]=dest[1]=dest[2]=src[0]; } break;
STBI__CASE(1,4) { dest[0]=dest[1]=dest[2]=src[0], dest[3]=255; } break;
STBI__CASE(2,1) { dest[0]=src[0]; } break;
STBI__CASE(2,3) { dest[0]=dest[1]=dest[2]=src[0]; } break;
STBI__CASE(2,4) { dest[0]=dest[1]=dest[2]=src[0], dest[3]=src[1]; } break;
STBI__CASE(3,4) { dest[0]=src[0],dest[1]=src[1],dest[2]=src[2],dest[3]=255; } break;
STBI__CASE(3,1) { dest[0]=stbi__compute_y(src[0],src[1],src[2]); } break;
STBI__CASE(3,2) { dest[0]=stbi__compute_y(src[0],src[1],src[2]), dest[1] = 255; } break;
STBI__CASE(4,1) { dest[0]=stbi__compute_y(src[0],src[1],src[2]); } break;
STBI__CASE(4,2) { dest[0]=stbi__compute_y(src[0],src[1],src[2]), dest[1] = src[3]; } break;
STBI__CASE(4,3) { dest[0]=src[0],dest[1]=src[1],dest[2]=src[2]; } break;
default: STBI_ASSERT(0);
}
#undef STBI__CASE
}
STBI_FREE(data);
return good;
}
static stbi__uint16 stbi__compute_y_16(int r, int g, int b)
{
return (stbi__uint16) (((r*77) + (g*150) + (29*b)) >> 8);
}
static stbi__uint16 *stbi__convert_format16(stbi__uint16 *data, int img_n, int req_comp, unsigned int x, unsigned int y)
{
int i,j;
stbi__uint16 *good;
if (req_comp == img_n) return data;
STBI_ASSERT(req_comp >= 1 && req_comp <= 4);
good = (stbi__uint16 *) stbi__malloc(req_comp * x * y * 2);
if (good == NULL) {
STBI_FREE(data);
stbi__err("outofmem", "Out of memory");
return NULL;
}
for (j=0; j < (int) y; ++j) {
stbi__uint16 *src = data + j * x * img_n ;
stbi__uint16 *dest = good + j * x * req_comp;
#define STBI__COMBO(a,b) ((a)*8+(b))
#define STBI__CASE(a,b) case STBI__COMBO(a,b): for(i=x-1; i >= 0; --i, src += a, dest += b)
switch (STBI__COMBO(img_n, req_comp)) {
STBI__CASE(1,2) { dest[0]=src[0], dest[1]=0xffff; } break;
STBI__CASE(1,3) { dest[0]=dest[1]=dest[2]=src[0]; } break;
STBI__CASE(1,4) { dest[0]=dest[1]=dest[2]=src[0], dest[3]=0xffff; } break;
STBI__CASE(2,1) { dest[0]=src[0]; } break;
STBI__CASE(2,3) { dest[0]=dest[1]=dest[2]=src[0]; } break;
STBI__CASE(2,4) { dest[0]=dest[1]=dest[2]=src[0], dest[3]=src[1]; } break;
STBI__CASE(3,4) { dest[0]=src[0],dest[1]=src[1],dest[2]=src[2],dest[3]=0xffff; } break;
STBI__CASE(3,1) { dest[0]=stbi__compute_y_16(src[0],src[1],src[2]); } break;
STBI__CASE(3,2) { dest[0]=stbi__compute_y_16(src[0],src[1],src[2]), dest[1] = 0xffff; } break;
STBI__CASE(4,1) { dest[0]=stbi__compute_y_16(src[0],src[1],src[2]); } break;
STBI__CASE(4,2) { dest[0]=stbi__compute_y_16(src[0],src[1],src[2]), dest[1] = src[3]; } break;
STBI__CASE(4,3) { dest[0]=src[0],dest[1]=src[1],dest[2]=src[2]; } break;
default: STBI_ASSERT(0);
}
#undef STBI__CASE
}
STBI_FREE(data);
return good;
}
#define STBI__ZFAST_BITS 9
#define STBI__ZFAST_MASK ((1 << STBI__ZFAST_BITS) - 1)
typedef struct
{
stbi__uint16 fast[1 << STBI__ZFAST_BITS];
stbi__uint16 firstcode[16];
int maxcode[17];
stbi__uint16 firstsymbol[16];
stbi_uc size[288];
stbi__uint16 value[288];
} stbi__zhuffman;
_inline static int stbi__bitreverse16(int n)
{
n = ((n & 0xAAAA) >> 1) | ((n & 0x5555) << 1);
n = ((n & 0xCCCC) >> 2) | ((n & 0x3333) << 2);
n = ((n & 0xF0F0) >> 4) | ((n & 0x0F0F) << 4);
n = ((n & 0xFF00) >> 8) | ((n & 0x00FF) << 8);
return n;
}
_inline static int stbi__bit_reverse(int v, int bits)
{
STBI_ASSERT(bits <= 16);
return stbi__bitreverse16(v) >> (16-bits);
}
static int stbi__zbuild_huffman(stbi__zhuffman *z, stbi_uc *sizelist, int num)
{
int i,k=0;
int code, next_code[16], sizes[17];
memset(sizes, 0, sizeof(sizes));
memset(z->fast, 0, sizeof(z->fast));
for (i=0; i < num; ++i)
++sizes[sizelist[i]];
sizes[0] = 0;
for (i=1; i < 16; ++i)
if (sizes[i] > (1 << i))
return stbi__err("bad sizes", "Corrupt PNG");
code = 0;
for (i=1; i < 16; ++i) {
next_code[i] = code;
z->firstcode[i] = (stbi__uint16) code;
z->firstsymbol[i] = (stbi__uint16) k;
code = (code + sizes[i]);
if (sizes[i])
if (code-1 >= (1 << i)) return stbi__err("bad codelengths","Corrupt PNG");
z->maxcode[i] = code << (16-i);
code <<= 1;
k += sizes[i];
}
z->maxcode[16] = 0x10000;
for (i=0; i < num; ++i) {
int s = sizelist[i];
if (s) {
int c = next_code[s] - z->firstcode[s] + z->firstsymbol[s];
stbi__uint16 fastv = (stbi__uint16) ((s << 9) | i);
z->size [c] = (stbi_uc ) s;
z->value[c] = (stbi__uint16) i;
if (s <= STBI__ZFAST_BITS) {
int j = stbi__bit_reverse(next_code[s],s);
while (j < (1 << STBI__ZFAST_BITS)) {
z->fast[j] = fastv;
j += (1 << s);
}
}
++next_code[s];
}
}
return 1;
}
typedef struct
{
stbi_uc *zbuffer, *zbuffer_end;
int num_bits;
stbi__uint32 code_buffer;
char *zout;
char *zout_start;
char *zout_end;
int z_expandable;
stbi__zhuffman z_length, z_distance;
} stbi__zbuf;
_inline static stbi_uc stbi__zget8(stbi__zbuf *z)
{
if (z->zbuffer >= z->zbuffer_end) return 0;
return *z->zbuffer++;
}
static void stbi__fill_bits(stbi__zbuf *z)
{
do {
STBI_ASSERT(z->code_buffer < (1U << z->num_bits));
z->code_buffer |= (unsigned int) stbi__zget8(z) << z->num_bits;
z->num_bits += 8;
} while (z->num_bits <= 24);
}
_inline static unsigned int stbi__zreceive(stbi__zbuf *z, int n)
{
unsigned int k;
if (z->num_bits < n) stbi__fill_bits(z);
k = z->code_buffer & ((1 << n) - 1);
z->code_buffer >>= n;
z->num_bits -= n;
return k;
}
static int stbi__zhuffman_decode_slowpath(stbi__zbuf *a, stbi__zhuffman *z)
{
int b,s,k;
k = stbi__bit_reverse(a->code_buffer, 16);
for (s=STBI__ZFAST_BITS+1; ; ++s)
if (k < z->maxcode[s])
break;
if (s == 16) return -1;
b = (k >> (16-s)) - z->firstcode[s] + z->firstsymbol[s];
STBI_ASSERT(z->size[b] == s);
a->code_buffer >>= s;
a->num_bits -= s;
return z->value[b];
}
_inline static int stbi__zhuffman_decode(stbi__zbuf *a, stbi__zhuffman *z)
{
int b,s;
if (a->num_bits < 16) stbi__fill_bits(a);
b = z->fast[a->code_buffer & STBI__ZFAST_MASK];
if (b) {
s = b >> 9;
a->code_buffer >>= s;
a->num_bits -= s;
return b & 511;
}
return stbi__zhuffman_decode_slowpath(a, z);
}
static int stbi__zexpand(stbi__zbuf *z, char *zout, int n)
{
char *q;
int cur, limit, old_limit;
z->zout = zout;
if (!z->z_expandable) return stbi__err("output buffer limit","Corrupt PNG");
cur = (int) (z->zout - z->zout_start);
limit = old_limit = (int) (z->zout_end - z->zout_start);
while (cur + n > limit)
limit *= 2;
q = (char *) STBI_REALLOC_SIZED(z->zout_start, old_limit, limit);
STBI_NOTUSED(old_limit);
if (q == NULL) return stbi__err("outofmem", "Out of memory");
z->zout_start = q;
z->zout = q + cur;
z->zout_end = q + limit;
return 1;
}
static int stbi__zlength_base[31] = {
3,4,5,6,7,8,9,10,11,13,
15,17,19,23,27,31,35,43,51,59,
67,83,99,115,131,163,195,227,258,0,0 };
static int stbi__zlength_extra[31]=
{ 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0,0,0 };
static int stbi__zdist_base[32] = { 1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193,
257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577,0,0};
static int stbi__zdist_extra[32] =
{ 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
static int stbi__parse_huffman_block(stbi__zbuf *a)
{
char *zout = a->zout;
for(;;) {
int z = stbi__zhuffman_decode(a, &a->z_length);
if (z < 256) {
if (z < 0) return stbi__err("bad huffman code","Corrupt PNG");
if (zout >= a->zout_end) {
if (!stbi__zexpand(a, zout, 1)) return 0;
zout = a->zout;
}
*zout++ = (char) z;
} else {
stbi_uc *p;
int len,dist;
if (z == 256) {
a->zout = zout;
return 1;
}
z -= 257;
len = stbi__zlength_base[z];
if (stbi__zlength_extra[z]) len += stbi__zreceive(a, stbi__zlength_extra[z]);
z = stbi__zhuffman_decode(a, &a->z_distance);
if (z < 0) return stbi__err("bad huffman code","Corrupt PNG");
dist = stbi__zdist_base[z];
if (stbi__zdist_extra[z]) dist += stbi__zreceive(a, stbi__zdist_extra[z]);
if (zout - a->zout_start < dist) return stbi__err("bad dist","Corrupt PNG");
if (zout + len > a->zout_end) {
if (!stbi__zexpand(a, zout, len)) return 0;
zout = a->zout;
}
p = (stbi_uc *) (zout - dist);
if (dist == 1) {
stbi_uc v = *p;
if (len) { do *zout++ = v; while (--len); }
} else {
if (len) { do *zout++ = *p++; while (--len); }
}
}
}
}
static int stbi__compute_huffman_codes(stbi__zbuf *a)
{
static stbi_uc length_dezigzag[19] = { 16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15 };
stbi__zhuffman z_codelength;
stbi_uc lencodes[286+32+137];
stbi_uc codelength_sizes[19];
int i,n;
int hlit = stbi__zreceive(a,5) + 257;
int hdist = stbi__zreceive(a,5) + 1;
int hclen = stbi__zreceive(a,4) + 4;
int ntot = hlit + hdist;
memset(codelength_sizes, 0, sizeof(codelength_sizes));
for (i=0; i < hclen; ++i) {
int s = stbi__zreceive(a,3);
codelength_sizes[length_dezigzag[i]] = (stbi_uc) s;
}
if (!stbi__zbuild_huffman(&z_codelength, codelength_sizes, 19)) return 0;
n = 0;
while (n < ntot) {
int c = stbi__zhuffman_decode(a, &z_codelength);
if (c < 0 || c >= 19) return stbi__err("bad codelengths", "Corrupt PNG");
if (c < 16)
lencodes[n++] = (stbi_uc) c;
else {
stbi_uc fill = 0;
if (c == 16) {
c = stbi__zreceive(a,2)+3;
if (n == 0) return stbi__err("bad codelengths", "Corrupt PNG");
fill = lencodes[n-1];
} else if (c == 17)
c = stbi__zreceive(a,3)+3;
else {
STBI_ASSERT(c == 18);
c = stbi__zreceive(a,7)+11;
}
if (ntot - n < c) return stbi__err("bad codelengths", "Corrupt PNG");
memset(lencodes+n, fill, c);
n += c;
}
}
if (n != ntot) return stbi__err("bad codelengths","Corrupt PNG");
if (!stbi__zbuild_huffman(&a->z_length, lencodes, hlit)) return 0;
if (!stbi__zbuild_huffman(&a->z_distance, lencodes+hlit, hdist)) return 0;
return 1;
}
_inline static int stbi__parse_uncompressed_block(stbi__zbuf *a)
{
stbi_uc header[4];
int len,nlen,k;
if (a->num_bits & 7)
stbi__zreceive(a, a->num_bits & 7);
k = 0;
while (a->num_bits > 0) {
header[k++] = (stbi_uc) (a->code_buffer & 255);
a->code_buffer >>= 8;
a->num_bits -= 8;
}
STBI_ASSERT(a->num_bits == 0);
while (k < 4)
header[k++] = stbi__zget8(a);
len = header[1] * 256 + header[0];
nlen = header[3] * 256 + header[2];
if (nlen != (len ^ 0xffff)) return stbi__err("zlib corrupt","Corrupt PNG");
if (a->zbuffer + len > a->zbuffer_end) return stbi__err("read past buffer","Corrupt PNG");
if (a->zout + len > a->zout_end)
if (!stbi__zexpand(a, a->zout, len)) return 0;
memcpy(a->zout, a->zbuffer, len);
a->zbuffer += len;
a->zout += len;
return 1;
}
static int stbi__parse_zlib_header(stbi__zbuf *a)
{
int cmf = stbi__zget8(a);
int cm = cmf & 15;
/* int cinfo = cmf >> 4; */
int flg = stbi__zget8(a);
if ((cmf*256+flg) % 31 != 0) return stbi__err("bad zlib header","Corrupt PNG");
if (flg & 32) return stbi__err("no preset dict","Corrupt PNG");
if (cm != 8) return stbi__err("bad compression","Corrupt PNG");
return 1;
}
static stbi_uc stbi__zdefault_length[288], stbi__zdefault_distance[32];
static void stbi__init_zdefaults(void)
{
int i;
for (i=0; i <= 143; ++i) stbi__zdefault_length[i] = 8;
for ( ; i <= 255; ++i) stbi__zdefault_length[i] = 9;
for ( ; i <= 279; ++i) stbi__zdefault_length[i] = 7;
for ( ; i <= 287; ++i) stbi__zdefault_length[i] = 8;
for (i=0; i <= 31; ++i) stbi__zdefault_distance[i] = 5;
}
static int stbi__parse_zlib(stbi__zbuf *a, int parse_header)
{
int final, type;
if (parse_header)
if (!stbi__parse_zlib_header(a)) return 0;
a->num_bits = 0;
a->code_buffer = 0;
do {
final = stbi__zreceive(a,1);
type = stbi__zreceive(a,2);
if (type == 0) {
if (!stbi__parse_uncompressed_block(a)) return 0;
} else if (type == 3) {
return 0;
} else {
if (type == 1) {
if (!stbi__zdefault_distance[31]) stbi__init_zdefaults();
if (!stbi__zbuild_huffman(&a->z_length , stbi__zdefault_length , 288)) return 0;
if (!stbi__zbuild_huffman(&a->z_distance, stbi__zdefault_distance, 32)) return 0;
} else {
if (!stbi__compute_huffman_codes(a)) return 0;
}
if (!stbi__parse_huffman_block(a)) return 0;
}
} while (!final);
return 1;
}
static int stbi__do_zlib(stbi__zbuf *a, char *obuf, int olen, int exp, int parse_header)
{
a->zout_start = obuf;
a->zout = obuf;
a->zout_end = obuf + olen;
a->z_expandable = exp;
return stbi__parse_zlib(a, parse_header);
}
char *stbi_zlib_decode_malloc_guesssize_headerflag(const char *buffer, int len, int initial_size, int *outlen, int parse_header)
{
stbi__zbuf a;
char *p = (char *) stbi__malloc(initial_size);
if (p == NULL) return NULL;
a.zbuffer = (stbi_uc *) buffer;
a.zbuffer_end = (stbi_uc *) buffer + len;
if (stbi__do_zlib(&a, p, initial_size, 1, parse_header)) {
if (outlen) *outlen = (int) (a.zout - a.zout_start);
return a.zout_start;
} else {
STBI_FREE(a.zout_start);
return NULL;
}
}
typedef struct
{
stbi__uint32 length;
stbi__uint32 type;
} stbi__pngchunk;
static stbi__pngchunk stbi__get_chunk_header(stbi__context *s)
{
stbi__pngchunk c;
c.length = stbi__get32be(s);
c.type = stbi__get32be(s);
return c;
}
_inline static int stbi__check_png_header(stbi__context *s)
{
static stbi_uc png_sig[8] = { 137,80,78,71,13,10,26,10 };
int i;
for (i=0; i < 8; ++i)
if (stbi__get8(s) != png_sig[i]) return stbi__err("bad png sig","Not a PNG");
return 1;
}
typedef struct
{
stbi__context *s;
stbi_uc *idata, *expanded, *out;
int depth;
} stbi__png;
enum {
STBI__F_none=0,
STBI__F_sub=1,
STBI__F_up=2,
STBI__F_avg=3,
STBI__F_paeth=4,
STBI__F_avg_first,
STBI__F_paeth_first
};
static stbi_uc first_row_filter[5] =
{
STBI__F_none,
STBI__F_sub,
STBI__F_none,
STBI__F_avg_first,
STBI__F_paeth_first
};
static int stbi__paeth(int a, int b, int c)
{
int p = a + b - c;
int pa = abs(p-a);
int pb = abs(p-b);
int pc = abs(p-c);
if (pa <= pb && pa <= pc) return a;
if (pb <= pc) return b;
return c;
}
static stbi_uc stbi__depth_scale_table[9] = { 0, 0xff, 0x55, 0, 0x11, 0,0,0, 0x01 };
static int stbi__create_png_image_raw(stbi__png *a, stbi_uc *raw, stbi__uint32 raw_len, int out_n, stbi__uint32 x, stbi__uint32 y, int depth, int color)
{
int bytes = (depth == 16? 2 : 1);
stbi__context *s = a->s;
stbi__uint32 i,j,stride = x*out_n*bytes;
stbi__uint32 img_len, img_width_bytes;
int k;
int img_n = s->img_n;
int output_bytes = out_n*bytes;
int filter_bytes = img_n*bytes;
int width = x;
STBI_ASSERT(out_n == s->img_n || out_n == s->img_n+1);
a->out = (stbi_uc *) stbi__malloc_mad3(x, y, output_bytes, 0);
if (!a->out) return stbi__err("outofmem", "Out of memory");
img_width_bytes = (((img_n * x * depth) + 7) >> 3);
img_len = (img_width_bytes + 1) * y;
if (s->img_x == x && s->img_y == y) {
if (raw_len != img_len) return stbi__err("not enough pixels","Corrupt PNG");
} else {
if (raw_len < img_len) return stbi__err("not enough pixels","Corrupt PNG");
}
for (j=0; j < y; ++j) {
stbi_uc *cur = a->out + stride*j;
stbi_uc *prior = cur - stride;
int filter = *raw++;
if (filter > 4)
return stbi__err("invalid filter","Corrupt PNG");
if (depth < 8) {
STBI_ASSERT(img_width_bytes <= x);
cur += x*out_n - img_width_bytes;
filter_bytes = 1;
width = img_width_bytes;
}
if (j == 0) filter = first_row_filter[filter];
for (k=0; k < filter_bytes; ++k) {
switch (filter) {
case STBI__F_none : cur[k] = raw[k]; break;
case STBI__F_sub : cur[k] = raw[k]; break;
case STBI__F_up : cur[k] = STBI__BYTECAST(raw[k] + prior[k]); break;
case STBI__F_avg : cur[k] = STBI__BYTECAST(raw[k] + (prior[k]>>1)); break;
case STBI__F_paeth : cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(0,prior[k],0)); break;
case STBI__F_avg_first : cur[k] = raw[k]; break;
case STBI__F_paeth_first: cur[k] = raw[k]; break;
}
}
if (depth == 8) {
if (img_n != out_n)
cur[img_n] = 255;
raw += img_n;
cur += out_n;
prior += out_n;
} else if (depth == 16) {
if (img_n != out_n) {
cur[filter_bytes] = 255;
cur[filter_bytes+1] = 255;
}
raw += filter_bytes;
cur += output_bytes;
prior += output_bytes;
} else {
raw += 1;
cur += 1;
prior += 1;
}
if (depth < 8 || img_n == out_n) {
int nk = (width - 1)*filter_bytes;
#define STBI__CASE(f) \
case f: \
for (k=0; k < nk; ++k)
switch (filter) {
case STBI__F_none: memcpy(cur, raw, nk); break;
STBI__CASE(STBI__F_sub) { cur[k] = STBI__BYTECAST(raw[k] + cur[k-filter_bytes]); } break;
STBI__CASE(STBI__F_up) { cur[k] = STBI__BYTECAST(raw[k] + prior[k]); } break;
STBI__CASE(STBI__F_avg) { cur[k] = STBI__BYTECAST(raw[k] + ((prior[k] + cur[k-filter_bytes])>>1)); } break;
STBI__CASE(STBI__F_paeth) { cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k-filter_bytes],prior[k],prior[k-filter_bytes])); } break;
STBI__CASE(STBI__F_avg_first) { cur[k] = STBI__BYTECAST(raw[k] + (cur[k-filter_bytes] >> 1)); } break;
STBI__CASE(STBI__F_paeth_first) { cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k-filter_bytes],0,0)); } break;
}
#undef STBI__CASE
raw += nk;
} else {
STBI_ASSERT(img_n+1 == out_n);
#define STBI__CASE(f) \
case f: \
for (i=x-1; i >= 1; --i, cur[filter_bytes]=255,raw+=filter_bytes,cur+=output_bytes,prior+=output_bytes) \
for (k=0; k < filter_bytes; ++k)
switch (filter) {
STBI__CASE(STBI__F_none) { cur[k] = raw[k]; } break;
STBI__CASE(STBI__F_sub) { cur[k] = STBI__BYTECAST(raw[k] + cur[k- output_bytes]); } break;
STBI__CASE(STBI__F_up) { cur[k] = STBI__BYTECAST(raw[k] + prior[k]); } break;
STBI__CASE(STBI__F_avg) { cur[k] = STBI__BYTECAST(raw[k] + ((prior[k] + cur[k- output_bytes])>>1)); } break;
STBI__CASE(STBI__F_paeth) { cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k- output_bytes],prior[k],prior[k- output_bytes])); } break;
STBI__CASE(STBI__F_avg_first) { cur[k] = STBI__BYTECAST(raw[k] + (cur[k- output_bytes] >> 1)); } break;
STBI__CASE(STBI__F_paeth_first) { cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k- output_bytes],0,0)); } break;
}
#undef STBI__CASE
if (depth == 16) {
cur = a->out + stride*j;
for (i=0; i < x; ++i,cur+=output_bytes) {
cur[filter_bytes+1] = 255;
}
}
}
}
if (depth < 8) {
for (j=0; j < y; ++j) {
stbi_uc *cur = a->out + stride*j;
stbi_uc *in = a->out + stride*j + x*out_n - img_width_bytes;
stbi_uc scale = (color == 0) ? stbi__depth_scale_table[depth] : 1;
if (depth == 4) {
for (k=x*img_n; k >= 2; k-=2, ++in) {
*cur++ = scale * ((*in >> 4) );
*cur++ = scale * ((*in ) & 0x0f);
}
if (k > 0) *cur++ = scale * ((*in >> 4) );
} else if (depth == 2) {
for (k=x*img_n; k >= 4; k-=4, ++in) {
*cur++ = scale * ((*in >> 6) );
*cur++ = scale * ((*in >> 4) & 0x03);
*cur++ = scale * ((*in >> 2) & 0x03);
*cur++ = scale * ((*in ) & 0x03);
}
if (k > 0) *cur++ = scale * ((*in >> 6) );
if (k > 1) *cur++ = scale * ((*in >> 4) & 0x03);
if (k > 2) *cur++ = scale * ((*in >> 2) & 0x03);
} else if (depth == 1) {
for (k=x*img_n; k >= 8; k-=8, ++in) {
*cur++ = scale * ((*in >> 7) );
*cur++ = scale * ((*in >> 6) & 0x01);
*cur++ = scale * ((*in >> 5) & 0x01);
*cur++ = scale * ((*in >> 4) & 0x01);
*cur++ = scale * ((*in >> 3) & 0x01);
*cur++ = scale * ((*in >> 2) & 0x01);
*cur++ = scale * ((*in >> 1) & 0x01);
*cur++ = scale * ((*in ) & 0x01);
}
if (k > 0) *cur++ = scale * ((*in >> 7) );
if (k > 1) *cur++ = scale * ((*in >> 6) & 0x01);
if (k > 2) *cur++ = scale * ((*in >> 5) & 0x01);
if (k > 3) *cur++ = scale * ((*in >> 4) & 0x01);
if (k > 4) *cur++ = scale * ((*in >> 3) & 0x01);
if (k > 5) *cur++ = scale * ((*in >> 2) & 0x01);
if (k > 6) *cur++ = scale * ((*in >> 1) & 0x01);
}
if (img_n != out_n) {
int q;
cur = a->out + stride*j;
if (img_n == 1) {
for (q=x-1; q >= 0; --q) {
cur[q*2+1] = 255;
cur[q*2+0] = cur[q];
}
} else {
STBI_ASSERT(img_n == 3);
for (q=x-1; q >= 0; --q) {
cur[q*4+3] = 255;
cur[q*4+2] = cur[q*3+2];
cur[q*4+1] = cur[q*3+1];
cur[q*4+0] = cur[q*3+0];
}
}
}
}
} else if (depth == 16) {
stbi_uc *cur = a->out;
stbi__uint16 *cur16 = (stbi__uint16*)cur;
for(i=0; i < x*y*out_n; ++i,cur16++,cur+=2) {
*cur16 = (cur[0] << 8) | cur[1];
}
}
return 1;
}
static int stbi__create_png_image(stbi__png *a, stbi_uc *image_data, stbi__uint32 image_data_len, int out_n, int depth, int color, int interlaced)
{
int bytes = (depth == 16 ? 2 : 1);
int out_bytes = out_n * bytes;
stbi_uc *final;
int p;
if (!interlaced)
return stbi__create_png_image_raw(a, image_data, image_data_len, out_n, a->s->img_x, a->s->img_y, depth, color);
final = (stbi_uc *) stbi__malloc_mad3(a->s->img_x, a->s->img_y, out_bytes, 0);
for (p=0; p < 7; ++p) {
int xorig[] = { 0,4,0,2,0,1,0 };
int yorig[] = { 0,0,4,0,2,0,1 };
int xspc[] = { 8,8,4,4,2,2,1 };
int yspc[] = { 8,8,8,4,4,2,2 };
int i,j,x,y;
x = (a->s->img_x - xorig[p] + xspc[p]-1) / xspc[p];
y = (a->s->img_y - yorig[p] + yspc[p]-1) / yspc[p];
if (x && y) {
stbi__uint32 img_len = ((((a->s->img_n * x * depth) + 7) >> 3) + 1) * y;
if (!stbi__create_png_image_raw(a, image_data, image_data_len, out_n, x, y, depth, color)) {
STBI_FREE(final);
return 0;
}
for (j=0; j < y; ++j) {
for (i=0; i < x; ++i) {
int out_y = j*yspc[p]+yorig[p];
int out_x = i*xspc[p]+xorig[p];
memcpy(final + out_y*a->s->img_x*out_bytes + out_x*out_bytes,
a->out + (j*x+i)*out_bytes, out_bytes);
}
}
STBI_FREE(a->out);
image_data += img_len;
image_data_len -= img_len;
}
}
a->out = final;
return 1;
}
static int stbi__compute_transparency(stbi__png *z, stbi_uc tc[3], int out_n)
{
stbi__context *s = z->s;
stbi__uint32 i, pixel_count = s->img_x * s->img_y;
stbi_uc *p = z->out;
STBI_ASSERT(out_n == 2 || out_n == 4);
if (out_n == 2) {
for (i=0; i < pixel_count; ++i) {
p[1] = (p[0] == tc[0] ? 0 : 255);
p += 2;
}
} else {
for (i=0; i < pixel_count; ++i) {
if (p[0] == tc[0] && p[1] == tc[1] && p[2] == tc[2])
p[3] = 0;
p += 4;
}
}
return 1;
}
static int stbi__compute_transparency16(stbi__png *z, stbi__uint16 tc[3], int out_n)
{
stbi__context *s = z->s;
stbi__uint32 i, pixel_count = s->img_x * s->img_y;
stbi__uint16 *p = (stbi__uint16*) z->out;
STBI_ASSERT(out_n == 2 || out_n == 4);
if (out_n == 2) {
for (i = 0; i < pixel_count; ++i) {
p[1] = (p[0] == tc[0] ? 0 : 65535);
p += 2;
}
} else {
for (i = 0; i < pixel_count; ++i) {
if (p[0] == tc[0] && p[1] == tc[1] && p[2] == tc[2])
p[3] = 0;
p += 4;
}
}
return 1;
}
static int stbi__expand_png_palette(stbi__png *a, stbi_uc *palette, int len, int pal_img_n)
{
stbi__uint32 i, pixel_count = a->s->img_x * a->s->img_y;
stbi_uc *p, *temp_out, *orig = a->out;
p = (stbi_uc *) stbi__malloc_mad2(pixel_count, pal_img_n, 0);
if (p == NULL) return stbi__err("outofmem", "Out of memory");
temp_out = p;
if (pal_img_n == 3) {
for (i=0; i < pixel_count; ++i) {
int n = orig[i]*4;
p[0] = palette[n ];
p[1] = palette[n+1];
p[2] = palette[n+2];
p += 3;
}
} else {
for (i=0; i < pixel_count; ++i) {
int n = orig[i]*4;
p[0] = palette[n ];
p[1] = palette[n+1];
p[2] = palette[n+2];
p[3] = palette[n+3];
p += 4;
}
}
STBI_FREE(a->out);
a->out = temp_out;
STBI_NOTUSED(len);
return 1;
}
static int stbi__unpremultiply_on_load = 0;
static int stbi__de_iphone_flag = 0;
void stbi_set_unpremultiply_on_load(int flag_true_if_should_unpremultiply)
{
stbi__unpremultiply_on_load = flag_true_if_should_unpremultiply;
}
void stbi_convert_iphone_png_to_rgb(int flag_true_if_should_convert)
{
stbi__de_iphone_flag = flag_true_if_should_convert;
}
static void stbi__de_iphone(stbi__png *z)
{
stbi__context *s = z->s;
stbi__uint32 i, pixel_count = s->img_x * s->img_y;
stbi_uc *p = z->out;
if (s->img_out_n == 3) {
for (i=0; i < pixel_count; ++i) {
stbi_uc t = p[0];
p[0] = p[2];
p[2] = t;
p += 3;
}
} else {
STBI_ASSERT(s->img_out_n == 4);
if (stbi__unpremultiply_on_load) {
for (i=0; i < pixel_count; ++i) {
stbi_uc a = p[3];
stbi_uc t = p[0];
if (a) {
p[0] = p[2] * 255 / a;
p[1] = p[1] * 255 / a;
p[2] = t * 255 / a;
} else {
p[0] = p[2];
p[2] = t;
}
p += 4;
}
} else {
for (i=0; i < pixel_count; ++i) {
stbi_uc t = p[0];
p[0] = p[2];
p[2] = t;
p += 4;
}
}
}
}
#define STBI__PNG_TYPE(a,b,c,d) (((a) << 24) + ((b) << 16) + ((c) << 8) + (d))
static int stbi__parse_png_file(stbi__png *z, int scan, int req_comp)
{
stbi_uc palette[1024], pal_img_n=0;
stbi_uc has_trans=0, tc[3];
stbi__uint16 tc16[3];
stbi__uint32 ioff=0, idata_limit=0, i, pal_len=0;
int first=1,k,interlace=0, color=0, is_iphone=0;
stbi__context *s = z->s;
z->expanded = NULL;
z->idata = NULL;
z->out = NULL;
if (!stbi__check_png_header(s)) return 0;
if (scan == STBI__SCAN_type) return 1;
for (;;) {
stbi__pngchunk c = stbi__get_chunk_header(s);
switch (c.type) {
case STBI__PNG_TYPE('C','g','B','I'):
is_iphone = 1;
stbi__skip(s, c.length);
break;
case STBI__PNG_TYPE('I','H','D','R'): {
int comp,filter;
if (!first) return stbi__err("multiple IHDR","Corrupt PNG");
first = 0;
if (c.length != 13) return stbi__err("bad IHDR len","Corrupt PNG");
s->img_x = stbi__get32be(s); if (s->img_x > (1 << 24)) return stbi__err("too large","Very large image (corrupt?)");
s->img_y = stbi__get32be(s); if (s->img_y > (1 << 24)) return stbi__err("too large","Very large image (corrupt?)");
z->depth = stbi__get8(s); if (z->depth != 1 && z->depth != 2 && z->depth != 4 && z->depth != 8 && z->depth != 16) return stbi__err("1/2/4/8/16-bit only","PNG not supported: 1/2/4/8/16-bit only");
color = stbi__get8(s); if (color > 6) return stbi__err("bad ctype","Corrupt PNG");
if (color == 3 && z->depth == 16) return stbi__err("bad ctype","Corrupt PNG");
if (color == 3) pal_img_n = 3; else if (color & 1) return stbi__err("bad ctype","Corrupt PNG");
comp = stbi__get8(s); if (comp) return stbi__err("bad comp method","Corrupt PNG");
filter= stbi__get8(s); if (filter) return stbi__err("bad filter method","Corrupt PNG");
interlace = stbi__get8(s); if (interlace>1) return stbi__err("bad interlace method","Corrupt PNG");
if (!s->img_x || !s->img_y) return stbi__err("0-pixel image","Corrupt PNG");
if (!pal_img_n) {
s->img_n = (color & 2 ? 3 : 1) + (color & 4 ? 1 : 0);
if ((1 << 30) / s->img_x / s->img_n < s->img_y) return stbi__err("too large", "Image too large to decode");
if (scan == STBI__SCAN_header) return 1;
} else {
s->img_n = 1;
if ((1 << 30) / s->img_x / 4 < s->img_y) return stbi__err("too large","Corrupt PNG");
}
break;
}
case STBI__PNG_TYPE('P','L','T','E'): {
if (first) return stbi__err("first not IHDR", "Corrupt PNG");
if (c.length > 256*3) return stbi__err("invalid PLTE","Corrupt PNG");
pal_len = c.length / 3;
if (pal_len * 3 != c.length) return stbi__err("invalid PLTE","Corrupt PNG");
for (i=0; i < pal_len; ++i) {
palette[i*4+0] = stbi__get8(s);
palette[i*4+1] = stbi__get8(s);
palette[i*4+2] = stbi__get8(s);
palette[i*4+3] = 255;
}
break;
}
case STBI__PNG_TYPE('t','R','N','S'): {
if (first) return stbi__err("first not IHDR", "Corrupt PNG");
if (z->idata) return stbi__err("tRNS after IDAT","Corrupt PNG");
if (pal_img_n) {
if (scan == STBI__SCAN_header) { s->img_n = 4; return 1; }
if (pal_len == 0) return stbi__err("tRNS before PLTE","Corrupt PNG");
if (c.length > pal_len) return stbi__err("bad tRNS len","Corrupt PNG");
pal_img_n = 4;
for (i=0; i < c.length; ++i)
palette[i*4+3] = stbi__get8(s);
} else {
if (!(s->img_n & 1)) return stbi__err("tRNS with alpha","Corrupt PNG");
if (c.length != (stbi__uint32) s->img_n*2) return stbi__err("bad tRNS len","Corrupt PNG");
has_trans = 1;
if (z->depth == 16) {
for (k = 0; k < s->img_n; ++k) tc16[k] = (stbi__uint16)stbi__get16be(s);
} else {
for (k = 0; k < s->img_n; ++k) tc[k] = (stbi_uc)(stbi__get16be(s) & 255) * stbi__depth_scale_table[z->depth];
}
}
break;
}
case STBI__PNG_TYPE('I','D','A','T'): {
if (first) return stbi__err("first not IHDR", "Corrupt PNG");
if (pal_img_n && !pal_len) return stbi__err("no PLTE","Corrupt PNG");
if (scan == STBI__SCAN_header) { s->img_n = pal_img_n; return 1; }
if ((int)(ioff + c.length) < (int)ioff) return 0;
if (ioff + c.length > idata_limit) {
stbi__uint32 idata_limit_old = idata_limit;
stbi_uc *p;
if (idata_limit == 0) idata_limit = c.length > 4096 ? c.length : 4096;
while (ioff + c.length > idata_limit)
idata_limit *= 2;
STBI_NOTUSED(idata_limit_old);
p = (stbi_uc *) STBI_REALLOC_SIZED(z->idata, idata_limit_old, idata_limit); if (p == NULL) return stbi__err("outofmem", "Out of memory");
z->idata = p;
}
if (!stbi__getn(s, z->idata+ioff,c.length)) return stbi__err("outofdata","Corrupt PNG");
ioff += c.length;
break;
}
case STBI__PNG_TYPE('I','E','N','D'): {
stbi__uint32 raw_len, bpl;
if (first) return stbi__err("first not IHDR", "Corrupt PNG");
if (scan != STBI__SCAN_load) return 1;
if (z->idata == NULL) return stbi__err("no IDAT","Corrupt PNG");
bpl = (s->img_x * z->depth + 7) / 8;
raw_len = bpl * s->img_y * s->img_n /* pixels */ + s->img_y /* filter mode per row */;
z->expanded = (stbi_uc *) stbi_zlib_decode_malloc_guesssize_headerflag((char *) z->idata, ioff, raw_len, (int *) &raw_len, !is_iphone);
if (z->expanded == NULL) return 0;
STBI_FREE(z->idata); z->idata = NULL;
if ((req_comp == s->img_n+1 && req_comp != 3 && !pal_img_n) || has_trans)
s->img_out_n = s->img_n+1;
else
s->img_out_n = s->img_n;
if (!stbi__create_png_image(z, z->expanded, raw_len, s->img_out_n, z->depth, color, interlace)) return 0;
if (has_trans) {
if (z->depth == 16) {
if (!stbi__compute_transparency16(z, tc16, s->img_out_n)) return 0;
} else {
if (!stbi__compute_transparency(z, tc, s->img_out_n)) return 0;
}
}
if (is_iphone && stbi__de_iphone_flag && s->img_out_n > 2)
stbi__de_iphone(z);
if (pal_img_n) {
s->img_n = pal_img_n;
s->img_out_n = pal_img_n;
if (req_comp >= 3) s->img_out_n = req_comp;
if (!stbi__expand_png_palette(z, palette, pal_len, s->img_out_n))
return 0;
}
STBI_FREE(z->expanded); z->expanded = NULL;
return 1;
}
default:
if (first) return stbi__err("first not IHDR", "Corrupt PNG");
if ((c.type & (1 << 29)) == 0) {
return stbi__err("invalid_chunk", "PNG not supported: unknown PNG chunk type");
}
stbi__skip(s, c.length);
break;
}
stbi__get32be(s);
}
}
static void *stbi__do_png(stbi__png *p, int *x, int *y, int *n, int req_comp, stbi__result_info *ri)
{
void *result=NULL;
if (req_comp < 0 || req_comp > 4) { stbi__err("bad req_comp", "Internal error"); return NULL; }
if (stbi__parse_png_file(p, STBI__SCAN_load, req_comp)) {
ri->bits_per_channel = p->depth;
result = p->out;
p->out = NULL;
if (req_comp && req_comp != p->s->img_out_n) {
if (ri->bits_per_channel == 8)
result = stbi__convert_format((unsigned char *) result, p->s->img_out_n, req_comp, p->s->img_x, p->s->img_y);
else
result = stbi__convert_format16((stbi__uint16 *) result, p->s->img_out_n, req_comp, p->s->img_x, p->s->img_y);
p->s->img_out_n = req_comp;
if (result == NULL) return result;
}
*x = p->s->img_x;
*y = p->s->img_y;
if (n) *n = p->s->img_n;
}
STBI_FREE(p->out); p->out = NULL;
STBI_FREE(p->expanded); p->expanded = NULL;
STBI_FREE(p->idata); p->idata = NULL;
return result;
}
static void *stbi__png_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri)
{
stbi__png p;
p.s = s;
return stbi__do_png(&p, x,y,comp,req_comp, ri);
}
#endif
#if defined(M3D_EXPORTER) && !defined(INCLUDE_STB_IMAGE_WRITE_H)
/* zlib_compressor from
stb_image_write - v1.13 - public domain - http://nothings.org/stb/stb_image_write.h
*/
typedef unsigned char stbiw_uc;
typedef unsigned short stbiw_us;
typedef uint16_t stbiw_uint16;
typedef int16_t stbiw_int16;
typedef uint32_t stbiw_uint32;
typedef int32_t stbiw_int32;
#define STBIW_MALLOC(s) M3D_MALLOC(s)
#define STBIW_REALLOC(p,ns) M3D_REALLOC(p,ns)
#define STBIW_REALLOC_SIZED(p,oldsz,newsz) STBIW_REALLOC(p,newsz)
#define STBIW_FREE M3D_FREE
#define STBIW_MEMMOVE memmove
#define STBIW_UCHAR (uint8_t)
#define STBIW_ASSERT(x)
#define stbiw__sbraw(a) ((int *) (a) - 2)
#define stbiw__sbm(a) stbiw__sbraw(a)[0]
#define stbiw__sbn(a) stbiw__sbraw(a)[1]
#define stbiw__sbneedgrow(a,n) ((a)==0 || stbiw__sbn(a)+n >= stbiw__sbm(a))
#define stbiw__sbmaybegrow(a,n) (stbiw__sbneedgrow(a,(n)) ? stbiw__sbgrow(a,n) : 0)
#define stbiw__sbgrow(a,n) stbiw__sbgrowf((void **) &(a), (n), sizeof(*(a)))
#define stbiw__sbpush(a, v) (stbiw__sbmaybegrow(a,1), (a)[stbiw__sbn(a)++] = (v))
#define stbiw__sbcount(a) ((a) ? stbiw__sbn(a) : 0)
#define stbiw__sbfree(a) ((a) ? STBIW_FREE(stbiw__sbraw(a)),0 : 0)
static void *stbiw__sbgrowf(void **arr, int increment, int itemsize)
{
int m = *arr ? 2*stbiw__sbm(*arr)+increment : increment+1;
void *p = STBIW_REALLOC_SIZED(*arr ? stbiw__sbraw(*arr) : 0, *arr ? (stbiw__sbm(*arr)*itemsize + sizeof(int)*2) : 0, itemsize * m + sizeof(int)*2);
STBIW_ASSERT(p);
if (p) {
if (!*arr) ((int *) p)[1] = 0;
*arr = (void *) ((int *) p + 2);
stbiw__sbm(*arr) = m;
}
return *arr;
}
static unsigned char *stbiw__zlib_flushf(unsigned char *data, unsigned int *bitbuffer, int *bitcount)
{
while (*bitcount >= 8) {
stbiw__sbpush(data, STBIW_UCHAR(*bitbuffer));
*bitbuffer >>= 8;
*bitcount -= 8;
}
return data;
}
static int stbiw__zlib_bitrev(int code, int codebits)
{
int res=0;
while (codebits--) {
res = (res << 1) | (code & 1);
code >>= 1;
}
return res;
}
static unsigned int stbiw__zlib_countm(unsigned char *a, unsigned char *b, int limit)
{
int i;
for (i=0; i < limit && i < 258; ++i)
if (a[i] != b[i]) break;
return i;
}
static unsigned int stbiw__zhash(unsigned char *data)
{
stbiw_uint32 hash = data[0] + (data[1] << 8) + (data[2] << 16);
hash ^= hash << 3;
hash += hash >> 5;
hash ^= hash << 4;
hash += hash >> 17;
hash ^= hash << 25;
hash += hash >> 6;
return hash;
}
#define stbiw__zlib_flush() (out = stbiw__zlib_flushf(out, &bitbuf, &bitcount))
#define stbiw__zlib_add(code,codebits) \
(bitbuf |= (code) << bitcount, bitcount += (codebits), stbiw__zlib_flush())
#define stbiw__zlib_huffa(b,c) stbiw__zlib_add(stbiw__zlib_bitrev(b,c),c)
#define stbiw__zlib_huff1(n) stbiw__zlib_huffa(0x30 + (n), 8)
#define stbiw__zlib_huff2(n) stbiw__zlib_huffa(0x190 + (n)-144, 9)
#define stbiw__zlib_huff3(n) stbiw__zlib_huffa(0 + (n)-256,7)
#define stbiw__zlib_huff4(n) stbiw__zlib_huffa(0xc0 + (n)-280,8)
#define stbiw__zlib_huff(n) ((n) <= 143 ? stbiw__zlib_huff1(n) : (n) <= 255 ? stbiw__zlib_huff2(n) : (n) <= 279 ? stbiw__zlib_huff3(n) : stbiw__zlib_huff4(n))
#define stbiw__zlib_huffb(n) ((n) <= 143 ? stbiw__zlib_huff1(n) : stbiw__zlib_huff2(n))
#define stbiw__ZHASH 16384
unsigned char * stbi_zlib_compress(unsigned char *data, int data_len, int *out_len, int quality)
{
static unsigned short lengthc[] = { 3,4,5,6,7,8,9,10,11,13,15,17,19,23,27,31,35,43,51,59,67,83,99,115,131,163,195,227,258, 259 };
static unsigned char lengtheb[]= { 0,0,0,0,0,0,0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0 };
static unsigned short distc[] = { 1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193,257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577, 32768 };
static unsigned char disteb[] = { 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13 };
unsigned int bitbuf=0;
int i,j, bitcount=0;
unsigned char *out = NULL;
unsigned char ***hash_table = (unsigned char***) STBIW_MALLOC(stbiw__ZHASH * sizeof(char**));
if (quality < 5) quality = 5;
stbiw__sbpush(out, 0x78);
stbiw__sbpush(out, 0x5e);
stbiw__zlib_add(1,1);
stbiw__zlib_add(1,2);
for (i=0; i < stbiw__ZHASH; ++i)
hash_table[i] = NULL;
i=0;
while (i < data_len-3) {
int h = stbiw__zhash(data+i)&(stbiw__ZHASH-1), best=3;
unsigned char *bestloc = 0;
unsigned char **hlist = hash_table[h];
int n = stbiw__sbcount(hlist);
for (j=0; j < n; ++j) {
if (hlist[j]-data > i-32768) {
int d = stbiw__zlib_countm(hlist[j], data+i, data_len-i);
if (d >= best) best=d,bestloc=hlist[j];
}
}
if (hash_table[h] && stbiw__sbn(hash_table[h]) == 2*quality) {
STBIW_MEMMOVE(hash_table[h], hash_table[h]+quality, sizeof(hash_table[h][0])*quality);
stbiw__sbn(hash_table[h]) = quality;
}
stbiw__sbpush(hash_table[h],data+i);
if (bestloc) {
h = stbiw__zhash(data+i+1)&(stbiw__ZHASH-1);
hlist = hash_table[h];
n = stbiw__sbcount(hlist);
for (j=0; j < n; ++j) {
if (hlist[j]-data > i-32767) {
int e = stbiw__zlib_countm(hlist[j], data+i+1, data_len-i-1);
if (e > best) {
bestloc = NULL;
break;
}
}
}
}
if (bestloc) {
int d = (int) (data+i - bestloc);
STBIW_ASSERT(d <= 32767 && best <= 258);
for (j=0; best > lengthc[j+1]-1; ++j);
stbiw__zlib_huff(j+257);
if (lengtheb[j]) stbiw__zlib_add(best - lengthc[j], lengtheb[j]);
for (j=0; d > distc[j+1]-1; ++j);
stbiw__zlib_add(stbiw__zlib_bitrev(j,5),5);
if (disteb[j]) stbiw__zlib_add(d - distc[j], disteb[j]);
i += best;
} else {
stbiw__zlib_huffb(data[i]);
++i;
}
}
for (;i < data_len; ++i)
stbiw__zlib_huffb(data[i]);
stbiw__zlib_huff(256);
while (bitcount)
stbiw__zlib_add(0,1);
for (i=0; i < stbiw__ZHASH; ++i)
(void) stbiw__sbfree(hash_table[i]);
STBIW_FREE(hash_table);
{
unsigned int s1=1, s2=0;
int blocklen = (int) (data_len % 5552);
j=0;
while (j < data_len) {
for (i=0; i < blocklen; ++i) s1 += data[j+i], s2 += s1;
s1 %= 65521, s2 %= 65521;
j += blocklen;
blocklen = 5552;
}
stbiw__sbpush(out, STBIW_UCHAR(s2 >> 8));
stbiw__sbpush(out, STBIW_UCHAR(s2));
stbiw__sbpush(out, STBIW_UCHAR(s1 >> 8));
stbiw__sbpush(out, STBIW_UCHAR(s1));
}
*out_len = stbiw__sbn(out);
STBIW_MEMMOVE(stbiw__sbraw(out), out, *out_len);
return (unsigned char *) stbiw__sbraw(out);
}
#endif
#define M3D_CHUNKMAGIC(m, a,b,c,d) ((m)[0]==(a) && (m)[1]==(b) && (m)[2]==(c) && (m)[3]==(d))
#ifdef M3D_ASCII
#include <stdio.h> /* get sprintf */
#include <locale.h> /* sprintf and strtod cares about number locale */
#endif
#if !defined(M3D_NOIMPORTER) && defined(M3D_ASCII)
/* helper functions for the ASCII parser */
static char *_m3d_findarg(char *s) {
while(s && *s && *s != ' ' && *s != '\t' && *s != '\r' && *s != '\n') s++;
while(s && *s && (*s == ' ' || *s == '\t')) s++;
return s;
}
static char *_m3d_findnl(char *s) {
while(s && *s && *s != '\r' && *s != '\n') s++;
if(*s == '\r') s++;
if(*s == '\n') s++;
return s;
}
static char *_m3d_gethex(char *s, uint32_t *ret)
{
if(*s == '#') s++;
*ret = 0;
for(; *s; s++) {
if(*s >= '0' && *s <= '9') { *ret <<= 4; *ret += (uint32_t)(*s-'0'); }
else if(*s >= 'a' && *s <= 'f') { *ret <<= 4; *ret += (uint32_t)(*s-'a'+10); }
else if(*s >= 'A' && *s <= 'F') { *ret <<= 4; *ret += (uint32_t)(*s-'A'+10); }
else break;
}
return _m3d_findarg(s);
}
static char *_m3d_getint(char *s, uint32_t *ret)
{
char *e = s;
if(!s || !*s) return s;
for(; *e >= '0' && *e <= '9'; e++);
*ret = atoi(s);
return e;
}
static char *_m3d_getfloat(char *s, M3D_FLOAT *ret)
{
char *e = s;
if(!s || !*s) return s;
for(; *e == '-' || *e == '+' || *e == '.' || (*e >= '0' && *e <= '9') || *e == 'e' || *e == 'E'; e++);
*ret = (M3D_FLOAT)strtod(s, NULL);
return _m3d_findarg(e);
}
#endif
#if !defined(M3D_NODUP) && (!defined(M3D_NONORMALS) || defined(M3D_EXPORTER))
/* add vertex to list, only compare x,y,z */
m3dv_t *_m3d_addnorm(m3dv_t *vrtx, uint32_t *numvrtx, m3dv_t *v, uint32_t *idx)
{
uint32_t i;
if(v->x == (M3D_FLOAT)-0.0) v->x = (M3D_FLOAT)0.0;
if(v->y == (M3D_FLOAT)-0.0) v->y = (M3D_FLOAT)0.0;
if(v->z == (M3D_FLOAT)-0.0) v->z = (M3D_FLOAT)0.0;
if(v->w == (M3D_FLOAT)-0.0) v->w = (M3D_FLOAT)0.0;
if(vrtx) {
for(i = 0; i < *numvrtx; i++)
if(vrtx[i].x == v->x && vrtx[i].y == v->y && vrtx[i].z == v->z) { *idx = i; return vrtx; }
}
vrtx = (m3dv_t*)M3D_REALLOC(vrtx, ((*numvrtx) + 1) * sizeof(m3dv_t));
memcpy(&vrtx[*numvrtx], v, sizeof(m3dv_t));
vrtx[*numvrtx].color = 0;
vrtx[*numvrtx].w = (M3D_FLOAT)1.0;
*idx = *numvrtx;
(*numvrtx)++;
return vrtx;
}
#endif
#if !defined(M3D_NODUP) && (defined(M3D_ASCII) || defined(M3D_EXPORTER))
m3ds_t *_m3d_addskin(m3ds_t *skin, uint32_t *numskin, m3ds_t *s, uint32_t *idx)
{
uint32_t i;
M3D_FLOAT w = (M3D_FLOAT)0.0;
for(i = 0; i < M3D_NUMBONE && s->weight[i] > (M3D_FLOAT)0.0; i++)
w += s->weight[i];
if(w != (M3D_FLOAT)1.0 && w != (M3D_FLOAT)0.0)
for(i = 0; i < M3D_NUMBONE && s->weight[i] > (M3D_FLOAT)0.0; i++)
s->weight[i] /= w;
if(skin) {
for(i = 0; i < *numskin; i++)
if(!memcmp(&skin[i], s, sizeof(m3ds_t))) { *idx = i; return skin; }
}
skin = (m3ds_t*)M3D_REALLOC(skin, ((*numskin) + 1) * sizeof(m3ds_t));
memcpy(&skin[*numskin], s, sizeof(m3ds_t));
*idx = *numskin;
(*numskin)++;
return skin;
}
/* helper function to create safe strings */
char *_m3d_safestr(char *in, int morelines)
{
char *out, *o, *i = in;
int l;
if(!in || !*in) {
out = (char*)M3D_MALLOC(1);
if(!out) return NULL;
out[0] =0;
} else {
for(o = in, l = 0; *o && ((morelines & 1) || (*o != '\r' && *o != '\n')) && l < 256; o++, l++);
out = o = (char*)M3D_MALLOC(l+1);
if(!out) return NULL;
while(*i == ' ' || *i == '\t' || *i == '\r' || (morelines && *i == '\n')) i++;
for(; *i && (morelines || (*i != '\r' && *i != '\n')); i++) {
if(*i == '\r') continue;
if(*i == '\n') {
if(morelines >= 3 && o > out && *(o-1) == '\n') break;
if(i > in && *(i-1) == '\n') continue;
if(morelines & 1) {
if(morelines == 1) *o++ = '\r';
*o++ = '\n';
} else
break;
} else
if(*i == ' ' || *i == '\t') {
*o++ = morelines? ' ' : '_';
} else
*o++ = !morelines && (*i == '/' || *i == '\\') ? '_' : *i;
}
for(; o > out && (*(o-1) == ' ' || *(o-1) == '\t' || *(o-1) == '\r' || *(o-1) == '\n'); o--);
*o = 0;
out = (char*)M3D_REALLOC(out, (uint64_t)o - (uint64_t)out + 1);
}
return out;
}
#endif
#ifndef M3D_NOIMPORTER
/* helper function to load and decode/generate a texture */
M3D_INDEX _m3d_gettx(m3d_t *model, m3dread_t readfilecb, m3dfree_t freecb, char *fn)
{
unsigned int i, len = 0, w, h;
unsigned char *buff = NULL;
char *fn2;
stbi__context s;
stbi__result_info ri;
for(i = 0; i < model->numtexture; i++)
if(!strcmp(fn, model->texture[i].name)) return i;
if(readfilecb) {
i = strlen(fn);
if(i < 5 || fn[i - 4] != '.') {
fn2 = (char*)M3D_MALLOC(i + 5);
if(!fn2) { model->errcode = M3D_ERR_ALLOC; return (M3D_INDEX)-1U; }
memcpy(fn2, fn, i);
memcpy(fn2+i, ".png", 5);
buff = (*readfilecb)(fn2, &len);
M3D_FREE(fn2);
}
if(!buff)
buff = (*readfilecb)(fn, &len);
}
if(!buff && model->inlined) {
for(i = 0; i < model->numinlined; i++)
if(!strcmp(fn, model->inlined[i].name)) {
buff = model->inlined[i].data;
len = model->inlined[i].length;
freecb = NULL;
break;
}
}
if(!buff) return (M3D_INDEX)-1U;
i = model->numtexture++;
model->texture = (m3dtx_t*)M3D_REALLOC(model->texture, model->numtexture * sizeof(m3dtx_t));
if(!model->texture) {
if(freecb) (*freecb)(buff);
model->errcode = M3D_ERR_ALLOC; return (M3D_INDEX)-1U;
}
model->texture[i].w = model->texture[i].h = 0; model->texture[i].d = NULL;
if(buff[0] == 0x89 && buff[1] == 'P' && buff[2] == 'N' && buff[3] == 'G') {
s.read_from_callbacks = 0;
s.img_buffer = s.img_buffer_original = (stbi_uc *) buff;
s.img_buffer_end = s.img_buffer_original_end = (stbi_uc *) buff+len;
/* don't use model->texture[i].w directly, it's a uint16_t */
w = h = 0;
model->texture[i].d = (uint32_t*)stbi__png_load(&s, (int*)&w, (int*)&h, (int*)&len, STBI_rgb_alpha, &ri);
model->texture[i].w = w;
model->texture[i].h = h;
} else {
#ifdef M3D_TX_INTERP
if((model->errcode = M3D_TX_INTERP(fn, buff, len, &model->texture[i])) != M3D_SUCCESS) {
M3D_LOG("Unable to generate texture");
M3D_LOG(fn);
}
#else
M3D_LOG("Unimplemented interpreter");
M3D_LOG(fn);
#endif
}
if(freecb) (*freecb)(buff);
if(!model->texture[i].d) {
M3D_FREE(model->texture[i].d);
model->errcode = M3D_ERR_UNKIMG;
model->numtexture--;
return (M3D_INDEX)-1U;
}
model->texture[i].name = fn;
return i;
}
/* helper function to load and generate a procedural surface */
void _m3d_getpr(m3d_t *model, _unused m3dread_t readfilecb, _unused m3dfree_t freecb, _unused char *fn)
{
#ifdef M3D_PR_INTERP
unsigned int i, len = 0;
unsigned char *buff = readfilecb ? (*readfilecb)(fn, &len) : NULL;
if(!buff && model->inlined) {
for(i = 0; i < model->numinlined; i++)
if(!strcmp(fn, model->inlined[i].name)) {
buff = model->inlined[i].data;
len = model->inlined[i].length;
freecb = NULL;
break;
}
}
if(!buff || !len || (model->errcode = M3D_PR_INTERP(fn, buff, len, model)) != M3D_SUCCESS) {
M3D_LOG("Unable to generate procedural surface");
M3D_LOG(fn);
model->errcode = M3D_ERR_UNKIMG;
}
if(freecb && buff) (*freecb)(buff);
#else
M3D_LOG("Unimplemented interpreter");
M3D_LOG(fn);
model->errcode = M3D_ERR_UNIMPL;
#endif
}
/* helpers to read indices from data stream */
#define M3D_GETSTR(x) do{offs=0;data=_m3d_getidx(data,model->si_s,&offs);x=offs?((char*)model->raw+16+offs):NULL;}while(0)
_inline static unsigned char *_m3d_getidx(unsigned char *data, char type, M3D_INDEX *idx)
{
switch(type) {
case 1: *idx = data[0] > 253 ? (int8_t)data[0] : data[0]; data++; break;
case 2: *idx = (uint16_t)((data[1]<<8)|data[0]) > 65533 ? (int16_t)((data[1]<<8)|data[0]) : (uint16_t)((data[1]<<8)|data[0]); data += 2; break;
case 4: *idx = (int32_t)((data[3]<<24)|(data[2]<<16)|(data[1]<<8)|data[0]); data += 4; break;
}
return data;
}
#ifndef M3D_NOANIMATION
/* multiply 4 x 4 matrices. Do not use float *r[16] as argument, because some compilers misinterpret that as
* 16 pointers each pointing to a float, but we need a single pointer to 16 floats. */
void _m3d_mul(M3D_FLOAT *r, M3D_FLOAT *a, M3D_FLOAT *b)
{
r[ 0] = b[ 0] * a[ 0] + b[ 4] * a[ 1] + b[ 8] * a[ 2] + b[12] * a[ 3];
r[ 1] = b[ 1] * a[ 0] + b[ 5] * a[ 1] + b[ 9] * a[ 2] + b[13] * a[ 3];
r[ 2] = b[ 2] * a[ 0] + b[ 6] * a[ 1] + b[10] * a[ 2] + b[14] * a[ 3];
r[ 3] = b[ 3] * a[ 0] + b[ 7] * a[ 1] + b[11] * a[ 2] + b[15] * a[ 3];
r[ 4] = b[ 0] * a[ 4] + b[ 4] * a[ 5] + b[ 8] * a[ 6] + b[12] * a[ 7];
r[ 5] = b[ 1] * a[ 4] + b[ 5] * a[ 5] + b[ 9] * a[ 6] + b[13] * a[ 7];
r[ 6] = b[ 2] * a[ 4] + b[ 6] * a[ 5] + b[10] * a[ 6] + b[14] * a[ 7];
r[ 7] = b[ 3] * a[ 4] + b[ 7] * a[ 5] + b[11] * a[ 6] + b[15] * a[ 7];
r[ 8] = b[ 0] * a[ 8] + b[ 4] * a[ 9] + b[ 8] * a[10] + b[12] * a[11];
r[ 9] = b[ 1] * a[ 8] + b[ 5] * a[ 9] + b[ 9] * a[10] + b[13] * a[11];
r[10] = b[ 2] * a[ 8] + b[ 6] * a[ 9] + b[10] * a[10] + b[14] * a[11];
r[11] = b[ 3] * a[ 8] + b[ 7] * a[ 9] + b[11] * a[10] + b[15] * a[11];
r[12] = b[ 0] * a[12] + b[ 4] * a[13] + b[ 8] * a[14] + b[12] * a[15];
r[13] = b[ 1] * a[12] + b[ 5] * a[13] + b[ 9] * a[14] + b[13] * a[15];
r[14] = b[ 2] * a[12] + b[ 6] * a[13] + b[10] * a[14] + b[14] * a[15];
r[15] = b[ 3] * a[12] + b[ 7] * a[13] + b[11] * a[14] + b[15] * a[15];
}
/* calculate 4 x 4 matrix inverse */
void _m3d_inv(M3D_FLOAT *m)
{
M3D_FLOAT r[16];
M3D_FLOAT det =
m[ 0]*m[ 5]*m[10]*m[15] - m[ 0]*m[ 5]*m[11]*m[14] + m[ 0]*m[ 6]*m[11]*m[13] - m[ 0]*m[ 6]*m[ 9]*m[15]
+ m[ 0]*m[ 7]*m[ 9]*m[14] - m[ 0]*m[ 7]*m[10]*m[13] - m[ 1]*m[ 6]*m[11]*m[12] + m[ 1]*m[ 6]*m[ 8]*m[15]
- m[ 1]*m[ 7]*m[ 8]*m[14] + m[ 1]*m[ 7]*m[10]*m[12] - m[ 1]*m[ 4]*m[10]*m[15] + m[ 1]*m[ 4]*m[11]*m[14]
+ m[ 2]*m[ 7]*m[ 8]*m[13] - m[ 2]*m[ 7]*m[ 9]*m[12] + m[ 2]*m[ 4]*m[ 9]*m[15] - m[ 2]*m[ 4]*m[11]*m[13]
+ m[ 2]*m[ 5]*m[11]*m[12] - m[ 2]*m[ 5]*m[ 8]*m[15] - m[ 3]*m[ 4]*m[ 9]*m[14] + m[ 3]*m[ 4]*m[10]*m[13]
- m[ 3]*m[ 5]*m[10]*m[12] + m[ 3]*m[ 5]*m[ 8]*m[14] - m[ 3]*m[ 6]*m[ 8]*m[13] + m[ 3]*m[ 6]*m[ 9]*m[12];
if(det == (M3D_FLOAT)0.0 || det == (M3D_FLOAT)-0.0) det = (M3D_FLOAT)1.0; else det = (M3D_FLOAT)1.0 / det;
r[ 0] = det *(m[ 5]*(m[10]*m[15] - m[11]*m[14]) + m[ 6]*(m[11]*m[13] - m[ 9]*m[15]) + m[ 7]*(m[ 9]*m[14] - m[10]*m[13]));
r[ 1] = -det*(m[ 1]*(m[10]*m[15] - m[11]*m[14]) + m[ 2]*(m[11]*m[13] - m[ 9]*m[15]) + m[ 3]*(m[ 9]*m[14] - m[10]*m[13]));
r[ 2] = det *(m[ 1]*(m[ 6]*m[15] - m[ 7]*m[14]) + m[ 2]*(m[ 7]*m[13] - m[ 5]*m[15]) + m[ 3]*(m[ 5]*m[14] - m[ 6]*m[13]));
r[ 3] = -det*(m[ 1]*(m[ 6]*m[11] - m[ 7]*m[10]) + m[ 2]*(m[ 7]*m[ 9] - m[ 5]*m[11]) + m[ 3]*(m[ 5]*m[10] - m[ 6]*m[ 9]));
r[ 4] = -det*(m[ 4]*(m[10]*m[15] - m[11]*m[14]) + m[ 6]*(m[11]*m[12] - m[ 8]*m[15]) + m[ 7]*(m[ 8]*m[14] - m[10]*m[12]));
r[ 5] = det *(m[ 0]*(m[10]*m[15] - m[11]*m[14]) + m[ 2]*(m[11]*m[12] - m[ 8]*m[15]) + m[ 3]*(m[ 8]*m[14] - m[10]*m[12]));
r[ 6] = -det*(m[ 0]*(m[ 6]*m[15] - m[ 7]*m[14]) + m[ 2]*(m[ 7]*m[12] - m[ 4]*m[15]) + m[ 3]*(m[ 4]*m[14] - m[ 6]*m[12]));
r[ 7] = det *(m[ 0]*(m[ 6]*m[11] - m[ 7]*m[10]) + m[ 2]*(m[ 7]*m[ 8] - m[ 4]*m[11]) + m[ 3]*(m[ 4]*m[10] - m[ 6]*m[ 8]));
r[ 8] = det *(m[ 4]*(m[ 9]*m[15] - m[11]*m[13]) + m[ 5]*(m[11]*m[12] - m[ 8]*m[15]) + m[ 7]*(m[ 8]*m[13] - m[ 9]*m[12]));
r[ 9] = -det*(m[ 0]*(m[ 9]*m[15] - m[11]*m[13]) + m[ 1]*(m[11]*m[12] - m[ 8]*m[15]) + m[ 3]*(m[ 8]*m[13] - m[ 9]*m[12]));
r[10] = det *(m[ 0]*(m[ 5]*m[15] - m[ 7]*m[13]) + m[ 1]*(m[ 7]*m[12] - m[ 4]*m[15]) + m[ 3]*(m[ 4]*m[13] - m[ 5]*m[12]));
r[11] = -det*(m[ 0]*(m[ 5]*m[11] - m[ 7]*m[ 9]) + m[ 1]*(m[ 7]*m[ 8] - m[ 4]*m[11]) + m[ 3]*(m[ 4]*m[ 9] - m[ 5]*m[ 8]));
r[12] = -det*(m[ 4]*(m[ 9]*m[14] - m[10]*m[13]) + m[ 5]*(m[10]*m[12] - m[ 8]*m[14]) + m[ 6]*(m[ 8]*m[13] - m[ 9]*m[12]));
r[13] = det *(m[ 0]*(m[ 9]*m[14] - m[10]*m[13]) + m[ 1]*(m[10]*m[12] - m[ 8]*m[14]) + m[ 2]*(m[ 8]*m[13] - m[ 9]*m[12]));
r[14] = -det*(m[ 0]*(m[ 5]*m[14] - m[ 6]*m[13]) + m[ 1]*(m[ 6]*m[12] - m[ 4]*m[14]) + m[ 2]*(m[ 4]*m[13] - m[ 5]*m[12]));
r[15] = det *(m[ 0]*(m[ 5]*m[10] - m[ 6]*m[ 9]) + m[ 1]*(m[ 6]*m[ 8] - m[ 4]*m[10]) + m[ 2]*(m[ 4]*m[ 9] - m[ 5]*m[ 8]));
memcpy(m, &r, sizeof(r));
}
/* compose a coloumn major 4 x 4 matrix from vec3 position and vec4 orientation/rotation quaternion */
#ifndef M3D_EPSILON
/* carefully choosen for IEEE 754 don't change */
#define M3D_EPSILON ((M3D_FLOAT)1e-7)
#endif
void _m3d_mat(M3D_FLOAT *r, m3dv_t *p, m3dv_t *q)
{
if(q->x == (M3D_FLOAT)0.0 && q->y == (M3D_FLOAT)0.0 && q->z >=(M3D_FLOAT) 0.7071065 && q->z <= (M3D_FLOAT)0.7071075 &&
q->w == (M3D_FLOAT)0.0) {
r[ 1] = r[ 2] = r[ 4] = r[ 6] = r[ 8] = r[ 9] = (M3D_FLOAT)0.0;
r[ 0] = r[ 5] = r[10] = (M3D_FLOAT)-1.0;
} else {
r[ 0] = 1 - 2 * (q->y * q->y + q->z * q->z); if(r[ 0]>-M3D_EPSILON && r[ 0]<M3D_EPSILON) r[ 0]=(M3D_FLOAT)0.0;
r[ 1] = 2 * (q->x * q->y - q->z * q->w); if(r[ 1]>-M3D_EPSILON && r[ 1]<M3D_EPSILON) r[ 1]=(M3D_FLOAT)0.0;
r[ 2] = 2 * (q->x * q->z + q->y * q->w); if(r[ 2]>-M3D_EPSILON && r[ 2]<M3D_EPSILON) r[ 2]=(M3D_FLOAT)0.0;
r[ 4] = 2 * (q->x * q->y + q->z * q->w); if(r[ 4]>-M3D_EPSILON && r[ 4]<M3D_EPSILON) r[ 4]=(M3D_FLOAT)0.0;
r[ 5] = 1 - 2 * (q->x * q->x + q->z * q->z); if(r[ 5]>-M3D_EPSILON && r[ 5]<M3D_EPSILON) r[ 5]=(M3D_FLOAT)0.0;
r[ 6] = 2 * (q->y * q->z - q->x * q->w); if(r[ 6]>-M3D_EPSILON && r[ 6]<M3D_EPSILON) r[ 6]=(M3D_FLOAT)0.0;
r[ 8] = 2 * (q->x * q->z - q->y * q->w); if(r[ 8]>-M3D_EPSILON && r[ 8]<M3D_EPSILON) r[ 8]=(M3D_FLOAT)0.0;
r[ 9] = 2 * (q->y * q->z + q->x * q->w); if(r[ 9]>-M3D_EPSILON && r[ 9]<M3D_EPSILON) r[ 9]=(M3D_FLOAT)0.0;
r[10] = 1 - 2 * (q->x * q->x + q->y * q->y); if(r[10]>-M3D_EPSILON && r[10]<M3D_EPSILON) r[10]=(M3D_FLOAT)0.0;
}
r[ 3] = p->x; r[ 7] = p->y; r[11] = p->z;
r[12] = 0; r[13] = 0; r[14] = 0; r[15] = 1;
}
#endif
#if !defined(M3D_NOANIMATION) || !defined(M3D_NONORMALS)
/* fast inverse square root calculation. returns 1/sqrt(x) */
static M3D_FLOAT _m3d_rsq(M3D_FLOAT x)
{
#ifdef M3D_DOUBLE
return ((M3D_FLOAT)15.0/(M3D_FLOAT)8.0) + ((M3D_FLOAT)-5.0/(M3D_FLOAT)4.0)*x + ((M3D_FLOAT)3.0/(M3D_FLOAT)8.0)*x*x;
#else
/* John Carmack's */
float x2 = x * 0.5f;
*((uint32_t*)&x) = (0x5f3759df - (*((uint32_t*)&x) >> 1));
return x * (1.5f - (x2 * x * x));
#endif
}
#endif
/**
* Function to decode a Model 3D into in-memory format
*/
m3d_t *m3d_load(unsigned char *data, m3dread_t readfilecb, m3dfree_t freecb, m3d_t *mtllib)
{
unsigned char *end, *chunk, *buff, weights[8];
unsigned int i, j, k, n, am, len = 0, reclen, offs;
char *material;
#ifndef M3D_NONORMALS
unsigned int numnorm = 0;
m3dv_t *norm = NULL, *v0, *v1, *v2, va, vb, vn;
M3D_INDEX *ni = NULL, *vi = NULL;
#endif
m3d_t *model;
M3D_INDEX mi;
M3D_FLOAT w;
#ifndef M3D_NOANIMATION
M3D_FLOAT r[16];
#endif
m3dtx_t *tx;
m3dm_t *m;
m3da_t *a;
m3db_t *b;
m3di_t *t;
m3ds_t *sk;
#ifdef M3D_ASCII
m3ds_t s;
M3D_INDEX bi[M3D_BONEMAXLEVEL+1], level;
const char *ol;
char *ptr, *pe;
#endif
if(!data || (!M3D_CHUNKMAGIC(data, '3','D','M','O')
#ifdef M3D_ASCII
&& !M3D_CHUNKMAGIC(data, '3','d','m','o')
#endif
)) return NULL;
model = (m3d_t*)M3D_MALLOC(sizeof(m3d_t));
if(!model) {
M3D_LOG("Out of memory");
return NULL;
}
memset(model, 0, sizeof(m3d_t));
if(mtllib) {
model->nummaterial = mtllib->nummaterial;
model->material = mtllib->material;
model->numtexture = mtllib->numtexture;
model->texture = mtllib->texture;
model->flags |= M3D_FLG_MTLLIB;
}
#ifdef M3D_ASCII
/* ASCII variant? */
if(M3D_CHUNKMAGIC(data, '3','d','m','o')) {
model->errcode = M3D_ERR_BADFILE;
model->flags |= M3D_FLG_FREESTR;
model->raw = (m3dhdr_t*)data;
ptr = (char*)data;
ol = setlocale(LC_NUMERIC, NULL);
setlocale(LC_NUMERIC, "C");
/* parse header. Don't use sscanf, that's incredibly slow */
ptr = _m3d_findarg(ptr);
if(!*ptr || *ptr == '\r' || *ptr == '\n') goto asciiend;
pe = _m3d_findnl(ptr);
model->scale = (float)strtod(ptr, NULL); ptr = pe;
if(model->scale <= (M3D_FLOAT)0.0) model->scale = (M3D_FLOAT)1.0;
model->name = _m3d_safestr(ptr, 0); ptr = _m3d_findnl(ptr);
if(!*ptr) goto asciiend;
model->license = _m3d_safestr(ptr, 2); ptr = _m3d_findnl(ptr);
if(!*ptr) goto asciiend;
model->author = _m3d_safestr(ptr, 2); ptr = _m3d_findnl(ptr);
if(!*ptr) goto asciiend;
model->desc = _m3d_safestr(ptr, 3);
while(*ptr) {
while(*ptr && *ptr!='\n') ptr++;
ptr++; if(*ptr=='\r') ptr++;
if(*ptr == '\n') break;
}
/* the main chunk reader loop */
while(*ptr) {
while(*ptr && (*ptr == '\r' || *ptr == '\n')) ptr++;
if(!*ptr || (ptr[0]=='E' && ptr[1]=='n' && ptr[2]=='d')) break;
/* make sure there's at least one data row */
pe = ptr; ptr = _m3d_findnl(ptr);
if(!*ptr || *ptr == '\r' || *ptr == '\n') goto asciiend;
/* texture map chunk */
if(!memcmp(pe, "Textmap", 7)) {
if(model->tmap) { M3D_LOG("More texture map chunks, should be unique"); goto asciiend; }
while(*ptr && *ptr != '\r' && *ptr != '\n') {
i = model->numtmap++;
model->tmap = (m3dti_t*)M3D_REALLOC(model->tmap, model->numtmap * sizeof(m3dti_t));
if(!model->tmap) goto memerr;
ptr = _m3d_getfloat(ptr, &model->tmap[i].u);
if(!*ptr || *ptr == '\r' || *ptr == '\n') goto asciiend;
ptr = _m3d_getfloat(ptr, &model->tmap[i].v);
if(!*ptr || *ptr == '\r' || *ptr == '\n') goto asciiend;
ptr = _m3d_findnl(ptr);
}
} else
/* vertex chunk */
if(!memcmp(pe, "Vertex", 6)) {
if(model->vertex) { M3D_LOG("More vertex chunks, should be unique"); goto asciiend; }
while(*ptr && *ptr != '\r' && *ptr != '\n') {
i = model->numvertex++;
model->vertex = (m3dv_t*)M3D_REALLOC(model->vertex, model->numvertex * sizeof(m3dv_t));
if(!model->vertex) goto memerr;
model->vertex[i].skinid = (M3D_INDEX)-1U;
model->vertex[i].color = 0;
ptr = _m3d_getfloat(ptr, &model->vertex[i].x);
if(!*ptr || *ptr == '\r' || *ptr == '\n') goto asciiend;
ptr = _m3d_getfloat(ptr, &model->vertex[i].y);
if(!*ptr || *ptr == '\r' || *ptr == '\n') goto asciiend;
ptr = _m3d_getfloat(ptr, &model->vertex[i].z);
if(!*ptr || *ptr == '\r' || *ptr == '\n') goto asciiend;
ptr = _m3d_getfloat(ptr, &model->vertex[i].w);
if(model->vertex[i].w != 1.0) model->vertex[i].skinid = (M3D_INDEX)-2U;
if(!*ptr) goto asciiend;
if(*ptr == '#') {
ptr = _m3d_gethex(ptr, &model->vertex[i].color);
if(!*ptr) goto asciiend;
}
/* parse skin */
memset(&s, 0, sizeof(m3ds_t));
for(j = 0; j < M3D_NUMBONE && *ptr && *ptr != '\r' && *ptr != '\n'; j++) {
ptr = _m3d_findarg(ptr);
if(!*ptr || *ptr == '\r' || *ptr == '\n') goto asciiend;
ptr = _m3d_getint(ptr, &k);
s.boneid[j] = (M3D_INDEX)k;
if(*ptr == ':') {
ptr++;
ptr = _m3d_getfloat(ptr, &s.weight[j]);
} else if(!j)
s.weight[j] = (M3D_FLOAT)1.0;
if(!*ptr) goto asciiend;
}
if(s.boneid[0] != (M3D_INDEX)-1U && s.weight[0] > (M3D_FLOAT)0.0) {
model->skin = _m3d_addskin(model->skin, &model->numskin, &s, &k);
model->vertex[i].skinid = (M3D_INDEX)k;
}
ptr = _m3d_findnl(ptr);
}
} else
/* Skeleton, bone hierarchy */
if(!memcmp(pe, "Bones", 5)) {
if(model->bone) { M3D_LOG("More bones chunks, should be unique"); goto asciiend; }
bi[0] = (M3D_INDEX)-1U;
while(*ptr && *ptr != '\r' && *ptr != '\n') {
i = model->numbone++;
model->bone = (m3db_t*)M3D_REALLOC(model->bone, model->numbone * sizeof(m3db_t));
if(!model->bone) goto memerr;
for(level = 0; *ptr == '/'; ptr++, level++);
if(level > M3D_BONEMAXLEVEL || !*ptr || *ptr == '\r' || *ptr == '\n') goto asciiend;
bi[level+1] = i;
model->bone[i].numweight = 0;
model->bone[i].weight = NULL;
model->bone[i].parent = bi[level];
ptr = _m3d_getint(ptr, &k);
ptr = _m3d_findarg(ptr);
if(!*ptr || *ptr == '\r' || *ptr == '\n') goto asciiend;
model->bone[i].pos = (M3D_INDEX)k;
ptr = _m3d_getint(ptr, &k);
ptr = _m3d_findarg(ptr);
if(!*ptr || *ptr == '\r' || *ptr == '\n') goto asciiend;
model->bone[i].ori = (M3D_INDEX)k;
pe = _m3d_safestr(ptr, 0);
if(!pe || !*pe) goto asciiend;
model->bone[i].name = pe;
ptr = _m3d_findnl(ptr);
}
} else
/* material chunk */
if(!memcmp(pe, "Material", 8)) {
pe = _m3d_findarg(pe);
if(!*pe || *pe == '\r' || *pe == '\n') goto asciiend;
pe = _m3d_safestr(pe, 0);
if(!pe || !*pe) goto asciiend;
for(i = 0; i < model->nummaterial; i++)
if(!strcmp(pe, model->material[i].name)) {
M3D_LOG("Multiple definitions for material");
M3D_LOG(pe);
M3D_FREE(pe);
pe = NULL;
while(*ptr && *ptr != '\r' && *ptr != '\n') ptr = _m3d_findnl(ptr);
break;
}
if(!pe) continue;
i = model->nummaterial++;
if(model->flags & M3D_FLG_MTLLIB) {
m = model->material;
model->material = (m3dm_t*)M3D_MALLOC(model->nummaterial * sizeof(m3dm_t));
if(!model->material) goto memerr;
memcpy(model->material, m, (model->nummaterial - 1) * sizeof(m3dm_t));
if(model->texture) {
tx = model->texture;
model->texture = (m3dtx_t*)M3D_MALLOC(model->numtexture * sizeof(m3dtx_t));
if(!model->texture) goto memerr;
memcpy(model->texture, tx, model->numtexture * sizeof(m3dm_t));
}
model->flags &= ~M3D_FLG_MTLLIB;
} else {
model->material = (m3dm_t*)M3D_REALLOC(model->material, model->nummaterial * sizeof(m3dm_t));
if(!model->material) goto memerr;
}
m = &model->material[i];
m->name = pe;
m->numprop = 0;
m->prop = NULL;
while(*ptr && *ptr != '\r' && *ptr != '\n') {
k = n = 256;
if(*ptr == 'm' && *(ptr+1) == 'a' && *(ptr+2) == 'p' && *(ptr+3) == '_') {
k = m3dpf_map;
ptr += 4;
}
for(j = 0; j < sizeof(m3d_propertytypes)/sizeof(m3d_propertytypes[0]); j++)
if(!memcmp(ptr, m3d_propertytypes[j].key, strlen(m3d_propertytypes[j].key))) {
n = m3d_propertytypes[j].id;
if(k != m3dpf_map) k = m3d_propertytypes[j].format;
break;
}
if(n != 256 && k != 256) {
ptr = _m3d_findarg(ptr);
if(!*ptr || *ptr == '\r' || *ptr == '\n') goto asciiend;
j = m->numprop++;
m->prop = (m3dp_t*)M3D_REALLOC(m->prop, m->numprop * sizeof(m3dp_t));
if(!m->prop) goto memerr;
m->prop[j].type = n;
switch(k) {
case m3dpf_color: ptr = _m3d_gethex(ptr, &m->prop[j].value.color); break;
case m3dpf_uint8:
case m3dpf_uint16:
case m3dpf_uint32: ptr = _m3d_getint(ptr, &m->prop[j].value.num); break;
case m3dpf_float: ptr = _m3d_getfloat(ptr, &m->prop[j].value.fnum); break;
case m3dpf_map:
pe = _m3d_safestr(ptr, 0);
if(!pe || !*pe) goto asciiend;
m->prop[j].value.textureid = _m3d_gettx(model, readfilecb, freecb, pe);
if(model->errcode == M3D_ERR_ALLOC) { M3D_FREE(pe); goto memerr; }
if(m->prop[j].value.textureid == (M3D_INDEX)-1U) {
M3D_LOG("Texture not found");
M3D_LOG(pe);
m->numprop--;
}
M3D_FREE(pe);
break;
}
} else {
M3D_LOG("Unknown material property in");
M3D_LOG(m->name);
model->errcode = M3D_ERR_UNKPROP;
}
ptr = _m3d_findnl(ptr);
}
if(!m->numprop) model->nummaterial--;
} else
/* procedural, not implemented yet, skip chunk */
if(!memcmp(pe, "Procedural", 10)) {
pe = _m3d_safestr(ptr, 0);
_m3d_getpr(model, readfilecb, freecb, pe);
M3D_FREE(pe);
while(*ptr && *ptr != '\r' && *ptr != '\n') ptr = _m3d_findnl(ptr);
} else
/* mesh */
if(!memcmp(pe, "Mesh", 4)) {
mi = (M3D_INDEX)-1U;
while(*ptr && *ptr != '\r' && *ptr != '\n') {
if(*ptr == 'u') {
ptr = _m3d_findarg(ptr);
if(!*ptr) goto asciiend;
mi = (M3D_INDEX)-1U;
if(*ptr != '\r' && *ptr != '\n') {
pe = _m3d_safestr(ptr, 0);
if(!pe || !*pe) goto asciiend;
for(j = 0; j < model->nummaterial; j++)
if(!strcmp(pe, model->material[j].name)) {
mi = (M3D_INDEX)j;
break;
}
M3D_FREE(pe);
}
} else {
i = model->numface++;
model->face = (m3df_t*)M3D_REALLOC(model->face, model->numface * sizeof(m3df_t));
if(!model->face) goto memerr;
memset(&model->face[i], 255, sizeof(m3df_t)); /* set all index to -1 by default */
model->face[i].materialid = mi;
/* hardcoded triangles. */
for(j = 0; j < 3; j++) {
/* vertex */
ptr = _m3d_getint(ptr, &k);
model->face[i].vertex[j] = (M3D_INDEX)k;
if(!*ptr) goto asciiend;
if(*ptr == '/') {
ptr++;
if(*ptr != '/') {
/* texcoord */
ptr = _m3d_getint(ptr, &k);
model->face[i].texcoord[j] = (M3D_INDEX)k;
if(!*ptr) goto asciiend;
}
if(*ptr == '/') {
ptr++;
/* normal */
ptr = _m3d_getint(ptr, &k);
model->face[i].normal[j] = (M3D_INDEX)k;
if(!*ptr) goto asciiend;
}
}
ptr = _m3d_findarg(ptr);
}
}
ptr = _m3d_findnl(ptr);
}
} else
/* action */
if(!memcmp(pe, "Action", 6)) {
pe = _m3d_findarg(pe);
if(!*pe || *pe == '\r' || *pe == '\n') goto asciiend;
pe = _m3d_getint(pe, &k);
pe = _m3d_findarg(pe);
if(!*pe || *pe == '\r' || *pe == '\n') goto asciiend;
pe = _m3d_safestr(pe, 0);
if(!pe || !*pe) goto asciiend;
i = model->numaction++;
model->action = (m3da_t*)M3D_REALLOC(model->action, model->numaction * sizeof(m3da_t));
if(!model->action) goto memerr;
a = &model->action[i];
a->name = pe;
a->durationmsec = k;
/* skip the first frame marker as there's always at least one frame */
a->numframe = 1;
a->frame = (m3dfr_t*)M3D_MALLOC(sizeof(m3dfr_t));
if(!a->frame) goto memerr;
a->frame[0].msec = 0;
a->frame[0].numtransform = 0;
a->frame[0].transform = NULL;
i = 0;
if(*ptr == 'f')
ptr = _m3d_findnl(ptr);
while(*ptr && *ptr != '\r' && *ptr != '\n') {
if(*ptr == 'f') {
i = a->numframe++;
a->frame = (m3dfr_t*)M3D_REALLOC(a->frame, a->numframe * sizeof(m3dfr_t));
if(!a->frame) goto memerr;
ptr = _m3d_findarg(ptr);
ptr = _m3d_getint(ptr, &a->frame[i].msec);
a->frame[i].numtransform = 0;
a->frame[i].transform = NULL;
} else {
j = a->frame[i].numtransform++;
a->frame[i].transform = (m3dtr_t*)M3D_REALLOC(a->frame[i].transform,
a->frame[i].numtransform * sizeof(m3dtr_t));
if(!a->frame[i].transform) goto memerr;
ptr = _m3d_getint(ptr, &k);
ptr = _m3d_findarg(ptr);
if(!*ptr || *ptr == '\r' || *ptr == '\n') goto asciiend;
a->frame[i].transform[j].boneid = (M3D_INDEX)k;
ptr = _m3d_getint(ptr, &k);
ptr = _m3d_findarg(ptr);
if(!*ptr || *ptr == '\r' || *ptr == '\n') goto asciiend;
a->frame[i].transform[j].pos = (M3D_INDEX)k;
ptr = _m3d_getint(ptr, &k);
if(!*ptr || *ptr == '\r' || *ptr == '\n') goto asciiend;
a->frame[i].transform[j].ori = (M3D_INDEX)k;
}
ptr = _m3d_findnl(ptr);
}
} else
/* extra chunks */
if(!memcmp(pe, "Extra", 5)) {
pe = _m3d_findarg(pe);
if(!*pe || *pe == '\r' || *pe == '\n') goto asciiend;
buff = (unsigned char*)_m3d_findnl(ptr);
k = ((uint32_t)((uint64_t)buff - (uint64_t)ptr) / 3) + 1;
i = model->numunknown++;
model->unknown = (m3dchunk_t**)M3D_REALLOC(model->unknown, model->numunknown * sizeof(m3dchunk_t*));
if(!model->unknown) goto memerr;
model->unknown[i] = (m3dchunk_t*)M3D_MALLOC(k + sizeof(m3dchunk_t));
if(!model->unknown[i]) goto memerr;
memcpy(&model->unknown[i]->magic, pe, 4);
model->unknown[i]->length = sizeof(m3dchunk_t);
pe = (char*)model->unknown[i] + sizeof(m3dchunk_t);
while(*ptr && *ptr != '\r' && *ptr != '\n') {
ptr = _m3d_gethex(ptr, &k);
*pe++ = (uint8_t)k;
model->unknown[i]->length++;
}
} else
goto asciiend;
}
model->errcode = M3D_SUCCESS;
asciiend:
setlocale(LC_NUMERIC, ol);
goto postprocess;
}
/* Binary variant */
#endif
if(!M3D_CHUNKMAGIC(data + 8, 'H','E','A','D')) {
stbi__g_failure_reason = "Corrupt file";
buff = (unsigned char *)stbi_zlib_decode_malloc_guesssize_headerflag((const char*)data+8, ((m3dchunk_t*)data)->length-8,
4096, (int*)&len, 1);
if(!buff || !len || !M3D_CHUNKMAGIC(buff, 'H','E','A','D')) {
M3D_LOG(stbi__g_failure_reason);
if(buff) M3D_FREE(buff);
M3D_FREE(model);
return NULL;
}
buff = (unsigned char*)M3D_REALLOC(buff, len);
model->flags |= M3D_FLG_FREERAW; /* mark that we have to free the raw buffer */
data = buff;
} else {
len = ((m3dhdr_t*)data)->length;
data += 8;
}
model->raw = (m3dhdr_t*)data;
end = data + len;
/* parse header */
data += sizeof(m3dhdr_t);
M3D_LOG(data);
model->name = (char*)data;
for(; data < end && *data; data++) {}; data++;
model->license = (char*)data;
for(; data < end && *data; data++) {}; data++;
model->author = (char*)data;
for(; data < end && *data; data++) {}; data++;
model->desc = (char*)data;
chunk = (unsigned char*)model->raw + model->raw->length;
model->scale = (M3D_FLOAT)model->raw->scale;
if(model->scale <= (M3D_FLOAT)0.0) model->scale = (M3D_FLOAT)1.0;
model->vc_s = 1 << ((model->raw->types >> 0) & 3); /* vertex coordinate size */
model->vi_s = 1 << ((model->raw->types >> 2) & 3); /* vertex index size */
model->si_s = 1 << ((model->raw->types >> 4) & 3); /* string offset size */
model->ci_s = 1 << ((model->raw->types >> 6) & 3); /* color index size */
model->ti_s = 1 << ((model->raw->types >> 8) & 3); /* tmap index size */
model->bi_s = 1 << ((model->raw->types >>10) & 3); /* bone index size */
model->nb_s = 1 << ((model->raw->types >>12) & 3); /* number of bones per vertex */
model->sk_s = 1 << ((model->raw->types >>14) & 3); /* skin index size */
model->fi_s = 1 << ((model->raw->types >>16) & 3); /* frame counter size */
if(model->ci_s == 8) model->ci_s = 0; /* optional indices */
if(model->ti_s == 8) model->ti_s = 0;
if(model->bi_s == 8) model->bi_s = 0;
if(model->sk_s == 8) model->sk_s = 0;
if(model->fi_s == 8) model->fi_s = 0;
/* variable limit checks */
if(sizeof(M3D_FLOAT) == 4 && model->vc_s > 4) {
M3D_LOG("Double precision coordinates not supported, truncating to float...");
model->errcode = M3D_ERR_TRUNC;
}
if(sizeof(M3D_INDEX) == 2 && (model->vi_s > 2 || model->si_s > 2 || model->ci_s > 2 || model->ti_s > 2 ||
model->bi_s > 2 || model->sk_s > 2 || model->fi_s > 2)) {
M3D_LOG("32 bit indices not supported, unable to load model");
M3D_FREE(model);
return NULL;
}
if(model->vi_s > 4 || model->si_s > 4) {
M3D_LOG("Invalid index size, unable to load model");
M3D_FREE(model);
return NULL;
}
if(model->nb_s > M3D_NUMBONE) {
M3D_LOG("Model has more bones per vertex than importer supports");
model->errcode = M3D_ERR_TRUNC;
}
/* look for inlined assets in advance, material and procedural chunks may need them */
buff = chunk;
while(buff < end && !M3D_CHUNKMAGIC(buff, 'O','M','D','3')) {
data = buff;
len = ((m3dchunk_t*)data)->length;
if(len < sizeof(m3dchunk_t)) {
M3D_LOG("Invalid chunk size");
break;
}
buff += len;
len -= sizeof(m3dchunk_t) + model->si_s;
/* inlined assets */
if(M3D_CHUNKMAGIC(data, 'A','S','E','T') && len > 0) {
M3D_LOG("Inlined asset");
i = model->numinlined++;
model->inlined = (m3di_t*)M3D_REALLOC(model->inlined, model->numinlined * sizeof(m3di_t));
if(!model->inlined) {
memerr: M3D_LOG("Out of memory");
model->errcode = M3D_ERR_ALLOC;
return model;
}
data += sizeof(m3dchunk_t);
t = &model->inlined[i];
M3D_GETSTR(t->name);
M3D_LOG(t->name);
t->data = (uint8_t*)data;
t->length = len;
}
}
/* parse chunks */
while(chunk < end && !M3D_CHUNKMAGIC(chunk, 'O','M','D','3')) {
data = chunk;
len = ((m3dchunk_t*)chunk)->length;
if(len < sizeof(m3dchunk_t)) {
M3D_LOG("Invalid chunk size");
break;
}
chunk += len;
len -= sizeof(m3dchunk_t);
/* color map */
if(M3D_CHUNKMAGIC(data, 'C','M','A','P')) {
M3D_LOG("Color map");
if(model->cmap) { M3D_LOG("More color map chunks, should be unique"); model->errcode = M3D_ERR_CMAP; continue; }
if(!model->ci_s) { M3D_LOG("Color map chunk, shouldn't be any"); model->errcode = M3D_ERR_CMAP; continue; }
model->numcmap = len / sizeof(uint32_t);
model->cmap = (uint32_t*)(data + sizeof(m3dchunk_t));
} else
/* texture map */
if(M3D_CHUNKMAGIC(data, 'T','M','A','P')) {
M3D_LOG("Texture map");
if(model->tmap) { M3D_LOG("More texture map chunks, should be unique"); model->errcode = M3D_ERR_TMAP; continue; }
if(!model->ti_s) { M3D_LOG("Texture map chunk, shouldn't be any"); model->errcode = M3D_ERR_TMAP; continue; }
reclen = model->vc_s + model->vc_s;
model->numtmap = len / reclen;
model->tmap = (m3dti_t*)M3D_MALLOC(model->numtmap * sizeof(m3dti_t));
if(!model->tmap) goto memerr;
for(i = 0, data += sizeof(m3dchunk_t); data < chunk; i++) {
switch(model->vc_s) {
case 1:
model->tmap[i].u = (M3D_FLOAT)(data[0]) / 255;
model->tmap[i].v = (M3D_FLOAT)(data[1]) / 255;
break;
case 2:
model->tmap[i].u = (M3D_FLOAT)(*((int16_t*)(data+0))) / 65535;
model->tmap[i].v = (M3D_FLOAT)(*((int16_t*)(data+2))) / 65535;
break;
case 4:
model->tmap[i].u = (M3D_FLOAT)(*((float*)(data+0)));
model->tmap[i].v = (M3D_FLOAT)(*((float*)(data+4)));
break;
case 8:
model->tmap[i].u = (M3D_FLOAT)(*((double*)(data+0)));
model->tmap[i].v = (M3D_FLOAT)(*((double*)(data+8)));
break;
}
data += reclen;
}
} else
/* vertex list */
if(M3D_CHUNKMAGIC(data, 'V','R','T','S')) {
M3D_LOG("Vertex list");
if(model->vertex) { M3D_LOG("More vertex chunks, should be unique"); model->errcode = M3D_ERR_VRTS; continue; }
if(model->ci_s && model->ci_s < 4 && !model->cmap) model->errcode = M3D_ERR_CMAP;
reclen = model->ci_s + model->sk_s + 4 * model->vc_s;
model->numvertex = len / reclen;
model->vertex = (m3dv_t*)M3D_MALLOC(model->numvertex * sizeof(m3dv_t));
if(!model->vertex) goto memerr;
memset(model->vertex, 0, model->numvertex * sizeof(m3dv_t));
for(i = 0, data += sizeof(m3dchunk_t); data < chunk && i < model->numvertex; i++) {
switch(model->vc_s) {
case 1:
model->vertex[i].x = (M3D_FLOAT)((int8_t)data[0]) / 127;
model->vertex[i].y = (M3D_FLOAT)((int8_t)data[1]) / 127;
model->vertex[i].z = (M3D_FLOAT)((int8_t)data[2]) / 127;
model->vertex[i].w = (M3D_FLOAT)((int8_t)data[3]) / 127;
data += 4;
break;
case 2:
model->vertex[i].x = (M3D_FLOAT)((int16_t)((data[1]<<8)|data[0])) / 32767;
model->vertex[i].y = (M3D_FLOAT)((int16_t)((data[3]<<8)|data[2])) / 32767;
model->vertex[i].z = (M3D_FLOAT)((int16_t)((data[5]<<8)|data[4])) / 32767;
model->vertex[i].w = (M3D_FLOAT)((int16_t)((data[7]<<8)|data[6])) / 32767;
data += 8;
break;
case 4:
model->vertex[i].x = (M3D_FLOAT)(*((float*)(data+0)));
model->vertex[i].y = (M3D_FLOAT)(*((float*)(data+4)));
model->vertex[i].z = (M3D_FLOAT)(*((float*)(data+8)));
model->vertex[i].w = (M3D_FLOAT)(*((float*)(data+12)));
data += 16;
break;
case 8:
model->vertex[i].x = (M3D_FLOAT)(*((double*)(data+0)));
model->vertex[i].y = (M3D_FLOAT)(*((double*)(data+8)));
model->vertex[i].z = (M3D_FLOAT)(*((double*)(data+16)));
model->vertex[i].w = (M3D_FLOAT)(*((double*)(data+24)));
data += 32;
break;
}
switch(model->ci_s) {
case 1: model->vertex[i].color = model->cmap ? model->cmap[data[0]] : 0; data++; break;
case 2: model->vertex[i].color = model->cmap ? model->cmap[*((uint16_t*)data)] : 0; data += 2; break;
case 4: model->vertex[i].color = *((uint32_t*)data); data += 4; break;
/* case 8: break; */
}
model->vertex[i].skinid = (M3D_INDEX)-1U;
data = _m3d_getidx(data, model->sk_s, &model->vertex[i].skinid);
}
} else
/* skeleton: bone hierarchy and skin */
if(M3D_CHUNKMAGIC(data, 'B','O','N','E')) {
M3D_LOG("Skeleton");
if(model->bone) { M3D_LOG("More bone chunks, should be unique"); model->errcode = M3D_ERR_BONE; continue; }
if(!model->bi_s) { M3D_LOG("Bone chunk, shouldn't be any"); model->errcode=M3D_ERR_BONE; continue; }
if(!model->vertex) { M3D_LOG("No vertex chunk before bones"); model->errcode = M3D_ERR_VRTS; break; }
data += sizeof(m3dchunk_t);
model->numbone = 0;
data = _m3d_getidx(data, model->bi_s, &model->numbone);
if(model->numbone) {
model->bone = (m3db_t*)M3D_MALLOC(model->numbone * sizeof(m3db_t));
if(!model->bone) goto memerr;
}
model->numskin = 0;
data = _m3d_getidx(data, model->sk_s, &model->numskin);
if(model->numskin) {
model->skin = (m3ds_t*)M3D_MALLOC(model->numskin * sizeof(m3ds_t));
if(!model->skin) goto memerr;
for(i = 0; i < model->numskin; i++)
for(j = 0; j < M3D_NUMBONE; j++) {
model->skin[i].boneid[j] = (M3D_INDEX)-1U;
model->skin[i].weight[j] = (M3D_FLOAT)0.0;
}
}
/* read bone hierarchy */
for(i = 0; i < model->numbone; i++) {
data = _m3d_getidx(data, model->bi_s, &model->bone[i].parent);
M3D_GETSTR(model->bone[i].name);
data = _m3d_getidx(data, model->vi_s, &model->bone[i].pos);
data = _m3d_getidx(data, model->vi_s, &model->bone[i].ori);
model->bone[i].numweight = 0;
model->bone[i].weight = NULL;
}
/* read skin definitions */
for(i = 0; data < chunk && i < model->numskin; i++) {
memset(&weights, 0, sizeof(weights));
if(model->nb_s == 1) weights[0] = 255;
else {
memcpy(&weights, data, model->nb_s);
data += model->nb_s;
}
for(j = 0; j < (unsigned int)model->nb_s; j++) {
if(weights[j]) {
if(j >= M3D_NUMBONE)
data += model->bi_s;
else {
model->skin[i].weight[j] = (M3D_FLOAT)(weights[j]) / 255;
data = _m3d_getidx(data, model->bi_s, &model->skin[i].boneid[j]);
}
}
}
}
} else
/* material */
if(M3D_CHUNKMAGIC(data, 'M','T','R','L')) {
data += sizeof(m3dchunk_t);
M3D_GETSTR(material);
M3D_LOG("Material");
M3D_LOG(material);
if(model->ci_s < 4 && !model->numcmap) model->errcode = M3D_ERR_CMAP;
for(i = 0; i < model->nummaterial; i++)
if(!strcmp(material, model->material[i].name)) {
model->errcode = M3D_ERR_MTRL;
M3D_LOG("Multiple definitions for material");
M3D_LOG(material);
material = NULL;
break;
}
if(material) {
i = model->nummaterial++;
if(model->flags & M3D_FLG_MTLLIB) {
m = model->material;
model->material = (m3dm_t*)M3D_MALLOC(model->nummaterial * sizeof(m3dm_t));
if(!model->material) goto memerr;
memcpy(model->material, m, (model->nummaterial - 1) * sizeof(m3dm_t));
if(model->texture) {
tx = model->texture;
model->texture = (m3dtx_t*)M3D_MALLOC(model->numtexture * sizeof(m3dtx_t));
if(!model->texture) goto memerr;
memcpy(model->texture, tx, model->numtexture * sizeof(m3dm_t));
}
model->flags &= ~M3D_FLG_MTLLIB;
} else {
model->material = (m3dm_t*)M3D_REALLOC(model->material, model->nummaterial * sizeof(m3dm_t));
if(!model->material) goto memerr;
}
m = &model->material[i];
m->numprop = 0;
m->prop = NULL;
m->name = material;
m->prop = (m3dp_t*)M3D_REALLOC(m->prop, (len / 2) * sizeof(m3dp_t));
if(!m->prop) goto memerr;
while(data < chunk) {
i = m->numprop++;
m->prop[i].type = *data++;
m->prop[i].value.num = 0;
if(m->prop[i].type >= 128)
k = m3dpf_map;
else {
for(k = 256, j = 0; j < sizeof(m3d_propertytypes)/sizeof(m3d_propertytypes[0]); j++)
if(m->prop[i].type == m3d_propertytypes[j].id) { k = m3d_propertytypes[j].format; break; }
}
switch(k) {
case m3dpf_color:
switch(model->ci_s) {
case 1: m->prop[i].value.color = model->cmap ? model->cmap[data[0]] : 0; data++; break;
case 2: m->prop[i].value.color = model->cmap ? model->cmap[*((uint16_t*)data)] : 0; data += 2; break;
case 4: m->prop[i].value.color = *((uint32_t*)data); data += 4; break;
}
break;
case m3dpf_uint8: m->prop[i].value.num = *data++; break;
case m3dpf_uint16:m->prop[i].value.num = *((uint16_t*)data); data += 2; break;
case m3dpf_uint32:m->prop[i].value.num = *((uint32_t*)data); data += 4; break;
case m3dpf_float: m->prop[i].value.fnum = *((float*)data); data += 4; break;
case m3dpf_map:
M3D_GETSTR(material);
m->prop[i].value.textureid = _m3d_gettx(model, readfilecb, freecb, material);
if(model->errcode == M3D_ERR_ALLOC) goto memerr;
if(m->prop[i].value.textureid == (M3D_INDEX)-1U) {
M3D_LOG("Texture not found");
M3D_LOG(material);
m->numprop--;
}
break;
default:
M3D_LOG("Unknown material property in");
M3D_LOG(m->name);
model->errcode = M3D_ERR_UNKPROP;
data = chunk;
break;
}
}
m->prop = (m3dp_t*)M3D_REALLOC(m->prop, m->numprop * sizeof(m3dp_t));
if(!m->prop) goto memerr;
}
} else
/* face */
if(M3D_CHUNKMAGIC(data, 'P','R','O','C')) {
/* procedural surface */
M3D_GETSTR(material);
M3D_LOG("Procedural surface");
M3D_LOG(material);
_m3d_getpr(model, readfilecb, freecb, material);
} else
if(M3D_CHUNKMAGIC(data, 'M','E','S','H')) {
M3D_LOG("Mesh data");
/* mesh */
data += sizeof(m3dchunk_t);
mi = (M3D_INDEX)-1U;
am = model->numface;
while(data < chunk) {
k = *data++;
n = k >> 4;
k &= 15;
if(!n) {
/* use material */
mi = (M3D_INDEX)-1U;
M3D_GETSTR(material);
if(material) {
for(j = 0; j < model->nummaterial; j++)
if(!strcmp(material, model->material[j].name)) {
mi = (M3D_INDEX)j;
break;
}
if(mi == (M3D_INDEX)-1U) model->errcode = M3D_ERR_MTRL;
}
continue;
}
if(n != 3) { M3D_LOG("Only triangle mesh supported for now"); model->errcode = M3D_ERR_UNKMESH; return model; }
i = model->numface++;
if(model->numface > am) {
am = model->numface + 4095;
model->face = (m3df_t*)M3D_REALLOC(model->face, am * sizeof(m3df_t));
if(!model->face) goto memerr;
}
memset(&model->face[i], 255, sizeof(m3df_t)); /* set all index to -1 by default */
model->face[i].materialid = mi;
for(j = 0; j < n; j++) {
/* vertex */
data = _m3d_getidx(data, model->vi_s, &model->face[i].vertex[j]);
/* texcoord */
if(k & 1)
data = _m3d_getidx(data, model->ti_s, &model->face[i].texcoord[j]);
/* normal */
if(k & 2)
data = _m3d_getidx(data, model->vi_s, &model->face[i].normal[j]);
}
}
model->face = (m3df_t*)M3D_REALLOC(model->face, model->numface * sizeof(m3df_t));
} else
/* action */
if(M3D_CHUNKMAGIC(data, 'A','C','T','N')) {
M3D_LOG("Action");
i = model->numaction++;
model->action = (m3da_t*)M3D_REALLOC(model->action, model->numaction * sizeof(m3da_t));
if(!model->action) goto memerr;
a = &model->action[i];
data += sizeof(m3dchunk_t);
M3D_GETSTR(a->name);
M3D_LOG(a->name);
a->numframe = *((uint16_t*)data); data += 2;
if(a->numframe < 1) {
model->numaction--;
} else {
a->durationmsec = *((uint32_t*)data); data += 4;
a->frame = (m3dfr_t*)M3D_MALLOC(a->numframe * sizeof(m3dfr_t));
if(!a->frame) goto memerr;
for(i = 0; data < chunk && i < a->numframe; i++) {
a->frame[i].msec = *((uint32_t*)data); data += 4;
a->frame[i].numtransform = 0; a->frame[i].transform = NULL;
data = _m3d_getidx(data, model->fi_s, &a->frame[i].numtransform);
if(a->frame[i].numtransform > 0) {
a->frame[i].transform = (m3dtr_t*)M3D_MALLOC(a->frame[i].numtransform * sizeof(m3dtr_t));
for(j = 0; j < a->frame[i].numtransform; j++) {
data = _m3d_getidx(data, model->bi_s, &a->frame[i].transform[j].boneid);
data = _m3d_getidx(data, model->vi_s, &a->frame[i].transform[j].pos);
data = _m3d_getidx(data, model->vi_s, &a->frame[i].transform[j].ori);
}
}
}
}
} else {
i = model->numunknown++;
model->unknown = (m3dchunk_t**)M3D_REALLOC(model->unknown, model->numunknown * sizeof(m3dchunk_t*));
if(!model->unknown) goto memerr;
model->unknown[i] = (m3dchunk_t*)data;
}
}
/* calculate normals, normalize skin weights, create bone/vertex cross-references and calculate transform matrices */
#ifdef M3D_ASCII
postprocess:
#endif
if(model) {
#ifndef M3D_NONORMALS
if(model->numface && model->face) {
memset(&vn, 0, sizeof(m3dv_t));
/* if they are missing, calculate triangle normals into a temporary buffer */
for(i = numnorm = 0; i < model->numface; i++)
if(model->face[i].normal[0] == -1U) {
v0 = &model->vertex[model->face[i].vertex[0]]; v1 = &model->vertex[model->face[i].vertex[1]];
v2 = &model->vertex[model->face[i].vertex[2]];
va.x = v1->x - v0->x; va.y = v1->y - v0->y; va.z = v1->z - v0->z;
vb.x = v2->x - v0->x; vb.y = v2->y - v0->y; vb.z = v2->z - v0->z;
vn.x = (va.y * vb.z) - (va.z * vb.y);
vn.y = (va.z * vb.x) - (va.x * vb.z);
vn.z = (va.x * vb.y) - (va.y * vb.x);
w = _m3d_rsq((vn.x * vn.x) + (vn.y * vn.y) + (vn.z * vn.z));
vn.x *= w; vn.y *= w; vn.z *= w;
norm = _m3d_addnorm(norm, &numnorm, &vn, &j);
if(!ni) {
ni = (M3D_INDEX*)M3D_MALLOC(model->numface * sizeof(M3D_INDEX));
if(!ni) goto memerr;
}
ni[i] = j;
}
if(ni && norm) {
vi = (M3D_INDEX*)M3D_MALLOC(model->numvertex * sizeof(M3D_INDEX));
if(!vi) goto memerr;
/* for each vertex, take the average of the temporary normals and use that */
for(i = 0, n = model->numvertex; i < n; i++) {
memset(&vn, 0, sizeof(m3dv_t));
for(j = 0; j < model->numface; j++)
for(k = 0; k < 3; k++)
if(model->face[j].vertex[k] == i) {
vn.x += norm[ni[j]].x;
vn.y += norm[ni[j]].y;
vn.z += norm[ni[j]].z;
}
w = _m3d_rsq((vn.x * vn.x) + (vn.y * vn.y) + (vn.z * vn.z));
vn.x *= w; vn.y *= w; vn.z *= w;
vn.skinid = -1U;
model->vertex = _m3d_addnorm(model->vertex, &model->numvertex, &vn, &vi[i]);
}
for(j = 0; j < model->numface; j++)
for(k = 0; k < 3; k++)
model->face[j].normal[k] = vi[model->face[j].vertex[k]];
M3D_FREE(norm);
M3D_FREE(ni);
M3D_FREE(vi);
}
}
#endif
if(model->numbone && model->bone && model->numskin && model->skin && model->numvertex && model->vertex) {
#ifndef M3D_NOWEIGHTS
for(i = 0; i < model->numvertex; i++) {
if(model->vertex[i].skinid < M3D_INDEXMAX) {
sk = &model->skin[model->vertex[i].skinid];
w = (M3D_FLOAT)0.0;
for(j = 0; j < M3D_NUMBONE && sk->boneid[j] != (M3D_INDEX)-1U && sk->weight[j] > (M3D_FLOAT)0.0; j++)
w += sk->weight[j];
for(j = 0; j < M3D_NUMBONE && sk->boneid[j] != (M3D_INDEX)-1U && sk->weight[j] > (M3D_FLOAT)0.0; j++) {
sk->weight[j] /= w;
b = &model->bone[sk->boneid[j]];
k = b->numweight++;
b->weight = (m3dw_t*)M3D_REALLOC(b->weight, b->numweight * sizeof(m3da_t));
if(!b->weight) goto memerr;
b->weight[k].vertexid = i;
b->weight[k].weight = sk->weight[j];
}
}
}
#endif
#ifndef M3D_NOANIMATION
for(i = 0; i < model->numbone; i++) {
b = &model->bone[i];
if(model->bone[i].parent == (M3D_INDEX)-1U) {
_m3d_mat((M3D_FLOAT*)&b->mat4, &model->vertex[b->pos], &model->vertex[b->ori]);
} else {
_m3d_mat((M3D_FLOAT*)&r, &model->vertex[b->pos], &model->vertex[b->ori]);
_m3d_mul((M3D_FLOAT*)&b->mat4, (M3D_FLOAT*)&model->bone[b->parent].mat4, (M3D_FLOAT*)&r);
}
}
for(i = 0; i < model->numbone; i++)
_m3d_inv((M3D_FLOAT*)&model->bone[i].mat4);
#endif
}
}
return model;
}
/**
* Calculates skeletons for animation frames, returns a working copy (should be freed after use)
*/
m3dtr_t *m3d_frame(m3d_t *model, M3D_INDEX actionid, M3D_INDEX frameid, m3dtr_t *skeleton)
{
unsigned int i;
M3D_INDEX s = frameid;
m3dfr_t *fr;
if(!model || !model->numbone || !model->bone || (actionid != (M3D_INDEX)-1U && (!model->action ||
actionid >= model->numaction || frameid >= model->action[actionid].numframe))) {
model->errcode = M3D_ERR_UNKFRAME;
return skeleton;
}
model->errcode = M3D_SUCCESS;
if(!skeleton) {
skeleton = (m3dtr_t*)M3D_MALLOC(model->numbone * sizeof(m3dtr_t));
if(!skeleton) {
model->errcode = M3D_ERR_ALLOC;
return NULL;
}
goto gen;
}
if(actionid == (M3D_INDEX)-1U || !frameid) {
gen: s = 0;
for(i = 0; i < model->numbone; i++) {
skeleton[i].boneid = i;
skeleton[i].pos = model->bone[i].pos;
skeleton[i].ori = model->bone[i].ori;
}
}
if(actionid < model->numaction && (frameid || !model->action[actionid].frame[0].msec)) {
for(; s <= frameid; s++) {
fr = &model->action[actionid].frame[s];
for(i = 0; i < fr->numtransform; i++) {
skeleton[fr->transform[i].boneid].pos = fr->transform[i].pos;
skeleton[fr->transform[i].boneid].ori = fr->transform[i].ori;
}
}
}
return skeleton;
}
#ifndef M3D_NOANIMATION
/**
* Returns interpolated animation-pose, a working copy (should be freed after use)
*/
m3db_t *m3d_pose(m3d_t *model, M3D_INDEX actionid, uint32_t msec)
{
unsigned int i, j, l;
M3D_FLOAT r[16], t, d;
m3db_t *ret;
m3dv_t *v, *p, *f;
m3dtr_t *tmp;
m3dfr_t *fr;
if(!model || !model->numbone || !model->bone) {
model->errcode = M3D_ERR_UNKFRAME;
return NULL;
}
ret = (m3db_t*)M3D_MALLOC(model->numbone * sizeof(m3db_t));
if(!ret) {
model->errcode = M3D_ERR_ALLOC;
return NULL;
}
memcpy(ret, model->bone, model->numbone * sizeof(m3db_t));
for(i = 0; i < model->numbone; i++)
_m3d_inv((M3D_FLOAT*)&ret[i].mat4);
if(!model->action || actionid >= model->numaction) {
model->errcode = M3D_ERR_UNKFRAME;
return ret;
}
msec %= model->action[actionid].durationmsec;
model->errcode = M3D_SUCCESS;
fr = &model->action[actionid].frame[0];
for(j = l = 0; j < model->action[actionid].numframe && model->action[actionid].frame[j].msec <= msec; j++) {
fr = &model->action[actionid].frame[j];
l = fr->msec;
for(i = 0; i < fr->numtransform; i++) {
ret[fr->transform[i].boneid].pos = fr->transform[i].pos;
ret[fr->transform[i].boneid].ori = fr->transform[i].ori;
}
}
if(l != msec) {
model->vertex = (m3dv_t*)M3D_REALLOC(model->vertex, (model->numvertex + 2 * model->numbone) * sizeof(m3dv_t));
if(!model->vertex) {
free(ret);
model->errcode = M3D_ERR_ALLOC;
return NULL;
}
tmp = (m3dtr_t*)M3D_MALLOC(model->numbone * sizeof(m3dtr_t));
if(tmp) {
for(i = 0; i < model->numbone; i++) {
tmp[i].pos = ret[i].pos;
tmp[i].ori = ret[i].ori;
}
fr = &model->action[actionid].frame[j % model->action[actionid].numframe];
t = l >= fr->msec ? (M3D_FLOAT)1.0 : (M3D_FLOAT)(msec - l) / (M3D_FLOAT)(fr->msec - l);
for(i = 0; i < fr->numtransform; i++) {
tmp[fr->transform[i].boneid].pos = fr->transform[i].pos;
tmp[fr->transform[i].boneid].ori = fr->transform[i].ori;
}
for(i = 0, j = model->numvertex; i < model->numbone; i++) {
/* LERP interpolation of position */
if(ret[i].pos != tmp[i].pos) {
p = &model->vertex[ret[i].pos];
f = &model->vertex[tmp[i].pos];
v = &model->vertex[j];
v->x = p->x + t * (f->x - p->x);
v->y = p->y + t * (f->y - p->y);
v->z = p->z + t * (f->z - p->z);
ret[i].pos = j++;
}
/* NLERP interpolation of orientation (could have used SLERP, that's nicer, but slower) */
if(ret[i].ori != tmp[i].ori) {
p = &model->vertex[ret[i].ori];
f = &model->vertex[tmp[i].ori];
v = &model->vertex[j];
d = (p->w * f->w + p->x * f->x + p->y * f->y + p->z * f->z < 0) ? (M3D_FLOAT)-1.0 : (M3D_FLOAT)1.0;
v->x = p->x + t * (d*f->x - p->x);
v->y = p->y + t * (d*f->y - p->y);
v->z = p->z + t * (d*f->z - p->z);
v->w = p->w + t * (d*f->w - p->w);
d = _m3d_rsq(v->w * v->w + v->x * v->x + v->y * v->y + v->z * v->z);
v->x *= d; v->y *= d; v->z *= d; v->w *= d;
ret[i].ori = j++;
}
}
M3D_FREE(tmp);
}
}
for(i = 0; i < model->numbone; i++) {
if(ret[i].parent == (M3D_INDEX)-1U) {
_m3d_mat((M3D_FLOAT*)&ret[i].mat4, &model->vertex[ret[i].pos], &model->vertex[ret[i].ori]);
} else {
_m3d_mat((M3D_FLOAT*)&r, &model->vertex[ret[i].pos], &model->vertex[ret[i].ori]);
_m3d_mul((M3D_FLOAT*)&ret[i].mat4, (M3D_FLOAT*)&ret[ret[i].parent].mat4, (M3D_FLOAT*)&r);
}
}
return ret;
}
#endif /* M3D_NOANIMATION */
#endif /* M3D_IMPLEMENTATION */
#if !defined(M3D_NODUP) && (!defined(M3D_NOIMPORTER) || defined(M3D_EXPORTER))
/**
* Free the in-memory model
*/
void m3d_free(m3d_t *model)
{
unsigned int i, j;
if(!model) return;
#ifdef M3D_ASCII
/* if model imported from ASCII, we have to free all strings as well */
if(model->flags & M3D_FLG_FREESTR) {
if(model->name) M3D_FREE(model->name);
if(model->license) M3D_FREE(model->license);
if(model->author) M3D_FREE(model->author);
if(model->desc) M3D_FREE(model->desc);
if(model->bone)
for(i = 0; i < model->numbone; i++)
if(model->bone[i].name)
M3D_FREE(model->bone[i].name);
if(model->material)
for(i = 0; i < model->nummaterial; i++)
if(model->material[i].name)
M3D_FREE(model->material[i].name);
if(model->action)
for(i = 0; i < model->numaction; i++)
if(model->action[i].name)
M3D_FREE(model->action[i].name);
if(model->texture)
for(i = 0; i < model->numtexture; i++)
if(model->texture[i].name)
M3D_FREE(model->texture[i].name);
if(model->unknown)
for(i = 0; i < model->numunknown; i++)
if(model->unknown[i])
M3D_FREE(model->unknown[i]);
}
#endif
if(model->flags & M3D_FLG_FREERAW) M3D_FREE(model->raw);
if(model->tmap) M3D_FREE(model->tmap);
if(model->bone) {
for(i = 0; i < model->numbone; i++)
if(model->bone[i].weight)
M3D_FREE(model->bone[i].weight);
M3D_FREE(model->bone);
}
if(model->skin) M3D_FREE(model->skin);
if(model->vertex) M3D_FREE(model->vertex);
if(model->face) M3D_FREE(model->face);
if(model->material && !(model->flags & M3D_FLG_MTLLIB)) {
for(i = 0; i < model->nummaterial; i++)
if(model->material[i].prop) M3D_FREE(model->material[i].prop);
M3D_FREE(model->material);
}
if(model->texture) {
for(i = 0; i < model->numtexture; i++)
if(model->texture[i].d) M3D_FREE(model->texture[i].d);
M3D_FREE(model->texture);
}
if(model->action) {
for(i = 0; i < model->numaction; i++) {
if(model->action[i].frame) {
for(j = 0; j < model->action[i].numframe; j++)
if(model->action[i].frame[j].transform) M3D_FREE(model->action[i].frame[j].transform);
M3D_FREE(model->action[i].frame);
}
}
M3D_FREE(model->action);
}
if(model->inlined) M3D_FREE(model->inlined);
if(model->unknown) M3D_FREE(model->unknown);
free(model);
}
#endif
#ifdef M3D_EXPORTER
typedef struct {
char *str;
uint32_t offs;
} m3dstr_t;
/* create unique list of strings */
static m3dstr_t *_m3d_addstr(m3dstr_t *str, uint32_t *numstr, char *s)
{
uint32_t i;
if(!s || !*s) return str;
if(str) {
for(i = 0; i < *numstr; i++)
if(str[i].str == s || !strcmp(str[i].str, s)) return str;
}
str = (m3dstr_t*)M3D_REALLOC(str, ((*numstr) + 1) * sizeof(m3dstr_t));
str[*numstr].str = s;
str[*numstr].offs = 0;
(*numstr)++;
return str;
}
/* add strings to header */
m3dhdr_t *_m3d_addhdr(m3dhdr_t *h, m3dstr_t *s)
{
int i;
char *safe = _m3d_safestr(s->str, 0);
i = strlen(safe);
h = (m3dhdr_t*)M3D_REALLOC(h, h->length + i+1);
if(!h) { M3D_FREE(safe); return NULL; }
memcpy((uint8_t*)h + h->length, safe, i+1);
s->offs = h->length - 16;
h->length += i+1;
M3D_FREE(safe);
return h;
}
/* return offset of string */
static uint32_t _m3d_stridx(m3dstr_t *str, uint32_t numstr, char *s)
{
uint32_t i;
char *safe;
if(!s || !*s) return 0;
if(str) {
safe = _m3d_safestr(s, 0);
if(!safe) return 0;
if(!*safe) {
free(safe);
return 0;
}
for(i = 0; i < numstr; i++)
if(!strcmp(str[i].str, s)) {
free(safe);
return str[i].offs;
}
free(safe);
}
return 0;
}
/* compare two colors by HSV value */
_inline static int _m3d_cmapcmp(const void *a, const void *b)
{
uint8_t *A = (uint8_t*)a, *B = (uint8_t*)b;
_register int m, vA, vB;
/* get HSV value for A */
m = A[2] < A[1]? A[2] : A[1]; if(A[0] < m) m = A[0];
vA = A[2] > A[1]? A[2] : A[1]; if(A[0] > vA) vA = A[0];
/* get HSV value for B */
m = B[2] < B[1]? B[2] : B[1]; if(B[0] < m) m = B[0];
vB = B[2] > B[1]? B[2] : B[1]; if(B[0] > vB) vB = B[0];
return vA - vB;
}
/* create sorted list of colors */
static uint32_t *_m3d_addcmap(uint32_t *cmap, uint32_t *numcmap, uint32_t color)
{
uint32_t i;
if(cmap) {
for(i = 0; i < *numcmap; i++)
if(cmap[i] == color) return cmap;
}
cmap = (uint32_t*)M3D_REALLOC(cmap, ((*numcmap) + 1) * sizeof(uint32_t));
for(i = 0; i < *numcmap && _m3d_cmapcmp(&color, &cmap[i]) > 0; i++);
if(i < *numcmap) memmove(&cmap[i+1], &cmap[i], ((*numcmap) - i)*sizeof(uint32_t));
cmap[i] = color;
(*numcmap)++;
return cmap;
}
/* look up a color and return its index */
static uint32_t _m3d_cmapidx(uint32_t *cmap, uint32_t numcmap, uint32_t color)
{
uint32_t i;
for(i = 0; i < numcmap; i++)
if(cmap[i] == color) return i;
return 0;
}
/* add vertex to list */
static m3dv_t *_m3d_addvrtx(m3dv_t *vrtx, uint32_t *numvrtx, m3dv_t *v, uint32_t *idx)
{
uint32_t i;
if(v->x == (M3D_FLOAT)-0.0) v->x = (M3D_FLOAT)0.0;
if(v->y == (M3D_FLOAT)-0.0) v->y = (M3D_FLOAT)0.0;
if(v->z == (M3D_FLOAT)-0.0) v->z = (M3D_FLOAT)0.0;
if(v->w == (M3D_FLOAT)-0.0) v->w = (M3D_FLOAT)0.0;
if(vrtx) {
for(i = 0; i < *numvrtx; i++)
if(!memcmp(&vrtx[i], v, sizeof(m3dv_t))) { *idx = i; return vrtx; }
}
vrtx = (m3dv_t*)M3D_REALLOC(vrtx, ((*numvrtx) + 1) * sizeof(m3dv_t));
memcpy(&vrtx[*numvrtx], v, sizeof(m3dv_t));
*idx = *numvrtx;
(*numvrtx)++;
return vrtx;
}
/* add texture map to list */
static m3dti_t *_m3d_addtmap(m3dti_t *tmap, uint32_t *numtmap, m3dti_t *t, uint32_t *idx)
{
uint32_t i;
if(tmap) {
for(i = 0; i < *numtmap; i++)
if(!memcmp(&tmap[i], t, sizeof(m3dti_t))) { *idx = i; return tmap; }
}
tmap = (m3dti_t*)M3D_REALLOC(tmap, ((*numtmap) + 1) * sizeof(m3dti_t));
memcpy(&tmap[*numtmap], t, sizeof(m3dti_t));
*idx = *numtmap;
(*numtmap)++;
return tmap;
}
/* add material to list */
static m3dm_t **_m3d_addmtrl(m3dm_t **mtrl, uint32_t *nummtrl, m3dm_t *m, uint32_t *idx)
{
uint32_t i;
if(mtrl) {
for(i = 0; i < *nummtrl; i++)
if(mtrl[i]->name == m->name || !strcmp(mtrl[i]->name, m->name)) { *idx = i; return mtrl; }
}
mtrl = (m3dm_t**)M3D_REALLOC(mtrl, ((*nummtrl) + 1) * sizeof(m3dm_t*));
mtrl[*nummtrl] = m;
*idx = *nummtrl;
(*nummtrl)++;
return mtrl;
}
/* add index to output */
static unsigned char *_m3d_addidx(unsigned char *out, char type, uint32_t idx) {
switch(type) {
case 1: *out++ = (uint8_t)(idx); break;
case 2: *((uint16_t*)out) = (uint16_t)(idx); out += 2; break;
case 4: *((uint32_t*)out) = (uint32_t)(idx); out += 4; break;
/* case 0: case 8: break; */
}
return out;
}
/* round a vertex position */
static void _m3d_round(int quality, m3dv_t *src, m3dv_t *dst)
{
_register int t;
/* copy additional attributes */
if(src != dst) memcpy(dst, src, sizeof(m3dv_t));
/* round according to quality */
switch(quality) {
case M3D_EXP_INT8:
t = src->x * 127; dst->x = (M3D_FLOAT)t / 127;
t = src->y * 127; dst->y = (M3D_FLOAT)t / 127;
t = src->z * 127; dst->z = (M3D_FLOAT)t / 127;
t = src->w * 127; dst->w = (M3D_FLOAT)t / 127;
break;
case M3D_EXP_INT16:
t = src->x * 32767; dst->x = (M3D_FLOAT)t / 32767;
t = src->y * 32767; dst->y = (M3D_FLOAT)t / 32767;
t = src->z * 32767; dst->z = (M3D_FLOAT)t / 32767;
t = src->w * 32767; dst->w = (M3D_FLOAT)t / 32767;
break;
}
}
#ifdef M3D_ASCII
/* add a bone to ascii output */
static char *_m3d_prtbone(char *ptr, m3db_t *bone, M3D_INDEX numbone, M3D_INDEX parent, uint32_t level)
{
uint32_t i, j;
char *sn;
if(level > M3D_BONEMAXLEVEL || !bone) return ptr;
for(i = 0; i < numbone; i++) {
if(bone[i].parent == parent) {
for(j = 0; j < level; j++) *ptr++ = '/';
sn = _m3d_safestr(bone[i].name, 0);
ptr += sprintf(ptr, "%d %d %s\r\n", bone[i].pos, bone[i].ori, sn);
M3D_FREE(sn);
ptr = _m3d_prtbone(ptr, bone, numbone, i, level + 1);
}
}
return ptr;
}
#endif
/**
* Function to encode an in-memory model into on storage Model 3D format
*/
unsigned char *m3d_save(m3d_t *model, int quality, int flags, unsigned int *size)
{
#ifdef M3D_ASCII
const char *ol;
char *ptr;
#endif
char vc_s, vi_s, si_s, ci_s, ti_s, bi_s, nb_s, sk_s, fi_s;
char *sn = NULL, *sl = NULL, *sa = NULL, *sd = NULL;
unsigned char *out = NULL, *z = NULL, weights[M3D_NUMBONE];
unsigned int i, j, k, l, len, chunklen, *length;
float scale = 0.0f, min_x, max_x, min_y, max_y, min_z, max_z;
uint32_t idx, numcmap = 0, *cmap = NULL, numvrtx = 0, numtmap = 0, numbone = 0;
uint32_t numskin = 0, numactn = 0, *actn = NULL, numstr = 0, nummtrl = 0, maxt = 0;
m3dstr_t *str = NULL;
m3dv_t *vrtx = NULL, vertex;
m3dti_t *tmap = NULL, tcoord;
m3db_t *bone = NULL;
m3ds_t *skin = NULL;
m3df_t *face = NULL;
m3dhdr_t *h = NULL;
m3dm_t *m, **mtrl = NULL;
m3da_t *a;
M3D_INDEX last;
if(!model) {
if(size) *size = 0;
return NULL;
}
model->errcode = M3D_SUCCESS;
#ifdef M3D_ASCII
if(flags & M3D_EXP_ASCII) quality = M3D_EXP_DOUBLE;
#endif
/* collect array elements that are actually referenced */
if(model->numface && model->face && !(flags & M3D_EXP_NOFACE)) {
face = (m3df_t*)M3D_MALLOC(model->numface * sizeof(m3df_t));
if(!face) goto memerr;
memset(face, 255, model->numface * sizeof(m3df_t));
last = (M3D_INDEX)-1U;
for(i = 0; i < model->numface; i++) {
face[i].materialid = (M3D_INDEX)-1U;
if(!(flags & M3D_EXP_NOMATERIAL) && model->face[i].materialid != last) {
last = model->face[i].materialid;
if(last < model->nummaterial) {
mtrl = _m3d_addmtrl(mtrl, &nummtrl, &model->material[last], &face[i].materialid);
if(!mtrl) goto memerr;
}
}
for(j = 0; j < 3; j++) {
k = model->face[i].vertex[j];
if(quality < M3D_EXP_FLOAT) {
_m3d_round(quality, &model->vertex[k], &vertex);
vrtx = _m3d_addvrtx(vrtx, &numvrtx, &vertex, &idx);
} else
vrtx = _m3d_addvrtx(vrtx, &numvrtx, &model->vertex[k], &idx);
if(!vrtx) goto memerr;
face[i].vertex[j] = (M3D_INDEX)idx;
if(!(flags & M3D_EXP_NOCMAP)) {
cmap = _m3d_addcmap(cmap, &numcmap, model->vertex[k].color);
if(!cmap) goto memerr;
}
k = model->face[i].normal[j];
if(k < model->numvertex && !(flags & M3D_EXP_NONORMAL)) {
if(quality < M3D_EXP_FLOAT) {
_m3d_round(quality, &model->vertex[k], &vertex);
vrtx = _m3d_addnorm(vrtx, &numvrtx, &vertex, &idx);
} else
vrtx = _m3d_addnorm(vrtx, &numvrtx, &model->vertex[k], &idx);
if(!vrtx) goto memerr;
face[i].normal[j] = (M3D_INDEX)idx;
}
k = model->face[i].texcoord[j];
if(k < model->numtmap) {
switch(quality) {
case M3D_EXP_INT8:
l = model->tmap[k].u * 255; tcoord.u = (M3D_FLOAT)l / 255;
l = model->tmap[k].v * 255; tcoord.v = (M3D_FLOAT)l / 255;
break;
case M3D_EXP_INT16:
l = model->tmap[k].u * 65535; tcoord.u = (M3D_FLOAT)l / 65535;
l = model->tmap[k].v * 65535; tcoord.v = (M3D_FLOAT)l / 65535;
break;
default:
tcoord.u = model->tmap[k].u;
tcoord.v = model->tmap[k].v;
break;
}
if(flags & M3D_EXP_FLIPTXTCRD)
tcoord.v = (M3D_FLOAT)1.0 - tcoord.v;
tmap = _m3d_addtmap(tmap, &numtmap, &tcoord, &idx);
if(!tmap) goto memerr;
face[i].texcoord[j] = (M3D_INDEX)idx;
}
}
/* convert from CW to CCW */
if(flags & M3D_EXP_IDOSUCK) {
j = face[i].vertex[1];
face[i].vertex[1] = face[i].vertex[2];
face[i].vertex[2] = face[i].vertex[1];
j = face[i].normal[1];
face[i].normal[1] = face[i].normal[2];
face[i].normal[2] = face[i].normal[1];
j = face[i].texcoord[1];
face[i].texcoord[1] = face[i].texcoord[2];
face[i].texcoord[2] = face[i].texcoord[1];
}
}
} else if(!(flags & M3D_EXP_NOMATERIAL)) {
/* without a face, simply add all materials, because it can be an mtllib */
nummtrl = model->nummaterial;
}
/* add colors to color map and texture names to string table */
for(i = 0; i < nummtrl; i++) {
m = !mtrl ? &model->material[i] : mtrl[i];
str = _m3d_addstr(str, &numstr, m->name);
if(!str) goto memerr;
for(j = 0; j < mtrl[i]->numprop; j++) {
if(!(flags & M3D_EXP_NOCMAP) && m->prop[j].type < 128) {
for(l = 0; l < sizeof(m3d_propertytypes)/sizeof(m3d_propertytypes[0]); l++) {
if(m->prop[j].type == m3d_propertytypes[l].id && m3d_propertytypes[l].format == m3dpf_color) {
cmap = _m3d_addcmap(cmap, &numcmap, m->prop[j].value.color);
if(!cmap) goto memerr;
break;
}
}
}
if(m->prop[j].type >= 128 && m->prop[j].value.textureid < model->numtexture &&
model->texture[m->prop[j].value.textureid].name) {
str = _m3d_addstr(str, &numstr, model->texture[m->prop[j].value.textureid].name);
if(!str) goto memerr;
}
}
}
/* get bind-pose skeleton and skin */
if(model->numbone && model->bone && !(flags & M3D_EXP_NOBONE)) {
numbone = model->numbone;
bone = (m3db_t*)M3D_MALLOC(model->numbone * sizeof(m3db_t));
if(!bone) goto memerr;
memset(bone, 0, model->numbone * sizeof(m3db_t));
for(i = 0; i < model->numbone; i++) {
bone[i].parent = model->bone[i].parent;
bone[i].name = model->bone[i].name;
str = _m3d_addstr(str, &numstr, bone[i].name);
if(!str) goto memerr;
if(quality < M3D_EXP_FLOAT) {
_m3d_round(quality, &model->vertex[model->bone[i].pos], &vertex);
vrtx = _m3d_addvrtx(vrtx, &numvrtx, &vertex, &k);
} else
vrtx = _m3d_addvrtx(vrtx, &numvrtx, &model->vertex[model->bone[i].pos], &k);
if(!vrtx) goto memerr;
bone[i].pos = (M3D_INDEX)k;
if(quality < M3D_EXP_FLOAT) {
_m3d_round(quality, &model->vertex[model->bone[i].ori], &vertex);
vrtx = _m3d_addvrtx(vrtx, &numvrtx, &vertex, &k);
} else
vrtx = _m3d_addvrtx(vrtx, &numvrtx, &model->vertex[model->bone[i].ori], &k);
if(!vrtx) goto memerr;
bone[i].ori = (M3D_INDEX)k;
}
}
/* actions, animated skeleton poses */
if(model->numaction && model->action && !(flags & M3D_EXP_NOACTION)) {
for(j = 0; j < model->numaction; j++) {
a = &model->action[j];
str = _m3d_addstr(str, &numstr, a->name);
if(!str) goto memerr;
if(a->numframe > 65535) a->numframe = 65535;
for(i = 0; i < a->numframe; i++) {
l = numactn;
numactn += (a->frame[i].numtransform * 2);
if(a->frame[i].numtransform > maxt)
maxt = a->frame[i].numtransform;
actn = (uint32_t*)M3D_REALLOC(actn, numactn * sizeof(uint32_t));
if(!actn) goto memerr;
for(k = 0; k < a->frame[i].numtransform; k++) {
if(quality < M3D_EXP_FLOAT) {
_m3d_round(quality, &model->vertex[a->frame[i].transform[k].pos], &vertex);
vrtx = _m3d_addvrtx(vrtx, &numvrtx, &vertex, &actn[l++]);
if(!vrtx) goto memerr;
_m3d_round(quality, &model->vertex[a->frame[i].transform[k].ori], &vertex);
vrtx = _m3d_addvrtx(vrtx, &numvrtx, &vertex, &actn[l++]);
} else {
vrtx = _m3d_addvrtx(vrtx, &numvrtx, &model->vertex[a->frame[i].transform[k].pos], &actn[l++]);
if(!vrtx) goto memerr;
vrtx = _m3d_addvrtx(vrtx, &numvrtx, &model->vertex[a->frame[i].transform[k].ori], &actn[l++]);
}
if(!vrtx) goto memerr;
}
}
}
}
/* normalize bounding cube and collect referenced skin records */
if(numvrtx) {
min_x = min_y = min_z = 1e10;
max_x = max_y = max_z = -1e10;
j = model->numskin && model->skin && !(flags & M3D_EXP_NOBONE);
for(i = 0; i < numvrtx; i++) {
if(j && model->numskin && model->skin && vrtx[i].skinid < M3D_INDEXMAX) {
skin = _m3d_addskin(skin, &numskin, &model->skin[vrtx[i].skinid], &idx);
if(!skin) goto memerr;
vrtx[i].skinid = idx;
}
if(vrtx[i].skinid == (M3D_INDEX)-2U) continue;
if(vrtx[i].x > max_x) max_x = vrtx[i].x;
if(vrtx[i].x < min_x) min_x = vrtx[i].x;
if(vrtx[i].y > max_y) max_y = vrtx[i].y;
if(vrtx[i].y < min_y) min_y = vrtx[i].y;
if(vrtx[i].z > max_z) max_z = vrtx[i].z;
if(vrtx[i].z < min_z) min_z = vrtx[i].z;
}
if(min_x < 0.0f) min_x = -min_x;
if(max_x < 0.0f) max_x = -max_x;
if(min_y < 0.0f) min_y = -min_y;
if(max_y < 0.0f) max_y = -max_y;
if(min_z < 0.0f) min_z = -min_z;
if(max_z < 0.0f) max_z = -max_z;
scale = min_x;
if(max_x > scale) scale = max_x;
if(min_y > scale) scale = min_y;
if(max_y > scale) scale = max_y;
if(min_z > scale) scale = min_z;
if(max_z > scale) scale = max_z;
if(scale == 0.0f) scale = 1.0f;
if(scale != 1.0f && !(flags & M3D_EXP_NORECALC)) {
for(i = 0; i < numvrtx; i++) {
if(vrtx[i].skinid == (M3D_INDEX)-2U) continue;
vrtx[i].x /= scale;
vrtx[i].y /= scale;
vrtx[i].z /= scale;
}
}
}
/* if there's only one black color, don't store it */
if(numcmap == 1 && cmap && !cmap[0]) numcmap = 0;
/* at least 3 UV coordinate required for texture mapping */
if(numtmap < 3 && tmap) numtmap = 0;
/* meta info */
sn = _m3d_safestr(model->name && *model->name ? model->name : (char*)"(noname)", 2);
sl = _m3d_safestr(model->license ? model->license : (char*)"MIT", 2);
sa = _m3d_safestr(model->author ? model->author : getenv("LOGNAME"), 2);
if(!sn || !sl || !sa) {
memerr: if(face) M3D_FREE(face);
if(cmap) M3D_FREE(cmap);
if(tmap) M3D_FREE(tmap);
if(mtrl) M3D_FREE(mtrl);
if(vrtx) M3D_FREE(vrtx);
if(bone) M3D_FREE(bone);
if(skin) M3D_FREE(skin);
if(actn) M3D_FREE(actn);
if(sn) M3D_FREE(sn);
if(sl) M3D_FREE(sl);
if(sa) M3D_FREE(sa);
if(sd) M3D_FREE(sd);
if(out) M3D_FREE(out);
if(str) M3D_FREE(str);
if(h) M3D_FREE(h);
M3D_LOG("Out of memory");
model->errcode = M3D_ERR_ALLOC;
return NULL;
}
if(model->scale > (M3D_FLOAT)0.0) scale = (float)model->scale;
if(scale <= 0.0f) scale = 1.0f;
#ifdef M3D_ASCII
if(flags & M3D_EXP_ASCII) {
/* use CRLF to make model creators on Win happy... */
sd = _m3d_safestr(model->desc, 1);
if(!sd) goto memerr;
ol = setlocale(LC_NUMERIC, NULL);
setlocale(LC_NUMERIC, "C");
/* header */
len = 64 + strlen(sn) + strlen(sl) + strlen(sa) + strlen(sd);
out = (unsigned char*)M3D_MALLOC(len);
if(!out) { setlocale(LC_NUMERIC, ol); goto memerr; }
ptr = (char*)out;
ptr += sprintf(ptr, "3dmodel %g\r\n%s\r\n%s\r\n%s\r\n%s\r\n\r\n", scale,
sn, sl, sa, sd);
M3D_FREE(sn); M3D_FREE(sl); M3D_FREE(sa); M3D_FREE(sd);
sn = sl = sa = sd = NULL;
/* texture map */
if(numtmap && tmap && !(flags & M3D_EXP_NOTXTCRD) && !(flags & M3D_EXP_NOFACE)) {
ptr -= (uint64_t)out; len = (uint64_t)ptr + numtmap * 32 + 12;
out = (unsigned char*)M3D_REALLOC(out, len); ptr += (uint64_t)out;
if(!out) { setlocale(LC_NUMERIC, ol); goto memerr; }
ptr += sprintf(ptr, "Textmap\r\n");
for(i = 0; i < numtmap; i++)
ptr += sprintf(ptr, "%g %g\r\n", tmap[i].u, tmap[i].v);
ptr += sprintf(ptr, "\r\n");
}
/* vertex chunk */
if(numvrtx && vrtx && !(flags & M3D_EXP_NOFACE)) {
ptr -= (uint64_t)out; len = (uint64_t)ptr + numvrtx * 128 + 10;
out = (unsigned char*)M3D_REALLOC(out, len); ptr += (uint64_t)out;
if(!out) { setlocale(LC_NUMERIC, ol); goto memerr; }
ptr += sprintf(ptr, "Vertex\r\n");
for(i = 0; i < numvrtx; i++) {
ptr += sprintf(ptr, "%g %g %g %g", vrtx[i].x, vrtx[i].y, vrtx[i].z, vrtx[i].w);
if(!(flags & M3D_EXP_NOCMAP) && vrtx[i].color)
ptr += sprintf(ptr, " #%08x", vrtx[i].color);
if(!(flags & M3D_EXP_NOBONE) && numbone && numskin && vrtx[i].skinid != (M3D_INDEX)-1U &&
vrtx[i].skinid != (M3D_INDEX)-2U) {
if(skin[vrtx[i].skinid].weight[0] == (M3D_FLOAT)1.0)
ptr += sprintf(ptr, " %d", skin[vrtx[i].skinid].boneid[0]);
else
for(j = 0; j < M3D_NUMBONE && skin[vrtx[i].skinid].boneid[j] != (M3D_INDEX)-1U &&
skin[vrtx[i].skinid].weight[j] > (M3D_FLOAT)0.0; j++)
ptr += sprintf(ptr, " %d:%g", skin[vrtx[i].skinid].boneid[j],
skin[vrtx[i].skinid].weight[j]);
}
ptr += sprintf(ptr, "\r\n");
}
ptr += sprintf(ptr, "\r\n");
}
/* bones chunk */
if(numbone && bone && !(flags & M3D_EXP_NOBONE)) {
ptr -= (uint64_t)out; len = (uint64_t)ptr + 9;
for(i = 0; i < numbone; i++) {
len += strlen(bone[i].name) + 128;
}
out = (unsigned char*)M3D_REALLOC(out, len); ptr += (uint64_t)out;
if(!out) { setlocale(LC_NUMERIC, ol); goto memerr; }
ptr += sprintf(ptr, "Bones\r\n");
ptr = _m3d_prtbone(ptr, bone, numbone, (M3D_INDEX)-1U, 0);
ptr += sprintf(ptr, "\r\n");
}
/* materials */
if(nummtrl && !(flags & M3D_EXP_NOMATERIAL)) {
for(j = 0; j < nummtrl; j++) {
m = !mtrl ? &model->material[j] : mtrl[j];
sn = _m3d_safestr(m->name, 0);
if(!sn) { setlocale(LC_NUMERIC, ol); goto memerr; }
ptr -= (uint64_t)out; len = (uint64_t)ptr + strlen(sn) + 12;
for(i = 0; i < m->numprop; i++) {
if(m->prop[i].type < 128)
len += 32;
else if(m->prop[i].value.textureid < model->numtexture && model->texture[m->prop[i].value.textureid].name)
len += strlen(model->texture[m->prop[i].value.textureid].name) + 16;
}
out = (unsigned char*)M3D_REALLOC(out, len); ptr += (uint64_t)out;
if(!out) { setlocale(LC_NUMERIC, ol); goto memerr; }
ptr += sprintf(ptr, "Material %s\r\n", sn);
M3D_FREE(sn); sn = NULL;
for(i = 0; i < m->numprop; i++) {
k = 256;
if(m->prop[i].type >= 128) {
for(l = 0; l < sizeof(m3d_propertytypes)/sizeof(m3d_propertytypes[0]); l++)
if(m->prop[i].type == m3d_propertytypes[l].id) {
sn = m3d_propertytypes[l].key;
break;
}
if(!sn)
for(l = 0; l < sizeof(m3d_propertytypes)/sizeof(m3d_propertytypes[0]); l++)
if(m->prop[i].type - 128 == m3d_propertytypes[l].id) {
sn = m3d_propertytypes[l].key;
break;
}
k = sn ? m3dpf_map : 256;
} else {
for(l = 0; l < sizeof(m3d_propertytypes)/sizeof(m3d_propertytypes[0]); l++)
if(m->prop[i].type == m3d_propertytypes[l].id) {
sn = m3d_propertytypes[l].key;
k = m3d_propertytypes[l].format;
break;
}
}
switch(k) {
case m3dpf_color: ptr += sprintf(ptr, "%s #%08x\r\n", sn, m->prop[i].value.color); break;
case m3dpf_uint8:
case m3dpf_uint16:
case m3dpf_uint32: ptr += sprintf(ptr, "%s %d\r\n", sn, m->prop[i].value.num); break;
case m3dpf_float: ptr += sprintf(ptr, "%s %g\r\n", sn, m->prop[i].value.fnum); break;
case m3dpf_map:
if(m->prop[i].value.textureid < model->numtexture &&
model->texture[m->prop[i].value.textureid].name) {
sl = _m3d_safestr(model->texture[m->prop[i].value.textureid].name, 0);
if(!sl) { setlocale(LC_NUMERIC, ol); goto memerr; }
if(*sl)
ptr += sprintf(ptr, "map_%s %s\r\n", sn, sl);
M3D_FREE(sn); M3D_FREE(sl); sl = NULL;
}
break;
}
sn = NULL;
}
ptr += sprintf(ptr, "\r\n");
}
}
/* mesh face */
if(model->numface && face && !(flags & M3D_EXP_NOFACE)) {
ptr -= (uint64_t)out; len = (uint64_t)ptr + model->numface * 128 + 6;
last = (M3D_INDEX)-1U;
if(!(flags & M3D_EXP_NOMATERIAL))
for(i = 0; i < model->numface; i++) {
if(face[i].materialid != last) {
last = face[i].materialid;
if(last < nummtrl)
len += strlen(mtrl[last]->name);
len += 6;
}
}
out = (unsigned char*)M3D_REALLOC(out, len); ptr += (uint64_t)out;
if(!out) { setlocale(LC_NUMERIC, ol); goto memerr; }
ptr += sprintf(ptr, "Mesh\r\n");
last = (M3D_INDEX)-1U;
for(i = 0; i < model->numface; i++) {
if(!(flags & M3D_EXP_NOMATERIAL) && face[i].materialid != last) {
last = face[i].materialid;
if(last < nummtrl) {
sn = _m3d_safestr(mtrl[last]->name, 0);
if(!sn) { setlocale(LC_NUMERIC, ol); goto memerr; }
ptr += sprintf(ptr, "use %s\r\n", sn);
M3D_FREE(sn); sn = NULL;
} else
ptr += sprintf(ptr, "use\r\n");
}
/* hardcoded triangles. Should be repeated as many times as the number of edges in polygon */
for(j = 0; j < 3; j++) {
ptr += sprintf(ptr, "%s%d", j?" ":"", face[i].vertex[j]);
if(!(flags & M3D_EXP_NOTXTCRD) && (face[i].texcoord[j] != (M3D_INDEX)-1U))
ptr += sprintf(ptr, "/%d", face[i].texcoord[j]);
if(!(flags & M3D_EXP_NONORMAL) && (face[i].normal[j] != (M3D_INDEX)-1U))
ptr += sprintf(ptr, "%s/%d",
(flags & M3D_EXP_NOTXTCRD) || (face[i].texcoord[j] == (M3D_INDEX)-1U)? "/" : "",
face[i].normal[j]);
}
ptr += sprintf(ptr, "\r\n");
}
ptr += sprintf(ptr, "\r\n");
}
/* actions */
if(model->numaction && model->action && numactn && actn && !(flags & M3D_EXP_NOACTION)) {
l = 0;
for(j = 0; j < model->numaction; j++) {
a = &model->action[j];
sn = _m3d_safestr(a->name, 0);
if(!sn) { setlocale(LC_NUMERIC, ol); goto memerr; }
ptr -= (uint64_t)out; len = (uint64_t)ptr + strlen(sn) + 48;
for(i = 0; i < a->numframe; i++)
len += a->frame[i].numtransform * 128 + 8;
out = (unsigned char*)M3D_REALLOC(out, len); ptr += (uint64_t)out;
if(!out) { setlocale(LC_NUMERIC, ol); goto memerr; }
ptr += sprintf(ptr, "Action %d %s\r\n", a->durationmsec, sn);
M3D_FREE(sn); sn = NULL;
if(a->numframe > 65535) a->numframe = 65535;
for(i = 0; i < a->numframe; i++) {
ptr += sprintf(ptr, "frame %d\r\n", a->frame[i].msec);
for(k = 0; k < a->frame[i].numtransform; k++) {
ptr += sprintf(ptr, "%d %d %d\r\n", a->frame[i].transform[k].boneid, actn[l], actn[l + 1]);
l += 2;
}
}
ptr += sprintf(ptr, "\r\n");
}
}
/* extra info */
if(model->numunknown && (flags & M3D_EXP_EXTRA)) {
for(i = 0; i < model->numunknown; i++) {
if(model->unknown[i]->length < 9) continue;
ptr -= (uint64_t)out; len = (uint64_t)ptr + 17 + model->unknown[i]->length * 3;
out = (unsigned char*)M3D_REALLOC(out, len); ptr += (uint64_t)out;
if(!out) { setlocale(LC_NUMERIC, ol); goto memerr; }
ptr += sprintf(ptr, "Extra %c%c%c%c\r\n",
model->unknown[i]->magic[0] > ' ' ? model->unknown[i]->magic[0] : '_',
model->unknown[i]->magic[1] > ' ' ? model->unknown[i]->magic[1] : '_',
model->unknown[i]->magic[2] > ' ' ? model->unknown[i]->magic[2] : '_',
model->unknown[i]->magic[3] > ' ' ? model->unknown[i]->magic[3] : '_');
for(j = 0; j < model->unknown[i]->length; j++)
ptr += sprintf(ptr, "%02x ", *((unsigned char *)model->unknown + sizeof(m3dchunk_t) + j));
ptr--;
ptr += sprintf(ptr, "\r\n\r\n");
}
}
setlocale(LC_NUMERIC, ol);
len = (uint64_t)ptr - (uint64_t)out;
out = (unsigned char*)M3D_REALLOC(out, len + 1);
if(!out) goto memerr;
out[len] = 0;
} else
#endif
{
/* stricly only use LF (newline) in binary */
sd = _m3d_safestr(model->desc, 3);
if(!sd) goto memerr;
/* header */
h = (m3dhdr_t*)M3D_MALLOC(sizeof(m3dhdr_t) + strlen(sn) + strlen(sl) + strlen(sa) + strlen(sd) + 4);
if(!h) goto memerr;
memcpy((uint8_t*)h, "HEAD", 4);
h->length = sizeof(m3dhdr_t);
h->scale = scale;
i = strlen(sn); memcpy((uint8_t*)h + h->length, sn, i+1); h->length += i+1; M3D_FREE(sn);
i = strlen(sl); memcpy((uint8_t*)h + h->length, sl, i+1); h->length += i+1; M3D_FREE(sl);
i = strlen(sa); memcpy((uint8_t*)h + h->length, sa, i+1); h->length += i+1; M3D_FREE(sa);
i = strlen(sd); memcpy((uint8_t*)h + h->length, sd, i+1); h->length += i+1; M3D_FREE(sd);
sn = sl = sa = sd = NULL;
len = 0;
if(!bone) numbone = 0;
if(skin)
for(i = 0; i < numskin; i++) {
for(j = k = 0; j < M3D_NUMBONE; j++)
if(skin[i].boneid[j] != (M3D_INDEX)-1U && skin[i].weight[j] > (M3D_FLOAT)0.0) k++;
if(k > len) len = k;
}
else
numskin = 0;
if(model->inlined)
for(i = 0; i < model->numinlined; i++) {
if(model->inlined[i].name && *model->inlined[i].name && model->inlined[i].length > 0) {
str = _m3d_addstr(str, &numstr, model->inlined[i].name);
if(!str) goto memerr;
}
}
if(str)
for(i = 0; i < numstr; i++) {
h = _m3d_addhdr(h, &str[i]);
if(!h) goto memerr;
}
vc_s = quality == M3D_EXP_INT8? 1 : (quality == M3D_EXP_INT16? 2 : (quality == M3D_EXP_DOUBLE? 8 : 4));
vi_s = numvrtx < 254 ? 1 : (numvrtx < 65534 ? 2 : 4);
si_s = h->length - 16 < 254 ? 1 : (h->length - 16 < 65534 ? 2 : 4);
ci_s = !numcmap || !cmap ? 0 : (numcmap < 254 ? 1 : (numcmap < 65534 ? 2 : 4));
ti_s = !numtmap || !tmap ? 0 : (numtmap < 254 ? 1 : (numtmap < 65534 ? 2 : 4));
bi_s = !numbone || !bone ? 0 : (numbone < 254 ? 1 : (numbone < 65534 ? 2 : 4));
nb_s = len < 2 ? 1 : (len == 2 ? 2 : (len <= 4 ? 4 : 8));
sk_s = !numbone || !numskin ? 0 : (numskin < 254 ? 1 : (numskin < 65534 ? 2 : 4));
fi_s = maxt < 254 ? 1 : (maxt < 65534 ? 2 : 4);
h->types = (vc_s == 8 ? (3<<0) : (vc_s == 2 ? (1<<0) : (vc_s == 1 ? (0<<0) : (2<<0)))) |
(vi_s == 2 ? (1<<2) : (vi_s == 1 ? (0<<2) : (2<<2))) |
(si_s == 2 ? (1<<4) : (si_s == 1 ? (0<<4) : (2<<4))) |
(ci_s == 2 ? (1<<6) : (ci_s == 1 ? (0<<6) : (ci_s == 4 ? (2<<6) : (3<<6)))) |
(ti_s == 2 ? (1<<8) : (ti_s == 1 ? (0<<8) : (ti_s == 4 ? (2<<8) : (3<<8)))) |
(bi_s == 2 ? (1<<10): (bi_s == 1 ? (0<<10): (bi_s == 4 ? (2<<10) : (3<<10)))) |
(nb_s == 2 ? (1<<12): (nb_s == 1 ? (0<<12): (2<<12))) |
(sk_s == 2 ? (1<<14): (sk_s == 1 ? (0<<14): (sk_s == 4 ? (2<<14) : (3<<14)))) |
(fi_s == 2 ? (1<<16): (fi_s == 1 ? (0<<16): (2<<16))) ;
len = h->length;
/* color map */
if(numcmap && cmap && ci_s < 4 && !(flags & M3D_EXP_NOCMAP)) {
chunklen = 8 + numcmap * sizeof(uint32_t);
h = (m3dhdr_t*)M3D_REALLOC(h, len + chunklen);
if(!h) goto memerr;
memcpy((uint8_t*)h + len, "CMAP", 4);
*((uint32_t*)((uint8_t*)h + len + 4)) = chunklen;
memcpy((uint8_t*)h + len + 8, cmap, chunklen - 8);
len += chunklen;
} else numcmap = 0;
/* texture map */
if(numtmap && tmap && !(flags & M3D_EXP_NOTXTCRD) && !(flags & M3D_EXP_NOFACE)) {
chunklen = 8 + numtmap * vc_s * 2;
h = (m3dhdr_t*)M3D_REALLOC(h, len + chunklen);
if(!h) goto memerr;
memcpy((uint8_t*)h + len, "TMAP", 4);
*((uint32_t*)((uint8_t*)h + len + 4)) = chunklen;
out = (uint8_t*)h + len + 8;
for(i = 0; i < numtmap; i++) {
switch(vc_s) {
case 1: *out++ = (uint8_t)(tmap[i].u * 255); *out++ = (uint8_t)(tmap[i].v * 255); break;
case 2:
*((uint16_t*)out) = (uint16_t)(tmap[i].u * 65535); out += 2;
*((uint16_t*)out) = (uint16_t)(tmap[i].v * 65535); out += 2;
break;
case 4: *((float*)out) = tmap[i].u; out += 4; *((float*)out) = tmap[i].v; out += 4; break;
case 8: *((double*)out) = tmap[i].u; out += 8; *((double*)out) = tmap[i].v; out += 8; break;
}
}
out = NULL;
len += chunklen;
}
/* vertex */
if(numvrtx && vrtx) {
chunklen = 8 + numvrtx * (ci_s + sk_s + 4 * vc_s);
h = (m3dhdr_t*)M3D_REALLOC(h, len + chunklen);
if(!h) goto memerr;
memcpy((uint8_t*)h + len, "VRTS", 4);
*((uint32_t*)((uint8_t*)h + len + 4)) = chunklen;
out = (uint8_t*)h + len + 8;
for(i = 0; i < numvrtx; i++) {
switch(vc_s) {
case 1:
*out++ = (int8_t)(vrtx[i].x * 127);
*out++ = (int8_t)(vrtx[i].y * 127);
*out++ = (int8_t)(vrtx[i].z * 127);
*out++ = (int8_t)(vrtx[i].w * 127);
break;
case 2:
*((int16_t*)out) = (int16_t)(vrtx[i].x * 32767); out += 2;
*((int16_t*)out) = (int16_t)(vrtx[i].y * 32767); out += 2;
*((int16_t*)out) = (int16_t)(vrtx[i].z * 32767); out += 2;
*((int16_t*)out) = (int16_t)(vrtx[i].w * 32767); out += 2;
break;
case 4:
*((float*)out) = vrtx[i].x; out += 4;
*((float*)out) = vrtx[i].y; out += 4;
*((float*)out) = vrtx[i].z; out += 4;
*((float*)out) = vrtx[i].w; out += 4;
break;
case 8:
*((double*)out) = vrtx[i].x; out += 8;
*((double*)out) = vrtx[i].y; out += 8;
*((double*)out) = vrtx[i].z; out += 8;
*((double*)out) = vrtx[i].w; out += 8;
break;
}
idx = _m3d_cmapidx(cmap, numcmap, vrtx[i].color);
switch(ci_s) {
case 1: *out++ = (uint8_t)(idx); break;
case 2: *((uint16_t*)out) = (uint16_t)(idx); out += 2; break;
case 4: *((uint32_t*)out) = vrtx[i].color; out += 4; break;
}
out = _m3d_addidx(out, sk_s, numbone && numskin ? vrtx[i].skinid : -1U);
}
out = NULL;
len += chunklen;
}
/* bones chunk */
if(numbone && bone && !(flags & M3D_EXP_NOBONE)) {
i = 8 + bi_s + sk_s + numbone * (bi_s + si_s + 2*vi_s);
chunklen = i + numskin * nb_s * (bi_s + 1);
h = (m3dhdr_t*)M3D_REALLOC(h, len + chunklen);
if(!h) goto memerr;
memcpy((uint8_t*)h + len, "BONE", 4);
length = (uint32_t*)((uint8_t*)h + len + 4);
out = (uint8_t*)h + len + 8;
out = _m3d_addidx(out, bi_s, numbone);
out = _m3d_addidx(out, sk_s, numskin);
for(i = 0; i < numbone; i++) {
out = _m3d_addidx(out, bi_s, bone[i].parent);
out = _m3d_addidx(out, si_s, _m3d_stridx(str, numstr, bone[i].name));
out = _m3d_addidx(out, vi_s, bone[i].pos);
out = _m3d_addidx(out, vi_s, bone[i].ori);
}
if(numskin && skin && sk_s) {
for(i = 0; i < numskin; i++) {
memset(&weights, 0, nb_s);
for(j = 0; j < (uint32_t)nb_s && skin[i].boneid[j] != (M3D_INDEX)-1U &&
skin[i].weight[j] > (M3D_FLOAT)0.0; j++)
weights[j] = (uint8_t)(skin[i].weight[j] * 255);
switch(nb_s) {
case 1: weights[0] = 255; break;
case 2: *((uint16_t*)out) = *((uint16_t*)&weights[0]); out += 2; break;
case 4: *((uint32_t*)out) = *((uint32_t*)&weights[0]); out += 4; break;
case 8: *((uint64_t*)out) = *((uint64_t*)&weights[0]); out += 8; break;
}
for(j = 0; j < (uint32_t)nb_s && skin[i].boneid[j] != (M3D_INDEX)-1U &&
skin[i].weight[j] > (M3D_FLOAT)0.0; j++) {
out = _m3d_addidx(out, bi_s, skin[i].boneid[j]);
*length += bi_s;
}
}
}
*length = (uint64_t)out - (uint64_t)((uint8_t*)h + len);
out = NULL;
len += *length;
}
/* materials */
if(nummtrl && !(flags & M3D_EXP_NOMATERIAL)) {
for(j = 0; j < nummtrl; j++) {
m = !mtrl ? &model->material[j] : mtrl[j];
chunklen = 12 + si_s + m->numprop * 5;
h = (m3dhdr_t*)M3D_REALLOC(h, len + chunklen);
if(!h) goto memerr;
memcpy((uint8_t*)h + len, "MTRL", 4);
length = (uint32_t*)((uint8_t*)h + len + 4);
out = (uint8_t*)h + len + 8;
out = _m3d_addidx(out, si_s, _m3d_stridx(str, numstr, m->name));
for(i = 0; i < m->numprop; i++) {
if(m->prop[i].type >= 128) {
if(m->prop[i].value.textureid >= model->numtexture ||
!model->texture[m->prop[i].value.textureid].name) continue;
k = m3dpf_map;
} else {
for(k = 256, l = 0; l < sizeof(m3d_propertytypes)/sizeof(m3d_propertytypes[0]); l++)
if(m->prop[i].type == m3d_propertytypes[l].id) { k = m3d_propertytypes[l].format; break; }
}
if(k == 256) continue;
*out++ = m->prop[i].type;
switch(k) {
case m3dpf_color:
if(!(flags & M3D_EXP_NOCMAP)) {
idx = _m3d_cmapidx(cmap, numcmap, m->prop[i].value.color);
switch(ci_s) {
case 1: *out++ = (uint8_t)(idx); break;
case 2: *((uint16_t*)out) = (uint16_t)(idx); out += 2; break;
case 4: *((uint32_t*)out) = (uint32_t)(m->prop[i].value.color); out += 4; break;
}
} else out--;
break;
case m3dpf_uint8: *out++ = m->prop[i].value.num; break;
case m3dpf_uint16: *((uint16_t*)out) = m->prop[i].value.num; out += 2; break;
case m3dpf_uint32: *((uint32_t*)out) = m->prop[i].value.num; out += 4; break;
case m3dpf_float: *((float*)out) = m->prop[i].value.fnum; out += 4; break;
case m3dpf_map:
idx = _m3d_stridx(str, numstr, model->texture[m->prop[i].value.textureid].name);
out = _m3d_addidx(out, si_s, idx);
break;
}
}
*length = (uint64_t)out - (uint64_t)((uint8_t*)h + len);
len += *length;
out = NULL;
}
}
/* mesh face */
if(model->numface && face && !(flags & M3D_EXP_NOFACE)) {
chunklen = 8 + si_s + model->numface * (6 * vi_s + 3 * ti_s + si_s + 1);
h = (m3dhdr_t*)M3D_REALLOC(h, len + chunklen);
if(!h) goto memerr;
memcpy((uint8_t*)h + len, "MESH", 4);
length = (uint32_t*)((uint8_t*)h + len + 4);
out = (uint8_t*)h + len + 8;
last = (M3D_INDEX)-1U;
for(i = 0; i < model->numface; i++) {
if(!(flags & M3D_EXP_NOMATERIAL) && face[i].materialid != last) {
last = face[i].materialid;
if(last < nummtrl) {
idx = _m3d_stridx(str, numstr, !mtrl ? model->material[last].name : mtrl[last]->name);
if(idx) {
*out++ = 0;
out = _m3d_addidx(out, si_s, idx);
}
}
}
/* hardcoded triangles. */
k = (3 << 4) |
(((flags & M3D_EXP_NOTXTCRD) || ti_s == 8 || (face[i].texcoord[0] == (M3D_INDEX)-1U &&
face[i].texcoord[1] == (M3D_INDEX)-1U && face[i].texcoord[2] == (M3D_INDEX)-1U)) ? 0 : 1) |
(((flags & M3D_EXP_NONORMAL) || (face[i].normal[0] == (M3D_INDEX)-1U &&
face[i].normal[1] == (M3D_INDEX)-1U && face[i].normal[2] == (M3D_INDEX)-1U)) ? 0 : 2);
*out++ = k;
for(j = 0; j < 3; j++) {
out = _m3d_addidx(out, vi_s, face[i].vertex[j]);
if(k & 1)
out = _m3d_addidx(out, ti_s, face[i].texcoord[j]);
if(k & 2)
out = _m3d_addidx(out, vi_s, face[i].normal[j]);
}
}
*length = (uint64_t)out - (uint64_t)((uint8_t*)h + len);
len += *length;
out = NULL;
}
/* actions */
if(model->numaction && model->action && numactn && actn && numbone && bone && !(flags & M3D_EXP_NOACTION)) {
l = 0;
for(j = 0; j < model->numaction; j++) {
a = &model->action[j];
chunklen = 14 + si_s + a->numframe * (4 + fi_s + maxt * (bi_s + 2 * vi_s));
h = (m3dhdr_t*)M3D_REALLOC(h, len + chunklen);
if(!h) goto memerr;
memcpy((uint8_t*)h + len, "ACTN", 4);
length = (uint32_t*)((uint8_t*)h + len + 4);
out = (uint8_t*)h + len + 8;
out = _m3d_addidx(out, si_s, _m3d_stridx(str, numstr, a->name));
*((uint16_t*)out) = (uint16_t)(a->numframe); out += 2;
*((uint32_t*)out) = (uint32_t)(a->durationmsec); out += 4;
for(i = 0; i < a->numframe; i++) {
*((uint32_t*)out) = (uint32_t)(a->frame[i].msec); out += 4;
out = _m3d_addidx(out, fi_s, a->frame[i].numtransform);
for(k = 0; k < a->frame[i].numtransform; k++) {
out = _m3d_addidx(out, bi_s, a->frame[i].transform[k].boneid);
out = _m3d_addidx(out, vi_s, actn[l++]);
out = _m3d_addidx(out, vi_s, actn[l++]);
}
}
*length = (uint64_t)out - (uint64_t)((uint8_t*)h + len);
len += *length;
out = NULL;
}
}
/* inlined assets */
if(model->numinlined && model->inlined && (flags & M3D_EXP_INLINE)) {
for(j = 0; j < model->numinlined; j++) {
if(!model->inlined[j].name || !*model->inlined[j].name || !model->inlined[j].length)
continue;
chunklen = 8 + si_s + model->inlined[j].length;
h = (m3dhdr_t*)M3D_REALLOC(h, len + chunklen);
if(!h) goto memerr;
memcpy((uint8_t*)h + len, "ASET", 4);
*((uint32_t*)((uint8_t*)h + len + 4)) = chunklen;
out = (uint8_t*)h + len + 8;
out = _m3d_addidx(out, si_s, _m3d_stridx(str, numstr, model->inlined[j].name));
memcpy(out, model->inlined[j].data, model->inlined[j].length);
out = NULL;
len += chunklen;
}
}
/* extra chunks */
if(model->numunknown && model->unknown && (flags & M3D_EXP_EXTRA)) {
for(j = 0; j < model->numunknown; j++) {
if(!model->unknown[j] || model->unknown[j]->length < 8)
continue;
chunklen = model->unknown[j]->length;
h = (m3dhdr_t*)M3D_REALLOC(h, len + chunklen);
if(!h) goto memerr;
memcpy((uint8_t*)h + len, model->unknown[j], chunklen);
len += chunklen;
}
}
/* add end chunk */
h = (m3dhdr_t*)M3D_REALLOC(h, len + 4);
if(!h) goto memerr;
memcpy((uint8_t*)h + len, "OMD3", 4);
len += 4;
/* zlib compress */
if(!(flags & M3D_EXP_NOZLIB)) {
z = stbi_zlib_compress((unsigned char *)h, len, (int*)&l, 9);
if(z && l > 0 && l < len) { len = l; M3D_FREE(h); h = (m3dhdr_t*)z; }
}
/* add file header at the begining */
len += 8;
out = (unsigned char*)M3D_MALLOC(len);
if(!out) goto memerr;
memcpy(out, "3DMO", 4);
*((uint32_t*)(out + 4)) = len;
memcpy(out + 8, h, len - 8);
}
if(size) *size = out ? len : 0;
if(face) M3D_FREE(face);
if(cmap) M3D_FREE(cmap);
if(tmap) M3D_FREE(tmap);
if(mtrl) M3D_FREE(mtrl);
if(vrtx) M3D_FREE(vrtx);
if(bone) M3D_FREE(bone);
if(skin) M3D_FREE(skin);
if(actn) M3D_FREE(actn);
if(str) M3D_FREE(str);
if(h) M3D_FREE(h);
return out;
}
#endif
#endif
#ifdef __cplusplus
}
#ifdef M3D_CPPWRAPPER
#include <vector>
#include <string>
#include <memory>
/*** C++ wrapper class ***/
namespace M3D {
#ifdef M3D_IMPLEMENTATION
class Model {
public:
m3d_t *model;
public:
Model() {
this->model = (m3d_t*)malloc(sizeof(m3d_t)); memset(this->model, 0, sizeof(m3d_t));
}
Model(_unused const std::string &data, _unused m3dread_t ReadFileCB,
_unused m3dfree_t FreeCB, _unused M3D::Model mtllib) {
#ifndef M3D_NOIMPORTER
this->model = m3d_load((unsigned char *)data.data(), ReadFileCB, FreeCB, mtllib.model);
#else
Model();
#endif
}
Model(_unused const std::vector<unsigned char> data, _unused m3dread_t ReadFileCB,
_unused m3dfree_t FreeCB, _unused M3D::Model mtllib) {
#ifndef M3D_NOIMPORTER
this->model = m3d_load((unsigned char *)&data[0], ReadFileCB, FreeCB, mtllib.model);
#else
Model();
#endif
}
~Model() { m3d_free(this->model); }
public:
m3d_t *getCStruct() { return this->model; }
std::string getName() { return std::string(this->model->name); }
void setName(std::string name) { this->model->name = (char*)name.c_str(); }
std::string getLicense() { return std::string(this->model->license); }
void setLicense(std::string license) { this->model->license = (char*)license.c_str(); }
std::string getAuthor() { return std::string(this->model->author); }
void setAuthor(std::string author) { this->model->author = (char*)author.c_str(); }
std::string getDescription() { return std::string(this->model->desc); }
void setDescription(std::string desc) { this->model->desc = (char*)desc.c_str(); }
float getScale() { return this->model->scale; }
void setScale(float scale) { this->model->scale = scale; }
std::vector<uint32_t> getColorMap() { return this->model->cmap ? std::vector<uint32_t>(this->model->cmap,
this->model->cmap + this->model->numcmap) : std::vector<uint32_t>(); }
std::vector<m3dti_t> getTextureMap() { return this->model->tmap ? std::vector<m3dti_t>(this->model->tmap,
this->model->tmap + this->model->numtmap) : std::vector<m3dti_t>(); }
std::vector<m3dtx_t> getTextures() { return this->model->texture ? std::vector<m3dtx_t>(this->model->texture,
this->model->texture + this->model->numtexture) : std::vector<m3dtx_t>(); }
std::string getTextureName(int idx) { return idx >= 0 && (unsigned int)idx < this->model->numtexture ?
std::string(this->model->texture[idx].name) : nullptr; }
std::vector<m3db_t> getBones() { return this->model->bone ? std::vector<m3db_t>(this->model->bone, this->model->bone +
this->model->numbone) : std::vector<m3db_t>(); }
std::string getBoneName(int idx) { return idx >= 0 && (unsigned int)idx < this->model->numbone ?
std::string(this->model->bone[idx].name) : nullptr; }
std::vector<m3dm_t> getMaterials() { return this->model->material ? std::vector<m3dm_t>(this->model->material,
this->model->material + this->model->nummaterial) : std::vector<m3dm_t>(); }
std::string getMaterialName(int idx) { return idx >= 0 && (unsigned int)idx < this->model->nummaterial ?
std::string(this->model->material[idx].name) : nullptr; }
int getMaterialPropertyInt(int idx, int type) {
if (idx < 0 || (unsigned int)idx >= this->model->nummaterial || type < 0 || type >= 127 ||
!this->model->material[idx].prop) return -1;
for (int i = 0; i < this->model->material[idx].numprop; i++) {
if (this->model->material[idx].prop[i].type == type)
return this->model->material[idx].prop[i].value.num;
}
return -1;
}
uint32_t getMaterialPropertyColor(int idx, int type) { return this->getMaterialPropertyInt(idx, type); }
float getMaterialPropertyFloat(int idx, int type) {
if (idx < 0 || (unsigned int)idx >= this->model->nummaterial || type < 0 || type >= 127 ||
!this->model->material[idx].prop) return -1.0f;
for (int i = 0; i < this->model->material[idx].numprop; i++) {
if (this->model->material[idx].prop[i].type == type)
return this->model->material[idx].prop[i].value.fnum;
}
return -1.0f;
}
m3dtx_t* getMaterialPropertyMap(int idx, int type) {
if (idx < 0 || (unsigned int)idx >= this->model->nummaterial || type < 128 || type > 255 ||
!this->model->material[idx].prop) return nullptr;
for (int i = 0; i < this->model->material[idx].numprop; i++) {
if (this->model->material[idx].prop[i].type == type)
return this->model->material[idx].prop[i].value.textureid < this->model->numtexture ?
&this->model->texture[this->model->material[idx].prop[i].value.textureid] : nullptr;
}
return nullptr;
}
std::vector<m3dv_t> getVertices() { return this->model->vertex ? std::vector<m3dv_t>(this->model->vertex,
this->model->vertex + this->model->numvertex) : std::vector<m3dv_t>(); }
std::vector<m3df_t> getFace() { return this->model->face ? std::vector<m3df_t>(this->model->face, this->model->face +
this->model->numface) : std::vector<m3df_t>(); }
std::vector<m3ds_t> getSkin() { return this->model->skin ? std::vector<m3ds_t>(this->model->skin, this->model->skin +
this->model->numskin) : std::vector<m3ds_t>(); }
std::vector<m3da_t> getActions() { return this->model->action ? std::vector<m3da_t>(this->model->action,
this->model->action + this->model->numaction) : std::vector<m3da_t>(); }
std::string getActionName(int aidx) { return aidx >= 0 && (unsigned int)aidx < this->model->numaction ?
std::string(this->model->action[aidx].name) : nullptr; }
unsigned int getActionDuration(int aidx) { return aidx >= 0 && (unsigned int)aidx < this->model->numaction ?
this->model->action[aidx].durationmsec : 0; }
std::vector<m3dfr_t> getActionFrames(int aidx) { return aidx >= 0 && (unsigned int)aidx < this->model->numaction ?
std::vector<m3dfr_t>(this->model->action[aidx].frame, this->model->action[aidx].frame +
this->model->action[aidx].numframe) : std::vector<m3dfr_t>(); }
unsigned int getActionFrameTimestamp(int aidx, int fidx) { return aidx >= 0 && (unsigned int)aidx < this->model->numaction?
(fidx >= 0 && (unsigned int)fidx < this->model->action[aidx].numframe ?
this->model->action[aidx].frame[fidx].msec : 0) : 0; }
std::vector<m3dtr_t> getActionFrameTransforms(int aidx, int fidx) {
return aidx >= 0 && (unsigned int)aidx < this->model->numaction ? (
fidx >= 0 && (unsigned int)fidx < this->model->action[aidx].numframe ?
std::vector<m3dtr_t>(this->model->action[aidx].frame[fidx].transform,
this->model->action[aidx].frame[fidx].transform + this->model->action[aidx].frame[fidx].numtransform) :
std::vector<m3dtr_t>()) : std::vector<m3dtr_t>(); }
std::vector<m3dtr_t> getActionFrame(int aidx, int fidx, std::vector<m3dtr_t> skeleton) {
m3dtr_t *pose = m3d_frame(this->model, (unsigned int)aidx, (unsigned int)fidx,
skeleton.size() ? &skeleton[0] : nullptr);
return std::vector<m3dtr_t>(pose, pose + this->model->numbone); }
std::vector<m3db_t> getActionPose(int aidx, unsigned int msec) {
m3db_t *pose = m3d_pose(this->model, (unsigned int)aidx, (unsigned int)msec);
return std::vector<m3db_t>(pose, pose + this->model->numbone); }
std::vector<m3di_t> getInlinedAssets() { return this->model->inlined ? std::vector<m3di_t>(this->model->inlined,
this->model->inlined + this->model->numinlined) : std::vector<m3di_t>(); }
std::vector<std::unique_ptr<m3dchunk_t>> getUnknowns() { return this->model->unknown ?
std::vector<std::unique_ptr<m3dchunk_t>>(this->model->unknown,
this->model->unknown + this->model->numunknown) : std::vector<std::unique_ptr<m3dchunk_t>>(); }
std::vector<unsigned char> Save(_unused int quality, _unused int flags) {
#ifdef M3D_EXPORTER
unsigned int size;
unsigned char *ptr = m3d_save(this->model, quality, flags, &size);
return ptr && size ? std::vector<unsigned char>(ptr, ptr + size) : std::vector<unsigned char>();
#else
return std::vector<unsigned char>();
#endif
}
};
#else
class Model {
public:
m3d_t *model;
public:
Model(const std::string &data, m3dread_t ReadFileCB, m3dfree_t FreeCB);
Model(const std::vector<unsigned char> data, m3dread_t ReadFileCB, m3dfree_t FreeCB);
Model();
~Model();
public:
m3d_t *getCStruct();
std::string getName();
void setName(std::string name);
std::string getLicense();
void setLicense(std::string license);
std::string getAuthor();
void setAuthor(std::string author);
std::string getDescription();
void setDescription(std::string desc);
float getScale();
void setScale(float scale);
std::vector<uint32_t> getColorMap();
std::vector<m3dti_t> getTextureMap();
std::vector<m3dtx_t> getTextures();
std::string getTextureName(int idx);
std::vector<m3db_t> getBones();
std::string getBoneName(int idx);
std::vector<m3dm_t> getMaterials();
std::string getMaterialName(int idx);
int getMaterialPropertyInt(int idx, int type);
uint32_t getMaterialPropertyColor(int idx, int type);
float getMaterialPropertyFloat(int idx, int type);
m3dtx_t* getMaterialPropertyMap(int idx, int type);
std::vector<m3dv_t> getVertices();
std::vector<m3df_t> getFace();
std::vector<m3ds_t> getSkin();
std::vector<m3da_t> getActions();
std::string getActionName(int aidx);
unsigned int getActionDuration(int aidx);
std::vector<m3dfr_t> getActionFrames(int aidx);
unsigned int getActionFrameTimestamp(int aidx, int fidx);
std::vector<m3dtr_t> getActionFrameTransforms(int aidx, int fidx);
std::vector<m3dtr_t> getActionFrame(int aidx, int fidx, std::vector<m3dtr_t> skeleton);
std::vector<m3db_t> getActionPose(int aidx, unsigned int msec);
std::vector<m3di_t> getInlinedAssets();
std::vector<std::unique_ptr<m3dchunk_t>> getUnknowns();
std::vector<unsigned char> Save(int quality, int flags);
};
#endif /* impl */
}
#endif
#endif /* __cplusplus */
#endif