assimp/code/AssetLib/IFC/IFCLoader.cpp

932 lines
39 KiB
C++

/*
Open Asset Import Library (assimp)
----------------------------------------------------------------------
Copyright (c) 2006-2022, assimp team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the
following conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the assimp team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the assimp team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------
*/
/** @file IFCLoad.cpp
* @brief Implementation of the Industry Foundation Classes loader.
*/
#ifndef ASSIMP_BUILD_NO_IFC_IMPORTER
#include <iterator>
#include <limits>
#include <memory>
#include <tuple>
#ifndef ASSIMP_BUILD_NO_COMPRESSED_IFC
#ifdef ASSIMP_USE_HUNTER
#include <minizip/unzip.h>
#else
#include <unzip.h>
#endif
#endif
#include "../STEPParser/STEPFileReader.h"
#include "IFCLoader.h"
#include "IFCUtil.h"
#include <assimp/MemoryIOWrapper.h>
#include <assimp/importerdesc.h>
#include <assimp/scene.h>
#include <assimp/Importer.hpp>
#include <utility>
namespace Assimp {
template <>
const char *LogFunctions<IFCImporter>::Prefix() {
return "IFC: ";
}
} // namespace Assimp
using namespace Assimp;
using namespace Assimp::Formatter;
using namespace Assimp::IFC;
/* DO NOT REMOVE this comment block. The genentitylist.sh script
* just looks for names adhering to the IfcSomething naming scheme
* and includes all matches in the whitelist for code-generation. Thus,
* all entity classes that are only indirectly referenced need to be
* mentioned explicitly.
IfcRepresentationMap
IfcProductRepresentation
IfcUnitAssignment
IfcClosedShell
IfcDoor
*/
namespace {
// forward declarations
void SetUnits(ConversionData &conv);
void SetCoordinateSpace(ConversionData &conv);
void ProcessSpatialStructures(ConversionData &conv);
void MakeTreeRelative(ConversionData &conv);
void ConvertUnit(const ::Assimp::STEP::EXPRESS::DataType &dt, ConversionData &conv);
} // namespace
static const aiImporterDesc desc = {
"Industry Foundation Classes (IFC) Importer",
"",
"",
"",
aiImporterFlags_SupportBinaryFlavour,
0,
0,
0,
0,
"ifc ifczip step stp"
};
// ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer
IFCImporter::IFCImporter() = default;
// ------------------------------------------------------------------------------------------------
// Destructor, private as well
IFCImporter::~IFCImporter() = default;
// ------------------------------------------------------------------------------------------------
// Returns whether the class can handle the format of the given file.
bool IFCImporter::CanRead(const std::string &pFile, IOSystem *pIOHandler, bool /*checkSig*/) const {
// note: this is the common identification for STEP-encoded files, so
// it is only unambiguous as long as we don't support any further
// file formats with STEP as their encoding.
static const char *tokens[] = { "ISO-10303-21" };
return SearchFileHeaderForToken(pIOHandler, pFile, tokens, AI_COUNT_OF(tokens));
}
// ------------------------------------------------------------------------------------------------
// List all extensions handled by this loader
const aiImporterDesc *IFCImporter::GetInfo() const {
return &desc;
}
// ------------------------------------------------------------------------------------------------
// Setup configuration properties for the loader
void IFCImporter::SetupProperties(const Importer *pImp) {
settings.skipSpaceRepresentations = pImp->GetPropertyBool(AI_CONFIG_IMPORT_IFC_SKIP_SPACE_REPRESENTATIONS, true);
settings.useCustomTriangulation = pImp->GetPropertyBool(AI_CONFIG_IMPORT_IFC_CUSTOM_TRIANGULATION, true);
settings.conicSamplingAngle = std::min(std::max((float)pImp->GetPropertyFloat(AI_CONFIG_IMPORT_IFC_SMOOTHING_ANGLE, AI_IMPORT_IFC_DEFAULT_SMOOTHING_ANGLE), 5.0f), 120.0f);
settings.cylindricalTessellation = std::min(std::max(pImp->GetPropertyInteger(AI_CONFIG_IMPORT_IFC_CYLINDRICAL_TESSELLATION, AI_IMPORT_IFC_DEFAULT_CYLINDRICAL_TESSELLATION), 3), 180);
settings.skipAnnotations = true;
}
// ------------------------------------------------------------------------------------------------
// Imports the given file into the given scene structure.
void IFCImporter::InternReadFile(const std::string &pFile, aiScene *pScene, IOSystem *pIOHandler) {
std::shared_ptr<IOStream> stream(pIOHandler->Open(pFile));
if (!stream) {
ThrowException("Could not open file for reading");
}
// if this is a ifczip file, decompress its contents first
if (GetExtension(pFile) == "ifczip") {
#ifndef ASSIMP_BUILD_NO_COMPRESSED_IFC
unzFile zip = unzOpen(pFile.c_str());
if (zip == nullptr) {
ThrowException("Could not open ifczip file for reading, unzip failed");
}
// chop 'zip' postfix
std::string fileName = pFile.substr(0, pFile.length() - 3);
std::string::size_type s = pFile.find_last_of('\\');
if (s == std::string::npos) {
s = pFile.find_last_of('/');
}
if (s != std::string::npos) {
fileName = fileName.substr(s + 1);
}
// search file (same name as the IFCZIP except for the file extension) and place file pointer there
if (UNZ_OK == unzGoToFirstFile(zip)) {
do {
// get file size, etc.
unz_file_info fileInfo;
char filename[256];
unzGetCurrentFileInfo(zip, &fileInfo, filename, sizeof(filename), nullptr, 0, nullptr, 0);
if (GetExtension(filename) != "ifc") {
continue;
}
uint8_t *buff = new uint8_t[fileInfo.uncompressed_size];
LogInfo("Decompressing IFCZIP file");
unzOpenCurrentFile(zip);
size_t total = 0;
int read = 0;
do {
int bufferSize = fileInfo.uncompressed_size < INT16_MAX ? fileInfo.uncompressed_size : INT16_MAX;
void *buffer = malloc(bufferSize);
read = unzReadCurrentFile(zip, buffer, bufferSize);
if (read > 0) {
memcpy((char *)buff + total, buffer, read);
total += read;
}
free(buffer);
} while (read > 0);
size_t filesize = fileInfo.uncompressed_size;
if (total == 0 || size_t(total) != filesize) {
delete[] buff;
ThrowException("Failed to decompress IFC ZIP file");
}
unzCloseCurrentFile(zip);
stream = std::make_shared<MemoryIOStream>(buff, fileInfo.uncompressed_size, true);
if (unzGoToNextFile(zip) == UNZ_END_OF_LIST_OF_FILE) {
ThrowException("Found no IFC file member in IFCZIP file (1)");
}
break;
} while (true);
} else {
ThrowException("Found no IFC file member in IFCZIP file (2)");
}
unzClose(zip);
#else
ThrowException("Could not open ifczip file for reading, assimp was built without ifczip support");
#endif
}
std::unique_ptr<STEP::DB> db(STEP::ReadFileHeader(std::move(stream)));
const STEP::HeaderInfo &head = static_cast<const STEP::DB &>(*db).GetHeader();
if (!head.fileSchema.size() || head.fileSchema.substr(0, 3) != "IFC") {
ThrowException("Unrecognized file schema: " + head.fileSchema);
}
if (!DefaultLogger::isNullLogger()) {
LogDebug("File schema is \'", head.fileSchema, '\'');
if (head.timestamp.length()) {
LogDebug("Timestamp \'", head.timestamp, '\'');
}
if (head.app.length()) {
LogDebug("Application/Exporter identline is \'", head.app, '\'');
}
}
// obtain a copy of the machine-generated IFC scheme
::Assimp::STEP::EXPRESS::ConversionSchema schema;
Schema_2x3::GetSchema(schema);
// tell the reader which entity types to track with special care
static const char *const types_to_track[] = {
"ifcsite", "ifcbuilding", "ifcproject"
};
// tell the reader for which types we need to simulate STEPs reverse indices
static const char *const inverse_indices_to_track[] = {
"ifcrelcontainedinspatialstructure", "ifcrelaggregates", "ifcrelvoidselement", "ifcreldefinesbyproperties", "ifcpropertyset", "ifcstyleditem"
};
// feed the IFC schema into the reader and pre-parse all lines
STEP::ReadFile(*db, schema, types_to_track, inverse_indices_to_track);
const STEP::LazyObject *proj = db->GetObject("ifcproject");
if (!proj) {
ThrowException("missing IfcProject entity");
}
ConversionData conv(*db, proj->To<Schema_2x3::IfcProject>(), pScene, settings);
SetUnits(conv);
SetCoordinateSpace(conv);
ProcessSpatialStructures(conv);
MakeTreeRelative(conv);
// NOTE - this is a stress test for the importer, but it works only
// in a build with no entities disabled. See
// scripts/IFCImporter/CPPGenerator.py
// for more information.
#ifdef ASSIMP_IFC_TEST
db->EvaluateAll();
#endif
// do final data copying
if (conv.meshes.size()) {
pScene->mNumMeshes = static_cast<unsigned int>(conv.meshes.size());
pScene->mMeshes = new aiMesh *[pScene->mNumMeshes]();
std::copy(conv.meshes.begin(), conv.meshes.end(), pScene->mMeshes);
// needed to keep the d'tor from burning us
conv.meshes.clear();
}
if (conv.materials.size()) {
pScene->mNumMaterials = static_cast<unsigned int>(conv.materials.size());
pScene->mMaterials = new aiMaterial *[pScene->mNumMaterials]();
std::copy(conv.materials.begin(), conv.materials.end(), pScene->mMaterials);
// needed to keep the d'tor from burning us
conv.materials.clear();
}
// apply world coordinate system (which includes the scaling to convert to meters and a -90 degrees rotation around x)
aiMatrix4x4 scale, rot;
aiMatrix4x4::Scaling(static_cast<aiVector3D>(IfcVector3(conv.len_scale)), scale);
aiMatrix4x4::RotationX(-AI_MATH_HALF_PI_F, rot);
pScene->mRootNode->mTransformation = rot * scale * conv.wcs * pScene->mRootNode->mTransformation;
// this must be last because objects are evaluated lazily as we process them
if (!DefaultLogger::isNullLogger()) {
LogDebug("STEP: evaluated ", db->GetEvaluatedObjectCount(), " object records");
}
}
namespace {
// ------------------------------------------------------------------------------------------------
void ConvertUnit(const Schema_2x3::IfcNamedUnit &unit, ConversionData &conv) {
if (const Schema_2x3::IfcSIUnit *const si = unit.ToPtr<Schema_2x3::IfcSIUnit>()) {
if (si->UnitType == "LENGTHUNIT") {
conv.len_scale = si->Prefix ? ConvertSIPrefix(si->Prefix) : 1.f;
IFCImporter::LogDebug("got units used for lengths");
}
if (si->UnitType == "PLANEANGLEUNIT") {
if (si->Name != "RADIAN") {
IFCImporter::LogWarn("expected base unit for angles to be radian");
}
}
} else if (const Schema_2x3::IfcConversionBasedUnit *const convu = unit.ToPtr<Schema_2x3::IfcConversionBasedUnit>()) {
if (convu->UnitType == "PLANEANGLEUNIT") {
try {
conv.angle_scale = convu->ConversionFactor->ValueComponent->To<::Assimp::STEP::EXPRESS::REAL>();
ConvertUnit(*convu->ConversionFactor->UnitComponent, conv);
IFCImporter::LogDebug("got units used for angles");
} catch (std::bad_cast &) {
IFCImporter::LogError("skipping unknown IfcConversionBasedUnit.ValueComponent entry - expected REAL");
}
}
}
}
// ------------------------------------------------------------------------------------------------
void ConvertUnit(const ::Assimp::STEP::EXPRESS::DataType &dt, ConversionData &conv) {
try {
const ::Assimp::STEP::EXPRESS::ENTITY &e = dt.To<::Assimp::STEP::EXPRESS::ENTITY>();
const Schema_2x3::IfcNamedUnit &unit = e.ResolveSelect<Schema_2x3::IfcNamedUnit>(conv.db);
if (unit.UnitType != "LENGTHUNIT" && unit.UnitType != "PLANEANGLEUNIT") {
return;
}
ConvertUnit(unit, conv);
} catch (std::bad_cast &) {
// not entity, somehow
IFCImporter::LogError("skipping unknown IfcUnit entry - expected entity");
}
}
// ------------------------------------------------------------------------------------------------
void SetUnits(ConversionData &conv) {
// see if we can determine the coordinate space used to express.
for (size_t i = 0; i < conv.proj.UnitsInContext->Units.size(); ++i) {
ConvertUnit(*conv.proj.UnitsInContext->Units[i], conv);
}
}
// ------------------------------------------------------------------------------------------------
void SetCoordinateSpace(ConversionData &conv) {
const Schema_2x3::IfcRepresentationContext *fav = nullptr;
for (const Schema_2x3::IfcRepresentationContext &v : conv.proj.RepresentationContexts) {
fav = &v;
// Model should be the most suitable type of context, hence ignore the others
if (v.ContextType && v.ContextType.Get() == "Model") {
break;
}
}
if (fav) {
if (const Schema_2x3::IfcGeometricRepresentationContext *const geo = fav->ToPtr<Schema_2x3::IfcGeometricRepresentationContext>()) {
ConvertAxisPlacement(conv.wcs, *geo->WorldCoordinateSystem, conv);
IFCImporter::LogDebug("got world coordinate system");
}
}
}
// ------------------------------------------------------------------------------------------------
void ResolveObjectPlacement(aiMatrix4x4 &m, const Schema_2x3::IfcObjectPlacement &place, ConversionData &conv) {
if (const Schema_2x3::IfcLocalPlacement *const local = place.ToPtr<Schema_2x3::IfcLocalPlacement>()) {
IfcMatrix4 tmp;
ConvertAxisPlacement(tmp, *local->RelativePlacement, conv);
m = static_cast<aiMatrix4x4>(tmp);
if (local->PlacementRelTo) {
aiMatrix4x4 tmpM;
ResolveObjectPlacement(tmpM, local->PlacementRelTo.Get(), conv);
m = tmpM * m;
}
} else {
IFCImporter::LogWarn("skipping unknown IfcObjectPlacement entity, type is ", place.GetClassName());
}
}
// ------------------------------------------------------------------------------------------------
bool ProcessMappedItem(const Schema_2x3::IfcMappedItem &mapped, aiNode *nd_src, std::vector<aiNode *> &subnodes_src, unsigned int matid, ConversionData &conv) {
// insert a custom node here, the carthesian transform operator is simply a conventional transformation matrix
std::unique_ptr<aiNode> nd(new aiNode());
nd->mName.Set("IfcMappedItem");
// handle the Cartesian operator
IfcMatrix4 m;
ConvertTransformOperator(m, *mapped.MappingTarget);
IfcMatrix4 msrc;
ConvertAxisPlacement(msrc, *mapped.MappingSource->MappingOrigin, conv);
msrc = m * msrc;
std::set<unsigned int> meshes;
const size_t old_openings = conv.collect_openings ? conv.collect_openings->size() : 0;
if (conv.apply_openings) {
IfcMatrix4 minv = msrc;
minv.Inverse();
for (TempOpening &open : *conv.apply_openings) {
open.Transform(minv);
}
}
unsigned int localmatid = ProcessMaterials(mapped.GetID(), matid, conv, false);
const Schema_2x3::IfcRepresentation &repr = mapped.MappingSource->MappedRepresentation;
bool got = false;
for (const Schema_2x3::IfcRepresentationItem &item : repr.Items) {
if (!ProcessRepresentationItem(item, localmatid, meshes, conv)) {
IFCImporter::LogWarn("skipping mapped entity of type ", item.GetClassName(), ", no representations could be generated");
} else
got = true;
}
if (!got) {
return false;
}
AssignAddedMeshes(meshes, nd.get(), conv);
if (conv.collect_openings) {
// if this pass serves us only to collect opening geometry,
// make sure we transform the TempMesh's which we need to
// preserve as well.
if (const size_t diff = conv.collect_openings->size() - old_openings) {
for (size_t i = 0; i < diff; ++i) {
(*conv.collect_openings)[old_openings + i].Transform(msrc);
}
}
}
nd->mTransformation = nd_src->mTransformation * static_cast<aiMatrix4x4>(msrc);
subnodes_src.push_back(nd.release());
return true;
}
// ------------------------------------------------------------------------------------------------
struct RateRepresentationPredicate {
int Rate(const Schema_2x3::IfcRepresentation *r) const {
// the smaller, the better
if (!r->RepresentationIdentifier) {
// neutral choice if no extra information is specified
return 0;
}
const std::string &name = r->RepresentationIdentifier.Get();
if (name == "MappedRepresentation") {
if (!r->Items.empty()) {
// take the first item and base our choice on it
const Schema_2x3::IfcMappedItem *const m = r->Items.front()->ToPtr<Schema_2x3::IfcMappedItem>();
if (m) {
return Rate(m->MappingSource->MappedRepresentation);
}
}
return 100;
}
return Rate(name);
}
int Rate(const std::string &r) const {
if (r == "SolidModel") {
return -3;
}
// give strong preference to extruded geometry.
if (r == "SweptSolid") {
return -10;
}
if (r == "Clipping") {
return -5;
}
// 'Brep' is difficult to get right due to possible voids in the
// polygon boundaries, so take it only if we are forced to (i.e.
// if the only alternative is (non-clipping) boolean operations,
// which are not supported at all).
if (r == "Brep") {
return -2;
}
// Curves, bounding boxes - those will most likely not be loaded
// as we can't make any use out of this data. So consider them
// last.
if (r == "BoundingBox" || r == "Curve2D") {
return 100;
}
return 0;
}
bool operator()(const Schema_2x3::IfcRepresentation *a, const Schema_2x3::IfcRepresentation *b) const {
return Rate(a) < Rate(b);
}
};
// ------------------------------------------------------------------------------------------------
void ProcessProductRepresentation(const Schema_2x3::IfcProduct &el, aiNode *nd, std::vector<aiNode *> &subnodes, ConversionData &conv) {
if (!el.Representation) {
return;
}
// extract Color from metadata, if present
unsigned int matid = ProcessMaterials(el.GetID(), std::numeric_limits<uint32_t>::max(), conv, false);
std::set<unsigned int> meshes;
// we want only one representation type, so bring them in a suitable order (i.e try those
// that look as if we could read them quickly at first). This way of reading
// representation is relatively generic and allows the concrete implementations
// for the different representation types to make some sensible choices what
// to load and what not to load.
const STEP::ListOf<STEP::Lazy<Schema_2x3::IfcRepresentation>, 1, 0> &src = el.Representation.Get()->Representations;
std::vector<const Schema_2x3::IfcRepresentation *> repr_ordered(src.size());
std::copy(src.begin(), src.end(), repr_ordered.begin());
std::sort(repr_ordered.begin(), repr_ordered.end(), RateRepresentationPredicate());
for (const Schema_2x3::IfcRepresentation *repr : repr_ordered) {
bool res = false;
for (const Schema_2x3::IfcRepresentationItem &item : repr->Items) {
if (const Schema_2x3::IfcMappedItem *const geo = item.ToPtr<Schema_2x3::IfcMappedItem>()) {
res = ProcessMappedItem(*geo, nd, subnodes, matid, conv) || res;
} else {
res = ProcessRepresentationItem(item, matid, meshes, conv) || res;
}
}
// if we got something meaningful at this point, skip any further representations
if (res) {
break;
}
}
AssignAddedMeshes(meshes, nd, conv);
}
typedef std::map<std::string, std::string> Metadata;
// ------------------------------------------------------------------------------------------------
void ProcessMetadata(const Schema_2x3::ListOf<Schema_2x3::Lazy<Schema_2x3::IfcProperty>, 1, 0> &set, ConversionData &conv, Metadata &properties,
const std::string &prefix = std::string(),
unsigned int nest = 0) {
for (const Schema_2x3::IfcProperty &property : set) {
const std::string &key = prefix.length() > 0 ? (prefix + "." + property.Name) : property.Name;
if (const Schema_2x3::IfcPropertySingleValue *const singleValue = property.ToPtr<Schema_2x3::IfcPropertySingleValue>()) {
if (singleValue->NominalValue) {
if (const ::Assimp::STEP::EXPRESS::STRING *str = singleValue->NominalValue.Get()->ToPtr<::Assimp::STEP::EXPRESS::STRING>()) {
std::string value = static_cast<std::string>(*str);
properties[key] = value;
} else if (const ::Assimp::STEP::EXPRESS::REAL *val1 = singleValue->NominalValue.Get()->ToPtr<::Assimp::STEP::EXPRESS::REAL>()) {
float value = static_cast<float>(*val1);
std::stringstream s;
s << value;
properties[key] = s.str();
} else if (const ::Assimp::STEP::EXPRESS::INTEGER *val2 = singleValue->NominalValue.Get()->ToPtr<::Assimp::STEP::EXPRESS::INTEGER>()) {
int64_t curValue = static_cast<int64_t>(*val2);
std::stringstream s;
s << curValue;
properties[key] = s.str();
}
}
} else if (const Schema_2x3::IfcPropertyListValue *const listValue = property.ToPtr<Schema_2x3::IfcPropertyListValue>()) {
std::stringstream ss;
ss << "[";
unsigned index = 0;
for (const Schema_2x3::IfcValue::Out &v : listValue->ListValues) {
if (!v) continue;
if (const ::Assimp::STEP::EXPRESS::STRING *str = v->ToPtr<::Assimp::STEP::EXPRESS::STRING>()) {
std::string value = static_cast<std::string>(*str);
ss << "'" << value << "'";
} else if (const ::Assimp::STEP::EXPRESS::REAL *val1 = v->ToPtr<::Assimp::STEP::EXPRESS::REAL>()) {
float value = static_cast<float>(*val1);
ss << value;
} else if (const ::Assimp::STEP::EXPRESS::INTEGER *val2 = v->ToPtr<::Assimp::STEP::EXPRESS::INTEGER>()) {
int64_t value = static_cast<int64_t>(*val2);
ss << value;
}
if (index + 1 < listValue->ListValues.size()) {
ss << ",";
}
index++;
}
ss << "]";
properties[key] = ss.str();
} else if (const Schema_2x3::IfcComplexProperty *const complexProp = property.ToPtr<Schema_2x3::IfcComplexProperty>()) {
if (nest > 2) { // mostly arbitrary limit to prevent stack overflow vulnerabilities
IFCImporter::LogError("maximum nesting level for IfcComplexProperty reached, skipping this property.");
} else {
ProcessMetadata(complexProp->HasProperties, conv, properties, key, nest + 1);
}
} else {
properties[key] = std::string();
}
}
}
// ------------------------------------------------------------------------------------------------
void ProcessMetadata(uint64_t relDefinesByPropertiesID, ConversionData &conv, Metadata &properties) {
if (const Schema_2x3::IfcRelDefinesByProperties *const pset = conv.db.GetObject(relDefinesByPropertiesID)->ToPtr<Schema_2x3::IfcRelDefinesByProperties>()) {
if (const Schema_2x3::IfcPropertySet *const set = conv.db.GetObject(pset->RelatingPropertyDefinition->GetID())->ToPtr<Schema_2x3::IfcPropertySet>()) {
ProcessMetadata(set->HasProperties, conv, properties);
}
}
}
// ------------------------------------------------------------------------------------------------
aiNode *ProcessSpatialStructure(aiNode *parent, const Schema_2x3::IfcProduct &el, ConversionData &conv,
std::vector<TempOpening> *collect_openings = nullptr) {
const STEP::DB::RefMap &refs = conv.db.GetRefs();
// skip over space and annotation nodes - usually, these have no meaning in Assimp's context
bool skipGeometry = false;
if (conv.settings.skipSpaceRepresentations) {
if (el.ToPtr<Schema_2x3::IfcSpace>()) {
IFCImporter::LogVerboseDebug("skipping IfcSpace entity due to importer settings");
skipGeometry = true;
}
}
if (conv.settings.skipAnnotations) {
if (el.ToPtr<Schema_2x3::IfcAnnotation>()) {
IFCImporter::LogVerboseDebug("skipping IfcAnnotation entity due to importer settings");
return nullptr;
}
}
// add an output node for this spatial structure
aiNode *nd(new aiNode);
nd->mName.Set(el.GetClassName() + "_" + (el.Name ? el.Name.Get() : "Unnamed") + "_" + el.GlobalId);
nd->mParent = parent;
conv.already_processed.insert(el.GetID());
// check for node metadata
STEP::DB::RefMapRange children = refs.equal_range(el.GetID());
if (children.first != refs.end()) {
Metadata properties;
if (children.first == children.second) {
// handles single property set
ProcessMetadata((*children.first).second, conv, properties);
} else {
// handles multiple property sets (currently all property sets are merged,
// which may not be the best solution in the long run)
for (STEP::DB::RefMap::const_iterator it = children.first; it != children.second; ++it) {
ProcessMetadata((*it).second, conv, properties);
}
}
if (!properties.empty()) {
aiMetadata *data = aiMetadata::Alloc(static_cast<unsigned int>(properties.size()));
unsigned int index(0);
for (const Metadata::value_type &kv : properties) {
data->Set(index++, kv.first, aiString(kv.second));
}
nd->mMetaData = data;
}
}
if (el.ObjectPlacement) {
ResolveObjectPlacement(nd->mTransformation, el.ObjectPlacement.Get(), conv);
}
std::vector<TempOpening> openings;
IfcMatrix4 myInv;
bool didinv = false;
// convert everything contained directly within this structure,
// this may result in more nodes.
std::vector<aiNode *> subnodes;
try {
// locate aggregates and 'contained-in-here'-elements of this spatial structure and add them in recursively
// on our way, collect openings in *this* element
STEP::DB::RefMapRange range = refs.equal_range(el.GetID());
for (STEP::DB::RefMapRange range2 = range; range2.first != range.second; ++range2.first) {
// skip over meshes that have already been processed before. This is strictly necessary
// because the reverse indices also include references contained in argument lists and
// therefore every element has a back-reference hold by its parent.
if (conv.already_processed.find((*range2.first).second) != conv.already_processed.end()) {
continue;
}
const STEP::LazyObject &obj = conv.db.MustGetObject((*range2.first).second);
// handle regularly-contained elements
if (const Schema_2x3::IfcRelContainedInSpatialStructure *const cont = obj->ToPtr<Schema_2x3::IfcRelContainedInSpatialStructure>()) {
if (cont->RelatingStructure->GetID() != el.GetID()) {
continue;
}
for (const Schema_2x3::IfcProduct &pro : cont->RelatedElements) {
if (pro.ToPtr<Schema_2x3::IfcOpeningElement>()) {
// IfcOpeningElement is handled below. Sadly we can't use it here as is:
// The docs say that opening elements are USUALLY attached to building storey,
// but we want them for the building elements to which they belong.
continue;
}
aiNode *const ndnew = ProcessSpatialStructure(nd, pro, conv, nullptr);
if (ndnew) {
subnodes.push_back(ndnew);
}
}
}
// handle openings, which we collect in a list rather than adding them to the node graph
else if (const Schema_2x3::IfcRelVoidsElement *const fills = obj->ToPtr<Schema_2x3::IfcRelVoidsElement>()) {
if (fills->RelatingBuildingElement->GetID() == el.GetID()) {
const Schema_2x3::IfcFeatureElementSubtraction &open = fills->RelatedOpeningElement;
// move opening elements to a separate node since they are semantically different than elements that are just 'contained'
std::unique_ptr<aiNode> nd_aggr(new aiNode());
nd_aggr->mName.Set("$RelVoidsElement");
nd_aggr->mParent = nd;
nd_aggr->mTransformation = nd->mTransformation;
std::vector<TempOpening> openings_local;
aiNode *const ndnew = ProcessSpatialStructure(nd_aggr.get(), open, conv, &openings_local);
if (ndnew) {
nd_aggr->mNumChildren = 1;
nd_aggr->mChildren = new aiNode *[1]();
nd_aggr->mChildren[0] = ndnew;
if (openings_local.size()) {
if (!didinv) {
myInv = aiMatrix4x4(nd->mTransformation).Inverse();
didinv = true;
}
// we need all openings to be in the local space of *this* node, so transform them
for (TempOpening &op : openings_local) {
op.Transform(myInv * nd_aggr->mChildren[0]->mTransformation);
openings.push_back(op);
}
}
subnodes.push_back(nd_aggr.release());
}
}
}
}
for (; range.first != range.second; ++range.first) {
// see note in loop above
if (conv.already_processed.find((*range.first).second) != conv.already_processed.end()) {
continue;
}
if (const Schema_2x3::IfcRelAggregates *const aggr = conv.db.GetObject((*range.first).second)->ToPtr<Schema_2x3::IfcRelAggregates>()) {
if (aggr->RelatingObject->GetID() != el.GetID()) {
continue;
}
// move aggregate elements to a separate node since they are semantically different than elements that are just 'contained'
std::unique_ptr<aiNode> nd_aggr(new aiNode());
nd_aggr->mName.Set("$RelAggregates");
nd_aggr->mParent = nd;
nd_aggr->mTransformation = nd->mTransformation;
nd_aggr->mChildren = new aiNode *[aggr->RelatedObjects.size()]();
for (const Schema_2x3::IfcObjectDefinition &def : aggr->RelatedObjects) {
if (const Schema_2x3::IfcProduct *const prod = def.ToPtr<Schema_2x3::IfcProduct>()) {
aiNode *const ndnew = ProcessSpatialStructure(nd_aggr.get(), *prod, conv, nullptr);
if (ndnew) {
nd_aggr->mChildren[nd_aggr->mNumChildren++] = ndnew;
}
}
}
subnodes.push_back(nd_aggr.release());
}
}
conv.collect_openings = collect_openings;
if (!conv.collect_openings) {
conv.apply_openings = &openings;
}
if (!skipGeometry) {
ProcessProductRepresentation(el, nd, subnodes, conv);
conv.apply_openings = conv.collect_openings = nullptr;
}
if (subnodes.size()) {
nd->mChildren = new aiNode *[subnodes.size()]();
for (aiNode *nd2 : subnodes) {
nd->mChildren[nd->mNumChildren++] = nd2;
nd2->mParent = nd;
}
}
} catch (...) {
// it hurts, but I don't want to pull boost::ptr_vector into -noboost only for these few spots here
std::for_each(subnodes.begin(), subnodes.end(), delete_fun<aiNode>());
throw;
}
ai_assert(conv.already_processed.find(el.GetID()) != conv.already_processed.end());
conv.already_processed.erase(conv.already_processed.find(el.GetID()));
return nd;
}
// ------------------------------------------------------------------------------------------------
void ProcessSpatialStructures(ConversionData &conv) {
// XXX add support for multiple sites (i.e. IfcSpatialStructureElements with composition == COMPLEX)
// process all products in the file. it is reasonable to assume that a
// file that is relevant for us contains at least a site or a building.
const STEP::DB::ObjectMapByType &map = conv.db.GetObjectsByType();
ai_assert(map.find("ifcsite") != map.end());
const STEP::DB::ObjectSet *range = &map.find("ifcsite")->second;
if (range->empty()) {
ai_assert(map.find("ifcbuilding") != map.end());
range = &map.find("ifcbuilding")->second;
if (range->empty()) {
// no site, no building - fail;
IFCImporter::ThrowException("no root element found (expected IfcBuilding or preferably IfcSite)");
}
}
std::vector<aiNode *> nodes;
for (const STEP::LazyObject *lz : *range) {
const Schema_2x3::IfcSpatialStructureElement *const prod = lz->ToPtr<Schema_2x3::IfcSpatialStructureElement>();
if (!prod) {
continue;
}
IFCImporter::LogVerboseDebug("looking at spatial structure `", (prod->Name ? prod->Name.Get() : "unnamed"), "`", (prod->ObjectType ? " which is of type " + prod->ObjectType.Get() : ""));
// the primary sites are referenced by an IFCRELAGGREGATES element which assigns them to the IFCPRODUCT
const STEP::DB::RefMap &refs = conv.db.GetRefs();
STEP::DB::RefMapRange ref_range = refs.equal_range(conv.proj.GetID());
for (; ref_range.first != ref_range.second; ++ref_range.first) {
if (const Schema_2x3::IfcRelAggregates *const aggr = conv.db.GetObject((*ref_range.first).second)->ToPtr<Schema_2x3::IfcRelAggregates>()) {
for (const Schema_2x3::IfcObjectDefinition &def : aggr->RelatedObjects) {
// comparing pointer values is not sufficient, we would need to cast them to the same type first
// as there is multiple inheritance in the game.
if (def.GetID() == prod->GetID()) {
IFCImporter::LogVerboseDebug("selecting this spatial structure as root structure");
// got it, this is one primary site.
nodes.push_back(ProcessSpatialStructure(nullptr, *prod, conv, nullptr));
}
}
}
}
}
size_t nb_nodes = nodes.size();
if (nb_nodes == 0) {
IFCImporter::LogWarn("failed to determine primary site element, taking all the IfcSite");
for (const STEP::LazyObject *lz : *range) {
const Schema_2x3::IfcSpatialStructureElement *const prod = lz->ToPtr<Schema_2x3::IfcSpatialStructureElement>();
if (!prod) {
continue;
}
nodes.push_back(ProcessSpatialStructure(nullptr, *prod, conv, nullptr));
}
nb_nodes = nodes.size();
}
if (nb_nodes == 1) {
conv.out->mRootNode = nodes[0];
} else if (nb_nodes > 1) {
conv.out->mRootNode = new aiNode("Root");
conv.out->mRootNode->mParent = nullptr;
conv.out->mRootNode->mNumChildren = static_cast<unsigned int>(nb_nodes);
conv.out->mRootNode->mChildren = new aiNode *[conv.out->mRootNode->mNumChildren];
for (size_t i = 0; i < nb_nodes; ++i) {
aiNode *node = nodes[i];
node->mParent = conv.out->mRootNode;
conv.out->mRootNode->mChildren[i] = node;
}
} else {
IFCImporter::ThrowException("failed to determine primary site element");
}
}
// ------------------------------------------------------------------------------------------------
void MakeTreeRelative(aiNode *start, const aiMatrix4x4 &combined) {
// combined is the parent's absolute transformation matrix
const aiMatrix4x4 old = start->mTransformation;
if (!combined.IsIdentity()) {
start->mTransformation = aiMatrix4x4(combined).Inverse() * start->mTransformation;
}
// All nodes store absolute transformations right now, so we need to make them relative
for (unsigned int i = 0; i < start->mNumChildren; ++i) {
MakeTreeRelative(start->mChildren[i], old);
}
}
// ------------------------------------------------------------------------------------------------
void MakeTreeRelative(ConversionData &conv) {
MakeTreeRelative(conv.out->mRootNode, IfcMatrix4());
}
} // namespace
#endif