265 lines
9.5 KiB
C++
265 lines
9.5 KiB
C++
/*
|
|
---------------------------------------------------------------------------
|
|
Open Asset Import Library (assimp)
|
|
---------------------------------------------------------------------------
|
|
|
|
Copyright (c) 2006-2024, assimp team
|
|
|
|
All rights reserved.
|
|
|
|
Redistribution and use of this software in source and binary forms,
|
|
with or without modification, are permitted provided that the following
|
|
conditions are met:
|
|
|
|
* Redistributions of source code must retain the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer in the documentation and/or other
|
|
materials provided with the distribution.
|
|
|
|
* Neither the name of the assimp team, nor the names of its
|
|
contributors may be used to endorse or promote products
|
|
derived from this software without specific prior
|
|
written permission of the assimp team.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
---------------------------------------------------------------------------
|
|
*/
|
|
#include "UnitTestPCH.h"
|
|
#include "MathTest.h"
|
|
#include <assimp/MathFunctions.h>
|
|
|
|
using namespace Assimp;
|
|
|
|
class AssimpAPITest_aiMatrix4x4 : public AssimpMathTest {
|
|
protected:
|
|
void SetUp() override {
|
|
result_c = result_cpp = aiMatrix4x4();
|
|
}
|
|
|
|
/* Generates a predetermined transformation matrix to use
|
|
for the aiDecompose functions to prevent running into
|
|
division by zero. */
|
|
aiMatrix4x4 get_predetermined_transformation_matrix_for_decomposition() const {
|
|
aiMatrix4x4 t, r;
|
|
aiMatrix4x4::Translation(aiVector3D(14,-25,-8), t);
|
|
aiMatrix4x4::Rotation(Math::aiPi<float>() / 4.0f, aiVector3D(1).Normalize(), r);
|
|
return t * r;
|
|
}
|
|
|
|
aiMatrix4x4 result_c, result_cpp;
|
|
};
|
|
|
|
TEST_F(AssimpAPITest_aiMatrix4x4, isIdendityTest) {
|
|
aiMatrix4x4 m = aiMatrix4x4(1 + Math::getEpsilon<ai_real>(), 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1);
|
|
const bool result = m.IsIdentity(Math::getEpsilon<ai_real>());
|
|
EXPECT_TRUE(result);
|
|
}
|
|
|
|
TEST_F(AssimpAPITest_aiMatrix4x4, aiIdentityMatrix4Test) {
|
|
// Force a non-identity matrix.
|
|
result_c = aiMatrix4x4(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);
|
|
aiIdentityMatrix4(&result_c);
|
|
EXPECT_EQ(result_cpp, result_c);
|
|
}
|
|
|
|
TEST_F(AssimpAPITest_aiMatrix4x4, aiMatrix4FromMatrix3Test) {
|
|
aiMatrix3x3 m = random_mat3();
|
|
result_cpp = aiMatrix4x4(m);
|
|
aiMatrix4FromMatrix3(&result_c, &m);
|
|
EXPECT_EQ(result_cpp, result_c);
|
|
}
|
|
|
|
TEST_F(AssimpAPITest_aiMatrix4x4, aiMatrix4FromScalingQuaternionPositionTest) {
|
|
const aiVector3D s = random_vec3();
|
|
const aiQuaternion q = random_quat();
|
|
const aiVector3D t = random_vec3();
|
|
result_cpp = aiMatrix4x4(s, q, t);
|
|
aiMatrix4FromScalingQuaternionPosition(&result_c, &s, &q, &t);
|
|
EXPECT_EQ(result_cpp, result_c);
|
|
}
|
|
|
|
TEST_F(AssimpAPITest_aiMatrix4x4, aiMatrix4AddTest) {
|
|
const aiMatrix4x4 temp = random_mat4();
|
|
result_c = result_cpp = random_mat4();
|
|
result_cpp = result_cpp + temp;
|
|
aiMatrix4Add(&result_c, &temp);
|
|
EXPECT_EQ(result_cpp, result_c);
|
|
}
|
|
|
|
TEST_F(AssimpAPITest_aiMatrix4x4, aiMatrix4AreEqualTest) {
|
|
result_c = result_cpp = random_mat4();
|
|
EXPECT_EQ(result_cpp == result_c,
|
|
(bool)aiMatrix4AreEqual(&result_cpp, &result_c));
|
|
}
|
|
|
|
TEST_F(AssimpAPITest_aiMatrix4x4, aiMatrix4AreEqualEpsilonTest) {
|
|
result_c = result_cpp = random_mat4();
|
|
EXPECT_EQ(result_cpp.Equal(result_c, Epsilon),
|
|
(bool)aiMatrix4AreEqualEpsilon(&result_cpp, &result_c, Epsilon));
|
|
}
|
|
|
|
TEST_F(AssimpAPITest_aiMatrix4x4, aiMultiplyMatrix4Test) {
|
|
const auto m = random_mat4();
|
|
result_c = result_cpp = random_mat4();
|
|
result_cpp *= m;
|
|
aiMultiplyMatrix4(&result_c, &m);
|
|
EXPECT_EQ(result_cpp, result_c);
|
|
}
|
|
|
|
TEST_F(AssimpAPITest_aiMatrix4x4, aiTransposeMatrix4Test) {
|
|
result_c = result_cpp = random_mat4();
|
|
result_cpp.Transpose();
|
|
aiTransposeMatrix4(&result_c);
|
|
EXPECT_EQ(result_cpp, result_c);
|
|
}
|
|
|
|
TEST_F(AssimpAPITest_aiMatrix4x4, aiMatrix4InverseTest) {
|
|
// Use a predetermined matrix to prevent arbitrary
|
|
// cases where it could have a null determinant.
|
|
result_c = result_cpp = aiMatrix4x4(
|
|
6, 10, 15, 3,
|
|
14, 2, 12, 8,
|
|
9, 13, 5, 16,
|
|
4, 7, 11, 1);
|
|
result_cpp.Inverse();
|
|
aiMatrix4Inverse(&result_c);
|
|
EXPECT_EQ(result_cpp, result_c);
|
|
}
|
|
|
|
TEST_F(AssimpAPITest_aiMatrix4x4, aiMatrix4DeterminantTest) {
|
|
result_c = result_cpp = random_mat4();
|
|
EXPECT_EQ(result_cpp.Determinant(),
|
|
aiMatrix4Determinant(&result_c));
|
|
}
|
|
|
|
TEST_F(AssimpAPITest_aiMatrix4x4, aiMatrix4IsIdentityTest) {
|
|
EXPECT_EQ(result_cpp.IsIdentity(),
|
|
(bool)aiMatrix4IsIdentity(&result_c));
|
|
}
|
|
|
|
TEST_F(AssimpAPITest_aiMatrix4x4, aiDecomposeMatrixTest) {
|
|
aiVector3D scaling_c, scaling_cpp,
|
|
position_c, position_cpp;
|
|
aiQuaternion rotation_c, rotation_cpp;
|
|
|
|
result_c = result_cpp = get_predetermined_transformation_matrix_for_decomposition();
|
|
result_cpp.Decompose(scaling_cpp, rotation_cpp, position_cpp);
|
|
aiDecomposeMatrix(&result_c, &scaling_c, &rotation_c, &position_c);
|
|
EXPECT_EQ(scaling_cpp, scaling_c);
|
|
EXPECT_EQ(position_cpp, position_c);
|
|
EXPECT_EQ(rotation_cpp, rotation_c);
|
|
}
|
|
|
|
TEST_F(AssimpAPITest_aiMatrix4x4, aiMatrix4DecomposeIntoScalingEulerAnglesPositionTest) {
|
|
aiVector3D scaling_c, scaling_cpp,
|
|
rotation_c, rotation_cpp,
|
|
position_c, position_cpp;
|
|
|
|
result_c = result_cpp = get_predetermined_transformation_matrix_for_decomposition();
|
|
result_cpp.Decompose(scaling_cpp, rotation_cpp, position_cpp);
|
|
aiMatrix4DecomposeIntoScalingEulerAnglesPosition(&result_c, &scaling_c, &rotation_c, &position_c);
|
|
EXPECT_EQ(scaling_cpp, scaling_c);
|
|
EXPECT_EQ(position_cpp, position_c);
|
|
EXPECT_EQ(rotation_cpp, rotation_c);
|
|
}
|
|
|
|
TEST_F(AssimpAPITest_aiMatrix4x4, aiMatrix4DecomposeIntoScalingAxisAnglePositionTest) {
|
|
aiVector3D scaling_c, scaling_cpp,
|
|
axis_c, axis_cpp,
|
|
position_c, position_cpp;
|
|
ai_real angle_c, angle_cpp;
|
|
|
|
result_c = result_cpp = get_predetermined_transformation_matrix_for_decomposition();
|
|
result_cpp.Decompose(scaling_cpp, axis_cpp, angle_cpp, position_cpp);
|
|
aiMatrix4DecomposeIntoScalingAxisAnglePosition(&result_c, &scaling_c, &axis_c, &angle_c, &position_c);
|
|
EXPECT_EQ(scaling_cpp, scaling_c);
|
|
EXPECT_EQ(axis_cpp, axis_c);
|
|
EXPECT_EQ(angle_cpp, angle_c);
|
|
EXPECT_EQ(position_cpp, position_c);
|
|
}
|
|
|
|
TEST_F(AssimpAPITest_aiMatrix4x4, aiMatrix4DecomposeNoScalingTest) {
|
|
aiVector3D position_c, position_cpp;
|
|
aiQuaternion rotation_c, rotation_cpp;
|
|
|
|
result_c = result_cpp = get_predetermined_transformation_matrix_for_decomposition();
|
|
result_cpp.DecomposeNoScaling(rotation_cpp, position_cpp);
|
|
aiMatrix4DecomposeNoScaling(&result_c, &rotation_c, &position_c);
|
|
EXPECT_EQ(position_cpp, position_c);
|
|
EXPECT_EQ(rotation_cpp, rotation_c);
|
|
}
|
|
|
|
TEST_F(AssimpAPITest_aiMatrix4x4, aiMatrix4FromEulerAnglesTest) {
|
|
const float x(RandPI.next()),
|
|
y(RandPI.next()),
|
|
z(RandPI.next());
|
|
result_cpp.FromEulerAnglesXYZ(x, y, z);
|
|
aiMatrix4FromEulerAngles(&result_c, x, y, z);
|
|
EXPECT_EQ(result_cpp, result_c);
|
|
}
|
|
|
|
TEST_F(AssimpAPITest_aiMatrix4x4, aiMatrix4RotationXTest) {
|
|
const float angle(RandPI.next());
|
|
aiMatrix4x4::RotationX(angle, result_cpp);
|
|
aiMatrix4RotationX(&result_c, angle);
|
|
EXPECT_EQ(result_cpp, result_c);
|
|
}
|
|
|
|
TEST_F(AssimpAPITest_aiMatrix4x4, aiMatrix4RotationYTest) {
|
|
const float angle(RandPI.next());
|
|
aiMatrix4x4::RotationY(angle, result_cpp);
|
|
aiMatrix4RotationY(&result_c, angle);
|
|
EXPECT_EQ(result_cpp, result_c);
|
|
}
|
|
|
|
TEST_F(AssimpAPITest_aiMatrix4x4, aiMatrix4RotationZTest) {
|
|
const float angle(RandPI.next());
|
|
aiMatrix4x4::RotationZ(angle, result_cpp);
|
|
aiMatrix4RotationZ(&result_c, angle);
|
|
EXPECT_EQ(result_cpp, result_c);
|
|
}
|
|
|
|
TEST_F(AssimpAPITest_aiMatrix4x4, aiMatrix4FromRotationAroundAxisTest) {
|
|
const float angle(RandPI.next());
|
|
const auto axis = random_unit_vec3();
|
|
aiMatrix4x4::Rotation(angle, axis, result_cpp);
|
|
aiMatrix4FromRotationAroundAxis(&result_c, &axis, angle);
|
|
EXPECT_EQ(result_cpp, result_c);
|
|
}
|
|
|
|
TEST_F(AssimpAPITest_aiMatrix4x4, aiMatrix4TranslationTest) {
|
|
const auto axis = random_vec3();
|
|
aiMatrix4x4::Translation(axis, result_cpp);
|
|
aiMatrix4Translation(&result_c, &axis);
|
|
EXPECT_EQ(result_cpp, result_c);
|
|
}
|
|
|
|
TEST_F(AssimpAPITest_aiMatrix4x4, aiMatrix4ScalingTest) {
|
|
const auto scaling = random_vec3();
|
|
aiMatrix4x4::Scaling(scaling, result_cpp);
|
|
aiMatrix4Scaling(&result_c, &scaling);
|
|
EXPECT_EQ(result_cpp, result_c);
|
|
}
|
|
|
|
TEST_F(AssimpAPITest_aiMatrix4x4, aiMatrix4FromToTest) {
|
|
// Use predetermined vectors to prevent running into division by zero.
|
|
const auto from = aiVector3D(1,2,1).Normalize(), to = aiVector3D(-1,1,1).Normalize();
|
|
aiMatrix4x4::FromToMatrix(from, to, result_cpp);
|
|
aiMatrix4FromTo(&result_c, &from, &to);
|
|
EXPECT_EQ(result_cpp, result_c);
|
|
}
|