assimp/code/AssetLib/NFF/NFFLoader.cpp

1169 lines
48 KiB
C++

/*
---------------------------------------------------------------------------
Open Asset Import Library (assimp)
---------------------------------------------------------------------------
Copyright (c) 2006-2022, assimp team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the following
conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the assimp team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the assimp team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------
*/
/** @file Implementation of the STL importer class */
#ifndef ASSIMP_BUILD_NO_NFF_IMPORTER
// internal headers
#include "NFFLoader.h"
#include <assimp/ParsingUtils.h>
#include <assimp/RemoveComments.h>
#include <assimp/StandardShapes.h>
#include <assimp/fast_atof.h>
#include <assimp/importerdesc.h>
#include <assimp/qnan.h>
#include <assimp/scene.h>
#include <assimp/DefaultLogger.hpp>
#include <assimp/IOSystem.hpp>
#include <memory>
using namespace Assimp;
static const aiImporterDesc desc = {
"Neutral File Format Importer",
"",
"",
"",
aiImporterFlags_SupportBinaryFlavour,
0,
0,
0,
0,
"enff nff"
};
// ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer
NFFImporter::NFFImporter() = default;
// ------------------------------------------------------------------------------------------------
// Destructor, private as well
NFFImporter::~NFFImporter() = default;
// ------------------------------------------------------------------------------------------------
// Returns whether the class can handle the format of the given file.
bool NFFImporter::CanRead(const std::string & pFile, IOSystem * /*pIOHandler*/, bool /*checkSig*/) const {
return SimpleExtensionCheck(pFile, "nff", "enff");
}
// ------------------------------------------------------------------------------------------------
// Get the list of all supported file extensions
const aiImporterDesc *NFFImporter::GetInfo() const {
return &desc;
}
// ------------------------------------------------------------------------------------------------
#define AI_NFF_PARSE_FLOAT(f) \
SkipSpaces(&sz); \
if (!::IsLineEnd(*sz)) sz = fast_atoreal_move<ai_real>(sz, (ai_real &)f);
// ------------------------------------------------------------------------------------------------
#define AI_NFF_PARSE_TRIPLE(v) \
AI_NFF_PARSE_FLOAT(v[0]) \
AI_NFF_PARSE_FLOAT(v[1]) \
AI_NFF_PARSE_FLOAT(v[2])
// ------------------------------------------------------------------------------------------------
#define AI_NFF_PARSE_SHAPE_INFORMATION() \
aiVector3D center, radius(1.0f, get_qnan(), get_qnan()); \
AI_NFF_PARSE_TRIPLE(center); \
AI_NFF_PARSE_TRIPLE(radius); \
if (is_qnan(radius.z)) radius.z = radius.x; \
if (is_qnan(radius.y)) radius.y = radius.x; \
curMesh.radius = radius; \
curMesh.center = center;
// ------------------------------------------------------------------------------------------------
#define AI_NFF2_GET_NEXT_TOKEN() \
do { \
if (!GetNextLine(buffer, line)) { \
ASSIMP_LOG_WARN("NFF2: Unexpected EOF, can't read next token"); \
break; \
} \
SkipSpaces(line, &sz); \
} while (IsLineEnd(*sz))
// ------------------------------------------------------------------------------------------------
// Loads the material table for the NFF2 file format from an external file
void NFFImporter::LoadNFF2MaterialTable(std::vector<ShadingInfo> &output,
const std::string &path, IOSystem *pIOHandler) {
std::unique_ptr<IOStream> file(pIOHandler->Open(path, "rb"));
// Check whether we can read from the file
if (!file.get()) {
ASSIMP_LOG_ERROR("NFF2: Unable to open material library ", path, ".");
return;
}
// get the size of the file
const unsigned int m = (unsigned int)file->FileSize();
// allocate storage and copy the contents of the file to a memory buffer
// (terminate it with zero)
std::vector<char> mBuffer2(m + 1);
TextFileToBuffer(file.get(), mBuffer2);
const char *buffer = &mBuffer2[0];
// First of all: remove all comments from the file
CommentRemover::RemoveLineComments("//", &mBuffer2[0]);
// The file should start with the magic sequence "mat"
if (!TokenMatch(buffer, "mat", 3)) {
ASSIMP_LOG_ERROR("NFF2: Not a valid material library ", path, ".");
return;
}
ShadingInfo *curShader = nullptr;
// No read the file line per line
char line[4096];
const char *sz;
while (GetNextLine(buffer, line)) {
SkipSpaces(line, &sz);
// 'version' defines the version of the file format
if (TokenMatch(sz, "version", 7)) {
ASSIMP_LOG_INFO("NFF (Sense8) material library file format: ", std::string(sz));
}
// 'matdef' starts a new material in the file
else if (TokenMatch(sz, "matdef", 6)) {
// add a new material to the list
output.emplace_back();
curShader = &output.back();
// parse the name of the material
} else if (!TokenMatch(sz, "valid", 5)) {
// check whether we have an active material at the moment
if (!IsLineEnd(*sz)) {
if (!curShader) {
ASSIMP_LOG_ERROR("NFF2 material library: Found element ", sz, "but there is no active material");
continue;
}
} else
continue;
// now read the material property and determine its type
aiColor3D c;
if (TokenMatch(sz, "ambient", 7)) {
AI_NFF_PARSE_TRIPLE(c);
curShader->ambient = c;
} else if (TokenMatch(sz, "diffuse", 7) || TokenMatch(sz, "ambientdiffuse", 14) /* correct? */) {
AI_NFF_PARSE_TRIPLE(c);
curShader->diffuse = curShader->ambient = c;
} else if (TokenMatch(sz, "specular", 8)) {
AI_NFF_PARSE_TRIPLE(c);
curShader->specular = c;
} else if (TokenMatch(sz, "emission", 8)) {
AI_NFF_PARSE_TRIPLE(c);
curShader->emissive = c;
} else if (TokenMatch(sz, "shininess", 9)) {
AI_NFF_PARSE_FLOAT(curShader->shininess);
} else if (TokenMatch(sz, "opacity", 7)) {
AI_NFF_PARSE_FLOAT(curShader->opacity);
}
}
}
}
// ------------------------------------------------------------------------------------------------
// Imports the given file into the given scene structure.
void NFFImporter::InternReadFile(const std::string &pFile,
aiScene *pScene, IOSystem *pIOHandler) {
std::unique_ptr<IOStream> file(pIOHandler->Open(pFile, "rb"));
// Check whether we can read from the file
if (!file.get())
throw DeadlyImportError("Failed to open NFF file ", pFile, ".");
// allocate storage and copy the contents of the file to a memory buffer
// (terminate it with zero)
std::vector<char> mBuffer2;
TextFileToBuffer(file.get(), mBuffer2);
const char *buffer = &mBuffer2[0];
// mesh arrays - separate here to make the handling of the pointers below easier.
std::vector<MeshInfo> meshes;
std::vector<MeshInfo> meshesWithNormals;
std::vector<MeshInfo> meshesWithUVCoords;
std::vector<MeshInfo> meshesLocked;
char line[4096];
const char *sz;
// camera parameters
aiVector3D camPos, camUp(0.f, 1.f, 0.f), camLookAt(0.f, 0.f, 1.f);
ai_real angle = 45.f;
aiVector2D resolution;
bool hasCam = false;
MeshInfo *currentMeshWithNormals = nullptr;
MeshInfo *currentMesh = nullptr;
MeshInfo *currentMeshWithUVCoords = nullptr;
ShadingInfo s; // current material info
// degree of tessellation
unsigned int iTesselation = 4;
// some temporary variables we need to parse the file
unsigned int sphere = 0,
cylinder = 0,
cone = 0,
numNamed = 0,
dodecahedron = 0,
octahedron = 0,
tetrahedron = 0,
hexahedron = 0;
// lights imported from the file
std::vector<Light> lights;
// check whether this is the NFF2 file format
if (TokenMatch(buffer, "nff", 3)) {
const ai_real qnan = get_qnan();
const aiColor4D cQNAN = aiColor4D(qnan, 0.f, 0.f, 1.f);
const aiVector3D vQNAN = aiVector3D(qnan, 0.f, 0.f);
// another NFF file format ... just a raw parser has been implemented
// no support for further details, I don't think it is worth the effort
// http://ozviz.wasp.uwa.edu.au/~pbourke/dataformats/nff/nff2.html
// http://www.netghost.narod.ru/gff/graphics/summary/sense8.htm
// First of all: remove all comments from the file
CommentRemover::RemoveLineComments("//", &mBuffer2[0]);
while (GetNextLine(buffer, line)) {
SkipSpaces(line, &sz);
if (TokenMatch(sz, "version", 7)) {
ASSIMP_LOG_INFO("NFF (Sense8) file format: ", sz);
} else if (TokenMatch(sz, "viewpos", 7)) {
AI_NFF_PARSE_TRIPLE(camPos);
hasCam = true;
} else if (TokenMatch(sz, "viewdir", 7)) {
AI_NFF_PARSE_TRIPLE(camLookAt);
hasCam = true;
}
// This starts a new object section
else if (!IsSpaceOrNewLine(*sz)) {
unsigned int subMeshIdx = 0;
// read the name of the object, skip all spaces
// at the end of it.
const char *sz3 = sz;
while (!IsSpaceOrNewLine(*sz))
++sz;
std::string objectName = std::string(sz3, (unsigned int)(sz - sz3));
const unsigned int objStart = (unsigned int)meshes.size();
// There could be a material table in a separate file
std::vector<ShadingInfo> materialTable;
while (true) {
AI_NFF2_GET_NEXT_TOKEN();
// material table - an external file
if (TokenMatch(sz, "mtable", 6)) {
SkipSpaces(&sz);
sz3 = sz;
while (!IsSpaceOrNewLine(*sz))
++sz;
const unsigned int diff = (unsigned int)(sz - sz3);
if (!diff)
ASSIMP_LOG_WARN("NFF2: Found empty mtable token");
else {
// The material table has the file extension .mat.
// If it is not there, we need to append it
std::string path = std::string(sz3, diff);
if (std::string::npos == path.find_last_of(".mat")) {
path.append(".mat");
}
// Now extract the working directory from the path to
// this file and append the material library filename
// to it.
std::string::size_type sepPos;
if ((std::string::npos == (sepPos = path.find_last_of('\\')) || !sepPos) &&
(std::string::npos == (sepPos = path.find_last_of('/')) || !sepPos)) {
sepPos = pFile.find_last_of('\\');
if (std::string::npos == sepPos) {
sepPos = pFile.find_last_of('/');
}
if (std::string::npos != sepPos) {
path = pFile.substr(0, sepPos + 1) + path;
}
}
LoadNFF2MaterialTable(materialTable, path, pIOHandler);
}
} else
break;
}
// read the numbr of vertices
unsigned int num = ::strtoul10(sz, &sz);
// temporary storage
std::vector<aiColor4D> tempColors;
std::vector<aiVector3D> tempPositions, tempTextureCoords, tempNormals;
bool hasNormals = false, hasUVs = false, hasColor = false;
tempPositions.reserve(num);
tempColors.reserve(num);
tempNormals.reserve(num);
tempTextureCoords.reserve(num);
for (unsigned int i = 0; i < num; ++i) {
AI_NFF2_GET_NEXT_TOKEN();
aiVector3D v;
AI_NFF_PARSE_TRIPLE(v);
tempPositions.push_back(v);
// parse all other attributes in the line
while (true) {
SkipSpaces(&sz);
if (IsLineEnd(*sz)) break;
// color definition
if (TokenMatch(sz, "0x", 2)) {
hasColor = true;
unsigned int numIdx = ::strtoul16(sz, &sz);
aiColor4D clr;
clr.a = 1.f;
// 0xRRGGBB
clr.r = ((numIdx >> 16u) & 0xff) / 255.f;
clr.g = ((numIdx >> 8u) & 0xff) / 255.f;
clr.b = ((numIdx)&0xff) / 255.f;
tempColors.push_back(clr);
}
// normal vector
else if (TokenMatch(sz, "norm", 4)) {
hasNormals = true;
AI_NFF_PARSE_TRIPLE(v);
tempNormals.push_back(v);
}
// UV coordinate
else if (TokenMatch(sz, "uv", 2)) {
hasUVs = true;
AI_NFF_PARSE_FLOAT(v.x);
AI_NFF_PARSE_FLOAT(v.y);
v.z = 0.f;
tempTextureCoords.push_back(v);
}
}
// fill in dummies for all attributes that have not been set
if (tempNormals.size() != tempPositions.size())
tempNormals.push_back(vQNAN);
if (tempTextureCoords.size() != tempPositions.size())
tempTextureCoords.push_back(vQNAN);
if (tempColors.size() != tempPositions.size())
tempColors.push_back(cQNAN);
}
AI_NFF2_GET_NEXT_TOKEN();
if (!num) throw DeadlyImportError("NFF2: There are zero vertices");
num = ::strtoul10(sz, &sz);
std::vector<unsigned int> tempIdx;
tempIdx.reserve(10);
for (unsigned int i = 0; i < num; ++i) {
AI_NFF2_GET_NEXT_TOKEN();
SkipSpaces(line, &sz);
unsigned int numIdx = ::strtoul10(sz, &sz);
// read all faces indices
if (numIdx) {
// mesh.faces.push_back(numIdx);
// tempIdx.erase(tempIdx.begin(),tempIdx.end());
tempIdx.resize(numIdx);
for (unsigned int a = 0; a < numIdx; ++a) {
SkipSpaces(sz, &sz);
unsigned int m = ::strtoul10(sz, &sz);
if (m >= (unsigned int)tempPositions.size()) {
ASSIMP_LOG_ERROR("NFF2: Vertex index overflow");
m = 0;
}
// mesh.vertices.push_back (tempPositions[idx]);
tempIdx[a] = m;
}
}
// build a temporary shader object for the face.
ShadingInfo shader;
unsigned int matIdx = 0;
// white material color - we have vertex colors
shader.color = aiColor3D(1.f, 1.f, 1.f);
aiColor4D c = aiColor4D(1.f, 1.f, 1.f, 1.f);
while (true) {
SkipSpaces(sz, &sz);
if (IsLineEnd(*sz)) break;
// per-polygon colors
if (TokenMatch(sz, "0x", 2)) {
hasColor = true;
const char *sz2 = sz;
numIdx = ::strtoul16(sz, &sz);
const unsigned int diff = (unsigned int)(sz - sz2);
// 0xRRGGBB
if (diff > 3) {
c.r = ((numIdx >> 16u) & 0xff) / 255.f;
c.g = ((numIdx >> 8u) & 0xff) / 255.f;
c.b = ((numIdx)&0xff) / 255.f;
}
// 0xRGB
else {
c.r = ((numIdx >> 8u) & 0xf) / 16.f;
c.g = ((numIdx >> 4u) & 0xf) / 16.f;
c.b = ((numIdx)&0xf) / 16.f;
}
}
// TODO - implement texture mapping here
#if 0
// mirror vertex texture coordinate?
else if (TokenMatch(sz,"mirror",6))
{
}
// texture coordinate scaling
else if (TokenMatch(sz,"scale",5))
{
}
// texture coordinate translation
else if (TokenMatch(sz,"trans",5))
{
}
// texture coordinate rotation angle
else if (TokenMatch(sz,"rot",3))
{
}
#endif
// texture file name for this polygon + mapping information
else if ('_' == sz[0]) {
// get mapping information
switch (sz[1]) {
case 'v':
case 'V':
shader.shaded = false;
break;
case 't':
case 'T':
case 'u':
case 'U':
ASSIMP_LOG_WARN("Unsupported NFF2 texture attribute: trans");
};
if (!sz[1] || '_' != sz[2]) {
ASSIMP_LOG_WARN("NFF2: Expected underscore after texture attributes");
continue;
}
const char *sz2 = sz + 3;
while (!IsSpaceOrNewLine(*sz))
++sz;
const unsigned int diff = (unsigned int)(sz - sz2);
if (diff) shader.texFile = std::string(sz2, diff);
}
// Two-sided material?
else if (TokenMatch(sz, "both", 4)) {
shader.twoSided = true;
}
// Material ID?
else if (!materialTable.empty() && TokenMatch(sz, "matid", 5)) {
SkipSpaces(&sz);
matIdx = ::strtoul10(sz, &sz);
if (matIdx >= materialTable.size()) {
ASSIMP_LOG_ERROR("NFF2: Material index overflow.");
matIdx = 0;
}
// now combine our current shader with the shader we
// read from the material table.
ShadingInfo &mat = materialTable[matIdx];
shader.ambient = mat.ambient;
shader.diffuse = mat.diffuse;
shader.emissive = mat.emissive;
shader.opacity = mat.opacity;
shader.specular = mat.specular;
shader.shininess = mat.shininess;
} else
SkipToken(sz);
}
// search the list of all shaders we have for this object whether
// there is an identical one. In this case, we append our mesh
// data to it.
MeshInfo *mesh = nullptr;
for (std::vector<MeshInfo>::iterator it = meshes.begin() + objStart, end = meshes.end();
it != end; ++it) {
if ((*it).shader == shader && (*it).matIndex == matIdx) {
// we have one, we can append our data to it
mesh = &(*it);
}
}
if (!mesh) {
meshes.emplace_back(PatchType_Simple, false);
mesh = &meshes.back();
mesh->matIndex = matIdx;
// We need to add a new mesh to the list. We assign
// an unique name to it to make sure the scene will
// pass the validation step for the moment.
// TODO: fix naming of objects in the scenegraph later
if (objectName.length()) {
::strcpy(mesh->name, objectName.c_str());
ASSIMP_itoa10(&mesh->name[objectName.length()], 30, subMeshIdx++);
}
// copy the shader to the mesh.
mesh->shader = shader;
}
// fill the mesh with data
if (!tempIdx.empty()) {
mesh->faces.push_back((unsigned int)tempIdx.size());
for (std::vector<unsigned int>::const_iterator it = tempIdx.begin(), end = tempIdx.end();
it != end; ++it) {
unsigned int m = *it;
// copy colors -vertex color specifications override polygon color specifications
if (hasColor) {
const aiColor4D &clr = tempColors[m];
mesh->colors.push_back((is_qnan(clr.r) ? c : clr));
}
// positions should always be there
mesh->vertices.push_back(tempPositions[m]);
// copy normal vectors
if (hasNormals)
mesh->normals.push_back(tempNormals[m]);
// copy texture coordinates
if (hasUVs)
mesh->uvs.push_back(tempTextureCoords[m]);
}
}
}
if (!num) throw DeadlyImportError("NFF2: There are zero faces");
}
}
camLookAt = camLookAt + camPos;
} else // "Normal" Neutral file format that is quite more common
{
while (GetNextLine(buffer, line)) {
sz = line;
if ('p' == line[0] || TokenMatch(sz, "tpp", 3)) {
MeshInfo *out = nullptr;
// 'tpp' - texture polygon patch primitive
if ('t' == line[0]) {
currentMeshWithUVCoords = nullptr;
for (auto &mesh : meshesWithUVCoords) {
if (mesh.shader == s) {
currentMeshWithUVCoords = &mesh;
break;
}
}
if (!currentMeshWithUVCoords) {
meshesWithUVCoords.emplace_back(PatchType_UVAndNormals);
currentMeshWithUVCoords = &meshesWithUVCoords.back();
currentMeshWithUVCoords->shader = s;
}
out = currentMeshWithUVCoords;
}
// 'pp' - polygon patch primitive
else if ('p' == line[1]) {
currentMeshWithNormals = nullptr;
for (auto &mesh : meshesWithNormals) {
if (mesh.shader == s) {
currentMeshWithNormals = &mesh;
break;
}
}
if (!currentMeshWithNormals) {
meshesWithNormals.emplace_back(PatchType_Normals);
currentMeshWithNormals = &meshesWithNormals.back();
currentMeshWithNormals->shader = s;
}
sz = &line[2];
out = currentMeshWithNormals;
}
// 'p' - polygon primitive
else {
currentMesh = nullptr;
for (auto &mesh : meshes) {
if (mesh.shader == s) {
currentMesh = &mesh;
break;
}
}
if (!currentMesh) {
meshes.emplace_back(PatchType_Simple);
currentMesh = &meshes.back();
currentMesh->shader = s;
}
sz = &line[1];
out = currentMesh;
}
SkipSpaces(sz, &sz);
unsigned int m = strtoul10(sz);
// ---- flip the face order
out->vertices.resize(out->vertices.size() + m);
if (out != currentMesh) {
out->normals.resize(out->vertices.size());
}
if (out == currentMeshWithUVCoords) {
out->uvs.resize(out->vertices.size());
}
for (unsigned int n = 0; n < m; ++n) {
if (!GetNextLine(buffer, line)) {
ASSIMP_LOG_ERROR("NFF: Unexpected EOF was encountered. Patch definition incomplete");
continue;
}
aiVector3D v;
sz = &line[0];
AI_NFF_PARSE_TRIPLE(v);
out->vertices[out->vertices.size() - n - 1] = v;
if (out != currentMesh) {
AI_NFF_PARSE_TRIPLE(v);
out->normals[out->vertices.size() - n - 1] = v;
}
if (out == currentMeshWithUVCoords) {
// FIX: in one test file this wraps over multiple lines
SkipSpaces(&sz);
if (IsLineEnd(*sz)) {
GetNextLine(buffer, line);
sz = line;
}
AI_NFF_PARSE_FLOAT(v.x);
SkipSpaces(&sz);
if (IsLineEnd(*sz)) {
GetNextLine(buffer, line);
sz = line;
}
AI_NFF_PARSE_FLOAT(v.y);
v.y = 1.f - v.y;
out->uvs[out->vertices.size() - n - 1] = v;
}
}
out->faces.push_back(m);
}
// 'f' - shading information block
else if (TokenMatch(sz, "f", 1)) {
ai_real d;
// read the RGB colors
AI_NFF_PARSE_TRIPLE(s.color);
// read the other properties
AI_NFF_PARSE_FLOAT(s.diffuse.r);
AI_NFF_PARSE_FLOAT(s.specular.r);
AI_NFF_PARSE_FLOAT(d); // skip shininess and transmittance
AI_NFF_PARSE_FLOAT(d);
AI_NFF_PARSE_FLOAT(s.refracti);
// NFF2 uses full colors here so we need to use them too
// although NFF uses simple scaling factors
s.diffuse.g = s.diffuse.b = s.diffuse.r;
s.specular.g = s.specular.b = s.specular.r;
// if the next one is NOT a number we assume it is a texture file name
// this feature is used by some NFF files on the internet and it has
// been implemented as it can be really useful
SkipSpaces(&sz);
if (!IsNumeric(*sz)) {
// TODO: Support full file names with spaces and quotation marks ...
const char *p = sz;
while (!IsSpaceOrNewLine(*sz))
++sz;
unsigned int diff = (unsigned int)(sz - p);
if (diff) {
s.texFile = std::string(p, diff);
}
} else {
AI_NFF_PARSE_FLOAT(s.ambient); // optional
}
}
// 'shader' - other way to specify a texture
else if (TokenMatch(sz, "shader", 6)) {
SkipSpaces(&sz);
const char *old = sz;
while (!IsSpaceOrNewLine(*sz))
++sz;
s.texFile = std::string(old, (uintptr_t)sz - (uintptr_t)old);
}
// 'l' - light source
else if (TokenMatch(sz, "l", 1)) {
lights.emplace_back();
Light &light = lights.back();
AI_NFF_PARSE_TRIPLE(light.position);
AI_NFF_PARSE_FLOAT(light.intensity);
AI_NFF_PARSE_TRIPLE(light.color);
}
// 's' - sphere
else if (TokenMatch(sz, "s", 1)) {
meshesLocked.emplace_back(PatchType_Simple, true);
MeshInfo &curMesh = meshesLocked.back();
curMesh.shader = s;
curMesh.shader.mapping = aiTextureMapping_SPHERE;
AI_NFF_PARSE_SHAPE_INFORMATION();
// we don't need scaling or translation here - we do it in the node's transform
StandardShapes::MakeSphere(iTesselation, curMesh.vertices);
curMesh.faces.resize(curMesh.vertices.size() / 3, 3);
// generate a name for the mesh
::ai_snprintf(curMesh.name, MeshInfo::MaxNameLen, "sphere_%i", sphere++);
}
// 'dod' - dodecahedron
else if (TokenMatch(sz, "dod", 3)) {
meshesLocked.emplace_back(PatchType_Simple, true);
MeshInfo &curMesh = meshesLocked.back();
curMesh.shader = s;
curMesh.shader.mapping = aiTextureMapping_SPHERE;
AI_NFF_PARSE_SHAPE_INFORMATION();
// we don't need scaling or translation here - we do it in the node's transform
StandardShapes::MakeDodecahedron(curMesh.vertices);
curMesh.faces.resize(curMesh.vertices.size() / 3, 3);
// generate a name for the mesh
::ai_snprintf(curMesh.name, 128, "dodecahedron_%i", dodecahedron++);
}
// 'oct' - octahedron
else if (TokenMatch(sz, "oct", 3)) {
meshesLocked.emplace_back(PatchType_Simple, true);
MeshInfo &curMesh = meshesLocked.back();
curMesh.shader = s;
curMesh.shader.mapping = aiTextureMapping_SPHERE;
AI_NFF_PARSE_SHAPE_INFORMATION();
// we don't need scaling or translation here - we do it in the node's transform
StandardShapes::MakeOctahedron(curMesh.vertices);
curMesh.faces.resize(curMesh.vertices.size() / 3, 3);
// generate a name for the mesh
::ai_snprintf(curMesh.name, MeshInfo::MaxNameLen, "octahedron_%i", octahedron++);
}
// 'tet' - tetrahedron
else if (TokenMatch(sz, "tet", 3)) {
meshesLocked.emplace_back(PatchType_Simple, true);
MeshInfo &curMesh = meshesLocked.back();
curMesh.shader = s;
curMesh.shader.mapping = aiTextureMapping_SPHERE;
AI_NFF_PARSE_SHAPE_INFORMATION();
// we don't need scaling or translation here - we do it in the node's transform
StandardShapes::MakeTetrahedron(curMesh.vertices);
curMesh.faces.resize(curMesh.vertices.size() / 3, 3);
// generate a name for the mesh
::ai_snprintf(curMesh.name, MeshInfo::MaxNameLen, "tetrahedron_%i", tetrahedron++);
}
// 'hex' - hexahedron
else if (TokenMatch(sz, "hex", 3)) {
meshesLocked.emplace_back(PatchType_Simple, true);
MeshInfo &curMesh = meshesLocked.back();
curMesh.shader = s;
curMesh.shader.mapping = aiTextureMapping_BOX;
AI_NFF_PARSE_SHAPE_INFORMATION();
// we don't need scaling or translation here - we do it in the node's transform
StandardShapes::MakeHexahedron(curMesh.vertices);
curMesh.faces.resize(curMesh.vertices.size() / 3, 3);
// generate a name for the mesh
::ai_snprintf(curMesh.name, MeshInfo::MaxNameLen, "hexahedron_%i", hexahedron++);
}
// 'c' - cone
else if (TokenMatch(sz, "c", 1)) {
meshesLocked.emplace_back(PatchType_Simple, true);
MeshInfo &curMesh = meshesLocked.back();
curMesh.shader = s;
curMesh.shader.mapping = aiTextureMapping_CYLINDER;
if (!GetNextLine(buffer, line)) {
ASSIMP_LOG_ERROR("NFF: Unexpected end of file (cone definition not complete)");
break;
}
sz = line;
// read the two center points and the respective radii
aiVector3D center1, center2;
ai_real radius1 = 0.f, radius2 = 0.f;
AI_NFF_PARSE_TRIPLE(center1);
AI_NFF_PARSE_FLOAT(radius1);
if (!GetNextLine(buffer, line)) {
ASSIMP_LOG_ERROR("NFF: Unexpected end of file (cone definition not complete)");
break;
}
sz = line;
AI_NFF_PARSE_TRIPLE(center2);
AI_NFF_PARSE_FLOAT(radius2);
// compute the center point of the cone/cylinder -
// it is its local transformation origin
curMesh.dir = center2 - center1;
curMesh.center = center1 + curMesh.dir / (ai_real)2.0;
ai_real f;
if ((f = curMesh.dir.Length()) < 10e-3f) {
ASSIMP_LOG_ERROR("NFF: Cone height is close to zero");
continue;
}
curMesh.dir /= f; // normalize
// generate the cone - it consists of simple triangles
StandardShapes::MakeCone(f, radius1, radius2,
integer_pow(4, iTesselation), curMesh.vertices);
// MakeCone() returns tris
curMesh.faces.resize(curMesh.vertices.size() / 3, 3);
// generate a name for the mesh. 'cone' if it a cone,
// 'cylinder' if it is a cylinder. Funny, isn't it?
if (radius1 != radius2) {
::ai_snprintf(curMesh.name, MeshInfo::MaxNameLen, "cone_%i", cone++);
} else {
::ai_snprintf(curMesh.name, MeshInfo::MaxNameLen, "cylinder_%i", cylinder++);
}
}
// 'tess' - tessellation
else if (TokenMatch(sz, "tess", 4)) {
SkipSpaces(&sz);
iTesselation = strtoul10(sz);
}
// 'from' - camera position
else if (TokenMatch(sz, "from", 4)) {
AI_NFF_PARSE_TRIPLE(camPos);
hasCam = true;
}
// 'at' - camera look-at vector
else if (TokenMatch(sz, "at", 2)) {
AI_NFF_PARSE_TRIPLE(camLookAt);
hasCam = true;
}
// 'up' - camera up vector
else if (TokenMatch(sz, "up", 2)) {
AI_NFF_PARSE_TRIPLE(camUp);
hasCam = true;
}
// 'angle' - (half?) camera field of view
else if (TokenMatch(sz, "angle", 5)) {
AI_NFF_PARSE_FLOAT(angle);
hasCam = true;
}
// 'resolution' - used to compute the screen aspect
else if (TokenMatch(sz, "resolution", 10)) {
AI_NFF_PARSE_FLOAT(resolution.x);
AI_NFF_PARSE_FLOAT(resolution.y);
hasCam = true;
}
// 'pb' - bezier patch. Not supported yet
else if (TokenMatch(sz, "pb", 2)) {
ASSIMP_LOG_ERROR("NFF: Encountered unsupported ID: bezier patch");
}
// 'pn' - NURBS. Not supported yet
else if (TokenMatch(sz, "pn", 2) || TokenMatch(sz, "pnn", 3)) {
ASSIMP_LOG_ERROR("NFF: Encountered unsupported ID: NURBS");
}
// '' - comment
else if ('#' == line[0]) {
const char *space;
SkipSpaces(&line[1], &space);
if (!IsLineEnd(*space)) {
ASSIMP_LOG_INFO(space);
}
}
}
}
// copy all arrays into one large
meshes.reserve(meshes.size() + meshesLocked.size() + meshesWithNormals.size() + meshesWithUVCoords.size());
meshes.insert(meshes.end(), meshesLocked.begin(), meshesLocked.end());
meshes.insert(meshes.end(), meshesWithNormals.begin(), meshesWithNormals.end());
meshes.insert(meshes.end(), meshesWithUVCoords.begin(), meshesWithUVCoords.end());
// now generate output meshes. first find out how many meshes we'll need
std::vector<MeshInfo>::const_iterator it = meshes.begin(), end = meshes.end();
for (; it != end; ++it) {
if (!(*it).faces.empty()) {
++pScene->mNumMeshes;
if ((*it).name[0]) ++numNamed;
}
}
// generate a dummy root node - assign all unnamed elements such
// as polygons and polygon patches to the root node and generate
// sub nodes for named objects such as spheres and cones.
aiNode *const root = new aiNode();
root->mName.Set("<NFF_Root>");
root->mNumChildren = numNamed + (hasCam ? 1 : 0) + (unsigned int)lights.size();
root->mNumMeshes = pScene->mNumMeshes - numNamed;
aiNode **ppcChildren = nullptr;
unsigned int *pMeshes = nullptr;
if (root->mNumMeshes)
pMeshes = root->mMeshes = new unsigned int[root->mNumMeshes];
if (root->mNumChildren)
ppcChildren = root->mChildren = new aiNode *[root->mNumChildren];
// generate the camera
if (hasCam) {
ai_assert(ppcChildren);
aiNode *nd = new aiNode();
*ppcChildren = nd;
nd->mName.Set("<NFF_Camera>");
nd->mParent = root;
// allocate the camera in the scene
pScene->mNumCameras = 1;
pScene->mCameras = new aiCamera *[1];
aiCamera *c = pScene->mCameras[0] = new aiCamera;
c->mName = nd->mName; // make sure the names are identical
c->mHorizontalFOV = AI_DEG_TO_RAD(angle);
c->mLookAt = camLookAt - camPos;
c->mPosition = camPos;
c->mUp = camUp;
// If the resolution is not specified in the file, we
// need to set 1.0 as aspect.
c->mAspect = (!resolution.y ? 0.f : resolution.x / resolution.y);
++ppcChildren;
}
// generate light sources
if (!lights.empty()) {
ai_assert(ppcChildren);
pScene->mNumLights = (unsigned int)lights.size();
pScene->mLights = new aiLight *[pScene->mNumLights];
for (unsigned int i = 0; i < pScene->mNumLights; ++i, ++ppcChildren) {
const Light &l = lights[i];
aiNode *nd = new aiNode();
*ppcChildren = nd;
nd->mParent = root;
nd->mName.length = ::ai_snprintf(nd->mName.data, 1024, "<NFF_Light%u>", i);
// allocate the light in the scene data structure
aiLight *out = pScene->mLights[i] = new aiLight();
out->mName = nd->mName; // make sure the names are identical
out->mType = aiLightSource_POINT;
out->mColorDiffuse = out->mColorSpecular = l.color * l.intensity;
out->mPosition = l.position;
}
}
if (!pScene->mNumMeshes) throw DeadlyImportError("NFF: No meshes loaded");
pScene->mMeshes = new aiMesh *[pScene->mNumMeshes];
pScene->mMaterials = new aiMaterial *[pScene->mNumMaterials = pScene->mNumMeshes];
unsigned int m = 0;
for (it = meshes.begin(); it != end; ++it) {
if ((*it).faces.empty()) continue;
const MeshInfo &src = *it;
aiMesh *const mesh = pScene->mMeshes[m] = new aiMesh();
mesh->mNumVertices = (unsigned int)src.vertices.size();
mesh->mNumFaces = (unsigned int)src.faces.size();
// Generate sub nodes for named meshes
if (src.name[0] && nullptr != ppcChildren) {
aiNode *const node = *ppcChildren = new aiNode();
node->mParent = root;
node->mNumMeshes = 1;
node->mMeshes = new unsigned int[1];
node->mMeshes[0] = m;
node->mName.Set(src.name);
// setup the transformation matrix of the node
aiMatrix4x4::FromToMatrix(aiVector3D(0.f, 1.f, 0.f),
src.dir, node->mTransformation);
aiMatrix4x4 &mat = node->mTransformation;
mat.a1 *= src.radius.x;
mat.b1 *= src.radius.x;
mat.c1 *= src.radius.x;
mat.a2 *= src.radius.y;
mat.b2 *= src.radius.y;
mat.c2 *= src.radius.y;
mat.a3 *= src.radius.z;
mat.b3 *= src.radius.z;
mat.c3 *= src.radius.z;
mat.a4 = src.center.x;
mat.b4 = src.center.y;
mat.c4 = src.center.z;
++ppcChildren;
} else {
*pMeshes++ = m;
}
// copy vertex positions
mesh->mVertices = new aiVector3D[mesh->mNumVertices];
::memcpy(mesh->mVertices, &src.vertices[0],
sizeof(aiVector3D) * mesh->mNumVertices);
// NFF2: there could be vertex colors
if (!src.colors.empty()) {
ai_assert(src.colors.size() == src.vertices.size());
// copy vertex colors
mesh->mColors[0] = new aiColor4D[mesh->mNumVertices];
::memcpy(mesh->mColors[0], &src.colors[0],
sizeof(aiColor4D) * mesh->mNumVertices);
}
if (!src.normals.empty()) {
ai_assert(src.normals.size() == src.vertices.size());
// copy normal vectors
mesh->mNormals = new aiVector3D[mesh->mNumVertices];
::memcpy(mesh->mNormals, &src.normals[0],
sizeof(aiVector3D) * mesh->mNumVertices);
}
if (!src.uvs.empty()) {
ai_assert(src.uvs.size() == src.vertices.size());
// copy texture coordinates
mesh->mTextureCoords[0] = new aiVector3D[mesh->mNumVertices];
::memcpy(mesh->mTextureCoords[0], &src.uvs[0],
sizeof(aiVector3D) * mesh->mNumVertices);
}
// generate faces
unsigned int p = 0;
aiFace *pFace = mesh->mFaces = new aiFace[mesh->mNumFaces];
for (std::vector<unsigned int>::const_iterator it2 = src.faces.begin(),
end2 = src.faces.end();
it2 != end2; ++it2, ++pFace) {
pFace->mIndices = new unsigned int[pFace->mNumIndices = *it2];
for (unsigned int o = 0; o < pFace->mNumIndices; ++o)
pFace->mIndices[o] = p++;
}
// generate a material for the mesh
aiMaterial *pcMat = (aiMaterial *)(pScene->mMaterials[m] = new aiMaterial());
mesh->mMaterialIndex = m++;
aiString matName;
matName.Set(AI_DEFAULT_MATERIAL_NAME);
pcMat->AddProperty(&matName, AI_MATKEY_NAME);
// FIX: Ignore diffuse == 0
aiColor3D c = src.shader.color * (src.shader.diffuse.r ? src.shader.diffuse : aiColor3D(1.f, 1.f, 1.f));
pcMat->AddProperty(&c, 1, AI_MATKEY_COLOR_DIFFUSE);
c = src.shader.color * src.shader.specular;
pcMat->AddProperty(&c, 1, AI_MATKEY_COLOR_SPECULAR);
// NFF2 - default values for NFF
pcMat->AddProperty(&src.shader.ambient, 1, AI_MATKEY_COLOR_AMBIENT);
pcMat->AddProperty(&src.shader.emissive, 1, AI_MATKEY_COLOR_EMISSIVE);
pcMat->AddProperty(&src.shader.opacity, 1, AI_MATKEY_OPACITY);
// setup the first texture layer, if existing
if (src.shader.texFile.length()) {
matName.Set(src.shader.texFile);
pcMat->AddProperty(&matName, AI_MATKEY_TEXTURE_DIFFUSE(0));
if (aiTextureMapping_UV != src.shader.mapping) {
aiVector3D v(0.f, -1.f, 0.f);
pcMat->AddProperty(&v, 1, AI_MATKEY_TEXMAP_AXIS_DIFFUSE(0));
pcMat->AddProperty((int *)&src.shader.mapping, 1, AI_MATKEY_MAPPING_DIFFUSE(0));
}
}
// setup the name of the material
if (src.shader.name.length()) {
matName.Set(src.shader.texFile);
pcMat->AddProperty(&matName, AI_MATKEY_NAME);
}
// setup some more material properties that are specific to NFF2
int i;
if (src.shader.twoSided) {
i = 1;
pcMat->AddProperty(&i, 1, AI_MATKEY_TWOSIDED);
}
i = (src.shader.shaded ? aiShadingMode_Gouraud : aiShadingMode_NoShading);
if (src.shader.shininess) {
i = aiShadingMode_Phong;
pcMat->AddProperty(&src.shader.shininess, 1, AI_MATKEY_SHININESS);
}
pcMat->AddProperty(&i, 1, AI_MATKEY_SHADING_MODEL);
}
pScene->mRootNode = root;
}
#endif // !! ASSIMP_BUILD_NO_NFF_IMPORTER