3731 lines
150 KiB
C++
3731 lines
150 KiB
C++
/*
|
|
Open Asset Import Library (assimp)
|
|
----------------------------------------------------------------------
|
|
|
|
Copyright (c) 2006-2022, assimp team
|
|
|
|
All rights reserved.
|
|
|
|
Redistribution and use of this software in source and binary forms,
|
|
with or without modification, are permitted provided that the
|
|
following conditions are met:
|
|
|
|
* Redistributions of source code must retain the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer in the documentation and/or other
|
|
materials provided with the distribution.
|
|
|
|
* Neither the name of the assimp team, nor the names of its
|
|
contributors may be used to endorse or promote products
|
|
derived from this software without specific prior
|
|
written permission of the assimp team.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
----------------------------------------------------------------------
|
|
*/
|
|
|
|
/** @file FBXConverter.cpp
|
|
* @brief Implementation of the FBX DOM -> aiScene converter
|
|
*/
|
|
|
|
#ifndef ASSIMP_BUILD_NO_FBX_IMPORTER
|
|
|
|
#include "FBXConverter.h"
|
|
#include "FBXDocument.h"
|
|
#include "FBXImporter.h"
|
|
#include "FBXMeshGeometry.h"
|
|
#include "FBXParser.h"
|
|
#include "FBXProperties.h"
|
|
#include "FBXUtil.h"
|
|
|
|
#include <assimp/MathFunctions.h>
|
|
#include <assimp/StringComparison.h>
|
|
|
|
#include <assimp/scene.h>
|
|
|
|
#include <assimp/CreateAnimMesh.h>
|
|
#include <assimp/StringUtils.h>
|
|
#include <assimp/commonMetaData.h>
|
|
|
|
#include <stdlib.h>
|
|
#include <cstdint>
|
|
#include <iomanip>
|
|
#include <iterator>
|
|
#include <memory>
|
|
#include <sstream>
|
|
|
|
namespace Assimp {
|
|
namespace FBX {
|
|
|
|
using namespace Util;
|
|
|
|
#define MAGIC_NODE_TAG "_$AssimpFbx$"
|
|
|
|
#define CONVERT_FBX_TIME(time) static_cast<double>(time) / 46186158000LL
|
|
|
|
FBXConverter::FBXConverter(aiScene *out, const Document &doc, bool removeEmptyBones) :
|
|
defaultMaterialIndex(),
|
|
mMeshes(),
|
|
lights(),
|
|
cameras(),
|
|
textures(),
|
|
materials_converted(),
|
|
textures_converted(),
|
|
meshes_converted(),
|
|
node_anim_chain_bits(),
|
|
mNodeNames(),
|
|
anim_fps(),
|
|
mSceneOut(out),
|
|
doc(doc),
|
|
mRemoveEmptyBones(removeEmptyBones) {
|
|
// animations need to be converted first since this will
|
|
// populate the node_anim_chain_bits map, which is needed
|
|
// to determine which nodes need to be generated.
|
|
ConvertAnimations();
|
|
// Embedded textures in FBX could be connected to nothing but to itself,
|
|
// for instance Texture -> Video connection only but not to the main graph,
|
|
// The idea here is to traverse all objects to find these Textures and convert them,
|
|
// so later during material conversion it will find converted texture in the textures_converted array.
|
|
if (doc.Settings().readTextures) {
|
|
ConvertOrphanedEmbeddedTextures();
|
|
}
|
|
ConvertRootNode();
|
|
|
|
if (doc.Settings().readAllMaterials) {
|
|
// unfortunately this means we have to evaluate all objects
|
|
for (const ObjectMap::value_type &v : doc.Objects()) {
|
|
|
|
const Object *ob = v.second->Get();
|
|
if (!ob) {
|
|
continue;
|
|
}
|
|
|
|
const Material *mat = dynamic_cast<const Material *>(ob);
|
|
if (mat) {
|
|
|
|
if (materials_converted.find(mat) == materials_converted.end()) {
|
|
ConvertMaterial(*mat, 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
ConvertGlobalSettings();
|
|
TransferDataToScene();
|
|
|
|
// if we didn't read any meshes set the AI_SCENE_FLAGS_INCOMPLETE
|
|
// to make sure the scene passes assimp's validation. FBX files
|
|
// need not contain geometry (i.e. camera animations, raw armatures).
|
|
if (out->mNumMeshes == 0) {
|
|
out->mFlags |= AI_SCENE_FLAGS_INCOMPLETE;
|
|
}
|
|
}
|
|
|
|
FBXConverter::~FBXConverter() {
|
|
std::for_each(mMeshes.begin(), mMeshes.end(), Util::delete_fun<aiMesh>());
|
|
std::for_each(materials.begin(), materials.end(), Util::delete_fun<aiMaterial>());
|
|
std::for_each(animations.begin(), animations.end(), Util::delete_fun<aiAnimation>());
|
|
std::for_each(lights.begin(), lights.end(), Util::delete_fun<aiLight>());
|
|
std::for_each(cameras.begin(), cameras.end(), Util::delete_fun<aiCamera>());
|
|
std::for_each(textures.begin(), textures.end(), Util::delete_fun<aiTexture>());
|
|
}
|
|
|
|
void FBXConverter::ConvertRootNode() {
|
|
mSceneOut->mRootNode = new aiNode();
|
|
std::string unique_name;
|
|
GetUniqueName("RootNode", unique_name);
|
|
mSceneOut->mRootNode->mName.Set(unique_name);
|
|
|
|
// root has ID 0
|
|
ConvertNodes(0L, mSceneOut->mRootNode, mSceneOut->mRootNode);
|
|
}
|
|
|
|
static std::string getAncestorBaseName(const aiNode *node) {
|
|
const char *nodeName = nullptr;
|
|
size_t length = 0;
|
|
while (node && (!nodeName || length == 0)) {
|
|
nodeName = node->mName.C_Str();
|
|
length = node->mName.length;
|
|
node = node->mParent;
|
|
}
|
|
|
|
if (!nodeName || length == 0) {
|
|
return {};
|
|
}
|
|
// could be std::string_view if c++17 available
|
|
return std::string(nodeName, length);
|
|
}
|
|
|
|
// Make unique name
|
|
std::string FBXConverter::MakeUniqueNodeName(const Model *const model, const aiNode &parent) {
|
|
std::string original_name = FixNodeName(model->Name());
|
|
if (original_name.empty()) {
|
|
original_name = getAncestorBaseName(&parent);
|
|
}
|
|
std::string unique_name;
|
|
GetUniqueName(original_name, unique_name);
|
|
return unique_name;
|
|
}
|
|
|
|
/// This struct manages nodes which may or may not end up in the node hierarchy.
|
|
/// When a node becomes a child of another node, that node becomes its owner and mOwnership should be released.
|
|
struct FBXConverter::PotentialNode {
|
|
PotentialNode() : mOwnership(new aiNode), mNode(mOwnership.get()) {}
|
|
PotentialNode(const std::string& name) : mOwnership(new aiNode(name)), mNode(mOwnership.get()) {}
|
|
aiNode* operator->() { return mNode; }
|
|
std::unique_ptr<aiNode> mOwnership;
|
|
aiNode* mNode;
|
|
};
|
|
|
|
/// todo: pre-build node hierarchy
|
|
/// todo: get bone from stack
|
|
/// todo: make map of aiBone* to aiNode*
|
|
/// then update convert clusters to the new format
|
|
void FBXConverter::ConvertNodes(uint64_t id, aiNode *parent, aiNode *root_node) {
|
|
const std::vector<const Connection *> &conns = doc.GetConnectionsByDestinationSequenced(id, "Model");
|
|
|
|
std::vector<PotentialNode> nodes;
|
|
nodes.reserve(conns.size());
|
|
|
|
std::vector<PotentialNode> nodes_chain;
|
|
std::vector<PotentialNode> post_nodes_chain;
|
|
|
|
for (const Connection *con : conns) {
|
|
// ignore object-property links
|
|
if (con->PropertyName().length()) {
|
|
// really important we document why this is ignored.
|
|
FBXImporter::LogInfo("ignoring property link - no docs on why this is ignored");
|
|
continue; //?
|
|
}
|
|
|
|
// convert connection source object into Object base class
|
|
const Object *const object = con->SourceObject();
|
|
if (nullptr == object) {
|
|
FBXImporter::LogError("failed to convert source object for Model link");
|
|
continue;
|
|
}
|
|
|
|
// FBX Model::Cube, Model::Bone001, etc elements
|
|
// This detects if we can cast the object into this model structure.
|
|
const Model *const model = dynamic_cast<const Model *>(object);
|
|
|
|
if (nullptr != model) {
|
|
nodes_chain.clear();
|
|
post_nodes_chain.clear();
|
|
aiMatrix4x4 new_abs_transform = parent->mTransformation;
|
|
std::string node_name = FixNodeName(model->Name());
|
|
// even though there is only a single input node, the design of
|
|
// assimp (or rather: the complicated transformation chain that
|
|
// is employed by fbx) means that we may need multiple aiNode's
|
|
// to represent a fbx node's transformation.
|
|
|
|
// generate node transforms - this includes pivot data
|
|
// if need_additional_node is true then you t
|
|
const bool need_additional_node = GenerateTransformationNodeChain(*model, node_name, nodes_chain, post_nodes_chain);
|
|
|
|
// assert that for the current node we must have at least a single transform
|
|
ai_assert(nodes_chain.size());
|
|
|
|
if (need_additional_node) {
|
|
nodes_chain.emplace_back(node_name);
|
|
}
|
|
|
|
//setup metadata on newest node
|
|
SetupNodeMetadata(*model, *nodes_chain.back().mNode);
|
|
|
|
// link all nodes in a row
|
|
aiNode *last_parent = parent;
|
|
for (PotentialNode& child : nodes_chain) {
|
|
ai_assert(child.mNode);
|
|
|
|
if (last_parent != parent) {
|
|
last_parent->mNumChildren = 1;
|
|
last_parent->mChildren = new aiNode *[1];
|
|
last_parent->mChildren[0] = child.mOwnership.release();
|
|
}
|
|
|
|
child->mParent = last_parent;
|
|
last_parent = child.mNode;
|
|
}
|
|
|
|
// attach geometry
|
|
ConvertModel(*model, nodes_chain.back().mNode, root_node, new_abs_transform);
|
|
|
|
// check if there will be any child nodes
|
|
const std::vector<const Connection *> &child_conns = doc.GetConnectionsByDestinationSequenced(model->ID(), "Model");
|
|
|
|
// if so, link the geometric transform inverse nodes
|
|
// before we attach any child nodes
|
|
if (child_conns.size()) {
|
|
for (PotentialNode& postnode : post_nodes_chain) {
|
|
ai_assert(postnode.mNode);
|
|
|
|
if (last_parent != parent) {
|
|
last_parent->mNumChildren = 1;
|
|
last_parent->mChildren = new aiNode *[1];
|
|
last_parent->mChildren[0] = postnode.mOwnership.release();
|
|
}
|
|
|
|
postnode->mParent = last_parent;
|
|
last_parent = postnode.mNode;
|
|
}
|
|
} else {
|
|
// free the nodes we allocated as we don't need them
|
|
post_nodes_chain.clear();
|
|
}
|
|
|
|
// recursion call - child nodes
|
|
ConvertNodes(model->ID(), last_parent, root_node);
|
|
|
|
if (doc.Settings().readLights) {
|
|
ConvertLights(*model, node_name);
|
|
}
|
|
|
|
if (doc.Settings().readCameras) {
|
|
ConvertCameras(*model, node_name);
|
|
}
|
|
|
|
nodes.push_back(std::move(nodes_chain.front()));
|
|
nodes_chain.clear();
|
|
}
|
|
}
|
|
|
|
if (nodes.empty()) {
|
|
parent->mNumChildren = 0;
|
|
parent->mChildren = nullptr;
|
|
}
|
|
|
|
parent->mChildren = new aiNode *[nodes.size()]();
|
|
parent->mNumChildren = static_cast<unsigned int>(nodes.size());
|
|
for (unsigned int i = 0; i < nodes.size(); ++i) {
|
|
parent->mChildren[i] = nodes[i].mOwnership.release();
|
|
}
|
|
}
|
|
|
|
void FBXConverter::ConvertLights(const Model &model, const std::string &orig_name) {
|
|
const std::vector<const NodeAttribute *> &node_attrs = model.GetAttributes();
|
|
for (const NodeAttribute *attr : node_attrs) {
|
|
const Light *const light = dynamic_cast<const Light *>(attr);
|
|
if (light) {
|
|
ConvertLight(*light, orig_name);
|
|
}
|
|
}
|
|
}
|
|
|
|
void FBXConverter::ConvertCameras(const Model &model, const std::string &orig_name) {
|
|
const std::vector<const NodeAttribute *> &node_attrs = model.GetAttributes();
|
|
for (const NodeAttribute *attr : node_attrs) {
|
|
const Camera *const cam = dynamic_cast<const Camera *>(attr);
|
|
if (cam) {
|
|
ConvertCamera(*cam, orig_name);
|
|
}
|
|
}
|
|
}
|
|
|
|
void FBXConverter::ConvertLight(const Light &light, const std::string &orig_name) {
|
|
lights.push_back(new aiLight());
|
|
aiLight *const out_light = lights.back();
|
|
|
|
out_light->mName.Set(orig_name);
|
|
|
|
const float intensity = light.Intensity() / 100.0f;
|
|
const aiVector3D &col = light.Color();
|
|
|
|
out_light->mColorDiffuse = aiColor3D(col.x, col.y, col.z);
|
|
out_light->mColorDiffuse.r *= intensity;
|
|
out_light->mColorDiffuse.g *= intensity;
|
|
out_light->mColorDiffuse.b *= intensity;
|
|
|
|
out_light->mColorSpecular = out_light->mColorDiffuse;
|
|
|
|
//lights are defined along negative y direction
|
|
out_light->mPosition = aiVector3D(0.0f);
|
|
out_light->mDirection = aiVector3D(0.0f, -1.0f, 0.0f);
|
|
out_light->mUp = aiVector3D(0.0f, 0.0f, -1.0f);
|
|
|
|
switch (light.LightType()) {
|
|
case Light::Type_Point:
|
|
out_light->mType = aiLightSource_POINT;
|
|
break;
|
|
|
|
case Light::Type_Directional:
|
|
out_light->mType = aiLightSource_DIRECTIONAL;
|
|
break;
|
|
|
|
case Light::Type_Spot:
|
|
out_light->mType = aiLightSource_SPOT;
|
|
out_light->mAngleOuterCone = AI_DEG_TO_RAD(light.OuterAngle());
|
|
out_light->mAngleInnerCone = AI_DEG_TO_RAD(light.InnerAngle());
|
|
break;
|
|
|
|
case Light::Type_Area:
|
|
FBXImporter::LogWarn("cannot represent area light, set to UNDEFINED");
|
|
out_light->mType = aiLightSource_UNDEFINED;
|
|
break;
|
|
|
|
case Light::Type_Volume:
|
|
FBXImporter::LogWarn("cannot represent volume light, set to UNDEFINED");
|
|
out_light->mType = aiLightSource_UNDEFINED;
|
|
break;
|
|
default:
|
|
ai_assert(false);
|
|
}
|
|
|
|
float decay = light.DecayStart();
|
|
switch (light.DecayType()) {
|
|
case Light::Decay_None:
|
|
out_light->mAttenuationConstant = decay;
|
|
out_light->mAttenuationLinear = 0.0f;
|
|
out_light->mAttenuationQuadratic = 0.0f;
|
|
break;
|
|
case Light::Decay_Linear:
|
|
out_light->mAttenuationConstant = 0.0f;
|
|
out_light->mAttenuationLinear = 2.0f / decay;
|
|
out_light->mAttenuationQuadratic = 0.0f;
|
|
break;
|
|
case Light::Decay_Quadratic:
|
|
out_light->mAttenuationConstant = 0.0f;
|
|
out_light->mAttenuationLinear = 0.0f;
|
|
out_light->mAttenuationQuadratic = 2.0f / (decay * decay);
|
|
break;
|
|
case Light::Decay_Cubic:
|
|
FBXImporter::LogWarn("cannot represent cubic attenuation, set to Quadratic");
|
|
out_light->mAttenuationQuadratic = 1.0f;
|
|
break;
|
|
default:
|
|
ai_assert(false);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void FBXConverter::ConvertCamera(const Camera &cam, const std::string &orig_name) {
|
|
cameras.push_back(new aiCamera());
|
|
aiCamera *const out_camera = cameras.back();
|
|
|
|
out_camera->mName.Set(orig_name);
|
|
|
|
out_camera->mAspect = cam.AspectWidth() / cam.AspectHeight();
|
|
|
|
out_camera->mPosition = aiVector3D(0.0f);
|
|
out_camera->mLookAt = aiVector3D(1.0f, 0.0f, 0.0f);
|
|
out_camera->mUp = aiVector3D(0.0f, 1.0f, 0.0f);
|
|
|
|
out_camera->mHorizontalFOV = AI_DEG_TO_RAD(cam.FieldOfView());
|
|
|
|
out_camera->mClipPlaneNear = cam.NearPlane();
|
|
out_camera->mClipPlaneFar = cam.FarPlane();
|
|
|
|
out_camera->mHorizontalFOV = AI_DEG_TO_RAD(cam.FieldOfView());
|
|
out_camera->mClipPlaneNear = cam.NearPlane();
|
|
out_camera->mClipPlaneFar = cam.FarPlane();
|
|
}
|
|
|
|
void FBXConverter::GetUniqueName(const std::string &name, std::string &uniqueName) {
|
|
uniqueName = name;
|
|
auto it_pair = mNodeNames.insert({ name, 0 }); // duplicate node name instance count
|
|
unsigned int &i = it_pair.first->second;
|
|
while (!it_pair.second) {
|
|
++i;
|
|
std::ostringstream ext;
|
|
ext << name << std::setfill('0') << std::setw(3) << i;
|
|
uniqueName = ext.str();
|
|
it_pair = mNodeNames.insert({ uniqueName, 0 });
|
|
}
|
|
}
|
|
|
|
const char *FBXConverter::NameTransformationComp(TransformationComp comp) {
|
|
switch (comp) {
|
|
case TransformationComp_Translation:
|
|
return "Translation";
|
|
case TransformationComp_RotationOffset:
|
|
return "RotationOffset";
|
|
case TransformationComp_RotationPivot:
|
|
return "RotationPivot";
|
|
case TransformationComp_PreRotation:
|
|
return "PreRotation";
|
|
case TransformationComp_Rotation:
|
|
return "Rotation";
|
|
case TransformationComp_PostRotation:
|
|
return "PostRotation";
|
|
case TransformationComp_RotationPivotInverse:
|
|
return "RotationPivotInverse";
|
|
case TransformationComp_ScalingOffset:
|
|
return "ScalingOffset";
|
|
case TransformationComp_ScalingPivot:
|
|
return "ScalingPivot";
|
|
case TransformationComp_Scaling:
|
|
return "Scaling";
|
|
case TransformationComp_ScalingPivotInverse:
|
|
return "ScalingPivotInverse";
|
|
case TransformationComp_GeometricScaling:
|
|
return "GeometricScaling";
|
|
case TransformationComp_GeometricRotation:
|
|
return "GeometricRotation";
|
|
case TransformationComp_GeometricTranslation:
|
|
return "GeometricTranslation";
|
|
case TransformationComp_GeometricScalingInverse:
|
|
return "GeometricScalingInverse";
|
|
case TransformationComp_GeometricRotationInverse:
|
|
return "GeometricRotationInverse";
|
|
case TransformationComp_GeometricTranslationInverse:
|
|
return "GeometricTranslationInverse";
|
|
case TransformationComp_MAXIMUM: // this is to silence compiler warnings
|
|
default:
|
|
break;
|
|
}
|
|
|
|
ai_assert(false);
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
const char *FBXConverter::NameTransformationCompProperty(TransformationComp comp) {
|
|
switch (comp) {
|
|
case TransformationComp_Translation:
|
|
return "Lcl Translation";
|
|
case TransformationComp_RotationOffset:
|
|
return "RotationOffset";
|
|
case TransformationComp_RotationPivot:
|
|
return "RotationPivot";
|
|
case TransformationComp_PreRotation:
|
|
return "PreRotation";
|
|
case TransformationComp_Rotation:
|
|
return "Lcl Rotation";
|
|
case TransformationComp_PostRotation:
|
|
return "PostRotation";
|
|
case TransformationComp_RotationPivotInverse:
|
|
return "RotationPivotInverse";
|
|
case TransformationComp_ScalingOffset:
|
|
return "ScalingOffset";
|
|
case TransformationComp_ScalingPivot:
|
|
return "ScalingPivot";
|
|
case TransformationComp_Scaling:
|
|
return "Lcl Scaling";
|
|
case TransformationComp_ScalingPivotInverse:
|
|
return "ScalingPivotInverse";
|
|
case TransformationComp_GeometricScaling:
|
|
return "GeometricScaling";
|
|
case TransformationComp_GeometricRotation:
|
|
return "GeometricRotation";
|
|
case TransformationComp_GeometricTranslation:
|
|
return "GeometricTranslation";
|
|
case TransformationComp_GeometricScalingInverse:
|
|
return "GeometricScalingInverse";
|
|
case TransformationComp_GeometricRotationInverse:
|
|
return "GeometricRotationInverse";
|
|
case TransformationComp_GeometricTranslationInverse:
|
|
return "GeometricTranslationInverse";
|
|
case TransformationComp_MAXIMUM: // this is to silence compiler warnings
|
|
break;
|
|
}
|
|
|
|
ai_assert(false);
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
aiVector3D FBXConverter::TransformationCompDefaultValue(TransformationComp comp) {
|
|
// XXX a neat way to solve the never-ending special cases for scaling
|
|
// would be to do everything in log space!
|
|
return comp == TransformationComp_Scaling ? aiVector3D(1.f, 1.f, 1.f) : aiVector3D();
|
|
}
|
|
|
|
void FBXConverter::GetRotationMatrix(Model::RotOrder mode, const aiVector3D &rotation, aiMatrix4x4 &out) {
|
|
if (mode == Model::RotOrder_SphericXYZ) {
|
|
FBXImporter::LogError("Unsupported RotationMode: SphericXYZ");
|
|
out = aiMatrix4x4();
|
|
return;
|
|
}
|
|
|
|
const float angle_epsilon = Math::getEpsilon<float>();
|
|
|
|
out = aiMatrix4x4();
|
|
|
|
bool is_id[3] = { true, true, true };
|
|
|
|
aiMatrix4x4 temp[3];
|
|
if (std::fabs(rotation.z) > angle_epsilon) {
|
|
aiMatrix4x4::RotationZ(AI_DEG_TO_RAD(rotation.z), temp[2]);
|
|
is_id[2] = false;
|
|
}
|
|
if (std::fabs(rotation.y) > angle_epsilon) {
|
|
aiMatrix4x4::RotationY(AI_DEG_TO_RAD(rotation.y), temp[1]);
|
|
is_id[1] = false;
|
|
}
|
|
if (std::fabs(rotation.x) > angle_epsilon) {
|
|
aiMatrix4x4::RotationX(AI_DEG_TO_RAD(rotation.x), temp[0]);
|
|
is_id[0] = false;
|
|
}
|
|
|
|
int order[3] = { -1, -1, -1 };
|
|
|
|
// note: rotation order is inverted since we're left multiplying as is usual in assimp
|
|
switch (mode) {
|
|
case Model::RotOrder_EulerXYZ:
|
|
order[0] = 2;
|
|
order[1] = 1;
|
|
order[2] = 0;
|
|
break;
|
|
|
|
case Model::RotOrder_EulerXZY:
|
|
order[0] = 1;
|
|
order[1] = 2;
|
|
order[2] = 0;
|
|
break;
|
|
|
|
case Model::RotOrder_EulerYZX:
|
|
order[0] = 0;
|
|
order[1] = 2;
|
|
order[2] = 1;
|
|
break;
|
|
|
|
case Model::RotOrder_EulerYXZ:
|
|
order[0] = 2;
|
|
order[1] = 0;
|
|
order[2] = 1;
|
|
break;
|
|
|
|
case Model::RotOrder_EulerZXY:
|
|
order[0] = 1;
|
|
order[1] = 0;
|
|
order[2] = 2;
|
|
break;
|
|
|
|
case Model::RotOrder_EulerZYX:
|
|
order[0] = 0;
|
|
order[1] = 1;
|
|
order[2] = 2;
|
|
break;
|
|
|
|
default:
|
|
ai_assert(false);
|
|
break;
|
|
}
|
|
|
|
ai_assert(order[0] >= 0);
|
|
ai_assert(order[0] <= 2);
|
|
ai_assert(order[1] >= 0);
|
|
ai_assert(order[1] <= 2);
|
|
ai_assert(order[2] >= 0);
|
|
ai_assert(order[2] <= 2);
|
|
|
|
if (!is_id[order[0]]) {
|
|
out = temp[order[0]];
|
|
}
|
|
|
|
if (!is_id[order[1]]) {
|
|
out = out * temp[order[1]];
|
|
}
|
|
|
|
if (!is_id[order[2]]) {
|
|
out = out * temp[order[2]];
|
|
}
|
|
}
|
|
|
|
bool FBXConverter::NeedsComplexTransformationChain(const Model &model) {
|
|
const PropertyTable &props = model.Props();
|
|
|
|
const auto zero_epsilon = ai_epsilon;
|
|
const aiVector3D all_ones(1.0f, 1.0f, 1.0f);
|
|
for (size_t i = 0; i < TransformationComp_MAXIMUM; ++i) {
|
|
const TransformationComp comp = static_cast<TransformationComp>(i);
|
|
|
|
if (comp == TransformationComp_Rotation || comp == TransformationComp_Scaling || comp == TransformationComp_Translation ||
|
|
comp == TransformationComp_PreRotation || comp == TransformationComp_PostRotation) {
|
|
continue;
|
|
}
|
|
|
|
bool scale_compare = (comp == TransformationComp_GeometricScaling || comp == TransformationComp_Scaling);
|
|
|
|
bool ok = true;
|
|
const aiVector3D &v = PropertyGet<aiVector3D>(props, NameTransformationCompProperty(comp), ok);
|
|
if (ok && scale_compare) {
|
|
if ((v - all_ones).SquareLength() > zero_epsilon) {
|
|
return true;
|
|
}
|
|
} else if (ok) {
|
|
if (v.SquareLength() > zero_epsilon) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
std::string FBXConverter::NameTransformationChainNode(const std::string &name, TransformationComp comp) {
|
|
return name + std::string(MAGIC_NODE_TAG) + "_" + NameTransformationComp(comp);
|
|
}
|
|
|
|
bool FBXConverter::GenerateTransformationNodeChain(const Model &model, const std::string &name, std::vector<PotentialNode> &output_nodes,
|
|
std::vector<PotentialNode> &post_output_nodes) {
|
|
const PropertyTable &props = model.Props();
|
|
const Model::RotOrder rot = model.RotationOrder();
|
|
|
|
bool ok;
|
|
|
|
aiMatrix4x4 chain[TransformationComp_MAXIMUM];
|
|
|
|
ai_assert(TransformationComp_MAXIMUM < 32);
|
|
std::uint32_t chainBits = 0;
|
|
// A node won't need a node chain if it only has these.
|
|
const std::uint32_t chainMaskSimple = (1 << TransformationComp_Translation) + (1 << TransformationComp_Scaling) + (1 << TransformationComp_Rotation);
|
|
// A node will need a node chain if it has any of these.
|
|
const std::uint32_t chainMaskComplex = ((1 << (TransformationComp_MAXIMUM)) - 1) - chainMaskSimple;
|
|
|
|
std::fill_n(chain, static_cast<unsigned int>(TransformationComp_MAXIMUM), aiMatrix4x4());
|
|
|
|
// generate transformation matrices for all the different transformation components
|
|
const float zero_epsilon = Math::getEpsilon<float>();
|
|
const aiVector3D all_ones(1.0f, 1.0f, 1.0f);
|
|
|
|
const aiVector3D &PreRotation = PropertyGet<aiVector3D>(props, "PreRotation", ok);
|
|
if (ok && PreRotation.SquareLength() > zero_epsilon) {
|
|
chainBits = chainBits | (1 << TransformationComp_PreRotation);
|
|
|
|
GetRotationMatrix(Model::RotOrder::RotOrder_EulerXYZ, PreRotation, chain[TransformationComp_PreRotation]);
|
|
}
|
|
|
|
const aiVector3D &PostRotation = PropertyGet<aiVector3D>(props, "PostRotation", ok);
|
|
if (ok && PostRotation.SquareLength() > zero_epsilon) {
|
|
chainBits = chainBits | (1 << TransformationComp_PostRotation);
|
|
|
|
GetRotationMatrix(Model::RotOrder::RotOrder_EulerXYZ, PostRotation, chain[TransformationComp_PostRotation]);
|
|
}
|
|
|
|
const aiVector3D &RotationPivot = PropertyGet<aiVector3D>(props, "RotationPivot", ok);
|
|
if (ok && RotationPivot.SquareLength() > zero_epsilon) {
|
|
chainBits = chainBits | (1 << TransformationComp_RotationPivot) | (1 << TransformationComp_RotationPivotInverse);
|
|
|
|
aiMatrix4x4::Translation(RotationPivot, chain[TransformationComp_RotationPivot]);
|
|
aiMatrix4x4::Translation(-RotationPivot, chain[TransformationComp_RotationPivotInverse]);
|
|
}
|
|
|
|
const aiVector3D &RotationOffset = PropertyGet<aiVector3D>(props, "RotationOffset", ok);
|
|
if (ok && RotationOffset.SquareLength() > zero_epsilon) {
|
|
chainBits = chainBits | (1 << TransformationComp_RotationOffset);
|
|
|
|
aiMatrix4x4::Translation(RotationOffset, chain[TransformationComp_RotationOffset]);
|
|
}
|
|
|
|
const aiVector3D &ScalingOffset = PropertyGet<aiVector3D>(props, "ScalingOffset", ok);
|
|
if (ok && ScalingOffset.SquareLength() > zero_epsilon) {
|
|
chainBits = chainBits | (1 << TransformationComp_ScalingOffset);
|
|
|
|
aiMatrix4x4::Translation(ScalingOffset, chain[TransformationComp_ScalingOffset]);
|
|
}
|
|
|
|
const aiVector3D &ScalingPivot = PropertyGet<aiVector3D>(props, "ScalingPivot", ok);
|
|
if (ok && ScalingPivot.SquareLength() > zero_epsilon) {
|
|
chainBits = chainBits | (1 << TransformationComp_ScalingPivot) | (1 << TransformationComp_ScalingPivotInverse);
|
|
|
|
aiMatrix4x4::Translation(ScalingPivot, chain[TransformationComp_ScalingPivot]);
|
|
aiMatrix4x4::Translation(-ScalingPivot, chain[TransformationComp_ScalingPivotInverse]);
|
|
}
|
|
|
|
const aiVector3D &Translation = PropertyGet<aiVector3D>(props, "Lcl Translation", ok);
|
|
if (ok && Translation.SquareLength() > zero_epsilon) {
|
|
chainBits = chainBits | (1 << TransformationComp_Translation);
|
|
|
|
aiMatrix4x4::Translation(Translation, chain[TransformationComp_Translation]);
|
|
}
|
|
|
|
const aiVector3D &Scaling = PropertyGet<aiVector3D>(props, "Lcl Scaling", ok);
|
|
if (ok && (Scaling - all_ones).SquareLength() > zero_epsilon) {
|
|
chainBits = chainBits | (1 << TransformationComp_Scaling);
|
|
|
|
aiMatrix4x4::Scaling(Scaling, chain[TransformationComp_Scaling]);
|
|
}
|
|
|
|
const aiVector3D &Rotation = PropertyGet<aiVector3D>(props, "Lcl Rotation", ok);
|
|
if (ok && Rotation.SquareLength() > zero_epsilon) {
|
|
chainBits = chainBits | (1 << TransformationComp_Rotation);
|
|
|
|
GetRotationMatrix(rot, Rotation, chain[TransformationComp_Rotation]);
|
|
}
|
|
|
|
const aiVector3D &GeometricScaling = PropertyGet<aiVector3D>(props, "GeometricScaling", ok);
|
|
if (ok && (GeometricScaling - all_ones).SquareLength() > zero_epsilon) {
|
|
chainBits = chainBits | (1 << TransformationComp_GeometricScaling);
|
|
aiMatrix4x4::Scaling(GeometricScaling, chain[TransformationComp_GeometricScaling]);
|
|
aiVector3D GeometricScalingInverse = GeometricScaling;
|
|
bool canscale = true;
|
|
for (unsigned int i = 0; i < 3; ++i) {
|
|
if (std::fabs(GeometricScalingInverse[i]) > zero_epsilon) {
|
|
GeometricScalingInverse[i] = 1.0f / GeometricScaling[i];
|
|
} else {
|
|
FBXImporter::LogError("cannot invert geometric scaling matrix with a 0.0 scale component");
|
|
canscale = false;
|
|
break;
|
|
}
|
|
}
|
|
if (canscale) {
|
|
chainBits = chainBits | (1 << TransformationComp_GeometricScalingInverse);
|
|
aiMatrix4x4::Scaling(GeometricScalingInverse, chain[TransformationComp_GeometricScalingInverse]);
|
|
}
|
|
}
|
|
|
|
const aiVector3D &GeometricRotation = PropertyGet<aiVector3D>(props, "GeometricRotation", ok);
|
|
if (ok && GeometricRotation.SquareLength() > zero_epsilon) {
|
|
chainBits = chainBits | (1 << TransformationComp_GeometricRotation) | (1 << TransformationComp_GeometricRotationInverse);
|
|
GetRotationMatrix(rot, GeometricRotation, chain[TransformationComp_GeometricRotation]);
|
|
GetRotationMatrix(rot, GeometricRotation, chain[TransformationComp_GeometricRotationInverse]);
|
|
chain[TransformationComp_GeometricRotationInverse].Inverse();
|
|
}
|
|
|
|
const aiVector3D &GeometricTranslation = PropertyGet<aiVector3D>(props, "GeometricTranslation", ok);
|
|
if (ok && GeometricTranslation.SquareLength() > zero_epsilon) {
|
|
chainBits = chainBits | (1 << TransformationComp_GeometricTranslation) | (1 << TransformationComp_GeometricTranslationInverse);
|
|
aiMatrix4x4::Translation(GeometricTranslation, chain[TransformationComp_GeometricTranslation]);
|
|
aiMatrix4x4::Translation(-GeometricTranslation, chain[TransformationComp_GeometricTranslationInverse]);
|
|
}
|
|
|
|
// now, if we have more than just Translation, Scaling and Rotation,
|
|
// we need to generate a full node chain to accommodate for assimp's
|
|
// lack to express pivots and offsets.
|
|
if ((chainBits & chainMaskComplex) && doc.Settings().preservePivots) {
|
|
FBXImporter::LogInfo("generating full transformation chain for node: ", name);
|
|
|
|
// query the anim_chain_bits dictionary to find out which chain elements
|
|
// have associated node animation channels. These can not be dropped
|
|
// even if they have identity transform in bind pose.
|
|
NodeAnimBitMap::const_iterator it = node_anim_chain_bits.find(name);
|
|
const unsigned int anim_chain_bitmask = (it == node_anim_chain_bits.end() ? 0 : (*it).second);
|
|
|
|
unsigned int bit = 0x1;
|
|
for (size_t i = 0; i < TransformationComp_MAXIMUM; ++i, bit <<= 1) {
|
|
const TransformationComp comp = static_cast<TransformationComp>(i);
|
|
|
|
if ((chainBits & bit) == 0 && (anim_chain_bitmask & bit) == 0) {
|
|
continue;
|
|
}
|
|
|
|
if (comp == TransformationComp_PostRotation) {
|
|
chain[i] = chain[i].Inverse();
|
|
}
|
|
|
|
PotentialNode nd;
|
|
nd->mName.Set(NameTransformationChainNode(name, comp));
|
|
nd->mTransformation = chain[i];
|
|
|
|
// geometric inverses go in a post-node chain
|
|
if (comp == TransformationComp_GeometricScalingInverse ||
|
|
comp == TransformationComp_GeometricRotationInverse ||
|
|
comp == TransformationComp_GeometricTranslationInverse) {
|
|
post_output_nodes.emplace_back(std::move(nd));
|
|
} else {
|
|
output_nodes.emplace_back(std::move(nd));
|
|
}
|
|
}
|
|
|
|
ai_assert(output_nodes.size());
|
|
return true;
|
|
}
|
|
|
|
// else, we can just multiply the matrices together
|
|
PotentialNode nd;
|
|
|
|
// name passed to the method is already unique
|
|
nd->mName.Set(name);
|
|
// for (const auto &transform : chain) {
|
|
// skip inverse chain for no preservePivots
|
|
for (unsigned int i = TransformationComp_Translation; i < TransformationComp_MAXIMUM; i++) {
|
|
nd->mTransformation = nd->mTransformation * chain[i];
|
|
}
|
|
output_nodes.push_back(std::move(nd));
|
|
return false;
|
|
}
|
|
|
|
void FBXConverter::SetupNodeMetadata(const Model &model, aiNode &nd) {
|
|
const PropertyTable &props = model.Props();
|
|
DirectPropertyMap unparsedProperties = props.GetUnparsedProperties();
|
|
|
|
// create metadata on node
|
|
const std::size_t numStaticMetaData = 2;
|
|
aiMetadata *data = aiMetadata::Alloc(static_cast<unsigned int>(unparsedProperties.size() + numStaticMetaData));
|
|
nd.mMetaData = data;
|
|
int index = 0;
|
|
|
|
// find user defined properties (3ds Max)
|
|
data->Set(index++, "UserProperties", aiString(PropertyGet<std::string>(props, "UDP3DSMAX", "")));
|
|
// preserve the info that a node was marked as Null node in the original file.
|
|
data->Set(index++, "IsNull", model.IsNull() ? true : false);
|
|
|
|
// add unparsed properties to the node's metadata
|
|
for (const DirectPropertyMap::value_type &prop : unparsedProperties) {
|
|
// Interpret the property as a concrete type
|
|
if (const TypedProperty<bool> *interpretedBool = prop.second->As<TypedProperty<bool>>()) {
|
|
data->Set(index++, prop.first, interpretedBool->Value());
|
|
} else if (const TypedProperty<int> *interpretedInt = prop.second->As<TypedProperty<int>>()) {
|
|
data->Set(index++, prop.first, interpretedInt->Value());
|
|
} else if (const TypedProperty<uint64_t> *interpretedUint64 = prop.second->As<TypedProperty<uint64_t>>()) {
|
|
data->Set(index++, prop.first, interpretedUint64->Value());
|
|
} else if (const TypedProperty<float> *interpretedFloat = prop.second->As<TypedProperty<float>>()) {
|
|
data->Set(index++, prop.first, interpretedFloat->Value());
|
|
} else if (const TypedProperty<std::string> *interpretedString = prop.second->As<TypedProperty<std::string>>()) {
|
|
data->Set(index++, prop.first, aiString(interpretedString->Value()));
|
|
} else if (const TypedProperty<aiVector3D> *interpretedVec3 = prop.second->As<TypedProperty<aiVector3D>>()) {
|
|
data->Set(index++, prop.first, interpretedVec3->Value());
|
|
} else {
|
|
ai_assert(false);
|
|
}
|
|
}
|
|
}
|
|
|
|
void FBXConverter::ConvertModel(const Model &model, aiNode *parent, aiNode *root_node, const aiMatrix4x4 &absolute_transform) {
|
|
const std::vector<const Geometry *> &geos = model.GetGeometry();
|
|
|
|
std::vector<unsigned int> meshes;
|
|
meshes.reserve(geos.size());
|
|
|
|
for (const Geometry *geo : geos) {
|
|
const MeshGeometry *const mesh = dynamic_cast<const MeshGeometry *>(geo);
|
|
const LineGeometry *const line = dynamic_cast<const LineGeometry *>(geo);
|
|
if (mesh) {
|
|
const std::vector<unsigned int> &indices = ConvertMesh(*mesh, model, parent, root_node, absolute_transform);
|
|
std::copy(indices.begin(), indices.end(), std::back_inserter(meshes));
|
|
} else if (line) {
|
|
const std::vector<unsigned int> &indices = ConvertLine(*line, root_node);
|
|
std::copy(indices.begin(), indices.end(), std::back_inserter(meshes));
|
|
} else if (geo) {
|
|
FBXImporter::LogWarn("ignoring unrecognized geometry: ", geo->Name());
|
|
} else {
|
|
FBXImporter::LogWarn("skipping null geometry");
|
|
}
|
|
}
|
|
|
|
if (meshes.size()) {
|
|
parent->mMeshes = new unsigned int[meshes.size()]();
|
|
parent->mNumMeshes = static_cast<unsigned int>(meshes.size());
|
|
|
|
std::swap_ranges(meshes.begin(), meshes.end(), parent->mMeshes);
|
|
}
|
|
}
|
|
|
|
std::vector<unsigned int>
|
|
FBXConverter::ConvertMesh(const MeshGeometry &mesh, const Model &model, aiNode *parent, aiNode *root_node, const aiMatrix4x4 &absolute_transform) {
|
|
std::vector<unsigned int> temp;
|
|
|
|
MeshMap::const_iterator it = meshes_converted.find(&mesh);
|
|
if (it != meshes_converted.end()) {
|
|
std::copy((*it).second.begin(), (*it).second.end(), std::back_inserter(temp));
|
|
return temp;
|
|
}
|
|
|
|
const std::vector<aiVector3D> &vertices = mesh.GetVertices();
|
|
const std::vector<unsigned int> &faces = mesh.GetFaceIndexCounts();
|
|
if (vertices.empty() || faces.empty()) {
|
|
FBXImporter::LogWarn("ignoring empty geometry: ", mesh.Name());
|
|
return temp;
|
|
}
|
|
|
|
// one material per mesh maps easily to aiMesh. Multiple material
|
|
// meshes need to be split.
|
|
const MatIndexArray &mindices = mesh.GetMaterialIndices();
|
|
if (doc.Settings().readMaterials && !mindices.empty()) {
|
|
const MatIndexArray::value_type base = mindices[0];
|
|
for (MatIndexArray::value_type index : mindices) {
|
|
if (index != base) {
|
|
return ConvertMeshMultiMaterial(mesh, model, absolute_transform, parent, root_node);
|
|
}
|
|
}
|
|
}
|
|
|
|
// faster code-path, just copy the data
|
|
temp.push_back(ConvertMeshSingleMaterial(mesh, model, absolute_transform, parent, root_node));
|
|
return temp;
|
|
}
|
|
|
|
std::vector<unsigned int> FBXConverter::ConvertLine(const LineGeometry &line, aiNode *root_node) {
|
|
std::vector<unsigned int> temp;
|
|
|
|
const std::vector<aiVector3D> &vertices = line.GetVertices();
|
|
const std::vector<int> &indices = line.GetIndices();
|
|
if (vertices.empty() || indices.empty()) {
|
|
FBXImporter::LogWarn("ignoring empty line: ", line.Name());
|
|
return temp;
|
|
}
|
|
|
|
aiMesh *const out_mesh = SetupEmptyMesh(line, root_node);
|
|
out_mesh->mPrimitiveTypes |= aiPrimitiveType_LINE;
|
|
|
|
// copy vertices
|
|
out_mesh->mNumVertices = static_cast<unsigned int>(vertices.size());
|
|
out_mesh->mVertices = new aiVector3D[out_mesh->mNumVertices];
|
|
std::copy(vertices.begin(), vertices.end(), out_mesh->mVertices);
|
|
|
|
//Number of line segments (faces) is "Number of Points - Number of Endpoints"
|
|
//N.B.: Endpoints in FbxLine are denoted by negative indices.
|
|
//If such an Index is encountered, add 1 and multiply by -1 to get the real index.
|
|
unsigned int epcount = 0;
|
|
for (unsigned i = 0; i < indices.size(); i++) {
|
|
if (indices[i] < 0) {
|
|
epcount++;
|
|
}
|
|
}
|
|
unsigned int pcount = static_cast<unsigned int>(indices.size());
|
|
unsigned int scount = out_mesh->mNumFaces = pcount - epcount;
|
|
|
|
aiFace *fac = out_mesh->mFaces = new aiFace[scount]();
|
|
for (unsigned int i = 0; i < pcount; ++i) {
|
|
if (indices[i] < 0) continue;
|
|
aiFace &f = *fac++;
|
|
f.mNumIndices = 2; //2 == aiPrimitiveType_LINE
|
|
f.mIndices = new unsigned int[2];
|
|
f.mIndices[0] = indices[i];
|
|
int segid = indices[(i + 1 == pcount ? 0 : i + 1)]; //If we have reached he last point, wrap around
|
|
f.mIndices[1] = (segid < 0 ? (segid + 1) * -1 : segid); //Convert EndPoint Index to normal Index
|
|
}
|
|
temp.push_back(static_cast<unsigned int>(mMeshes.size() - 1));
|
|
return temp;
|
|
}
|
|
|
|
aiMesh *FBXConverter::SetupEmptyMesh(const Geometry &mesh, aiNode *parent) {
|
|
aiMesh *const out_mesh = new aiMesh();
|
|
mMeshes.push_back(out_mesh);
|
|
meshes_converted[&mesh].push_back(static_cast<unsigned int>(mMeshes.size() - 1));
|
|
|
|
// set name
|
|
std::string name = mesh.Name();
|
|
if (name.substr(0, 10) == "Geometry::") {
|
|
name = name.substr(10);
|
|
}
|
|
|
|
if (name.length()) {
|
|
out_mesh->mName.Set(name);
|
|
} else {
|
|
out_mesh->mName = parent->mName;
|
|
}
|
|
|
|
return out_mesh;
|
|
}
|
|
|
|
static aiSkeleton *createAiSkeleton(SkeletonBoneContainer &sbc) {
|
|
if (sbc.MeshArray.empty() || sbc.SkeletonBoneToMeshLookup.empty()) {
|
|
return nullptr;
|
|
}
|
|
|
|
aiSkeleton *skeleton = new aiSkeleton;
|
|
for (auto *mesh : sbc.MeshArray) {
|
|
auto it = sbc.SkeletonBoneToMeshLookup.find(mesh);
|
|
if (it == sbc.SkeletonBoneToMeshLookup.end()) {
|
|
continue;
|
|
}
|
|
SkeletonBoneArray *ba = it->second;
|
|
if (ba == nullptr) {
|
|
continue;
|
|
}
|
|
|
|
skeleton->mNumBones = static_cast<unsigned int>(ba->size());
|
|
skeleton->mBones = new aiSkeletonBone*[skeleton->mNumBones];
|
|
size_t index = 0;
|
|
for (auto bone : (* ba)) {
|
|
skeleton->mBones[index] = bone;
|
|
++index;
|
|
}
|
|
}
|
|
|
|
return skeleton;
|
|
}
|
|
|
|
unsigned int FBXConverter::ConvertMeshSingleMaterial(const MeshGeometry &mesh, const Model &model, const aiMatrix4x4 &absolute_transform,
|
|
aiNode *parent, aiNode *) {
|
|
const MatIndexArray &mindices = mesh.GetMaterialIndices();
|
|
aiMesh *const out_mesh = SetupEmptyMesh(mesh, parent);
|
|
|
|
const std::vector<aiVector3D> &vertices = mesh.GetVertices();
|
|
const std::vector<unsigned int> &faces = mesh.GetFaceIndexCounts();
|
|
|
|
// copy vertices
|
|
out_mesh->mNumVertices = static_cast<unsigned int>(vertices.size());
|
|
out_mesh->mVertices = new aiVector3D[vertices.size()];
|
|
|
|
std::copy(vertices.begin(), vertices.end(), out_mesh->mVertices);
|
|
|
|
// generate dummy faces
|
|
out_mesh->mNumFaces = static_cast<unsigned int>(faces.size());
|
|
aiFace *fac = out_mesh->mFaces = new aiFace[faces.size()]();
|
|
|
|
unsigned int cursor = 0;
|
|
for (unsigned int pcount : faces) {
|
|
aiFace &f = *fac++;
|
|
f.mNumIndices = pcount;
|
|
f.mIndices = new unsigned int[pcount];
|
|
switch (pcount) {
|
|
case 1:
|
|
out_mesh->mPrimitiveTypes |= aiPrimitiveType_POINT;
|
|
break;
|
|
case 2:
|
|
out_mesh->mPrimitiveTypes |= aiPrimitiveType_LINE;
|
|
break;
|
|
case 3:
|
|
out_mesh->mPrimitiveTypes |= aiPrimitiveType_TRIANGLE;
|
|
break;
|
|
default:
|
|
out_mesh->mPrimitiveTypes |= aiPrimitiveType_POLYGON;
|
|
break;
|
|
}
|
|
for (unsigned int i = 0; i < pcount; ++i) {
|
|
f.mIndices[i] = cursor++;
|
|
}
|
|
}
|
|
|
|
// copy normals
|
|
const std::vector<aiVector3D> &normals = mesh.GetNormals();
|
|
if (normals.size()) {
|
|
ai_assert(normals.size() == vertices.size());
|
|
|
|
out_mesh->mNormals = new aiVector3D[vertices.size()];
|
|
std::copy(normals.begin(), normals.end(), out_mesh->mNormals);
|
|
}
|
|
|
|
// copy tangents - assimp requires both tangents and bitangents (binormals)
|
|
// to be present, or neither of them. Compute binormals from normals
|
|
// and tangents if needed.
|
|
const std::vector<aiVector3D> &tangents = mesh.GetTangents();
|
|
const std::vector<aiVector3D> *binormals = &mesh.GetBinormals();
|
|
|
|
if (tangents.size()) {
|
|
std::vector<aiVector3D> tempBinormals;
|
|
if (!binormals->size()) {
|
|
if (normals.size()) {
|
|
tempBinormals.resize(normals.size());
|
|
for (unsigned int i = 0; i < tangents.size(); ++i) {
|
|
tempBinormals[i] = normals[i] ^ tangents[i];
|
|
}
|
|
|
|
binormals = &tempBinormals;
|
|
} else {
|
|
binormals = nullptr;
|
|
}
|
|
}
|
|
|
|
if (binormals) {
|
|
ai_assert(tangents.size() == vertices.size());
|
|
ai_assert(binormals->size() == vertices.size());
|
|
|
|
out_mesh->mTangents = new aiVector3D[vertices.size()];
|
|
std::copy(tangents.begin(), tangents.end(), out_mesh->mTangents);
|
|
|
|
out_mesh->mBitangents = new aiVector3D[vertices.size()];
|
|
std::copy(binormals->begin(), binormals->end(), out_mesh->mBitangents);
|
|
}
|
|
}
|
|
|
|
// copy texture coords
|
|
for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) {
|
|
const std::vector<aiVector2D> &uvs = mesh.GetTextureCoords(i);
|
|
if (uvs.empty()) {
|
|
break;
|
|
}
|
|
|
|
aiVector3D *out_uv = out_mesh->mTextureCoords[i] = new aiVector3D[vertices.size()];
|
|
for (const aiVector2D &v : uvs) {
|
|
*out_uv++ = aiVector3D(v.x, v.y, 0.0f);
|
|
}
|
|
|
|
out_mesh->SetTextureCoordsName(i, aiString(mesh.GetTextureCoordChannelName(i)));
|
|
|
|
out_mesh->mNumUVComponents[i] = 2;
|
|
}
|
|
|
|
// copy vertex colors
|
|
for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_COLOR_SETS; ++i) {
|
|
const std::vector<aiColor4D> &colors = mesh.GetVertexColors(i);
|
|
if (colors.empty()) {
|
|
break;
|
|
}
|
|
|
|
out_mesh->mColors[i] = new aiColor4D[vertices.size()];
|
|
std::copy(colors.begin(), colors.end(), out_mesh->mColors[i]);
|
|
}
|
|
|
|
if (!doc.Settings().readMaterials || mindices.empty()) {
|
|
FBXImporter::LogError("no material assigned to mesh, setting default material");
|
|
out_mesh->mMaterialIndex = GetDefaultMaterial();
|
|
} else {
|
|
ConvertMaterialForMesh(out_mesh, model, mesh, mindices[0]);
|
|
}
|
|
|
|
if (doc.Settings().readWeights && mesh.DeformerSkin() != nullptr && !doc.Settings().useSkeleton) {
|
|
ConvertWeights(out_mesh, mesh, absolute_transform, parent, NO_MATERIAL_SEPARATION, nullptr);
|
|
} else if (doc.Settings().readWeights && mesh.DeformerSkin() != nullptr && doc.Settings().useSkeleton) {
|
|
SkeletonBoneContainer sbc;
|
|
ConvertWeightsToSkeleton(out_mesh, mesh, absolute_transform, parent, NO_MATERIAL_SEPARATION, nullptr, sbc);
|
|
aiSkeleton *skeleton = createAiSkeleton(sbc);
|
|
if (skeleton != nullptr) {
|
|
mSkeletons.emplace_back(skeleton);
|
|
}
|
|
}
|
|
|
|
std::vector<aiAnimMesh *> animMeshes;
|
|
for (const BlendShape *blendShape : mesh.GetBlendShapes()) {
|
|
for (const BlendShapeChannel *blendShapeChannel : blendShape->BlendShapeChannels()) {
|
|
const std::vector<const ShapeGeometry *> &shapeGeometries = blendShapeChannel->GetShapeGeometries();
|
|
for (size_t i = 0; i < shapeGeometries.size(); i++) {
|
|
aiAnimMesh *animMesh = aiCreateAnimMesh(out_mesh);
|
|
const ShapeGeometry *shapeGeometry = shapeGeometries.at(i);
|
|
const std::vector<aiVector3D> &curVertices = shapeGeometry->GetVertices();
|
|
const std::vector<aiVector3D> &curNormals = shapeGeometry->GetNormals();
|
|
const std::vector<unsigned int> &curIndices = shapeGeometry->GetIndices();
|
|
//losing channel name if using shapeGeometry->Name()
|
|
animMesh->mName.Set(FixAnimMeshName(blendShapeChannel->Name()));
|
|
for (size_t j = 0; j < curIndices.size(); j++) {
|
|
const unsigned int curIndex = curIndices.at(j);
|
|
aiVector3D vertex = curVertices.at(j);
|
|
aiVector3D normal = curNormals.at(j);
|
|
unsigned int count = 0;
|
|
const unsigned int *outIndices = mesh.ToOutputVertexIndex(curIndex, count);
|
|
for (unsigned int k = 0; k < count; k++) {
|
|
unsigned int index = outIndices[k];
|
|
animMesh->mVertices[index] += vertex;
|
|
if (animMesh->mNormals != nullptr) {
|
|
animMesh->mNormals[index] += normal;
|
|
animMesh->mNormals[index].NormalizeSafe();
|
|
}
|
|
}
|
|
}
|
|
animMesh->mWeight = shapeGeometries.size() > 1 ? blendShapeChannel->DeformPercent() / 100.0f : 1.0f;
|
|
animMeshes.push_back(animMesh);
|
|
}
|
|
}
|
|
}
|
|
const size_t numAnimMeshes = animMeshes.size();
|
|
if (numAnimMeshes > 0) {
|
|
out_mesh->mNumAnimMeshes = static_cast<unsigned int>(numAnimMeshes);
|
|
out_mesh->mAnimMeshes = new aiAnimMesh *[numAnimMeshes];
|
|
for (size_t i = 0; i < numAnimMeshes; i++) {
|
|
out_mesh->mAnimMeshes[i] = animMeshes.at(i);
|
|
}
|
|
}
|
|
return static_cast<unsigned int>(mMeshes.size() - 1);
|
|
}
|
|
|
|
std::vector<unsigned int>
|
|
FBXConverter::ConvertMeshMultiMaterial(const MeshGeometry &mesh, const Model &model, const aiMatrix4x4 &absolute_transform, aiNode *parent,
|
|
aiNode *root_node) {
|
|
const MatIndexArray &mindices = mesh.GetMaterialIndices();
|
|
ai_assert(mindices.size());
|
|
|
|
std::set<MatIndexArray::value_type> had;
|
|
std::vector<unsigned int> indices;
|
|
|
|
for (MatIndexArray::value_type index : mindices) {
|
|
if (had.find(index) == had.end()) {
|
|
|
|
indices.push_back(ConvertMeshMultiMaterial(mesh, model, absolute_transform, index, parent, root_node));
|
|
had.insert(index);
|
|
}
|
|
}
|
|
|
|
return indices;
|
|
}
|
|
|
|
unsigned int FBXConverter::ConvertMeshMultiMaterial(const MeshGeometry &mesh, const Model &model, const aiMatrix4x4 &absolute_transform,
|
|
MatIndexArray::value_type index, aiNode *parent, aiNode *) {
|
|
aiMesh *const out_mesh = SetupEmptyMesh(mesh, parent);
|
|
|
|
const MatIndexArray &mindices = mesh.GetMaterialIndices();
|
|
const std::vector<aiVector3D> &vertices = mesh.GetVertices();
|
|
const std::vector<unsigned int> &faces = mesh.GetFaceIndexCounts();
|
|
|
|
const bool process_weights = doc.Settings().readWeights && mesh.DeformerSkin() != nullptr;
|
|
|
|
unsigned int count_faces = 0;
|
|
unsigned int count_vertices = 0;
|
|
|
|
// count faces
|
|
std::vector<unsigned int>::const_iterator itf = faces.begin();
|
|
for (MatIndexArray::const_iterator it = mindices.begin(),
|
|
end = mindices.end();
|
|
it != end; ++it, ++itf) {
|
|
if ((*it) != index) {
|
|
continue;
|
|
}
|
|
++count_faces;
|
|
count_vertices += *itf;
|
|
}
|
|
|
|
ai_assert(count_faces);
|
|
ai_assert(count_vertices);
|
|
|
|
// mapping from output indices to DOM indexing, needed to resolve weights or blendshapes
|
|
std::vector<unsigned int> reverseMapping;
|
|
std::map<unsigned int, unsigned int> translateIndexMap;
|
|
if (process_weights || mesh.GetBlendShapes().size() > 0) {
|
|
reverseMapping.resize(count_vertices);
|
|
}
|
|
|
|
// allocate output data arrays, but don't fill them yet
|
|
out_mesh->mNumVertices = count_vertices;
|
|
out_mesh->mVertices = new aiVector3D[count_vertices];
|
|
|
|
out_mesh->mNumFaces = count_faces;
|
|
aiFace *fac = out_mesh->mFaces = new aiFace[count_faces]();
|
|
|
|
// allocate normals
|
|
const std::vector<aiVector3D> &normals = mesh.GetNormals();
|
|
if (normals.size()) {
|
|
ai_assert(normals.size() == vertices.size());
|
|
out_mesh->mNormals = new aiVector3D[count_vertices];
|
|
}
|
|
|
|
// allocate tangents, binormals.
|
|
const std::vector<aiVector3D> &tangents = mesh.GetTangents();
|
|
const std::vector<aiVector3D> *binormals = &mesh.GetBinormals();
|
|
std::vector<aiVector3D> tempBinormals;
|
|
|
|
if (tangents.size()) {
|
|
if (!binormals->size()) {
|
|
if (normals.size()) {
|
|
// XXX this computes the binormals for the entire mesh, not only
|
|
// the part for which we need them.
|
|
tempBinormals.resize(normals.size());
|
|
for (unsigned int i = 0; i < tangents.size(); ++i) {
|
|
tempBinormals[i] = normals[i] ^ tangents[i];
|
|
}
|
|
|
|
binormals = &tempBinormals;
|
|
} else {
|
|
binormals = nullptr;
|
|
}
|
|
}
|
|
|
|
if (binormals) {
|
|
ai_assert(tangents.size() == vertices.size());
|
|
ai_assert(binormals->size() == vertices.size());
|
|
|
|
out_mesh->mTangents = new aiVector3D[count_vertices];
|
|
out_mesh->mBitangents = new aiVector3D[count_vertices];
|
|
}
|
|
}
|
|
|
|
// allocate texture coords
|
|
unsigned int num_uvs = 0;
|
|
for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i, ++num_uvs) {
|
|
const std::vector<aiVector2D> &uvs = mesh.GetTextureCoords(i);
|
|
if (uvs.empty()) {
|
|
break;
|
|
}
|
|
|
|
out_mesh->mTextureCoords[i] = new aiVector3D[count_vertices];
|
|
out_mesh->mNumUVComponents[i] = 2;
|
|
}
|
|
|
|
// allocate vertex colors
|
|
unsigned int num_vcs = 0;
|
|
for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_COLOR_SETS; ++i, ++num_vcs) {
|
|
const std::vector<aiColor4D> &colors = mesh.GetVertexColors(i);
|
|
if (colors.empty()) {
|
|
break;
|
|
}
|
|
|
|
out_mesh->mColors[i] = new aiColor4D[count_vertices];
|
|
}
|
|
|
|
unsigned int cursor = 0, in_cursor = 0;
|
|
|
|
itf = faces.begin();
|
|
for (MatIndexArray::const_iterator it = mindices.begin(), end = mindices.end(); it != end; ++it, ++itf) {
|
|
const unsigned int pcount = *itf;
|
|
if ((*it) != index) {
|
|
in_cursor += pcount;
|
|
continue;
|
|
}
|
|
|
|
aiFace &f = *fac++;
|
|
|
|
f.mNumIndices = pcount;
|
|
f.mIndices = new unsigned int[pcount];
|
|
switch (pcount) {
|
|
case 1:
|
|
out_mesh->mPrimitiveTypes |= aiPrimitiveType_POINT;
|
|
break;
|
|
case 2:
|
|
out_mesh->mPrimitiveTypes |= aiPrimitiveType_LINE;
|
|
break;
|
|
case 3:
|
|
out_mesh->mPrimitiveTypes |= aiPrimitiveType_TRIANGLE;
|
|
break;
|
|
default:
|
|
out_mesh->mPrimitiveTypes |= aiPrimitiveType_POLYGON;
|
|
break;
|
|
}
|
|
for (unsigned int i = 0; i < pcount; ++i, ++cursor, ++in_cursor) {
|
|
f.mIndices[i] = cursor;
|
|
|
|
if (reverseMapping.size()) {
|
|
reverseMapping[cursor] = in_cursor;
|
|
translateIndexMap[in_cursor] = cursor;
|
|
}
|
|
|
|
out_mesh->mVertices[cursor] = vertices[in_cursor];
|
|
|
|
if (out_mesh->mNormals) {
|
|
out_mesh->mNormals[cursor] = normals[in_cursor];
|
|
}
|
|
|
|
if (out_mesh->mTangents) {
|
|
out_mesh->mTangents[cursor] = tangents[in_cursor];
|
|
out_mesh->mBitangents[cursor] = (*binormals)[in_cursor];
|
|
}
|
|
|
|
for (unsigned int j = 0; j < num_uvs; ++j) {
|
|
const std::vector<aiVector2D> &uvs = mesh.GetTextureCoords(j);
|
|
out_mesh->mTextureCoords[j][cursor] = aiVector3D(uvs[in_cursor].x, uvs[in_cursor].y, 0.0f);
|
|
}
|
|
|
|
for (unsigned int j = 0; j < num_vcs; ++j) {
|
|
const std::vector<aiColor4D> &cols = mesh.GetVertexColors(j);
|
|
out_mesh->mColors[j][cursor] = cols[in_cursor];
|
|
}
|
|
}
|
|
}
|
|
|
|
ConvertMaterialForMesh(out_mesh, model, mesh, index);
|
|
|
|
if (process_weights) {
|
|
ConvertWeights(out_mesh, mesh, absolute_transform, parent, index, &reverseMapping);
|
|
}
|
|
|
|
std::vector<aiAnimMesh *> animMeshes;
|
|
for (const BlendShape *blendShape : mesh.GetBlendShapes()) {
|
|
for (const BlendShapeChannel *blendShapeChannel : blendShape->BlendShapeChannels()) {
|
|
const std::vector<const ShapeGeometry *> &shapeGeometries = blendShapeChannel->GetShapeGeometries();
|
|
for (size_t i = 0; i < shapeGeometries.size(); i++) {
|
|
aiAnimMesh *animMesh = aiCreateAnimMesh(out_mesh);
|
|
const ShapeGeometry *shapeGeometry = shapeGeometries.at(i);
|
|
const std::vector<aiVector3D> &curVertices = shapeGeometry->GetVertices();
|
|
const std::vector<aiVector3D> &curNormals = shapeGeometry->GetNormals();
|
|
const std::vector<unsigned int> &curIndices = shapeGeometry->GetIndices();
|
|
animMesh->mName.Set(FixAnimMeshName(shapeGeometry->Name()));
|
|
for (size_t j = 0; j < curIndices.size(); j++) {
|
|
unsigned int curIndex = curIndices.at(j);
|
|
aiVector3D vertex = curVertices.at(j);
|
|
aiVector3D normal = curNormals.at(j);
|
|
unsigned int count = 0;
|
|
const unsigned int *outIndices = mesh.ToOutputVertexIndex(curIndex, count);
|
|
for (unsigned int k = 0; k < count; k++) {
|
|
unsigned int outIndex = outIndices[k];
|
|
if (translateIndexMap.find(outIndex) == translateIndexMap.end())
|
|
continue;
|
|
unsigned int transIndex = translateIndexMap[outIndex];
|
|
animMesh->mVertices[transIndex] += vertex;
|
|
if (animMesh->mNormals != nullptr) {
|
|
animMesh->mNormals[transIndex] += normal;
|
|
animMesh->mNormals[transIndex].NormalizeSafe();
|
|
}
|
|
}
|
|
}
|
|
animMesh->mWeight = shapeGeometries.size() > 1 ? blendShapeChannel->DeformPercent() / 100.0f : 1.0f;
|
|
animMeshes.push_back(animMesh);
|
|
}
|
|
}
|
|
}
|
|
|
|
const size_t numAnimMeshes = animMeshes.size();
|
|
if (numAnimMeshes > 0) {
|
|
out_mesh->mNumAnimMeshes = static_cast<unsigned int>(numAnimMeshes);
|
|
out_mesh->mAnimMeshes = new aiAnimMesh *[numAnimMeshes];
|
|
for (size_t i = 0; i < numAnimMeshes; i++) {
|
|
out_mesh->mAnimMeshes[i] = animMeshes.at(i);
|
|
}
|
|
}
|
|
|
|
return static_cast<unsigned int>(mMeshes.size() - 1);
|
|
}
|
|
|
|
static void copyBoneToSkeletonBone(aiMesh *mesh, aiBone *bone, aiSkeletonBone *skeletonBone ) {
|
|
skeletonBone->mNumnWeights = bone->mNumWeights;
|
|
skeletonBone->mWeights = bone->mWeights;
|
|
skeletonBone->mOffsetMatrix = bone->mOffsetMatrix;
|
|
skeletonBone->mMeshId = mesh;
|
|
skeletonBone->mNode = bone->mNode;
|
|
skeletonBone->mParent = -1;
|
|
}
|
|
|
|
void FBXConverter::ConvertWeightsToSkeleton(aiMesh *out, const MeshGeometry &geo, const aiMatrix4x4 &absolute_transform, aiNode *parent, unsigned int materialIndex,
|
|
std::vector<unsigned int> *outputVertStartIndices, SkeletonBoneContainer &skeletonContainer) {
|
|
|
|
if (skeletonContainer.SkeletonBoneToMeshLookup.find(out) != skeletonContainer.SkeletonBoneToMeshLookup.end()) {
|
|
return;
|
|
}
|
|
|
|
ConvertWeights(out, geo, absolute_transform, parent, materialIndex, outputVertStartIndices);
|
|
skeletonContainer.MeshArray.emplace_back(out);
|
|
SkeletonBoneArray *ba = new SkeletonBoneArray;
|
|
for (size_t i = 0; i < out->mNumBones; ++i) {
|
|
aiBone *bone = out->mBones[i];
|
|
if (bone == nullptr) {
|
|
continue;
|
|
}
|
|
aiSkeletonBone *skeletonBone = new aiSkeletonBone;
|
|
copyBoneToSkeletonBone(out, bone, skeletonBone);
|
|
ba->emplace_back(skeletonBone);
|
|
}
|
|
skeletonContainer.SkeletonBoneToMeshLookup[out] = ba;
|
|
}
|
|
|
|
void FBXConverter::ConvertWeights(aiMesh *out, const MeshGeometry &geo, const aiMatrix4x4 &absolute_transform,
|
|
aiNode *parent, unsigned int materialIndex,
|
|
std::vector<unsigned int> *outputVertStartIndices) {
|
|
ai_assert(geo.DeformerSkin());
|
|
|
|
std::vector<size_t> out_indices, index_out_indices, count_out_indices;
|
|
|
|
const Skin &sk = *geo.DeformerSkin();
|
|
|
|
std::vector<aiBone*> bones;
|
|
const bool no_mat_check = materialIndex == NO_MATERIAL_SEPARATION;
|
|
ai_assert(no_mat_check || outputVertStartIndices);
|
|
|
|
try {
|
|
// iterate over the sub deformers
|
|
for (const Cluster *cluster : sk.Clusters()) {
|
|
ai_assert(cluster);
|
|
|
|
const WeightIndexArray &indices = cluster->GetIndices();
|
|
|
|
const MatIndexArray &mats = geo.GetMaterialIndices();
|
|
|
|
const size_t no_index_sentinel = std::numeric_limits<size_t>::max();
|
|
|
|
count_out_indices.clear();
|
|
index_out_indices.clear();
|
|
out_indices.clear();
|
|
|
|
// now check if *any* of these weights is contained in the output mesh,
|
|
// taking notes so we don't need to do it twice.
|
|
for (WeightIndexArray::value_type index : indices) {
|
|
|
|
unsigned int count = 0;
|
|
const unsigned int *const out_idx = geo.ToOutputVertexIndex(index, count);
|
|
// ToOutputVertexIndex only returns nullptr if index is out of bounds
|
|
// which should never happen
|
|
ai_assert(out_idx != nullptr);
|
|
|
|
index_out_indices.push_back(no_index_sentinel);
|
|
count_out_indices.push_back(0);
|
|
|
|
for (unsigned int i = 0; i < count; ++i) {
|
|
if (no_mat_check || static_cast<size_t>(mats[geo.FaceForVertexIndex(out_idx[i])]) == materialIndex) {
|
|
|
|
if (index_out_indices.back() == no_index_sentinel) {
|
|
index_out_indices.back() = out_indices.size();
|
|
}
|
|
|
|
if (no_mat_check) {
|
|
out_indices.push_back(out_idx[i]);
|
|
} else {
|
|
// this extra lookup is in O(logn), so the entire algorithm becomes O(nlogn)
|
|
const std::vector<unsigned int>::iterator it = std::lower_bound(
|
|
outputVertStartIndices->begin(),
|
|
outputVertStartIndices->end(),
|
|
out_idx[i]);
|
|
|
|
out_indices.push_back(std::distance(outputVertStartIndices->begin(), it));
|
|
}
|
|
|
|
++count_out_indices.back();
|
|
}
|
|
}
|
|
}
|
|
|
|
// if we found at least one, generate the output bones
|
|
// XXX this could be heavily simplified by collecting the bone
|
|
// data in a single step.
|
|
ConvertCluster(bones, cluster, out_indices, index_out_indices,
|
|
count_out_indices, absolute_transform, parent);
|
|
}
|
|
|
|
bone_map.clear();
|
|
} catch (std::exception &) {
|
|
std::for_each(bones.begin(), bones.end(), Util::delete_fun<aiBone>());
|
|
throw;
|
|
}
|
|
|
|
if (bones.empty()) {
|
|
out->mBones = nullptr;
|
|
out->mNumBones = 0;
|
|
return;
|
|
}
|
|
|
|
out->mBones = new aiBone *[bones.size()]();
|
|
out->mNumBones = static_cast<unsigned int>(bones.size());
|
|
std::swap_ranges(bones.begin(), bones.end(), out->mBones);
|
|
}
|
|
|
|
void FBXConverter::ConvertCluster(std::vector<aiBone*> &local_mesh_bones, const Cluster *cluster,
|
|
std::vector<size_t> &out_indices, std::vector<size_t> &index_out_indices,
|
|
std::vector<size_t> &count_out_indices, const aiMatrix4x4 & /* absolute_transform*/,
|
|
aiNode *) {
|
|
ai_assert(cluster != nullptr); // make sure cluster valid
|
|
|
|
std::string deformer_name = cluster->TargetNode()->Name();
|
|
aiString bone_name = aiString(FixNodeName(deformer_name));
|
|
|
|
aiBone *bone = nullptr;
|
|
|
|
if (bone_map.count(deformer_name)) {
|
|
ASSIMP_LOG_VERBOSE_DEBUG("retrieved bone from lookup ", bone_name.C_Str(), ". Deformer:", deformer_name);
|
|
bone = bone_map[deformer_name];
|
|
} else {
|
|
ASSIMP_LOG_VERBOSE_DEBUG("created new bone ", bone_name.C_Str(), ". Deformer: ", deformer_name);
|
|
bone = new aiBone();
|
|
bone->mName = bone_name;
|
|
|
|
bone->mOffsetMatrix = cluster->Transform();
|
|
// store local transform link for post processing
|
|
/*
|
|
bone->mOffsetMatrix = cluster->TransformLink();
|
|
bone->mOffsetMatrix.Inverse();
|
|
|
|
aiMatrix4x4 matrix = (aiMatrix4x4)absolute_transform;
|
|
|
|
bone->mOffsetMatrix = bone->mOffsetMatrix * matrix; // * mesh_offset
|
|
*/
|
|
//
|
|
// Now calculate the aiVertexWeights
|
|
//
|
|
|
|
aiVertexWeight *cursor = nullptr;
|
|
|
|
bone->mNumWeights = static_cast<unsigned int>(out_indices.size());
|
|
cursor = bone->mWeights = new aiVertexWeight[out_indices.size()];
|
|
|
|
const size_t no_index_sentinel = std::numeric_limits<size_t>::max();
|
|
const WeightArray &weights = cluster->GetWeights();
|
|
|
|
const size_t c = index_out_indices.size();
|
|
for (size_t i = 0; i < c; ++i) {
|
|
const size_t index_index = index_out_indices[i];
|
|
|
|
if (index_index == no_index_sentinel) {
|
|
continue;
|
|
}
|
|
|
|
const size_t cc = count_out_indices[i];
|
|
for (size_t j = 0; j < cc; ++j) {
|
|
// cursor runs from first element relative to the start
|
|
// or relative to the start of the next indexes.
|
|
aiVertexWeight &out_weight = *cursor++;
|
|
|
|
out_weight.mVertexId = static_cast<unsigned int>(out_indices[index_index + j]);
|
|
out_weight.mWeight = weights[i];
|
|
}
|
|
}
|
|
|
|
bone_map.insert(std::pair<const std::string, aiBone *>(deformer_name, bone));
|
|
}
|
|
|
|
ASSIMP_LOG_DEBUG("bone research: Indices size: ", out_indices.size());
|
|
|
|
// lookup must be populated in case something goes wrong
|
|
// this also allocates bones to mesh instance outside
|
|
local_mesh_bones.push_back(bone);
|
|
}
|
|
|
|
void FBXConverter::ConvertMaterialForMesh(aiMesh *out, const Model &model, const MeshGeometry &geo,
|
|
MatIndexArray::value_type materialIndex) {
|
|
// locate source materials for this mesh
|
|
const std::vector<const Material *> &mats = model.GetMaterials();
|
|
if (static_cast<unsigned int>(materialIndex) >= mats.size() || materialIndex < 0) {
|
|
FBXImporter::LogError("material index out of bounds, setting default material");
|
|
out->mMaterialIndex = GetDefaultMaterial();
|
|
return;
|
|
}
|
|
|
|
const Material *const mat = mats[materialIndex];
|
|
MaterialMap::const_iterator it = materials_converted.find(mat);
|
|
if (it != materials_converted.end()) {
|
|
out->mMaterialIndex = (*it).second;
|
|
return;
|
|
}
|
|
|
|
out->mMaterialIndex = ConvertMaterial(*mat, &geo);
|
|
materials_converted[mat] = out->mMaterialIndex;
|
|
}
|
|
|
|
unsigned int FBXConverter::GetDefaultMaterial() {
|
|
if (defaultMaterialIndex) {
|
|
return defaultMaterialIndex - 1;
|
|
}
|
|
|
|
aiMaterial *out_mat = new aiMaterial();
|
|
materials.push_back(out_mat);
|
|
|
|
const aiColor3D diffuse = aiColor3D(0.8f, 0.8f, 0.8f);
|
|
out_mat->AddProperty(&diffuse, 1, AI_MATKEY_COLOR_DIFFUSE);
|
|
|
|
aiString s;
|
|
s.Set(AI_DEFAULT_MATERIAL_NAME);
|
|
|
|
out_mat->AddProperty(&s, AI_MATKEY_NAME);
|
|
|
|
defaultMaterialIndex = static_cast<unsigned int>(materials.size());
|
|
return defaultMaterialIndex - 1;
|
|
}
|
|
|
|
unsigned int FBXConverter::ConvertMaterial(const Material &material, const MeshGeometry *const mesh) {
|
|
const PropertyTable &props = material.Props();
|
|
|
|
// generate empty output material
|
|
aiMaterial *out_mat = new aiMaterial();
|
|
materials_converted[&material] = static_cast<unsigned int>(materials.size());
|
|
|
|
materials.push_back(out_mat);
|
|
|
|
aiString str;
|
|
|
|
// strip Material:: prefix
|
|
std::string name = material.Name();
|
|
if (name.substr(0, 10) == "Material::") {
|
|
name = name.substr(10);
|
|
}
|
|
|
|
// set material name if not empty - this could happen
|
|
// and there should be no key for it in this case.
|
|
if (name.length()) {
|
|
str.Set(name);
|
|
out_mat->AddProperty(&str, AI_MATKEY_NAME);
|
|
}
|
|
|
|
// Set the shading mode as best we can: The FBX specification only mentions Lambert and Phong, and only Phong is mentioned in Assimp's aiShadingMode enum.
|
|
if (material.GetShadingModel() == "phong") {
|
|
aiShadingMode shadingMode = aiShadingMode_Phong;
|
|
out_mat->AddProperty<aiShadingMode>(&shadingMode, 1, AI_MATKEY_SHADING_MODEL);
|
|
}
|
|
|
|
// shading stuff and colors
|
|
SetShadingPropertiesCommon(out_mat, props);
|
|
SetShadingPropertiesRaw(out_mat, props, material.Textures(), mesh);
|
|
|
|
// texture assignments
|
|
SetTextureProperties(out_mat, material.Textures(), mesh);
|
|
SetTextureProperties(out_mat, material.LayeredTextures(), mesh);
|
|
|
|
return static_cast<unsigned int>(materials.size() - 1);
|
|
}
|
|
|
|
unsigned int FBXConverter::ConvertVideo(const Video &video) {
|
|
// generate empty output texture
|
|
aiTexture *out_tex = new aiTexture();
|
|
textures.push_back(out_tex);
|
|
|
|
// assuming the texture is compressed
|
|
out_tex->mWidth = static_cast<unsigned int>(video.ContentLength()); // total data size
|
|
out_tex->mHeight = 0; // fixed to 0
|
|
|
|
// steal the data from the Video to avoid an additional copy
|
|
out_tex->pcData = reinterpret_cast<aiTexel *>(const_cast<Video &>(video).RelinquishContent());
|
|
|
|
// try to extract a hint from the file extension
|
|
const std::string &filename = video.RelativeFilename().empty() ? video.FileName() : video.RelativeFilename();
|
|
std::string ext = BaseImporter::GetExtension(filename);
|
|
|
|
if (ext == "jpeg") {
|
|
ext = "jpg";
|
|
}
|
|
|
|
if (ext.size() <= 3) {
|
|
memcpy(out_tex->achFormatHint, ext.c_str(), ext.size());
|
|
}
|
|
|
|
out_tex->mFilename.Set(filename.c_str());
|
|
|
|
return static_cast<unsigned int>(textures.size() - 1);
|
|
}
|
|
|
|
aiString FBXConverter::GetTexturePath(const Texture *tex) {
|
|
aiString path;
|
|
path.Set(tex->RelativeFilename());
|
|
|
|
const Video *media = tex->Media();
|
|
if (media != nullptr) {
|
|
bool textureReady = false; //tells if our texture is ready (if it was loaded or if it was found)
|
|
unsigned int index=0;
|
|
|
|
VideoMap::const_iterator it = textures_converted.find(media);
|
|
if (it != textures_converted.end()) {
|
|
index = (*it).second;
|
|
textureReady = true;
|
|
} else {
|
|
if (media->ContentLength() > 0) {
|
|
index = ConvertVideo(*media);
|
|
textures_converted[media] = index;
|
|
textureReady = true;
|
|
}
|
|
}
|
|
|
|
// setup texture reference string (copied from ColladaLoader::FindFilenameForEffectTexture), if the texture is ready
|
|
if (doc.Settings().useLegacyEmbeddedTextureNaming) {
|
|
if (textureReady) {
|
|
// TODO: check the possibility of using the flag "AI_CONFIG_IMPORT_FBX_EMBEDDED_TEXTURES_LEGACY_NAMING"
|
|
// In FBX files textures are now stored internally by Assimp with their filename included
|
|
// Now Assimp can lookup through the loaded textures after all data is processed
|
|
// We need to load all textures before referencing them, as FBX file format order may reference a texture before loading it
|
|
// This may occur on this case too, it has to be studied
|
|
path.data[0] = '*';
|
|
path.length = 1 + ASSIMP_itoa10(path.data + 1, MAXLEN - 1, index);
|
|
}
|
|
}
|
|
}
|
|
|
|
return path;
|
|
}
|
|
|
|
void FBXConverter::TrySetTextureProperties(aiMaterial *out_mat, const TextureMap &_textures,
|
|
const std::string &propName,
|
|
aiTextureType target, const MeshGeometry *const mesh) {
|
|
TextureMap::const_iterator it = _textures.find(propName);
|
|
if (it == _textures.end()) {
|
|
return;
|
|
}
|
|
|
|
const Texture *const tex = (*it).second;
|
|
if (tex != nullptr) {
|
|
aiString path = GetTexturePath(tex);
|
|
out_mat->AddProperty(&path, _AI_MATKEY_TEXTURE_BASE, target, 0);
|
|
|
|
aiUVTransform uvTrafo;
|
|
// XXX handle all kinds of UV transformations
|
|
uvTrafo.mScaling = tex->UVScaling();
|
|
uvTrafo.mTranslation = tex->UVTranslation();
|
|
uvTrafo.mRotation = tex->UVRotation();
|
|
out_mat->AddProperty(&uvTrafo, 1, _AI_MATKEY_UVTRANSFORM_BASE, target, 0);
|
|
|
|
const PropertyTable &props = tex->Props();
|
|
|
|
int uvIndex = 0;
|
|
|
|
bool ok;
|
|
const std::string &uvSet = PropertyGet<std::string>(props, "UVSet", ok);
|
|
if (ok) {
|
|
// "default" is the name which usually appears in the FbxFileTexture template
|
|
if (uvSet != "default" && uvSet.length()) {
|
|
// this is a bit awkward - we need to find a mesh that uses this
|
|
// material and scan its UV channels for the given UV name because
|
|
// assimp references UV channels by index, not by name.
|
|
|
|
// XXX: the case that UV channels may appear in different orders
|
|
// in meshes is unhandled. A possible solution would be to sort
|
|
// the UV channels alphabetically, but this would have the side
|
|
// effect that the primary (first) UV channel would sometimes
|
|
// be moved, causing trouble when users read only the first
|
|
// UV channel and ignore UV channel assignments altogether.
|
|
|
|
const unsigned int matIndex = static_cast<unsigned int>(std::distance(materials.begin(),
|
|
std::find(materials.begin(), materials.end(), out_mat)));
|
|
|
|
uvIndex = -1;
|
|
if (!mesh) {
|
|
for (const MeshMap::value_type &v : meshes_converted) {
|
|
const MeshGeometry *const meshGeom = dynamic_cast<const MeshGeometry *>(v.first);
|
|
if (!meshGeom) {
|
|
continue;
|
|
}
|
|
|
|
const MatIndexArray &mats = meshGeom->GetMaterialIndices();
|
|
MatIndexArray::const_iterator curIt = std::find(mats.begin(), mats.end(), (int) matIndex);
|
|
if (curIt == mats.end()) {
|
|
continue;
|
|
}
|
|
|
|
int index = -1;
|
|
for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) {
|
|
if (meshGeom->GetTextureCoords(i).empty()) {
|
|
break;
|
|
}
|
|
const std::string &name = meshGeom->GetTextureCoordChannelName(i);
|
|
if (name == uvSet) {
|
|
index = static_cast<int>(i);
|
|
break;
|
|
}
|
|
}
|
|
if (index == -1) {
|
|
FBXImporter::LogWarn("did not find UV channel named ", uvSet, " in a mesh using this material");
|
|
continue;
|
|
}
|
|
|
|
if (uvIndex == -1) {
|
|
uvIndex = index;
|
|
} else {
|
|
FBXImporter::LogWarn("the UV channel named ", uvSet,
|
|
" appears at different positions in meshes, results will be wrong");
|
|
}
|
|
}
|
|
} else {
|
|
int index = -1;
|
|
for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) {
|
|
if (mesh->GetTextureCoords(i).empty()) {
|
|
break;
|
|
}
|
|
const std::string &name = mesh->GetTextureCoordChannelName(i);
|
|
if (name == uvSet) {
|
|
index = static_cast<int>(i);
|
|
break;
|
|
}
|
|
}
|
|
if (index == -1) {
|
|
FBXImporter::LogWarn("did not find UV channel named ", uvSet, " in a mesh using this material");
|
|
}
|
|
|
|
if (uvIndex == -1) {
|
|
uvIndex = index;
|
|
}
|
|
}
|
|
|
|
if (uvIndex == -1) {
|
|
FBXImporter::LogWarn("failed to resolve UV channel ", uvSet, ", using first UV channel");
|
|
uvIndex = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
out_mat->AddProperty(&uvIndex, 1, _AI_MATKEY_UVWSRC_BASE, target, 0);
|
|
}
|
|
}
|
|
|
|
void FBXConverter::TrySetTextureProperties(aiMaterial *out_mat, const LayeredTextureMap &layeredTextures,
|
|
const std::string &propName,
|
|
aiTextureType target, const MeshGeometry *const mesh) {
|
|
LayeredTextureMap::const_iterator it = layeredTextures.find(propName);
|
|
if (it == layeredTextures.end()) {
|
|
return;
|
|
}
|
|
|
|
int texCount = (*it).second->textureCount();
|
|
|
|
// Set the blend mode for layered textures
|
|
int blendmode = (*it).second->GetBlendMode();
|
|
out_mat->AddProperty(&blendmode, 1, _AI_MATKEY_TEXOP_BASE, target, 0);
|
|
|
|
for (int texIndex = 0; texIndex < texCount; texIndex++) {
|
|
|
|
const Texture *const tex = (*it).second->getTexture(texIndex);
|
|
|
|
aiString path = GetTexturePath(tex);
|
|
out_mat->AddProperty(&path, _AI_MATKEY_TEXTURE_BASE, target, texIndex);
|
|
|
|
aiUVTransform uvTrafo;
|
|
// XXX handle all kinds of UV transformations
|
|
uvTrafo.mScaling = tex->UVScaling();
|
|
uvTrafo.mTranslation = tex->UVTranslation();
|
|
uvTrafo.mRotation = tex->UVRotation();
|
|
out_mat->AddProperty(&uvTrafo, 1, _AI_MATKEY_UVTRANSFORM_BASE, target, texIndex);
|
|
|
|
const PropertyTable &props = tex->Props();
|
|
|
|
int uvIndex = 0;
|
|
|
|
bool ok;
|
|
const std::string &uvSet = PropertyGet<std::string>(props, "UVSet", ok);
|
|
if (ok) {
|
|
// "default" is the name which usually appears in the FbxFileTexture template
|
|
if (uvSet != "default" && uvSet.length()) {
|
|
// this is a bit awkward - we need to find a mesh that uses this
|
|
// material and scan its UV channels for the given UV name because
|
|
// assimp references UV channels by index, not by name.
|
|
|
|
// XXX: the case that UV channels may appear in different orders
|
|
// in meshes is unhandled. A possible solution would be to sort
|
|
// the UV channels alphabetically, but this would have the side
|
|
// effect that the primary (first) UV channel would sometimes
|
|
// be moved, causing trouble when users read only the first
|
|
// UV channel and ignore UV channel assignments altogether.
|
|
|
|
const unsigned int matIndex = static_cast<unsigned int>(std::distance(materials.begin(),
|
|
std::find(materials.begin(), materials.end(), out_mat)));
|
|
|
|
uvIndex = -1;
|
|
if (!mesh) {
|
|
for (const MeshMap::value_type &v : meshes_converted) {
|
|
const MeshGeometry *const meshGeom = dynamic_cast<const MeshGeometry *>(v.first);
|
|
if (!meshGeom) {
|
|
continue;
|
|
}
|
|
|
|
const MatIndexArray &mats = meshGeom->GetMaterialIndices();
|
|
MatIndexArray::const_iterator curIt = std::find(mats.begin(), mats.end(), (int) matIndex);
|
|
if ( curIt == mats.end()) {
|
|
continue;
|
|
}
|
|
|
|
int index = -1;
|
|
for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) {
|
|
if (meshGeom->GetTextureCoords(i).empty()) {
|
|
break;
|
|
}
|
|
const std::string &name = meshGeom->GetTextureCoordChannelName(i);
|
|
if (name == uvSet) {
|
|
index = static_cast<int>(i);
|
|
break;
|
|
}
|
|
}
|
|
if (index == -1) {
|
|
FBXImporter::LogWarn("did not find UV channel named ", uvSet, " in a mesh using this material");
|
|
continue;
|
|
}
|
|
|
|
if (uvIndex == -1) {
|
|
uvIndex = index;
|
|
} else {
|
|
FBXImporter::LogWarn("the UV channel named ", uvSet,
|
|
" appears at different positions in meshes, results will be wrong");
|
|
}
|
|
}
|
|
} else {
|
|
int index = -1;
|
|
for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) {
|
|
if (mesh->GetTextureCoords(i).empty()) {
|
|
break;
|
|
}
|
|
const std::string &name = mesh->GetTextureCoordChannelName(i);
|
|
if (name == uvSet) {
|
|
index = static_cast<int>(i);
|
|
break;
|
|
}
|
|
}
|
|
if (index == -1) {
|
|
FBXImporter::LogWarn("did not find UV channel named ", uvSet, " in a mesh using this material");
|
|
}
|
|
|
|
if (uvIndex == -1) {
|
|
uvIndex = index;
|
|
}
|
|
}
|
|
|
|
if (uvIndex == -1) {
|
|
FBXImporter::LogWarn("failed to resolve UV channel ", uvSet, ", using first UV channel");
|
|
uvIndex = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
out_mat->AddProperty(&uvIndex, 1, _AI_MATKEY_UVWSRC_BASE, target, texIndex);
|
|
}
|
|
}
|
|
|
|
void FBXConverter::SetTextureProperties(aiMaterial *out_mat, const TextureMap &_textures, const MeshGeometry *const mesh) {
|
|
TrySetTextureProperties(out_mat, _textures, "DiffuseColor", aiTextureType_DIFFUSE, mesh);
|
|
TrySetTextureProperties(out_mat, _textures, "AmbientColor", aiTextureType_AMBIENT, mesh);
|
|
TrySetTextureProperties(out_mat, _textures, "EmissiveColor", aiTextureType_EMISSIVE, mesh);
|
|
TrySetTextureProperties(out_mat, _textures, "SpecularColor", aiTextureType_SPECULAR, mesh);
|
|
TrySetTextureProperties(out_mat, _textures, "SpecularFactor", aiTextureType_SPECULAR, mesh);
|
|
TrySetTextureProperties(out_mat, _textures, "TransparentColor", aiTextureType_OPACITY, mesh);
|
|
TrySetTextureProperties(out_mat, _textures, "ReflectionColor", aiTextureType_REFLECTION, mesh);
|
|
TrySetTextureProperties(out_mat, _textures, "DisplacementColor", aiTextureType_DISPLACEMENT, mesh);
|
|
TrySetTextureProperties(out_mat, _textures, "NormalMap", aiTextureType_NORMALS, mesh);
|
|
TrySetTextureProperties(out_mat, _textures, "Bump", aiTextureType_HEIGHT, mesh);
|
|
TrySetTextureProperties(out_mat, _textures, "ShininessExponent", aiTextureType_SHININESS, mesh);
|
|
TrySetTextureProperties(out_mat, _textures, "TransparencyFactor", aiTextureType_OPACITY, mesh);
|
|
TrySetTextureProperties(out_mat, _textures, "EmissiveFactor", aiTextureType_EMISSIVE, mesh);
|
|
TrySetTextureProperties(out_mat, _textures, "ReflectionFactor", aiTextureType_METALNESS, mesh);
|
|
//Maya counterparts
|
|
TrySetTextureProperties(out_mat, _textures, "Maya|DiffuseTexture", aiTextureType_DIFFUSE, mesh);
|
|
TrySetTextureProperties(out_mat, _textures, "Maya|NormalTexture", aiTextureType_NORMALS, mesh);
|
|
TrySetTextureProperties(out_mat, _textures, "Maya|SpecularTexture", aiTextureType_SPECULAR, mesh);
|
|
TrySetTextureProperties(out_mat, _textures, "Maya|FalloffTexture", aiTextureType_OPACITY, mesh);
|
|
TrySetTextureProperties(out_mat, _textures, "Maya|ReflectionMapTexture", aiTextureType_REFLECTION, mesh);
|
|
|
|
// Maya PBR
|
|
TrySetTextureProperties(out_mat, _textures, "Maya|baseColor", aiTextureType_BASE_COLOR, mesh);
|
|
TrySetTextureProperties(out_mat, _textures, "Maya|normalCamera", aiTextureType_NORMAL_CAMERA, mesh);
|
|
TrySetTextureProperties(out_mat, _textures, "Maya|emissionColor", aiTextureType_EMISSION_COLOR, mesh);
|
|
TrySetTextureProperties(out_mat, _textures, "Maya|metalness", aiTextureType_METALNESS, mesh);
|
|
TrySetTextureProperties(out_mat, _textures, "Maya|diffuseRoughness", aiTextureType_DIFFUSE_ROUGHNESS, mesh);
|
|
|
|
// Maya stingray
|
|
TrySetTextureProperties(out_mat, _textures, "Maya|TEX_color_map", aiTextureType_BASE_COLOR, mesh);
|
|
TrySetTextureProperties(out_mat, _textures, "Maya|TEX_normal_map", aiTextureType_NORMAL_CAMERA, mesh);
|
|
TrySetTextureProperties(out_mat, _textures, "Maya|TEX_emissive_map", aiTextureType_EMISSION_COLOR, mesh);
|
|
TrySetTextureProperties(out_mat, _textures, "Maya|TEX_metallic_map", aiTextureType_METALNESS, mesh);
|
|
TrySetTextureProperties(out_mat, _textures, "Maya|TEX_roughness_map", aiTextureType_DIFFUSE_ROUGHNESS, mesh);
|
|
TrySetTextureProperties(out_mat, _textures, "Maya|TEX_ao_map", aiTextureType_AMBIENT_OCCLUSION, mesh);
|
|
|
|
// 3DSMax Physical material
|
|
TrySetTextureProperties(out_mat, _textures, "3dsMax|Parameters|base_color_map", aiTextureType_BASE_COLOR, mesh);
|
|
TrySetTextureProperties(out_mat, _textures, "3dsMax|Parameters|bump_map", aiTextureType_NORMAL_CAMERA, mesh);
|
|
TrySetTextureProperties(out_mat, _textures, "3dsMax|Parameters|emission_map", aiTextureType_EMISSION_COLOR, mesh);
|
|
TrySetTextureProperties(out_mat, _textures, "3dsMax|Parameters|metalness_map", aiTextureType_METALNESS, mesh);
|
|
TrySetTextureProperties(out_mat, _textures, "3dsMax|Parameters|roughness_map", aiTextureType_DIFFUSE_ROUGHNESS, mesh);
|
|
|
|
// 3DSMax PBR materials
|
|
TrySetTextureProperties(out_mat, _textures, "3dsMax|main|base_color_map", aiTextureType_BASE_COLOR, mesh);
|
|
TrySetTextureProperties(out_mat, _textures, "3dsMax|main|norm_map", aiTextureType_NORMAL_CAMERA, mesh);
|
|
TrySetTextureProperties(out_mat, _textures, "3dsMax|main|emit_color_map", aiTextureType_EMISSION_COLOR, mesh);
|
|
TrySetTextureProperties(out_mat, _textures, "3dsMax|main|ao_map", aiTextureType_AMBIENT_OCCLUSION, mesh);
|
|
TrySetTextureProperties(out_mat, _textures, "3dsMax|main|opacity_map", aiTextureType_OPACITY, mesh);
|
|
// Metalness/Roughness material type
|
|
TrySetTextureProperties(out_mat, _textures, "3dsMax|main|metalness_map", aiTextureType_METALNESS, mesh);
|
|
// Specular/Gloss material type
|
|
TrySetTextureProperties(out_mat, _textures, "3dsMax|main|specular_map", aiTextureType_SPECULAR, mesh);
|
|
|
|
// Glossiness vs roughness in 3ds Max Pbr Materials
|
|
int useGlossiness;
|
|
if (out_mat->Get("$raw.3dsMax|main|useGlossiness", aiTextureType_NONE, 0, useGlossiness) == aiReturn_SUCCESS) {
|
|
// These textures swap meaning if ((useGlossiness == 1) != (material type is Specular/Gloss))
|
|
if (useGlossiness == 1) {
|
|
TrySetTextureProperties(out_mat, _textures, "3dsMax|main|roughness_map", aiTextureType_SHININESS, mesh);
|
|
TrySetTextureProperties(out_mat, _textures, "3dsMax|main|glossiness_map", aiTextureType_SHININESS, mesh);
|
|
}
|
|
else if (useGlossiness == 2) {
|
|
TrySetTextureProperties(out_mat, _textures, "3dsMax|main|roughness_map", aiTextureType_DIFFUSE_ROUGHNESS, mesh);
|
|
TrySetTextureProperties(out_mat, _textures, "3dsMax|main|glossiness_map", aiTextureType_DIFFUSE_ROUGHNESS, mesh);
|
|
}
|
|
else {
|
|
FBXImporter::LogWarn("A 3dsMax Pbr Material must have a useGlossiness value to correctly interpret roughness and glossiness textures.");
|
|
}
|
|
}
|
|
}
|
|
|
|
void FBXConverter::SetTextureProperties(aiMaterial *out_mat, const LayeredTextureMap &layeredTextures, const MeshGeometry *const mesh) {
|
|
TrySetTextureProperties(out_mat, layeredTextures, "DiffuseColor", aiTextureType_DIFFUSE, mesh);
|
|
TrySetTextureProperties(out_mat, layeredTextures, "AmbientColor", aiTextureType_AMBIENT, mesh);
|
|
TrySetTextureProperties(out_mat, layeredTextures, "EmissiveColor", aiTextureType_EMISSIVE, mesh);
|
|
TrySetTextureProperties(out_mat, layeredTextures, "SpecularColor", aiTextureType_SPECULAR, mesh);
|
|
TrySetTextureProperties(out_mat, layeredTextures, "SpecularFactor", aiTextureType_SPECULAR, mesh);
|
|
TrySetTextureProperties(out_mat, layeredTextures, "TransparentColor", aiTextureType_OPACITY, mesh);
|
|
TrySetTextureProperties(out_mat, layeredTextures, "ReflectionColor", aiTextureType_REFLECTION, mesh);
|
|
TrySetTextureProperties(out_mat, layeredTextures, "DisplacementColor", aiTextureType_DISPLACEMENT, mesh);
|
|
TrySetTextureProperties(out_mat, layeredTextures, "NormalMap", aiTextureType_NORMALS, mesh);
|
|
TrySetTextureProperties(out_mat, layeredTextures, "Bump", aiTextureType_HEIGHT, mesh);
|
|
TrySetTextureProperties(out_mat, layeredTextures, "ShininessExponent", aiTextureType_SHININESS, mesh);
|
|
TrySetTextureProperties(out_mat, layeredTextures, "EmissiveFactor", aiTextureType_EMISSIVE, mesh);
|
|
TrySetTextureProperties(out_mat, layeredTextures, "TransparencyFactor", aiTextureType_OPACITY, mesh);
|
|
TrySetTextureProperties(out_mat, layeredTextures, "ReflectionFactor", aiTextureType_METALNESS, mesh);
|
|
}
|
|
|
|
aiColor3D FBXConverter::GetColorPropertyFactored(const PropertyTable &props, const std::string &colorName,
|
|
const std::string &factorName, bool &result, bool useTemplate) {
|
|
result = true;
|
|
|
|
bool ok;
|
|
aiVector3D BaseColor = PropertyGet<aiVector3D>(props, colorName, ok, useTemplate);
|
|
if (!ok) {
|
|
result = false;
|
|
return aiColor3D(0.0f, 0.0f, 0.0f);
|
|
}
|
|
|
|
// if no factor name, return the colour as is
|
|
if (factorName.empty()) {
|
|
return aiColor3D(BaseColor.x, BaseColor.y, BaseColor.z);
|
|
}
|
|
|
|
// otherwise it should be multiplied by the factor, if found.
|
|
float factor = PropertyGet<float>(props, factorName, ok, useTemplate);
|
|
if (ok) {
|
|
BaseColor *= factor;
|
|
}
|
|
return aiColor3D(BaseColor.x, BaseColor.y, BaseColor.z);
|
|
}
|
|
|
|
aiColor3D FBXConverter::GetColorPropertyFromMaterial(const PropertyTable &props, const std::string &baseName,
|
|
bool &result) {
|
|
return GetColorPropertyFactored(props, baseName + "Color", baseName + "Factor", result, true);
|
|
}
|
|
|
|
aiColor3D FBXConverter::GetColorProperty(const PropertyTable &props, const std::string &colorName,
|
|
bool &result, bool useTemplate) {
|
|
result = true;
|
|
bool ok;
|
|
const aiVector3D &ColorVec = PropertyGet<aiVector3D>(props, colorName, ok, useTemplate);
|
|
if (!ok) {
|
|
result = false;
|
|
return aiColor3D(0.0f, 0.0f, 0.0f);
|
|
}
|
|
return aiColor3D(ColorVec.x, ColorVec.y, ColorVec.z);
|
|
}
|
|
|
|
void FBXConverter::SetShadingPropertiesCommon(aiMaterial *out_mat, const PropertyTable &props) {
|
|
// Set shading properties.
|
|
// Modern FBX Files have two separate systems for defining these,
|
|
// with only the more comprehensive one described in the property template.
|
|
// Likely the other values are a legacy system,
|
|
// which is still always exported by the official FBX SDK.
|
|
//
|
|
// Blender's FBX import and export mostly ignore this legacy system,
|
|
// and as we only support recent versions of FBX anyway, we can do the same.
|
|
bool ok;
|
|
|
|
const aiColor3D &Diffuse = GetColorPropertyFromMaterial(props, "Diffuse", ok);
|
|
if (ok) {
|
|
out_mat->AddProperty(&Diffuse, 1, AI_MATKEY_COLOR_DIFFUSE);
|
|
}
|
|
|
|
const aiColor3D &Emissive = GetColorPropertyFromMaterial(props, "Emissive", ok);
|
|
if (ok) {
|
|
out_mat->AddProperty(&Emissive, 1, AI_MATKEY_COLOR_EMISSIVE);
|
|
} else {
|
|
const aiColor3D &emissiveColor = GetColorProperty(props, "Maya|emissive", ok);
|
|
if (ok) {
|
|
out_mat->AddProperty(&emissiveColor, 1, AI_MATKEY_COLOR_EMISSIVE);
|
|
}
|
|
}
|
|
|
|
const aiColor3D &Ambient = GetColorPropertyFromMaterial(props, "Ambient", ok);
|
|
if (ok) {
|
|
out_mat->AddProperty(&Ambient, 1, AI_MATKEY_COLOR_AMBIENT);
|
|
}
|
|
|
|
// we store specular factor as SHININESS_STRENGTH, so just get the color
|
|
const aiColor3D &Specular = GetColorProperty(props, "SpecularColor", ok, true);
|
|
if (ok) {
|
|
out_mat->AddProperty(&Specular, 1, AI_MATKEY_COLOR_SPECULAR);
|
|
}
|
|
|
|
// and also try to get SHININESS_STRENGTH
|
|
const float SpecularFactor = PropertyGet<float>(props, "SpecularFactor", ok, true);
|
|
if (ok) {
|
|
out_mat->AddProperty(&SpecularFactor, 1, AI_MATKEY_SHININESS_STRENGTH);
|
|
}
|
|
|
|
// and the specular exponent
|
|
const float ShininessExponent = PropertyGet<float>(props, "ShininessExponent", ok);
|
|
if (ok) {
|
|
out_mat->AddProperty(&ShininessExponent, 1, AI_MATKEY_SHININESS);
|
|
// Match Blender behavior to extract roughness when only shininess is present
|
|
const float roughness = 1.0f - (sqrt(ShininessExponent) / 10.0f);
|
|
out_mat->AddProperty(&roughness, 1, AI_MATKEY_ROUGHNESS_FACTOR);
|
|
}
|
|
|
|
// TransparentColor / TransparencyFactor... gee thanks FBX :rolleyes:
|
|
const aiColor3D &Transparent = GetColorPropertyFactored(props, "TransparentColor", "TransparencyFactor", ok);
|
|
float CalculatedOpacity = 1.0f;
|
|
if (ok) {
|
|
out_mat->AddProperty(&Transparent, 1, AI_MATKEY_COLOR_TRANSPARENT);
|
|
// as calculated by FBX SDK 2017:
|
|
CalculatedOpacity = 1.0f - ((Transparent.r + Transparent.g + Transparent.b) / 3.0f);
|
|
}
|
|
|
|
// try to get the transparency factor
|
|
const float TransparencyFactor = PropertyGet<float>(props, "TransparencyFactor", ok);
|
|
if (ok) {
|
|
out_mat->AddProperty(&TransparencyFactor, 1, AI_MATKEY_TRANSPARENCYFACTOR);
|
|
}
|
|
|
|
// use of TransparencyFactor is inconsistent.
|
|
// Maya always stores it as 1.0,
|
|
// so we can't use it to set AI_MATKEY_OPACITY.
|
|
// Blender is more sensible and stores it as the alpha value.
|
|
// However both the FBX SDK and Blender always write an additional
|
|
// legacy "Opacity" field, so we can try to use that.
|
|
//
|
|
// If we can't find it,
|
|
// we can fall back to the value which the FBX SDK calculates
|
|
// from transparency colour (RGB) and factor (F) as
|
|
// 1.0 - F*((R+G+B)/3).
|
|
//
|
|
// There's no consistent way to interpret this opacity value,
|
|
// so it's up to clients to do the correct thing.
|
|
const float Opacity = PropertyGet<float>(props, "Opacity", ok);
|
|
if (ok) {
|
|
out_mat->AddProperty(&Opacity, 1, AI_MATKEY_OPACITY);
|
|
} else if (CalculatedOpacity != 1.0) {
|
|
out_mat->AddProperty(&CalculatedOpacity, 1, AI_MATKEY_OPACITY);
|
|
}
|
|
|
|
// reflection color and factor are stored separately
|
|
const aiColor3D &Reflection = GetColorProperty(props, "ReflectionColor", ok, true);
|
|
if (ok) {
|
|
out_mat->AddProperty(&Reflection, 1, AI_MATKEY_COLOR_REFLECTIVE);
|
|
}
|
|
|
|
float ReflectionFactor = PropertyGet<float>(props, "ReflectionFactor", ok, true);
|
|
if (ok) {
|
|
out_mat->AddProperty(&ReflectionFactor, 1, AI_MATKEY_REFLECTIVITY);
|
|
}
|
|
|
|
const float BumpFactor = PropertyGet<float>(props, "BumpFactor", ok);
|
|
if (ok) {
|
|
out_mat->AddProperty(&BumpFactor, 1, AI_MATKEY_BUMPSCALING);
|
|
}
|
|
|
|
const float DispFactor = PropertyGet<float>(props, "DisplacementFactor", ok);
|
|
if (ok) {
|
|
out_mat->AddProperty(&DispFactor, 1, "$mat.displacementscaling", 0, 0);
|
|
}
|
|
|
|
// PBR material information
|
|
const aiColor3D &baseColor = GetColorProperty(props, "Maya|base_color", ok);
|
|
if (ok) {
|
|
out_mat->AddProperty(&baseColor, 1, AI_MATKEY_BASE_COLOR);
|
|
}
|
|
|
|
const float useColorMap = PropertyGet<float>(props, "Maya|use_color_map", ok);
|
|
if (ok) {
|
|
out_mat->AddProperty(&useColorMap, 1, AI_MATKEY_USE_COLOR_MAP);
|
|
}
|
|
|
|
const float useMetallicMap = PropertyGet<float>(props, "Maya|use_metallic_map", ok);
|
|
if (ok) {
|
|
out_mat->AddProperty(&useMetallicMap, 1, AI_MATKEY_USE_METALLIC_MAP);
|
|
}
|
|
|
|
const float metallicFactor = PropertyGet<float>(props, "Maya|metallic", ok);
|
|
if (ok) {
|
|
out_mat->AddProperty(&metallicFactor, 1, AI_MATKEY_METALLIC_FACTOR);
|
|
}
|
|
|
|
const float useRoughnessMap = PropertyGet<float>(props, "Maya|use_roughness_map", ok);
|
|
if (ok) {
|
|
out_mat->AddProperty(&useRoughnessMap, 1, AI_MATKEY_USE_ROUGHNESS_MAP);
|
|
}
|
|
|
|
const float roughnessFactor = PropertyGet<float>(props, "Maya|roughness", ok);
|
|
if (ok) {
|
|
out_mat->AddProperty(&roughnessFactor, 1, AI_MATKEY_ROUGHNESS_FACTOR);
|
|
}
|
|
|
|
const float useEmissiveMap = PropertyGet<float>(props, "Maya|use_emissive_map", ok);
|
|
if (ok) {
|
|
out_mat->AddProperty(&useEmissiveMap, 1, AI_MATKEY_USE_EMISSIVE_MAP);
|
|
}
|
|
|
|
const float emissiveIntensity = PropertyGet<float>(props, "Maya|emissive_intensity", ok);
|
|
if (ok) {
|
|
out_mat->AddProperty(&emissiveIntensity, 1, AI_MATKEY_EMISSIVE_INTENSITY);
|
|
}
|
|
|
|
const float useAOMap = PropertyGet<float>(props, "Maya|use_ao_map", ok);
|
|
if (ok) {
|
|
out_mat->AddProperty(&useAOMap, 1, AI_MATKEY_USE_AO_MAP);
|
|
}
|
|
}
|
|
|
|
void FBXConverter::SetShadingPropertiesRaw(aiMaterial *out_mat, const PropertyTable &props, const TextureMap &_textures, const MeshGeometry *const mesh) {
|
|
// Add all the unparsed properties with a "$raw." prefix
|
|
|
|
const std::string prefix = "$raw.";
|
|
|
|
for (const DirectPropertyMap::value_type &prop : props.GetUnparsedProperties()) {
|
|
|
|
std::string name = prefix + prop.first;
|
|
|
|
if (const TypedProperty<aiVector3D> *interpretedVec3 = prop.second->As<TypedProperty<aiVector3D>>()) {
|
|
out_mat->AddProperty(&interpretedVec3->Value(), 1, name.c_str(), 0, 0);
|
|
} else if (const TypedProperty<aiColor3D> *interpretedCol3 = prop.second->As<TypedProperty<aiColor3D>>()) {
|
|
out_mat->AddProperty(&interpretedCol3->Value(), 1, name.c_str(), 0, 0);
|
|
} else if (const TypedProperty<aiColor4D> *interpretedCol4 = prop.second->As<TypedProperty<aiColor4D>>()) {
|
|
out_mat->AddProperty(&interpretedCol4->Value(), 1, name.c_str(), 0, 0);
|
|
} else if (const TypedProperty<float> *interpretedFloat = prop.second->As<TypedProperty<float>>()) {
|
|
out_mat->AddProperty(&interpretedFloat->Value(), 1, name.c_str(), 0, 0);
|
|
} else if (const TypedProperty<int> *interpretedInt = prop.second->As<TypedProperty<int>>()) {
|
|
out_mat->AddProperty(&interpretedInt->Value(), 1, name.c_str(), 0, 0);
|
|
} else if (const TypedProperty<bool> *interpretedBool = prop.second->As<TypedProperty<bool>>()) {
|
|
int value = interpretedBool->Value() ? 1 : 0;
|
|
out_mat->AddProperty(&value, 1, name.c_str(), 0, 0);
|
|
} else if (const TypedProperty<std::string> *interpretedString = prop.second->As<TypedProperty<std::string>>()) {
|
|
const aiString value = aiString(interpretedString->Value());
|
|
out_mat->AddProperty(&value, name.c_str(), 0, 0);
|
|
}
|
|
}
|
|
|
|
// Add the textures' properties
|
|
|
|
for (TextureMap::const_iterator it = _textures.begin(); it != _textures.end(); ++it) {
|
|
|
|
std::string name = prefix + it->first;
|
|
|
|
const Texture *const tex = it->second;
|
|
if (tex != nullptr) {
|
|
aiString path;
|
|
path.Set(tex->RelativeFilename());
|
|
|
|
const Video *media = tex->Media();
|
|
if (media != nullptr && media->ContentLength() > 0) {
|
|
unsigned int index;
|
|
|
|
VideoMap::const_iterator videoIt = textures_converted.find(media);
|
|
if (videoIt != textures_converted.end()) {
|
|
index = videoIt->second;
|
|
} else {
|
|
index = ConvertVideo(*media);
|
|
textures_converted[media] = index;
|
|
}
|
|
|
|
// setup texture reference string (copied from ColladaLoader::FindFilenameForEffectTexture)
|
|
path.data[0] = '*';
|
|
path.length = 1 + ASSIMP_itoa10(path.data + 1, MAXLEN - 1, index);
|
|
}
|
|
|
|
out_mat->AddProperty(&path, (name + "|file").c_str(), aiTextureType_UNKNOWN, 0);
|
|
|
|
aiUVTransform uvTrafo;
|
|
// XXX handle all kinds of UV transformations
|
|
uvTrafo.mScaling = tex->UVScaling();
|
|
uvTrafo.mTranslation = tex->UVTranslation();
|
|
uvTrafo.mRotation = tex->UVRotation();
|
|
out_mat->AddProperty(&uvTrafo, 1, (name + "|uvtrafo").c_str(), aiTextureType_UNKNOWN, 0);
|
|
|
|
int uvIndex = 0;
|
|
|
|
bool uvFound = false;
|
|
const std::string &uvSet = PropertyGet<std::string>(tex->Props(), "UVSet", uvFound);
|
|
if (uvFound) {
|
|
// "default" is the name which usually appears in the FbxFileTexture template
|
|
if (uvSet != "default" && uvSet.length()) {
|
|
// this is a bit awkward - we need to find a mesh that uses this
|
|
// material and scan its UV channels for the given UV name because
|
|
// assimp references UV channels by index, not by name.
|
|
|
|
// XXX: the case that UV channels may appear in different orders
|
|
// in meshes is unhandled. A possible solution would be to sort
|
|
// the UV channels alphabetically, but this would have the side
|
|
// effect that the primary (first) UV channel would sometimes
|
|
// be moved, causing trouble when users read only the first
|
|
// UV channel and ignore UV channel assignments altogether.
|
|
|
|
std::vector<aiMaterial *>::iterator materialIt = std::find(materials.begin(), materials.end(), out_mat);
|
|
const unsigned int matIndex = static_cast<unsigned int>(std::distance(materials.begin(), materialIt));
|
|
|
|
uvIndex = -1;
|
|
if (!mesh) {
|
|
for (const MeshMap::value_type &v : meshes_converted) {
|
|
const MeshGeometry *const meshGeom = dynamic_cast<const MeshGeometry *>(v.first);
|
|
if (!meshGeom) {
|
|
continue;
|
|
}
|
|
|
|
const MatIndexArray &mats = meshGeom->GetMaterialIndices();
|
|
if (std::find(mats.begin(), mats.end(), (int)matIndex) == mats.end()) {
|
|
continue;
|
|
}
|
|
|
|
int index = -1;
|
|
for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) {
|
|
if (meshGeom->GetTextureCoords(i).empty()) {
|
|
break;
|
|
}
|
|
const std::string &curName = meshGeom->GetTextureCoordChannelName(i);
|
|
if (curName == uvSet) {
|
|
index = static_cast<int>(i);
|
|
break;
|
|
}
|
|
}
|
|
if (index == -1) {
|
|
FBXImporter::LogWarn("did not find UV channel named ", uvSet, " in a mesh using this material");
|
|
continue;
|
|
}
|
|
|
|
if (uvIndex == -1) {
|
|
uvIndex = index;
|
|
} else {
|
|
FBXImporter::LogWarn("the UV channel named ", uvSet, " appears at different positions in meshes, results will be wrong");
|
|
}
|
|
}
|
|
} else {
|
|
int index = -1;
|
|
for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) {
|
|
if (mesh->GetTextureCoords(i).empty()) {
|
|
break;
|
|
}
|
|
const std::string &curName = mesh->GetTextureCoordChannelName(i);
|
|
if (curName == uvSet) {
|
|
index = static_cast<int>(i);
|
|
break;
|
|
}
|
|
}
|
|
if (index == -1) {
|
|
FBXImporter::LogWarn("did not find UV channel named ", uvSet, " in a mesh using this material");
|
|
}
|
|
|
|
if (uvIndex == -1) {
|
|
uvIndex = index;
|
|
}
|
|
}
|
|
|
|
if (uvIndex == -1) {
|
|
FBXImporter::LogWarn("failed to resolve UV channel ", uvSet, ", using first UV channel");
|
|
uvIndex = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
out_mat->AddProperty(&uvIndex, 1, (name + "|uvwsrc").c_str(), aiTextureType_UNKNOWN, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
double FBXConverter::FrameRateToDouble(FileGlobalSettings::FrameRate fp, double customFPSVal) {
|
|
switch (fp) {
|
|
case FileGlobalSettings::FrameRate_DEFAULT:
|
|
return 1.0;
|
|
|
|
case FileGlobalSettings::FrameRate_120:
|
|
return 120.0;
|
|
|
|
case FileGlobalSettings::FrameRate_100:
|
|
return 100.0;
|
|
|
|
case FileGlobalSettings::FrameRate_60:
|
|
return 60.0;
|
|
|
|
case FileGlobalSettings::FrameRate_50:
|
|
return 50.0;
|
|
|
|
case FileGlobalSettings::FrameRate_48:
|
|
return 48.0;
|
|
|
|
case FileGlobalSettings::FrameRate_30:
|
|
case FileGlobalSettings::FrameRate_30_DROP:
|
|
return 30.0;
|
|
|
|
case FileGlobalSettings::FrameRate_NTSC_DROP_FRAME:
|
|
case FileGlobalSettings::FrameRate_NTSC_FULL_FRAME:
|
|
return 29.9700262;
|
|
|
|
case FileGlobalSettings::FrameRate_PAL:
|
|
return 25.0;
|
|
|
|
case FileGlobalSettings::FrameRate_CINEMA:
|
|
return 24.0;
|
|
|
|
case FileGlobalSettings::FrameRate_1000:
|
|
return 1000.0;
|
|
|
|
case FileGlobalSettings::FrameRate_CINEMA_ND:
|
|
return 23.976;
|
|
|
|
case FileGlobalSettings::FrameRate_CUSTOM:
|
|
return customFPSVal;
|
|
|
|
case FileGlobalSettings::FrameRate_MAX: // this is to silence compiler warnings
|
|
break;
|
|
}
|
|
|
|
ai_assert(false);
|
|
|
|
return -1.0f;
|
|
}
|
|
|
|
void FBXConverter::ConvertAnimations() {
|
|
// first of all determine framerate
|
|
const FileGlobalSettings::FrameRate fps = doc.GlobalSettings().TimeMode();
|
|
const float custom = doc.GlobalSettings().CustomFrameRate();
|
|
anim_fps = FrameRateToDouble(fps, custom);
|
|
|
|
const std::vector<const AnimationStack *> &curAnimations = doc.AnimationStacks();
|
|
for (const AnimationStack *stack : curAnimations) {
|
|
ConvertAnimationStack(*stack);
|
|
}
|
|
}
|
|
|
|
std::string FBXConverter::FixNodeName(const std::string &name) {
|
|
// strip Model:: prefix, avoiding ambiguities (i.e. don't strip if
|
|
// this causes ambiguities, well possible between empty identifiers,
|
|
// such as "Model::" and ""). Make sure the behaviour is consistent
|
|
// across multiple calls to FixNodeName().
|
|
if (name.substr(0, 7) == "Model::") {
|
|
std::string temp = name.substr(7);
|
|
return temp;
|
|
}
|
|
|
|
return name;
|
|
}
|
|
|
|
std::string FBXConverter::FixAnimMeshName(const std::string &name) {
|
|
if (name.length()) {
|
|
size_t indexOf = name.find_first_of("::");
|
|
if (indexOf != std::string::npos && indexOf < name.size() - 2) {
|
|
return name.substr(indexOf + 2);
|
|
}
|
|
}
|
|
return name.length() ? name : "AnimMesh";
|
|
}
|
|
|
|
void FBXConverter::ConvertAnimationStack(const AnimationStack &st) {
|
|
const AnimationLayerList &layers = st.Layers();
|
|
if (layers.empty()) {
|
|
return;
|
|
}
|
|
|
|
aiAnimation *const anim = new aiAnimation();
|
|
animations.push_back(anim);
|
|
|
|
// strip AnimationStack:: prefix
|
|
std::string name = st.Name();
|
|
if (name.substr(0, 16) == "AnimationStack::") {
|
|
name = name.substr(16);
|
|
} else if (name.substr(0, 11) == "AnimStack::") {
|
|
name = name.substr(11);
|
|
}
|
|
|
|
anim->mName.Set(name);
|
|
|
|
// need to find all nodes for which we need to generate node animations -
|
|
// it may happen that we need to merge multiple layers, though.
|
|
NodeMap node_map;
|
|
|
|
// reverse mapping from curves to layers, much faster than querying
|
|
// the FBX DOM for it.
|
|
LayerMap layer_map;
|
|
|
|
const char *prop_whitelist[] = {
|
|
"Lcl Scaling",
|
|
"Lcl Rotation",
|
|
"Lcl Translation",
|
|
"DeformPercent"
|
|
};
|
|
|
|
std::map<std::string, morphAnimData *> morphAnimDatas;
|
|
|
|
for (const AnimationLayer *layer : layers) {
|
|
ai_assert(layer);
|
|
const AnimationCurveNodeList &nodes = layer->Nodes(prop_whitelist, 4);
|
|
for (const AnimationCurveNode *node : nodes) {
|
|
ai_assert(node);
|
|
const Model *const model = dynamic_cast<const Model *>(node->Target());
|
|
if (model) {
|
|
const std::string &curName = FixNodeName(model->Name());
|
|
node_map[curName].push_back(node);
|
|
layer_map[node] = layer;
|
|
continue;
|
|
}
|
|
const BlendShapeChannel *const bsc = dynamic_cast<const BlendShapeChannel *>(node->Target());
|
|
if (bsc) {
|
|
ProcessMorphAnimDatas(&morphAnimDatas, bsc, node);
|
|
}
|
|
}
|
|
}
|
|
|
|
// generate node animations
|
|
std::vector<aiNodeAnim *> node_anims;
|
|
|
|
double min_time = 1e10;
|
|
double max_time = -1e10;
|
|
|
|
int64_t start_time = st.LocalStart();
|
|
int64_t stop_time = st.LocalStop();
|
|
bool has_local_startstop = start_time != 0 || stop_time != 0;
|
|
if (!has_local_startstop) {
|
|
// no time range given, so accept every keyframe and use the actual min/max time
|
|
// the numbers are INT64_MIN/MAX, the 20000 is for safety because GenerateNodeAnimations uses an epsilon of 10000
|
|
start_time = -9223372036854775807ll + 20000;
|
|
stop_time = 9223372036854775807ll - 20000;
|
|
}
|
|
|
|
try {
|
|
for (const NodeMap::value_type &kv : node_map) {
|
|
GenerateNodeAnimations(node_anims,
|
|
kv.first,
|
|
kv.second,
|
|
layer_map,
|
|
start_time, stop_time,
|
|
max_time,
|
|
min_time);
|
|
}
|
|
} catch (std::exception &) {
|
|
std::for_each(node_anims.begin(), node_anims.end(), Util::delete_fun<aiNodeAnim>());
|
|
throw;
|
|
}
|
|
|
|
if (node_anims.size() || morphAnimDatas.size()) {
|
|
if (node_anims.size()) {
|
|
anim->mChannels = new aiNodeAnim *[node_anims.size()]();
|
|
anim->mNumChannels = static_cast<unsigned int>(node_anims.size());
|
|
std::swap_ranges(node_anims.begin(), node_anims.end(), anim->mChannels);
|
|
}
|
|
if (morphAnimDatas.size()) {
|
|
unsigned int numMorphMeshChannels = static_cast<unsigned int>(morphAnimDatas.size());
|
|
anim->mMorphMeshChannels = new aiMeshMorphAnim *[numMorphMeshChannels];
|
|
anim->mNumMorphMeshChannels = numMorphMeshChannels;
|
|
unsigned int i = 0;
|
|
for (const auto &morphAnimIt : morphAnimDatas) {
|
|
morphAnimData *animData = morphAnimIt.second;
|
|
unsigned int numKeys = static_cast<unsigned int>(animData->size());
|
|
aiMeshMorphAnim *meshMorphAnim = new aiMeshMorphAnim();
|
|
meshMorphAnim->mName.Set(morphAnimIt.first);
|
|
meshMorphAnim->mNumKeys = numKeys;
|
|
meshMorphAnim->mKeys = new aiMeshMorphKey[numKeys];
|
|
unsigned int j = 0;
|
|
for (auto &animIt : *animData) {
|
|
morphKeyData *keyData = animIt.second;
|
|
unsigned int numValuesAndWeights = static_cast<unsigned int>(keyData->values.size());
|
|
meshMorphAnim->mKeys[j].mNumValuesAndWeights = numValuesAndWeights;
|
|
meshMorphAnim->mKeys[j].mValues = new unsigned int[numValuesAndWeights];
|
|
meshMorphAnim->mKeys[j].mWeights = new double[numValuesAndWeights];
|
|
meshMorphAnim->mKeys[j].mTime = CONVERT_FBX_TIME(animIt.first) * anim_fps;
|
|
for (unsigned int k = 0; k < numValuesAndWeights; k++) {
|
|
meshMorphAnim->mKeys[j].mValues[k] = keyData->values.at(k);
|
|
meshMorphAnim->mKeys[j].mWeights[k] = keyData->weights.at(k);
|
|
}
|
|
j++;
|
|
}
|
|
anim->mMorphMeshChannels[i++] = meshMorphAnim;
|
|
}
|
|
}
|
|
} else {
|
|
// empty animations would fail validation, so drop them
|
|
delete anim;
|
|
animations.pop_back();
|
|
FBXImporter::LogInfo("ignoring empty AnimationStack (using IK?): ", name);
|
|
return;
|
|
}
|
|
|
|
double start_time_fps = has_local_startstop ? (CONVERT_FBX_TIME(start_time) * anim_fps) : min_time;
|
|
double stop_time_fps = has_local_startstop ? (CONVERT_FBX_TIME(stop_time) * anim_fps) : max_time;
|
|
|
|
// adjust relative timing for animation
|
|
for (unsigned int c = 0; c < anim->mNumChannels; c++) {
|
|
aiNodeAnim *channel = anim->mChannels[c];
|
|
for (uint32_t i = 0; i < channel->mNumPositionKeys; i++) {
|
|
channel->mPositionKeys[i].mTime -= start_time_fps;
|
|
}
|
|
for (uint32_t i = 0; i < channel->mNumRotationKeys; i++) {
|
|
channel->mRotationKeys[i].mTime -= start_time_fps;
|
|
}
|
|
for (uint32_t i = 0; i < channel->mNumScalingKeys; i++) {
|
|
channel->mScalingKeys[i].mTime -= start_time_fps;
|
|
}
|
|
}
|
|
for (unsigned int c = 0; c < anim->mNumMorphMeshChannels; c++) {
|
|
aiMeshMorphAnim *channel = anim->mMorphMeshChannels[c];
|
|
for (uint32_t i = 0; i < channel->mNumKeys; i++) {
|
|
channel->mKeys[i].mTime -= start_time_fps;
|
|
}
|
|
}
|
|
|
|
// for some mysterious reason, mDuration is simply the maximum key -- the
|
|
// validator always assumes animations to start at zero.
|
|
anim->mDuration = stop_time_fps - start_time_fps;
|
|
anim->mTicksPerSecond = anim_fps;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void FBXConverter::ProcessMorphAnimDatas(std::map<std::string, morphAnimData *> *morphAnimDatas, const BlendShapeChannel *bsc, const AnimationCurveNode *node) {
|
|
std::vector<const Connection *> bscConnections = doc.GetConnectionsBySourceSequenced(bsc->ID(), "Deformer");
|
|
for (const Connection *bscConnection : bscConnections) {
|
|
auto bs = dynamic_cast<const BlendShape *>(bscConnection->DestinationObject());
|
|
if (bs) {
|
|
auto channelIt = std::find(bs->BlendShapeChannels().begin(), bs->BlendShapeChannels().end(), bsc);
|
|
if (channelIt != bs->BlendShapeChannels().end()) {
|
|
auto channelIndex = static_cast<unsigned int>(std::distance(bs->BlendShapeChannels().begin(), channelIt));
|
|
std::vector<const Connection *> bsConnections = doc.GetConnectionsBySourceSequenced(bs->ID(), "Geometry");
|
|
for (const Connection *bsConnection : bsConnections) {
|
|
auto geo = dynamic_cast<const Geometry *>(bsConnection->DestinationObject());
|
|
if (geo) {
|
|
std::vector<const Connection *> geoConnections = doc.GetConnectionsBySourceSequenced(geo->ID(), "Model");
|
|
for (const Connection *geoConnection : geoConnections) {
|
|
auto model = dynamic_cast<const Model *>(geoConnection->DestinationObject());
|
|
if (model) {
|
|
auto geoIt = std::find(model->GetGeometry().begin(), model->GetGeometry().end(), geo);
|
|
auto geoIndex = static_cast<unsigned int>(std::distance(model->GetGeometry().begin(), geoIt));
|
|
auto name = aiString(FixNodeName(model->Name() + "*"));
|
|
name.length = 1 + ASSIMP_itoa10(name.data + name.length, MAXLEN - 1, geoIndex);
|
|
morphAnimData *animData;
|
|
auto animIt = morphAnimDatas->find(name.C_Str());
|
|
if (animIt == morphAnimDatas->end()) {
|
|
animData = new morphAnimData();
|
|
morphAnimDatas->insert(std::make_pair(name.C_Str(), animData));
|
|
} else {
|
|
animData = animIt->second;
|
|
}
|
|
for (std::pair<std::string, const AnimationCurve *> curvesIt : node->Curves()) {
|
|
if (curvesIt.first == "d|DeformPercent") {
|
|
const AnimationCurve *animationCurve = curvesIt.second;
|
|
const KeyTimeList &keys = animationCurve->GetKeys();
|
|
const KeyValueList &values = animationCurve->GetValues();
|
|
unsigned int k = 0;
|
|
for (auto key : keys) {
|
|
morphKeyData *keyData;
|
|
auto keyIt = animData->find(key);
|
|
if (keyIt == animData->end()) {
|
|
keyData = new morphKeyData();
|
|
animData->insert(std::make_pair(key, keyData));
|
|
} else {
|
|
keyData = keyIt->second;
|
|
}
|
|
keyData->values.push_back(channelIndex);
|
|
keyData->weights.push_back(values.at(k) / 100.0f);
|
|
k++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
#ifdef ASSIMP_BUILD_DEBUG
|
|
// ------------------------------------------------------------------------------------------------
|
|
// sanity check whether the input is ok
|
|
static void validateAnimCurveNodes(const std::vector<const AnimationCurveNode *> &curves,
|
|
bool strictMode) {
|
|
const Object *target(nullptr);
|
|
for (const AnimationCurveNode *node : curves) {
|
|
if (!target) {
|
|
target = node->Target();
|
|
}
|
|
if (node->Target() != target) {
|
|
FBXImporter::LogWarn("Node target is nullptr type.");
|
|
}
|
|
if (strictMode) {
|
|
ai_assert(node->Target() == target);
|
|
}
|
|
}
|
|
}
|
|
#endif // ASSIMP_BUILD_DEBUG
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void FBXConverter::GenerateNodeAnimations(std::vector<aiNodeAnim *> &node_anims,
|
|
const std::string &fixed_name,
|
|
const std::vector<const AnimationCurveNode *> &curves,
|
|
const LayerMap &layer_map,
|
|
int64_t start, int64_t stop,
|
|
double &max_time,
|
|
double &min_time) {
|
|
|
|
NodeMap node_property_map;
|
|
ai_assert(curves.size());
|
|
|
|
#ifdef ASSIMP_BUILD_DEBUG
|
|
validateAnimCurveNodes(curves, doc.Settings().strictMode);
|
|
#endif
|
|
const AnimationCurveNode *curve_node = nullptr;
|
|
for (const AnimationCurveNode *node : curves) {
|
|
ai_assert(node);
|
|
|
|
if (node->TargetProperty().empty()) {
|
|
FBXImporter::LogWarn("target property for animation curve not set: ", node->Name());
|
|
continue;
|
|
}
|
|
|
|
curve_node = node;
|
|
if (node->Curves().empty()) {
|
|
FBXImporter::LogWarn("no animation curves assigned to AnimationCurveNode: ", node->Name());
|
|
continue;
|
|
}
|
|
|
|
node_property_map[node->TargetProperty()].push_back(node);
|
|
}
|
|
|
|
ai_assert(curve_node);
|
|
ai_assert(curve_node->TargetAsModel());
|
|
|
|
const Model &target = *curve_node->TargetAsModel();
|
|
|
|
// check for all possible transformation components
|
|
NodeMap::const_iterator chain[TransformationComp_MAXIMUM];
|
|
|
|
bool has_any = false;
|
|
bool has_complex = false;
|
|
|
|
for (size_t i = 0; i < TransformationComp_MAXIMUM; ++i) {
|
|
const TransformationComp comp = static_cast<TransformationComp>(i);
|
|
|
|
// inverse pivots don't exist in the input, we just generate them
|
|
if (comp == TransformationComp_RotationPivotInverse || comp == TransformationComp_ScalingPivotInverse) {
|
|
chain[i] = node_property_map.end();
|
|
continue;
|
|
}
|
|
|
|
chain[i] = node_property_map.find(NameTransformationCompProperty(comp));
|
|
if (chain[i] != node_property_map.end()) {
|
|
|
|
// check if this curves contains redundant information by looking
|
|
// up the corresponding node's transformation chain.
|
|
if (doc.Settings().optimizeEmptyAnimationCurves &&
|
|
IsRedundantAnimationData(target, comp, (chain[i]->second))) {
|
|
|
|
FBXImporter::LogVerboseDebug("dropping redundant animation channel for node ", target.Name());
|
|
continue;
|
|
}
|
|
|
|
has_any = true;
|
|
|
|
if (comp != TransformationComp_Rotation && comp != TransformationComp_Scaling && comp != TransformationComp_Translation) {
|
|
has_complex = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!has_any) {
|
|
FBXImporter::LogWarn("ignoring node animation, did not find any transformation key frames");
|
|
return;
|
|
}
|
|
|
|
// this needs to play nicely with GenerateTransformationNodeChain() which will
|
|
// be invoked _later_ (animations come first). If this node has only rotation,
|
|
// scaling and translation _and_ there are no animated other components either,
|
|
// we can use a single node and also a single node animation channel.
|
|
if( !has_complex && !NeedsComplexTransformationChain(target)) {
|
|
aiNodeAnim* const nd = GenerateSimpleNodeAnim(fixed_name, target, chain,
|
|
node_property_map.end(),
|
|
start, stop,
|
|
max_time,
|
|
min_time
|
|
);
|
|
|
|
ai_assert(nd);
|
|
if (nd->mNumPositionKeys == 0 && nd->mNumRotationKeys == 0 && nd->mNumScalingKeys == 0) {
|
|
delete nd;
|
|
} else {
|
|
node_anims.push_back(nd);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// otherwise, things get gruesome and we need separate animation channels
|
|
// for each part of the transformation chain. Remember which channels
|
|
// we generated and pass this information to the node conversion
|
|
// code to avoid nodes that have identity transform, but non-identity
|
|
// animations, being dropped.
|
|
unsigned int flags = 0, bit = 0x1;
|
|
for (size_t i = 0; i < TransformationComp_MAXIMUM; ++i, bit <<= 1) {
|
|
const TransformationComp comp = static_cast<TransformationComp>(i);
|
|
|
|
if (chain[i] != node_property_map.end()) {
|
|
flags |= bit;
|
|
|
|
ai_assert(comp != TransformationComp_RotationPivotInverse);
|
|
ai_assert(comp != TransformationComp_ScalingPivotInverse);
|
|
|
|
const std::string &chain_name = NameTransformationChainNode(fixed_name, comp);
|
|
|
|
aiNodeAnim *na = nullptr;
|
|
switch (comp) {
|
|
case TransformationComp_Rotation:
|
|
case TransformationComp_PreRotation:
|
|
case TransformationComp_PostRotation:
|
|
case TransformationComp_GeometricRotation:
|
|
na = GenerateRotationNodeAnim(chain_name,
|
|
target,
|
|
(*chain[i]).second,
|
|
layer_map,
|
|
start, stop,
|
|
max_time,
|
|
min_time);
|
|
|
|
break;
|
|
|
|
case TransformationComp_RotationOffset:
|
|
case TransformationComp_RotationPivot:
|
|
case TransformationComp_ScalingOffset:
|
|
case TransformationComp_ScalingPivot:
|
|
case TransformationComp_Translation:
|
|
case TransformationComp_GeometricTranslation:
|
|
na = GenerateTranslationNodeAnim(chain_name,
|
|
target,
|
|
(*chain[i]).second,
|
|
layer_map,
|
|
start, stop,
|
|
max_time,
|
|
min_time);
|
|
|
|
// pivoting requires us to generate an implicit inverse channel to undo the pivot translation
|
|
if (comp == TransformationComp_RotationPivot) {
|
|
const std::string &invName = NameTransformationChainNode(fixed_name,
|
|
TransformationComp_RotationPivotInverse);
|
|
|
|
aiNodeAnim *const inv = GenerateTranslationNodeAnim(invName,
|
|
target,
|
|
(*chain[i]).second,
|
|
layer_map,
|
|
start, stop,
|
|
max_time,
|
|
min_time,
|
|
true);
|
|
|
|
ai_assert(inv);
|
|
if (inv->mNumPositionKeys == 0 && inv->mNumRotationKeys == 0 && inv->mNumScalingKeys == 0) {
|
|
delete inv;
|
|
} else {
|
|
node_anims.push_back(inv);
|
|
}
|
|
|
|
ai_assert(TransformationComp_RotationPivotInverse > i);
|
|
flags |= bit << (TransformationComp_RotationPivotInverse - i);
|
|
} else if (comp == TransformationComp_ScalingPivot) {
|
|
const std::string &invName = NameTransformationChainNode(fixed_name,
|
|
TransformationComp_ScalingPivotInverse);
|
|
|
|
aiNodeAnim *const inv = GenerateTranslationNodeAnim(invName,
|
|
target,
|
|
(*chain[i]).second,
|
|
layer_map,
|
|
start, stop,
|
|
max_time,
|
|
min_time,
|
|
true);
|
|
|
|
ai_assert(inv);
|
|
if (inv->mNumPositionKeys == 0 && inv->mNumRotationKeys == 0 && inv->mNumScalingKeys == 0) {
|
|
delete inv;
|
|
} else {
|
|
node_anims.push_back(inv);
|
|
}
|
|
|
|
ai_assert(TransformationComp_RotationPivotInverse > i);
|
|
flags |= bit << (TransformationComp_RotationPivotInverse - i);
|
|
}
|
|
|
|
break;
|
|
|
|
case TransformationComp_Scaling:
|
|
case TransformationComp_GeometricScaling:
|
|
na = GenerateScalingNodeAnim(chain_name,
|
|
target,
|
|
(*chain[i]).second,
|
|
layer_map,
|
|
start, stop,
|
|
max_time,
|
|
min_time);
|
|
|
|
break;
|
|
|
|
default:
|
|
ai_assert(false);
|
|
}
|
|
|
|
ai_assert(na);
|
|
if (na->mNumPositionKeys == 0 && na->mNumRotationKeys == 0 && na->mNumScalingKeys == 0) {
|
|
delete na;
|
|
} else {
|
|
node_anims.push_back(na);
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
|
|
node_anim_chain_bits[fixed_name] = flags;
|
|
}
|
|
|
|
bool FBXConverter::IsRedundantAnimationData(const Model &target,
|
|
TransformationComp comp,
|
|
const std::vector<const AnimationCurveNode *> &curves) {
|
|
ai_assert(curves.size());
|
|
|
|
// look for animation nodes with
|
|
// * sub channels for all relevant components set
|
|
// * one key/value pair per component
|
|
// * combined values match up the corresponding value in the bind pose node transformation
|
|
// only such nodes are 'redundant' for this function.
|
|
|
|
if (curves.size() > 1) {
|
|
return false;
|
|
}
|
|
|
|
const AnimationCurveNode &nd = *curves.front();
|
|
const AnimationCurveMap &sub_curves = nd.Curves();
|
|
|
|
const AnimationCurveMap::const_iterator dx = sub_curves.find("d|X");
|
|
const AnimationCurveMap::const_iterator dy = sub_curves.find("d|Y");
|
|
const AnimationCurveMap::const_iterator dz = sub_curves.find("d|Z");
|
|
|
|
if (dx == sub_curves.end() || dy == sub_curves.end() || dz == sub_curves.end()) {
|
|
return false;
|
|
}
|
|
|
|
const KeyValueList &vx = (*dx).second->GetValues();
|
|
const KeyValueList &vy = (*dy).second->GetValues();
|
|
const KeyValueList &vz = (*dz).second->GetValues();
|
|
|
|
if (vx.size() != 1 || vy.size() != 1 || vz.size() != 1) {
|
|
return false;
|
|
}
|
|
|
|
const aiVector3D dyn_val = aiVector3D(vx[0], vy[0], vz[0]);
|
|
const aiVector3D &static_val = PropertyGet<aiVector3D>(target.Props(),
|
|
NameTransformationCompProperty(comp),
|
|
TransformationCompDefaultValue(comp));
|
|
|
|
const float epsilon = Math::getEpsilon<float>();
|
|
return (dyn_val - static_val).SquareLength() < epsilon;
|
|
}
|
|
|
|
aiNodeAnim *FBXConverter::GenerateRotationNodeAnim(const std::string &name,
|
|
const Model &target,
|
|
const std::vector<const AnimationCurveNode *> &curves,
|
|
const LayerMap &layer_map,
|
|
int64_t start, int64_t stop,
|
|
double &max_time,
|
|
double &min_time) {
|
|
std::unique_ptr<aiNodeAnim> na(new aiNodeAnim());
|
|
na->mNodeName.Set(name);
|
|
|
|
ConvertRotationKeys(na.get(), curves, layer_map, start, stop, max_time, min_time, target.RotationOrder());
|
|
|
|
// dummy scaling key
|
|
na->mScalingKeys = new aiVectorKey[1];
|
|
na->mNumScalingKeys = 1;
|
|
|
|
na->mScalingKeys[0].mTime = 0.;
|
|
na->mScalingKeys[0].mValue = aiVector3D(1.0f, 1.0f, 1.0f);
|
|
|
|
// dummy position key
|
|
na->mPositionKeys = new aiVectorKey[1];
|
|
na->mNumPositionKeys = 1;
|
|
|
|
na->mPositionKeys[0].mTime = 0.;
|
|
na->mPositionKeys[0].mValue = aiVector3D();
|
|
|
|
return na.release();
|
|
}
|
|
|
|
aiNodeAnim *FBXConverter::GenerateScalingNodeAnim(const std::string &name,
|
|
const Model & /*target*/,
|
|
const std::vector<const AnimationCurveNode *> &curves,
|
|
const LayerMap &layer_map,
|
|
int64_t start, int64_t stop,
|
|
double &max_time,
|
|
double &min_time) {
|
|
std::unique_ptr<aiNodeAnim> na(new aiNodeAnim());
|
|
na->mNodeName.Set(name);
|
|
|
|
ConvertScaleKeys(na.get(), curves, layer_map, start, stop, max_time, min_time);
|
|
|
|
// dummy rotation key
|
|
na->mRotationKeys = new aiQuatKey[1];
|
|
na->mNumRotationKeys = 1;
|
|
|
|
na->mRotationKeys[0].mTime = 0.;
|
|
na->mRotationKeys[0].mValue = aiQuaternion();
|
|
|
|
// dummy position key
|
|
na->mPositionKeys = new aiVectorKey[1];
|
|
na->mNumPositionKeys = 1;
|
|
|
|
na->mPositionKeys[0].mTime = 0.;
|
|
na->mPositionKeys[0].mValue = aiVector3D();
|
|
|
|
return na.release();
|
|
}
|
|
|
|
aiNodeAnim *FBXConverter::GenerateTranslationNodeAnim(const std::string &name,
|
|
const Model & /*target*/,
|
|
const std::vector<const AnimationCurveNode *> &curves,
|
|
const LayerMap &layer_map,
|
|
int64_t start, int64_t stop,
|
|
double &max_time,
|
|
double &min_time,
|
|
bool inverse) {
|
|
std::unique_ptr<aiNodeAnim> na(new aiNodeAnim());
|
|
na->mNodeName.Set(name);
|
|
|
|
ConvertTranslationKeys(na.get(), curves, layer_map, start, stop, max_time, min_time);
|
|
|
|
if (inverse) {
|
|
for (unsigned int i = 0; i < na->mNumPositionKeys; ++i) {
|
|
na->mPositionKeys[i].mValue *= -1.0f;
|
|
}
|
|
}
|
|
|
|
// dummy scaling key
|
|
na->mScalingKeys = new aiVectorKey[1];
|
|
na->mNumScalingKeys = 1;
|
|
|
|
na->mScalingKeys[0].mTime = 0.;
|
|
na->mScalingKeys[0].mValue = aiVector3D(1.0f, 1.0f, 1.0f);
|
|
|
|
// dummy rotation key
|
|
na->mRotationKeys = new aiQuatKey[1];
|
|
na->mNumRotationKeys = 1;
|
|
|
|
na->mRotationKeys[0].mTime = 0.;
|
|
na->mRotationKeys[0].mValue = aiQuaternion();
|
|
|
|
return na.release();
|
|
}
|
|
|
|
aiNodeAnim* FBXConverter::GenerateSimpleNodeAnim(const std::string& name,
|
|
const Model& target,
|
|
NodeMap::const_iterator chain[TransformationComp_MAXIMUM],
|
|
NodeMap::const_iterator iterEnd,
|
|
int64_t start, int64_t stop,
|
|
double& maxTime,
|
|
double& minTime)
|
|
{
|
|
std::unique_ptr<aiNodeAnim> na(new aiNodeAnim());
|
|
na->mNodeName.Set(name);
|
|
|
|
const PropertyTable &props = target.Props();
|
|
|
|
// collect unique times and keyframe lists
|
|
KeyFrameListList keyframeLists[TransformationComp_MAXIMUM];
|
|
KeyTimeList keytimes;
|
|
|
|
for (size_t i = 0; i < TransformationComp_MAXIMUM; ++i) {
|
|
if (chain[i] == iterEnd)
|
|
continue;
|
|
|
|
if (i == TransformationComp_Rotation || i == TransformationComp_PreRotation
|
|
|| i == TransformationComp_PostRotation || i == TransformationComp_GeometricRotation) {
|
|
keyframeLists[i] = GetRotationKeyframeList((*chain[i]).second, start, stop);
|
|
} else {
|
|
keyframeLists[i] = GetKeyframeList((*chain[i]).second, start, stop);
|
|
}
|
|
|
|
for (KeyFrameListList::const_iterator it = keyframeLists[i].begin(); it != keyframeLists[i].end(); ++it) {
|
|
const KeyTimeList& times = *std::get<0>(*it);
|
|
keytimes.insert(keytimes.end(), times.begin(), times.end());
|
|
}
|
|
|
|
// remove duplicates
|
|
std::sort(keytimes.begin(), keytimes.end());
|
|
|
|
auto last = std::unique(keytimes.begin(), keytimes.end());
|
|
keytimes.erase(last, keytimes.end());
|
|
}
|
|
|
|
const Model::RotOrder rotOrder = target.RotationOrder();
|
|
const size_t keyCount = keytimes.size();
|
|
|
|
aiVector3D defTranslate = PropertyGet(props, "Lcl Translation", aiVector3D(0.f, 0.f, 0.f));
|
|
aiVector3D defRotation = PropertyGet(props, "Lcl Rotation", aiVector3D(0.f, 0.f, 0.f));
|
|
aiVector3D defScale = PropertyGet(props, "Lcl Scaling", aiVector3D(1.f, 1.f, 1.f));
|
|
aiQuaternion defQuat = EulerToQuaternion(defRotation, rotOrder);
|
|
|
|
aiVectorKey* outTranslations = new aiVectorKey[keyCount];
|
|
aiQuatKey* outRotations = new aiQuatKey[keyCount];
|
|
aiVectorKey* outScales = new aiVectorKey[keyCount];
|
|
|
|
if (keyframeLists[TransformationComp_Translation].size() > 0) {
|
|
InterpolateKeys(outTranslations, keytimes, keyframeLists[TransformationComp_Translation], defTranslate, maxTime, minTime);
|
|
} else {
|
|
for (size_t i = 0; i < keyCount; ++i) {
|
|
outTranslations[i].mTime = CONVERT_FBX_TIME(keytimes[i]) * anim_fps;
|
|
outTranslations[i].mValue = defTranslate;
|
|
}
|
|
}
|
|
|
|
if (keyframeLists[TransformationComp_Rotation].size() > 0) {
|
|
InterpolateKeys(outRotations, keytimes, keyframeLists[TransformationComp_Rotation], defRotation, maxTime, minTime, rotOrder);
|
|
} else {
|
|
for (size_t i = 0; i < keyCount; ++i) {
|
|
outRotations[i].mTime = CONVERT_FBX_TIME(keytimes[i]) * anim_fps;
|
|
outRotations[i].mValue = defQuat;
|
|
}
|
|
}
|
|
|
|
if (keyframeLists[TransformationComp_Scaling].size() > 0) {
|
|
InterpolateKeys(outScales, keytimes, keyframeLists[TransformationComp_Scaling], defScale, maxTime, minTime);
|
|
} else {
|
|
for (size_t i = 0; i < keyCount; ++i) {
|
|
outScales[i].mTime = CONVERT_FBX_TIME(keytimes[i]) * anim_fps;
|
|
outScales[i].mValue = defScale;
|
|
}
|
|
}
|
|
|
|
bool ok = false;
|
|
|
|
const auto zero_epsilon = ai_epsilon;
|
|
|
|
const aiVector3D& preRotation = PropertyGet<aiVector3D>(props, "PreRotation", ok);
|
|
if (ok && preRotation.SquareLength() > zero_epsilon) {
|
|
const aiQuaternion preQuat = EulerToQuaternion(preRotation, Model::RotOrder_EulerXYZ);
|
|
for (size_t i = 0; i < keyCount; ++i) {
|
|
outRotations[i].mValue = preQuat * outRotations[i].mValue;
|
|
}
|
|
}
|
|
|
|
const aiVector3D& postRotation = PropertyGet<aiVector3D>(props, "PostRotation", ok);
|
|
if (ok && postRotation.SquareLength() > zero_epsilon) {
|
|
const aiQuaternion postQuat = EulerToQuaternion(postRotation, Model::RotOrder_EulerXYZ);
|
|
for (size_t i = 0; i < keyCount; ++i) {
|
|
outRotations[i].mValue = outRotations[i].mValue * postQuat;
|
|
}
|
|
}
|
|
|
|
// convert TRS to SRT
|
|
for (size_t i = 0; i < keyCount; ++i) {
|
|
aiQuaternion& r = outRotations[i].mValue;
|
|
aiVector3D& s = outScales[i].mValue;
|
|
aiVector3D& t = outTranslations[i].mValue;
|
|
|
|
aiMatrix4x4 mat, temp;
|
|
aiMatrix4x4::Translation(t, mat);
|
|
mat *= aiMatrix4x4(r.GetMatrix());
|
|
mat *= aiMatrix4x4::Scaling(s, temp);
|
|
|
|
mat.Decompose(s, r, t);
|
|
}
|
|
|
|
na->mNumScalingKeys = static_cast<unsigned int>(keyCount);
|
|
na->mNumRotationKeys = na->mNumScalingKeys;
|
|
na->mNumPositionKeys = na->mNumScalingKeys;
|
|
|
|
na->mScalingKeys = outScales;
|
|
na->mRotationKeys = outRotations;
|
|
na->mPositionKeys = outTranslations;
|
|
|
|
return na.release();
|
|
}
|
|
|
|
FBXConverter::KeyFrameListList FBXConverter::GetKeyframeList(const std::vector<const AnimationCurveNode *> &nodes, int64_t start, int64_t stop) {
|
|
KeyFrameListList inputs;
|
|
inputs.reserve(nodes.size() * 3);
|
|
|
|
//give some breathing room for rounding errors
|
|
int64_t adj_start = start - 10000;
|
|
int64_t adj_stop = stop + 10000;
|
|
|
|
for (const AnimationCurveNode *node : nodes) {
|
|
ai_assert(node);
|
|
|
|
const AnimationCurveMap &curves = node->Curves();
|
|
for (const AnimationCurveMap::value_type &kv : curves) {
|
|
|
|
unsigned int mapto;
|
|
if (kv.first == "d|X") {
|
|
mapto = 0;
|
|
} else if (kv.first == "d|Y") {
|
|
mapto = 1;
|
|
} else if (kv.first == "d|Z") {
|
|
mapto = 2;
|
|
} else {
|
|
FBXImporter::LogWarn("ignoring scale animation curve, did not recognize target component");
|
|
continue;
|
|
}
|
|
|
|
const AnimationCurve *const curve = kv.second;
|
|
ai_assert(curve->GetKeys().size() == curve->GetValues().size());
|
|
ai_assert(curve->GetKeys().size());
|
|
|
|
//get values within the start/stop time window
|
|
std::shared_ptr<KeyTimeList> Keys(new KeyTimeList());
|
|
std::shared_ptr<KeyValueList> Values(new KeyValueList());
|
|
const size_t count = curve->GetKeys().size();
|
|
Keys->reserve(count);
|
|
Values->reserve(count);
|
|
for (size_t n = 0; n < count; n++) {
|
|
int64_t k = curve->GetKeys().at(n);
|
|
if (k >= adj_start && k <= adj_stop) {
|
|
Keys->push_back(k);
|
|
Values->push_back(curve->GetValues().at(n));
|
|
}
|
|
}
|
|
|
|
inputs.emplace_back(Keys, Values, mapto);
|
|
}
|
|
}
|
|
return inputs; // pray for NRVO :-)
|
|
}
|
|
|
|
FBXConverter::KeyFrameListList FBXConverter::GetRotationKeyframeList(const std::vector<const AnimationCurveNode *> &nodes,
|
|
int64_t start, int64_t stop) {
|
|
KeyFrameListList inputs;
|
|
inputs.reserve(nodes.size() * 3);
|
|
|
|
//give some breathing room for rounding errors
|
|
const int64_t adj_start = start - 10000;
|
|
const int64_t adj_stop = stop + 10000;
|
|
|
|
for (const AnimationCurveNode *node : nodes) {
|
|
ai_assert(node);
|
|
|
|
const AnimationCurveMap &curves = node->Curves();
|
|
for (const AnimationCurveMap::value_type &kv : curves) {
|
|
|
|
unsigned int mapto;
|
|
if (kv.first == "d|X") {
|
|
mapto = 0;
|
|
} else if (kv.first == "d|Y") {
|
|
mapto = 1;
|
|
} else if (kv.first == "d|Z") {
|
|
mapto = 2;
|
|
} else {
|
|
FBXImporter::LogWarn("ignoring scale animation curve, did not recognize target component");
|
|
continue;
|
|
}
|
|
|
|
const AnimationCurve *const curve = kv.second;
|
|
ai_assert(curve->GetKeys().size() == curve->GetValues().size());
|
|
ai_assert(curve->GetKeys().size());
|
|
|
|
//get values within the start/stop time window
|
|
std::shared_ptr<KeyTimeList> Keys(new KeyTimeList());
|
|
std::shared_ptr<KeyValueList> Values(new KeyValueList());
|
|
const size_t count = curve->GetKeys().size();
|
|
|
|
int64_t tp = curve->GetKeys().at(0);
|
|
float vp = curve->GetValues().at(0);
|
|
Keys->push_back(tp);
|
|
Values->push_back(vp);
|
|
if (count > 1) {
|
|
int64_t tc = curve->GetKeys().at(1);
|
|
float vc = curve->GetValues().at(1);
|
|
for (size_t n = 1; n < count; n++) {
|
|
while (std::abs(vc - vp) >= 180.0f) {
|
|
double step = std::floor(double(tc - tp) / std::abs(vc - vp) * 179.0f);
|
|
int64_t tnew = tp + int64_t(step);
|
|
float vnew = vp + (vc - vp) * float(step / (tc - tp));
|
|
if (tnew >= adj_start && tnew <= adj_stop) {
|
|
Keys->push_back(tnew);
|
|
Values->push_back(vnew);
|
|
}
|
|
else {
|
|
// Something broke
|
|
break;
|
|
}
|
|
tp = tnew;
|
|
vp = vnew;
|
|
}
|
|
if (tc >= adj_start && tc <= adj_stop) {
|
|
Keys->push_back(tc);
|
|
Values->push_back(vc);
|
|
}
|
|
if (n + 1 < count) {
|
|
tp = tc;
|
|
vp = vc;
|
|
tc = curve->GetKeys().at(n + 1);
|
|
vc = curve->GetValues().at(n + 1);
|
|
}
|
|
}
|
|
}
|
|
inputs.emplace_back(Keys, Values, mapto);
|
|
}
|
|
}
|
|
return inputs;
|
|
}
|
|
|
|
KeyTimeList FBXConverter::GetKeyTimeList(const KeyFrameListList &inputs) {
|
|
ai_assert(!inputs.empty());
|
|
|
|
// reserve some space upfront - it is likely that the key-frame lists
|
|
// have matching time values, so max(of all key-frame lists) should
|
|
// be a good estimate.
|
|
KeyTimeList keys;
|
|
|
|
size_t estimate = 0;
|
|
for (const KeyFrameList &kfl : inputs) {
|
|
estimate = std::max(estimate, std::get<0>(kfl)->size());
|
|
}
|
|
|
|
keys.reserve(estimate);
|
|
|
|
std::vector<unsigned int> next_pos;
|
|
next_pos.resize(inputs.size(), 0);
|
|
|
|
const size_t count = inputs.size();
|
|
while (true) {
|
|
|
|
int64_t min_tick = std::numeric_limits<int64_t>::max();
|
|
for (size_t i = 0; i < count; ++i) {
|
|
const KeyFrameList &kfl = inputs[i];
|
|
|
|
if (std::get<0>(kfl)->size() > next_pos[i] && std::get<0>(kfl)->at(next_pos[i]) < min_tick) {
|
|
min_tick = std::get<0>(kfl)->at(next_pos[i]);
|
|
}
|
|
}
|
|
|
|
if (min_tick == std::numeric_limits<int64_t>::max()) {
|
|
break;
|
|
}
|
|
keys.push_back(min_tick);
|
|
|
|
for (size_t i = 0; i < count; ++i) {
|
|
const KeyFrameList &kfl = inputs[i];
|
|
|
|
while (std::get<0>(kfl)->size() > next_pos[i] && std::get<0>(kfl)->at(next_pos[i]) == min_tick) {
|
|
++next_pos[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
return keys;
|
|
}
|
|
|
|
void FBXConverter::InterpolateKeys(aiVectorKey *valOut, const KeyTimeList &keys, const KeyFrameListList &inputs,
|
|
const aiVector3D &def_value,
|
|
double &max_time,
|
|
double &min_time) {
|
|
ai_assert(!keys.empty());
|
|
ai_assert(nullptr != valOut);
|
|
|
|
std::vector<unsigned int> next_pos;
|
|
const size_t count(inputs.size());
|
|
|
|
next_pos.resize(inputs.size(), 0);
|
|
|
|
for (KeyTimeList::value_type time : keys) {
|
|
ai_real result[3] = { def_value.x, def_value.y, def_value.z };
|
|
|
|
for (size_t i = 0; i < count; ++i) {
|
|
const KeyFrameList &kfl = inputs[i];
|
|
|
|
const size_t ksize = std::get<0>(kfl)->size();
|
|
if (ksize == 0) {
|
|
continue;
|
|
}
|
|
if (ksize > next_pos[i] && std::get<0>(kfl)->at(next_pos[i]) == time) {
|
|
++next_pos[i];
|
|
}
|
|
|
|
const size_t id0 = next_pos[i] > 0 ? next_pos[i] - 1 : 0;
|
|
const size_t id1 = next_pos[i] == ksize ? ksize - 1 : next_pos[i];
|
|
|
|
// use lerp for interpolation
|
|
const KeyValueList::value_type valueA = std::get<1>(kfl)->at(id0);
|
|
const KeyValueList::value_type valueB = std::get<1>(kfl)->at(id1);
|
|
|
|
const KeyTimeList::value_type timeA = std::get<0>(kfl)->at(id0);
|
|
const KeyTimeList::value_type timeB = std::get<0>(kfl)->at(id1);
|
|
|
|
const ai_real factor = timeB == timeA ? ai_real(0.) : static_cast<ai_real>((time - timeA)) / (timeB - timeA);
|
|
const ai_real interpValue = static_cast<ai_real>(valueA + (valueB - valueA) * factor);
|
|
|
|
result[std::get<2>(kfl)] = interpValue;
|
|
}
|
|
|
|
// magic value to convert fbx times to seconds
|
|
valOut->mTime = CONVERT_FBX_TIME(time) * anim_fps;
|
|
|
|
min_time = std::min(min_time, valOut->mTime);
|
|
max_time = std::max(max_time, valOut->mTime);
|
|
|
|
valOut->mValue.x = result[0];
|
|
valOut->mValue.y = result[1];
|
|
valOut->mValue.z = result[2];
|
|
|
|
++valOut;
|
|
}
|
|
}
|
|
|
|
void FBXConverter::InterpolateKeys(aiQuatKey *valOut, const KeyTimeList &keys, const KeyFrameListList &inputs,
|
|
const aiVector3D &def_value,
|
|
double &maxTime,
|
|
double &minTime,
|
|
Model::RotOrder order) {
|
|
ai_assert(!keys.empty());
|
|
ai_assert(nullptr != valOut);
|
|
|
|
std::unique_ptr<aiVectorKey[]> temp(new aiVectorKey[keys.size()]);
|
|
InterpolateKeys(temp.get(), keys, inputs, def_value, maxTime, minTime);
|
|
|
|
aiMatrix4x4 m;
|
|
|
|
aiQuaternion lastq;
|
|
|
|
for (size_t i = 0, c = keys.size(); i < c; ++i) {
|
|
|
|
valOut[i].mTime = temp[i].mTime;
|
|
|
|
GetRotationMatrix(order, temp[i].mValue, m);
|
|
aiQuaternion quat = aiQuaternion(aiMatrix3x3(m));
|
|
|
|
// take shortest path by checking the inner product
|
|
// http://www.3dkingdoms.com/weekly/weekly.php?a=36
|
|
if (quat.x * lastq.x + quat.y * lastq.y + quat.z * lastq.z + quat.w * lastq.w < 0) {
|
|
quat.Conjugate();
|
|
quat.w = -quat.w;
|
|
}
|
|
lastq = quat;
|
|
|
|
valOut[i].mValue = quat;
|
|
}
|
|
}
|
|
|
|
aiQuaternion FBXConverter::EulerToQuaternion(const aiVector3D &rot, Model::RotOrder order) {
|
|
aiMatrix4x4 m;
|
|
GetRotationMatrix(order, rot, m);
|
|
|
|
return aiQuaternion(aiMatrix3x3(m));
|
|
}
|
|
|
|
void FBXConverter::ConvertScaleKeys(aiNodeAnim *na, const std::vector<const AnimationCurveNode *> &nodes, const LayerMap & /*layers*/,
|
|
int64_t start, int64_t stop,
|
|
double &maxTime,
|
|
double &minTime) {
|
|
ai_assert(nodes.size());
|
|
|
|
// XXX for now, assume scale should be blended geometrically (i.e. two
|
|
// layers should be multiplied with each other). There is a FBX
|
|
// property in the layer to specify the behaviour, though.
|
|
|
|
const KeyFrameListList &inputs = GetKeyframeList(nodes, start, stop);
|
|
const KeyTimeList &keys = GetKeyTimeList(inputs);
|
|
|
|
na->mNumScalingKeys = static_cast<unsigned int>(keys.size());
|
|
na->mScalingKeys = new aiVectorKey[keys.size()];
|
|
if (keys.size() > 0) {
|
|
InterpolateKeys(na->mScalingKeys, keys, inputs, aiVector3D(1.0f, 1.0f, 1.0f), maxTime, minTime);
|
|
}
|
|
}
|
|
|
|
void FBXConverter::ConvertTranslationKeys(aiNodeAnim *na, const std::vector<const AnimationCurveNode *> &nodes,
|
|
const LayerMap & /*layers*/,
|
|
int64_t start, int64_t stop,
|
|
double &maxTime,
|
|
double &minTime) {
|
|
ai_assert(nodes.size());
|
|
|
|
// XXX see notes in ConvertScaleKeys()
|
|
const KeyFrameListList &inputs = GetKeyframeList(nodes, start, stop);
|
|
const KeyTimeList &keys = GetKeyTimeList(inputs);
|
|
|
|
na->mNumPositionKeys = static_cast<unsigned int>(keys.size());
|
|
na->mPositionKeys = new aiVectorKey[keys.size()];
|
|
if (keys.size() > 0)
|
|
InterpolateKeys(na->mPositionKeys, keys, inputs, aiVector3D(0.0f, 0.0f, 0.0f), maxTime, minTime);
|
|
}
|
|
|
|
void FBXConverter::ConvertRotationKeys(aiNodeAnim *na, const std::vector<const AnimationCurveNode *> &nodes,
|
|
const LayerMap & /*layers*/,
|
|
int64_t start, int64_t stop,
|
|
double &maxTime,
|
|
double &minTime,
|
|
Model::RotOrder order) {
|
|
ai_assert(nodes.size());
|
|
|
|
// XXX see notes in ConvertScaleKeys()
|
|
const std::vector<KeyFrameList> &inputs = GetRotationKeyframeList(nodes, start, stop);
|
|
const KeyTimeList &keys = GetKeyTimeList(inputs);
|
|
|
|
na->mNumRotationKeys = static_cast<unsigned int>(keys.size());
|
|
na->mRotationKeys = new aiQuatKey[keys.size()];
|
|
if (!keys.empty()) {
|
|
InterpolateKeys(na->mRotationKeys, keys, inputs, aiVector3D(0.0f, 0.0f, 0.0f), maxTime, minTime, order);
|
|
}
|
|
}
|
|
|
|
void FBXConverter::ConvertGlobalSettings() {
|
|
if (nullptr == mSceneOut) {
|
|
return;
|
|
}
|
|
|
|
const bool hasGenerator = !doc.Creator().empty();
|
|
|
|
mSceneOut->mMetaData = aiMetadata::Alloc(16 + (hasGenerator ? 1 : 0));
|
|
mSceneOut->mMetaData->Set(0, "UpAxis", doc.GlobalSettings().UpAxis());
|
|
mSceneOut->mMetaData->Set(1, "UpAxisSign", doc.GlobalSettings().UpAxisSign());
|
|
mSceneOut->mMetaData->Set(2, "FrontAxis", doc.GlobalSettings().FrontAxis());
|
|
mSceneOut->mMetaData->Set(3, "FrontAxisSign", doc.GlobalSettings().FrontAxisSign());
|
|
mSceneOut->mMetaData->Set(4, "CoordAxis", doc.GlobalSettings().CoordAxis());
|
|
mSceneOut->mMetaData->Set(5, "CoordAxisSign", doc.GlobalSettings().CoordAxisSign());
|
|
mSceneOut->mMetaData->Set(6, "OriginalUpAxis", doc.GlobalSettings().OriginalUpAxis());
|
|
mSceneOut->mMetaData->Set(7, "OriginalUpAxisSign", doc.GlobalSettings().OriginalUpAxisSign());
|
|
//const double unitScaleFactor = (double)doc.GlobalSettings().UnitScaleFactor();
|
|
mSceneOut->mMetaData->Set(8, "UnitScaleFactor", doc.GlobalSettings().UnitScaleFactor());
|
|
mSceneOut->mMetaData->Set(9, "OriginalUnitScaleFactor", doc.GlobalSettings().OriginalUnitScaleFactor());
|
|
mSceneOut->mMetaData->Set(10, "AmbientColor", doc.GlobalSettings().AmbientColor());
|
|
mSceneOut->mMetaData->Set(11, "FrameRate", (int)doc.GlobalSettings().TimeMode());
|
|
mSceneOut->mMetaData->Set(12, "TimeSpanStart", doc.GlobalSettings().TimeSpanStart());
|
|
mSceneOut->mMetaData->Set(13, "TimeSpanStop", doc.GlobalSettings().TimeSpanStop());
|
|
mSceneOut->mMetaData->Set(14, "CustomFrameRate", doc.GlobalSettings().CustomFrameRate());
|
|
mSceneOut->mMetaData->Set(15, AI_METADATA_SOURCE_FORMAT_VERSION, aiString(ai_to_string(doc.FBXVersion())));
|
|
if (hasGenerator) {
|
|
mSceneOut->mMetaData->Set(16, AI_METADATA_SOURCE_GENERATOR, aiString(doc.Creator()));
|
|
}
|
|
}
|
|
|
|
void FBXConverter::TransferDataToScene() {
|
|
ai_assert(!mSceneOut->mMeshes);
|
|
ai_assert(!mSceneOut->mNumMeshes);
|
|
|
|
// note: the trailing () ensures initialization with nullptr - not
|
|
// many C++ users seem to know this, so pointing it out to avoid
|
|
// confusion why this code works.
|
|
|
|
if (!mMeshes.empty()) {
|
|
mSceneOut->mMeshes = new aiMesh *[mMeshes.size()]();
|
|
mSceneOut->mNumMeshes = static_cast<unsigned int>(mMeshes.size());
|
|
|
|
std::swap_ranges(mMeshes.begin(), mMeshes.end(), mSceneOut->mMeshes);
|
|
}
|
|
|
|
if (!materials.empty()) {
|
|
mSceneOut->mMaterials = new aiMaterial *[materials.size()]();
|
|
mSceneOut->mNumMaterials = static_cast<unsigned int>(materials.size());
|
|
|
|
std::swap_ranges(materials.begin(), materials.end(), mSceneOut->mMaterials);
|
|
}
|
|
|
|
if (!animations.empty()) {
|
|
mSceneOut->mAnimations = new aiAnimation *[animations.size()]();
|
|
mSceneOut->mNumAnimations = static_cast<unsigned int>(animations.size());
|
|
|
|
std::swap_ranges(animations.begin(), animations.end(), mSceneOut->mAnimations);
|
|
}
|
|
|
|
if (!lights.empty()) {
|
|
mSceneOut->mLights = new aiLight *[lights.size()]();
|
|
mSceneOut->mNumLights = static_cast<unsigned int>(lights.size());
|
|
|
|
std::swap_ranges(lights.begin(), lights.end(), mSceneOut->mLights);
|
|
}
|
|
|
|
if (!cameras.empty()) {
|
|
mSceneOut->mCameras = new aiCamera *[cameras.size()]();
|
|
mSceneOut->mNumCameras = static_cast<unsigned int>(cameras.size());
|
|
|
|
std::swap_ranges(cameras.begin(), cameras.end(), mSceneOut->mCameras);
|
|
}
|
|
|
|
if (!textures.empty()) {
|
|
mSceneOut->mTextures = new aiTexture *[textures.size()]();
|
|
mSceneOut->mNumTextures = static_cast<unsigned int>(textures.size());
|
|
|
|
std::swap_ranges(textures.begin(), textures.end(), mSceneOut->mTextures);
|
|
}
|
|
|
|
if (!mSkeletons.empty()) {
|
|
mSceneOut->mSkeletons = new aiSkeleton *[mSkeletons.size()];
|
|
mSceneOut->mNumSkeletons = static_cast<unsigned int>(mSkeletons.size());
|
|
std::swap_ranges(mSkeletons.begin(), mSkeletons.end(), mSceneOut->mSkeletons);
|
|
}
|
|
}
|
|
|
|
void FBXConverter::ConvertOrphanedEmbeddedTextures() {
|
|
// in C++14 it could be:
|
|
// for (auto&& [id, object] : objects)
|
|
for (auto &&id_and_object : doc.Objects()) {
|
|
auto &&id = std::get<0>(id_and_object);
|
|
auto &&object = std::get<1>(id_and_object);
|
|
// If an object doesn't have parent
|
|
if (doc.ConnectionsBySource().count(id) == 0) {
|
|
const Texture *realTexture = nullptr;
|
|
try {
|
|
const auto &element = object->GetElement();
|
|
const Token &key = element.KeyToken();
|
|
const char *obtype = key.begin();
|
|
const size_t length = static_cast<size_t>(key.end() - key.begin());
|
|
if (strncmp(obtype, "Texture", length) == 0) {
|
|
if (const Texture *texture = static_cast<const Texture *>(object->Get())) {
|
|
if (texture->Media() && texture->Media()->ContentLength() > 0) {
|
|
realTexture = texture;
|
|
}
|
|
}
|
|
}
|
|
} catch (...) {
|
|
// do nothing
|
|
}
|
|
if (realTexture) {
|
|
const Video *media = realTexture->Media();
|
|
unsigned int index = ConvertVideo(*media);
|
|
textures_converted[media] = index;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ConvertToAssimpScene(aiScene *out, const Document &doc, bool removeEmptyBones) {
|
|
FBXConverter converter(out, doc, removeEmptyBones);
|
|
}
|
|
|
|
} // namespace FBX
|
|
} // namespace Assimp
|
|
|
|
#endif
|