1288 lines
52 KiB
C++
1288 lines
52 KiB
C++
/*
|
|
---------------------------------------------------------------------------
|
|
Open Asset Import Library (assimp)
|
|
---------------------------------------------------------------------------
|
|
|
|
Copyright (c) 2006-2022, assimp team
|
|
|
|
All rights reserved.
|
|
|
|
Redistribution and use of this software in source and binary forms,
|
|
with or without modification, are permitted provided that the following
|
|
conditions are met:
|
|
|
|
* Redistributions of source code must retain the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer in the documentation and/or other
|
|
materials provided with the distribution.
|
|
|
|
* Neither the name of the assimp team, nor the names of its
|
|
contributors may be used to endorse or promote products
|
|
derived from this software without specific prior
|
|
written permission of the assimp team.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
---------------------------------------------------------------------------
|
|
*/
|
|
|
|
/** @file ASELoader.cpp
|
|
* @brief Implementation of the ASE importer class
|
|
*/
|
|
|
|
#ifndef ASSIMP_BUILD_NO_ASE_IMPORTER
|
|
|
|
#ifndef ASSIMP_BUILD_NO_3DS_IMPORTER
|
|
|
|
// internal headers
|
|
#include "ASELoader.h"
|
|
#include "Common/TargetAnimation.h"
|
|
#include <assimp/SkeletonMeshBuilder.h>
|
|
#include <assimp/StringComparison.h>
|
|
|
|
#include <assimp/importerdesc.h>
|
|
#include <assimp/scene.h>
|
|
#include <assimp/DefaultLogger.hpp>
|
|
#include <assimp/IOSystem.hpp>
|
|
#include <assimp/Importer.hpp>
|
|
|
|
#include <memory>
|
|
|
|
// utilities
|
|
#include <assimp/fast_atof.h>
|
|
|
|
using namespace Assimp;
|
|
using namespace Assimp::ASE;
|
|
|
|
static const aiImporterDesc desc = {
|
|
"ASE Importer",
|
|
"",
|
|
"",
|
|
"Similar to 3DS but text-encoded",
|
|
aiImporterFlags_SupportTextFlavour,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
"ase ask"
|
|
};
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Constructor to be privately used by Importer
|
|
ASEImporter::ASEImporter() :
|
|
mParser(), mBuffer(), pcScene(), configRecomputeNormals(), noSkeletonMesh() {
|
|
// empty
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Destructor, private as well
|
|
ASEImporter::~ASEImporter() = default;
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Returns whether the class can handle the format of the given file.
|
|
bool ASEImporter::CanRead(const std::string &pFile, IOSystem *pIOHandler, bool /*checkSig*/) const {
|
|
static const char *tokens[] = { "*3dsmax_asciiexport" };
|
|
return SearchFileHeaderForToken(pIOHandler, pFile, tokens, AI_COUNT_OF(tokens));
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Loader meta information
|
|
const aiImporterDesc *ASEImporter::GetInfo() const {
|
|
return &desc;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Setup configuration options
|
|
void ASEImporter::SetupProperties(const Importer *pImp) {
|
|
configRecomputeNormals = (pImp->GetPropertyInteger(
|
|
AI_CONFIG_IMPORT_ASE_RECONSTRUCT_NORMALS, 1) ?
|
|
true :
|
|
false);
|
|
|
|
noSkeletonMesh = pImp->GetPropertyInteger(AI_CONFIG_IMPORT_NO_SKELETON_MESHES, 0) != 0;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Imports the given file into the given scene structure.
|
|
void ASEImporter::InternReadFile(const std::string &pFile,
|
|
aiScene *pScene, IOSystem *pIOHandler) {
|
|
std::unique_ptr<IOStream> file(pIOHandler->Open(pFile, "rb"));
|
|
|
|
// Check whether we can read from the file
|
|
if (file.get() == nullptr) {
|
|
throw DeadlyImportError("Failed to open ASE file ", pFile, ".");
|
|
}
|
|
|
|
// Allocate storage and copy the contents of the file to a memory buffer
|
|
std::vector<char> mBuffer2;
|
|
TextFileToBuffer(file.get(), mBuffer2);
|
|
|
|
this->mBuffer = &mBuffer2[0];
|
|
this->pcScene = pScene;
|
|
|
|
// ------------------------------------------------------------------
|
|
// Guess the file format by looking at the extension
|
|
// ASC is considered to be the older format 110,
|
|
// ASE is the actual version 200 (that is currently written by max)
|
|
// ------------------------------------------------------------------
|
|
unsigned int defaultFormat;
|
|
std::string::size_type s = pFile.length() - 1;
|
|
switch (pFile.c_str()[s]) {
|
|
|
|
case 'C':
|
|
case 'c':
|
|
defaultFormat = AI_ASE_OLD_FILE_FORMAT;
|
|
break;
|
|
default:
|
|
defaultFormat = AI_ASE_NEW_FILE_FORMAT;
|
|
};
|
|
|
|
// Construct an ASE parser and parse the file
|
|
ASE::Parser parser(mBuffer, defaultFormat);
|
|
mParser = &parser;
|
|
mParser->Parse();
|
|
|
|
//------------------------------------------------------------------
|
|
// Check whether we god at least one mesh. If we did - generate
|
|
// materials and copy meshes.
|
|
// ------------------------------------------------------------------
|
|
if (!mParser->m_vMeshes.empty()) {
|
|
|
|
// If absolutely no material has been loaded from the file
|
|
// we need to generate a default material
|
|
GenerateDefaultMaterial();
|
|
|
|
// process all meshes
|
|
bool tookNormals = false;
|
|
std::vector<aiMesh *> avOutMeshes;
|
|
avOutMeshes.reserve(mParser->m_vMeshes.size() * 2);
|
|
for (std::vector<ASE::Mesh>::iterator i = mParser->m_vMeshes.begin(); i != mParser->m_vMeshes.end(); ++i) {
|
|
if ((*i).bSkip) {
|
|
continue;
|
|
}
|
|
BuildUniqueRepresentation(*i);
|
|
|
|
// Need to generate proper vertex normals if necessary
|
|
if (GenerateNormals(*i)) {
|
|
tookNormals = true;
|
|
}
|
|
|
|
// Convert all meshes to aiMesh objects
|
|
ConvertMeshes(*i, avOutMeshes);
|
|
}
|
|
if (tookNormals) {
|
|
ASSIMP_LOG_DEBUG("ASE: Taking normals from the file. Use "
|
|
"the AI_CONFIG_IMPORT_ASE_RECONSTRUCT_NORMALS setting if you "
|
|
"experience problems");
|
|
}
|
|
|
|
// Now build the output mesh list. Remove dummies
|
|
pScene->mNumMeshes = (unsigned int)avOutMeshes.size();
|
|
aiMesh **pp = pScene->mMeshes = new aiMesh *[pScene->mNumMeshes];
|
|
for (std::vector<aiMesh *>::const_iterator i = avOutMeshes.begin(); i != avOutMeshes.end(); ++i) {
|
|
if (!(*i)->mNumFaces) {
|
|
continue;
|
|
}
|
|
*pp++ = *i;
|
|
}
|
|
pScene->mNumMeshes = (unsigned int)(pp - pScene->mMeshes);
|
|
|
|
// Build final material indices (remove submaterials and setup
|
|
// the final list)
|
|
BuildMaterialIndices();
|
|
}
|
|
|
|
// ------------------------------------------------------------------
|
|
// Copy all scene graph nodes - lights, cameras, dummies and meshes
|
|
// into one huge list.
|
|
//------------------------------------------------------------------
|
|
std::vector<BaseNode *> nodes;
|
|
nodes.reserve(mParser->m_vMeshes.size() + mParser->m_vLights.size() + mParser->m_vCameras.size() + mParser->m_vDummies.size());
|
|
|
|
// Lights
|
|
for (auto &light : mParser->m_vLights)
|
|
nodes.push_back(&light);
|
|
// Cameras
|
|
for (auto &camera : mParser->m_vCameras)
|
|
nodes.push_back(&camera);
|
|
// Meshes
|
|
for (auto &mesh : mParser->m_vMeshes)
|
|
nodes.push_back(&mesh);
|
|
// Dummies
|
|
for (auto &dummy : mParser->m_vDummies)
|
|
nodes.push_back(&dummy);
|
|
|
|
// build the final node graph
|
|
BuildNodes(nodes);
|
|
|
|
// build output animations
|
|
BuildAnimations(nodes);
|
|
|
|
// build output cameras
|
|
BuildCameras();
|
|
|
|
// build output lights
|
|
BuildLights();
|
|
|
|
// ------------------------------------------------------------------
|
|
// If we have no meshes use the SkeletonMeshBuilder helper class
|
|
// to build a mesh for the animation skeleton
|
|
// FIXME: very strange results
|
|
// ------------------------------------------------------------------
|
|
if (!pScene->mNumMeshes) {
|
|
pScene->mFlags |= AI_SCENE_FLAGS_INCOMPLETE;
|
|
if (!noSkeletonMesh) {
|
|
SkeletonMeshBuilder skeleton(pScene);
|
|
}
|
|
}
|
|
}
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ASEImporter::GenerateDefaultMaterial() {
|
|
ai_assert(nullptr != mParser);
|
|
|
|
bool bHas = false;
|
|
for (std::vector<ASE::Mesh>::iterator i = mParser->m_vMeshes.begin(); i != mParser->m_vMeshes.end(); ++i) {
|
|
if ((*i).bSkip) continue;
|
|
if (ASE::Face::DEFAULT_MATINDEX == (*i).iMaterialIndex) {
|
|
(*i).iMaterialIndex = (unsigned int)mParser->m_vMaterials.size();
|
|
bHas = true;
|
|
}
|
|
}
|
|
if (bHas || mParser->m_vMaterials.empty()) {
|
|
// add a simple material without submaterials to the parser's list
|
|
mParser->m_vMaterials.emplace_back(AI_DEFAULT_MATERIAL_NAME);
|
|
ASE::Material &mat = mParser->m_vMaterials.back();
|
|
|
|
mat.mDiffuse = aiColor3D(0.6f, 0.6f, 0.6f);
|
|
mat.mSpecular = aiColor3D(1.0f, 1.0f, 1.0f);
|
|
mat.mAmbient = aiColor3D(0.05f, 0.05f, 0.05f);
|
|
mat.mShading = Discreet3DS::Gouraud;
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ASEImporter::BuildAnimations(const std::vector<BaseNode *> &nodes) {
|
|
// check whether we have at least one mesh which has animations
|
|
std::vector<ASE::BaseNode *>::const_iterator i = nodes.begin();
|
|
unsigned int iNum = 0;
|
|
for (; i != nodes.end(); ++i) {
|
|
|
|
// TODO: Implement Bezier & TCB support
|
|
if ((*i)->mAnim.mPositionType != ASE::Animation::TRACK) {
|
|
ASSIMP_LOG_WARN("ASE: Position controller uses Bezier/TCB keys. "
|
|
"This is not supported.");
|
|
}
|
|
if ((*i)->mAnim.mRotationType != ASE::Animation::TRACK) {
|
|
ASSIMP_LOG_WARN("ASE: Rotation controller uses Bezier/TCB keys. "
|
|
"This is not supported.");
|
|
}
|
|
if ((*i)->mAnim.mScalingType != ASE::Animation::TRACK) {
|
|
ASSIMP_LOG_WARN("ASE: Position controller uses Bezier/TCB keys. "
|
|
"This is not supported.");
|
|
}
|
|
|
|
// We compare against 1 here - firstly one key is not
|
|
// really an animation and secondly MAX writes dummies
|
|
// that represent the node transformation.
|
|
if ((*i)->mAnim.akeyPositions.size() > 1 || (*i)->mAnim.akeyRotations.size() > 1 || (*i)->mAnim.akeyScaling.size() > 1) {
|
|
++iNum;
|
|
}
|
|
if ((*i)->mTargetAnim.akeyPositions.size() > 1 && is_not_qnan((*i)->mTargetPosition.x)) {
|
|
++iNum;
|
|
}
|
|
}
|
|
if (iNum) {
|
|
// Generate a new animation channel and setup everything for it
|
|
pcScene->mNumAnimations = 1;
|
|
pcScene->mAnimations = new aiAnimation *[1];
|
|
aiAnimation *pcAnim = pcScene->mAnimations[0] = new aiAnimation();
|
|
pcAnim->mNumChannels = iNum;
|
|
pcAnim->mChannels = new aiNodeAnim *[iNum];
|
|
pcAnim->mTicksPerSecond = mParser->iFrameSpeed * mParser->iTicksPerFrame;
|
|
|
|
iNum = 0;
|
|
|
|
// Now iterate through all meshes and collect all data we can find
|
|
for (i = nodes.begin(); i != nodes.end(); ++i) {
|
|
|
|
ASE::BaseNode *me = *i;
|
|
if (me->mTargetAnim.akeyPositions.size() > 1 && is_not_qnan(me->mTargetPosition.x)) {
|
|
// Generate an extra channel for the camera/light target.
|
|
// BuildNodes() does also generate an extra node, named
|
|
// <baseName>.Target.
|
|
aiNodeAnim *nd = pcAnim->mChannels[iNum++] = new aiNodeAnim();
|
|
nd->mNodeName.Set(me->mName + ".Target");
|
|
|
|
// If there is no input position channel we will need
|
|
// to supply the default position from the node's
|
|
// local transformation matrix.
|
|
/*TargetAnimationHelper helper;
|
|
if (me->mAnim.akeyPositions.empty())
|
|
{
|
|
aiMatrix4x4& mat = (*i)->mTransform;
|
|
helper.SetFixedMainAnimationChannel(aiVector3D(
|
|
mat.a4, mat.b4, mat.c4));
|
|
}
|
|
else helper.SetMainAnimationChannel (&me->mAnim.akeyPositions);
|
|
helper.SetTargetAnimationChannel (&me->mTargetAnim.akeyPositions);
|
|
|
|
helper.Process(&me->mTargetAnim.akeyPositions);*/
|
|
|
|
// Allocate the key array and fill it
|
|
nd->mNumPositionKeys = (unsigned int)me->mTargetAnim.akeyPositions.size();
|
|
nd->mPositionKeys = new aiVectorKey[nd->mNumPositionKeys];
|
|
|
|
::memcpy(nd->mPositionKeys, &me->mTargetAnim.akeyPositions[0],
|
|
nd->mNumPositionKeys * sizeof(aiVectorKey));
|
|
}
|
|
|
|
if (me->mAnim.akeyPositions.size() > 1 || me->mAnim.akeyRotations.size() > 1 || me->mAnim.akeyScaling.size() > 1) {
|
|
// Begin a new node animation channel for this node
|
|
aiNodeAnim *nd = pcAnim->mChannels[iNum++] = new aiNodeAnim();
|
|
nd->mNodeName.Set(me->mName);
|
|
|
|
// copy position keys
|
|
if (me->mAnim.akeyPositions.size() > 1) {
|
|
// Allocate the key array and fill it
|
|
nd->mNumPositionKeys = (unsigned int)me->mAnim.akeyPositions.size();
|
|
nd->mPositionKeys = new aiVectorKey[nd->mNumPositionKeys];
|
|
|
|
::memcpy(nd->mPositionKeys, &me->mAnim.akeyPositions[0],
|
|
nd->mNumPositionKeys * sizeof(aiVectorKey));
|
|
}
|
|
// copy rotation keys
|
|
if (me->mAnim.akeyRotations.size() > 1) {
|
|
// Allocate the key array and fill it
|
|
nd->mNumRotationKeys = (unsigned int)me->mAnim.akeyRotations.size();
|
|
nd->mRotationKeys = new aiQuatKey[nd->mNumRotationKeys];
|
|
|
|
// --------------------------------------------------------------------
|
|
// Rotation keys are offsets to the previous keys.
|
|
// We have the quaternion representations of all
|
|
// of them, so we just need to concatenate all
|
|
// (unit-length) quaternions to get the absolute
|
|
// rotations.
|
|
// Rotation keys are ABSOLUTE for older files
|
|
// --------------------------------------------------------------------
|
|
|
|
aiQuaternion cur;
|
|
for (unsigned int a = 0; a < nd->mNumRotationKeys; ++a) {
|
|
aiQuatKey q = me->mAnim.akeyRotations[a];
|
|
|
|
if (mParser->iFileFormat > 110) {
|
|
cur = (a ? cur * q.mValue : q.mValue);
|
|
q.mValue = cur.Normalize();
|
|
}
|
|
nd->mRotationKeys[a] = q;
|
|
|
|
// need this to get to Assimp quaternion conventions
|
|
nd->mRotationKeys[a].mValue.w *= -1.f;
|
|
}
|
|
}
|
|
// copy scaling keys
|
|
if (me->mAnim.akeyScaling.size() > 1) {
|
|
// Allocate the key array and fill it
|
|
nd->mNumScalingKeys = (unsigned int)me->mAnim.akeyScaling.size();
|
|
nd->mScalingKeys = new aiVectorKey[nd->mNumScalingKeys];
|
|
|
|
::memcpy(nd->mScalingKeys, &me->mAnim.akeyScaling[0],
|
|
nd->mNumScalingKeys * sizeof(aiVectorKey));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Build output cameras
|
|
void ASEImporter::BuildCameras() {
|
|
if (!mParser->m_vCameras.empty()) {
|
|
pcScene->mNumCameras = (unsigned int)mParser->m_vCameras.size();
|
|
pcScene->mCameras = new aiCamera *[pcScene->mNumCameras];
|
|
|
|
for (unsigned int i = 0; i < pcScene->mNumCameras; ++i) {
|
|
aiCamera *out = pcScene->mCameras[i] = new aiCamera();
|
|
ASE::Camera &in = mParser->m_vCameras[i];
|
|
|
|
// copy members
|
|
out->mClipPlaneFar = in.mFar;
|
|
out->mClipPlaneNear = (in.mNear ? in.mNear : 0.1f);
|
|
out->mHorizontalFOV = in.mFOV;
|
|
|
|
out->mName.Set(in.mName);
|
|
}
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Build output lights
|
|
void ASEImporter::BuildLights() {
|
|
if (!mParser->m_vLights.empty()) {
|
|
pcScene->mNumLights = (unsigned int)mParser->m_vLights.size();
|
|
pcScene->mLights = new aiLight *[pcScene->mNumLights];
|
|
|
|
for (unsigned int i = 0; i < pcScene->mNumLights; ++i) {
|
|
aiLight *out = pcScene->mLights[i] = new aiLight();
|
|
ASE::Light &in = mParser->m_vLights[i];
|
|
|
|
// The direction is encoded in the transformation matrix of the node.
|
|
// In 3DS MAX the light source points into negative Z direction if
|
|
// the node transformation is the identity.
|
|
out->mDirection = aiVector3D(0.f, 0.f, -1.f);
|
|
|
|
out->mName.Set(in.mName);
|
|
switch (in.mLightType) {
|
|
case ASE::Light::TARGET:
|
|
out->mType = aiLightSource_SPOT;
|
|
out->mAngleInnerCone = AI_DEG_TO_RAD(in.mAngle);
|
|
out->mAngleOuterCone = (in.mFalloff ? AI_DEG_TO_RAD(in.mFalloff) : out->mAngleInnerCone);
|
|
break;
|
|
|
|
case ASE::Light::DIRECTIONAL:
|
|
out->mType = aiLightSource_DIRECTIONAL;
|
|
break;
|
|
|
|
default:
|
|
//case ASE::Light::OMNI:
|
|
out->mType = aiLightSource_POINT;
|
|
break;
|
|
};
|
|
out->mColorDiffuse = out->mColorSpecular = in.mColor * in.mIntensity;
|
|
}
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ASEImporter::AddNodes(const std::vector<BaseNode *> &nodes,
|
|
aiNode *pcParent, const char *szName) {
|
|
aiMatrix4x4 m;
|
|
AddNodes(nodes, pcParent, szName, m);
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Add meshes to a given node
|
|
void ASEImporter::AddMeshes(const ASE::BaseNode *snode, aiNode *node) {
|
|
for (unsigned int i = 0; i < pcScene->mNumMeshes; ++i) {
|
|
// Get the name of the mesh (the mesh instance has been temporarily stored in the third vertex color)
|
|
const aiMesh *pcMesh = pcScene->mMeshes[i];
|
|
const ASE::Mesh *mesh = (const ASE::Mesh *)pcMesh->mColors[2];
|
|
|
|
if (mesh == snode) {
|
|
++node->mNumMeshes;
|
|
}
|
|
}
|
|
|
|
if (node->mNumMeshes) {
|
|
node->mMeshes = new unsigned int[node->mNumMeshes];
|
|
for (unsigned int i = 0, p = 0; i < pcScene->mNumMeshes; ++i) {
|
|
|
|
const aiMesh *pcMesh = pcScene->mMeshes[i];
|
|
const ASE::Mesh *mesh = (const ASE::Mesh *)pcMesh->mColors[2];
|
|
if (mesh == snode) {
|
|
node->mMeshes[p++] = i;
|
|
|
|
// Transform all vertices of the mesh back into their local space ->
|
|
// at the moment they are pretransformed
|
|
aiMatrix4x4 m = mesh->mTransform;
|
|
m.Inverse();
|
|
|
|
aiVector3D *pvCurPtr = pcMesh->mVertices;
|
|
const aiVector3D *pvEndPtr = pvCurPtr + pcMesh->mNumVertices;
|
|
while (pvCurPtr != pvEndPtr) {
|
|
*pvCurPtr = m * (*pvCurPtr);
|
|
pvCurPtr++;
|
|
}
|
|
|
|
// Do the same for the normal vectors, if we have them.
|
|
// As always, inverse transpose.
|
|
if (pcMesh->mNormals) {
|
|
aiMatrix3x3 m3 = aiMatrix3x3(mesh->mTransform);
|
|
m3.Transpose();
|
|
|
|
pvCurPtr = pcMesh->mNormals;
|
|
pvEndPtr = pvCurPtr + pcMesh->mNumVertices;
|
|
while (pvCurPtr != pvEndPtr) {
|
|
*pvCurPtr = m3 * (*pvCurPtr);
|
|
pvCurPtr++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Add child nodes to a given parent node
|
|
void ASEImporter::AddNodes(const std::vector<BaseNode *> &nodes,
|
|
aiNode *pcParent, const char *szName,
|
|
const aiMatrix4x4 &mat) {
|
|
const size_t len = szName ? ::strlen(szName) : 0;
|
|
ai_assert(4 <= AI_MAX_NUMBER_OF_COLOR_SETS);
|
|
|
|
// Receives child nodes for the pcParent node
|
|
std::vector<aiNode *> apcNodes;
|
|
|
|
// Now iterate through all nodes in the scene and search for one
|
|
// which has *us* as parent.
|
|
for (std::vector<BaseNode *>::const_iterator it = nodes.begin(), end = nodes.end(); it != end; ++it) {
|
|
const BaseNode *snode = *it;
|
|
if (szName) {
|
|
if (len != snode->mParent.length() || ::strcmp(szName, snode->mParent.c_str()))
|
|
continue;
|
|
} else if (snode->mParent.length())
|
|
continue;
|
|
|
|
(*it)->mProcessed = true;
|
|
|
|
// Allocate a new node and add it to the output data structure
|
|
apcNodes.push_back(new aiNode());
|
|
aiNode *node = apcNodes.back();
|
|
|
|
node->mName.Set((snode->mName.length() ? snode->mName.c_str() : "Unnamed_Node"));
|
|
node->mParent = pcParent;
|
|
|
|
// Setup the transformation matrix of the node
|
|
aiMatrix4x4 mParentAdjust = mat;
|
|
mParentAdjust.Inverse();
|
|
node->mTransformation = mParentAdjust * snode->mTransform;
|
|
|
|
// Add sub nodes - prevent stack overflow due to recursive parenting
|
|
if (node->mName != node->mParent->mName && node->mName != node->mParent->mParent->mName) {
|
|
AddNodes(nodes, node, node->mName.data, snode->mTransform);
|
|
}
|
|
|
|
// Further processing depends on the type of the node
|
|
if (snode->mType == ASE::BaseNode::Mesh) {
|
|
// If the type of this node is "Mesh" we need to search
|
|
// the list of output meshes in the data structure for
|
|
// all those that belonged to this node once. This is
|
|
// slightly inconvinient here and a better solution should
|
|
// be used when this code is refactored next.
|
|
AddMeshes(snode, node);
|
|
} else if (is_not_qnan(snode->mTargetPosition.x)) {
|
|
// If this is a target camera or light we generate a small
|
|
// child node which marks the position of the camera
|
|
// target (the direction information is contained in *this*
|
|
// node's animation track but the exact target position
|
|
// would be lost otherwise)
|
|
if (!node->mNumChildren) {
|
|
node->mChildren = new aiNode *[1];
|
|
}
|
|
|
|
aiNode *nd = new aiNode();
|
|
|
|
nd->mName.Set(snode->mName + ".Target");
|
|
|
|
nd->mTransformation.a4 = snode->mTargetPosition.x - snode->mTransform.a4;
|
|
nd->mTransformation.b4 = snode->mTargetPosition.y - snode->mTransform.b4;
|
|
nd->mTransformation.c4 = snode->mTargetPosition.z - snode->mTransform.c4;
|
|
|
|
nd->mParent = node;
|
|
|
|
// The .Target node is always the first child node
|
|
for (unsigned int m = 0; m < node->mNumChildren; ++m)
|
|
node->mChildren[m + 1] = node->mChildren[m];
|
|
|
|
node->mChildren[0] = nd;
|
|
node->mNumChildren++;
|
|
|
|
// What we did is so great, it is at least worth a debug message
|
|
ASSIMP_LOG_VERBOSE_DEBUG("ASE: Generating separate target node (", snode->mName, ")");
|
|
}
|
|
}
|
|
|
|
// Allocate enough space for the child nodes
|
|
// We allocate one slot more in case this is a target camera/light
|
|
pcParent->mNumChildren = (unsigned int)apcNodes.size();
|
|
if (pcParent->mNumChildren) {
|
|
pcParent->mChildren = new aiNode *[apcNodes.size() + 1 /* PLUS ONE !!! */];
|
|
|
|
// now build all nodes for our nice new children
|
|
for (unsigned int p = 0; p < apcNodes.size(); ++p)
|
|
pcParent->mChildren[p] = apcNodes[p];
|
|
}
|
|
return;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Build the output node graph
|
|
void ASEImporter::BuildNodes(std::vector<BaseNode *> &nodes) {
|
|
ai_assert(nullptr != pcScene);
|
|
|
|
// allocate the one and only root node
|
|
aiNode *root = pcScene->mRootNode = new aiNode();
|
|
root->mName.Set("<ASERoot>");
|
|
|
|
// Setup the coordinate system transformation
|
|
pcScene->mRootNode->mNumChildren = 1;
|
|
pcScene->mRootNode->mChildren = new aiNode *[1];
|
|
aiNode *ch = pcScene->mRootNode->mChildren[0] = new aiNode();
|
|
ch->mParent = root;
|
|
|
|
// Change the transformation matrix of all nodes
|
|
for (BaseNode *node : nodes) {
|
|
aiMatrix4x4 &m = node->mTransform;
|
|
m.Transpose(); // row-order vs column-order
|
|
}
|
|
|
|
// add all nodes
|
|
AddNodes(nodes, ch, nullptr);
|
|
|
|
// now iterate through al nodes and find those that have not yet
|
|
// been added to the nodegraph (= their parent could not be recognized)
|
|
std::vector<const BaseNode *> aiList;
|
|
for (std::vector<BaseNode *>::iterator it = nodes.begin(), end = nodes.end(); it != end; ++it) {
|
|
if ((*it)->mProcessed) {
|
|
continue;
|
|
}
|
|
|
|
// check whether our parent is known
|
|
bool bKnowParent = false;
|
|
|
|
// search the list another time, starting *here* and try to find out whether
|
|
// there is a node that references *us* as a parent
|
|
for (std::vector<BaseNode *>::const_iterator it2 = nodes.begin(); it2 != end; ++it2) {
|
|
if (it2 == it) {
|
|
continue;
|
|
}
|
|
|
|
if ((*it2)->mName == (*it)->mParent) {
|
|
bKnowParent = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!bKnowParent) {
|
|
aiList.push_back(*it);
|
|
}
|
|
}
|
|
|
|
// Are there any orphaned nodes?
|
|
if (!aiList.empty()) {
|
|
std::vector<aiNode *> apcNodes;
|
|
apcNodes.reserve(aiList.size() + pcScene->mRootNode->mNumChildren);
|
|
|
|
for (unsigned int i = 0; i < pcScene->mRootNode->mNumChildren; ++i)
|
|
apcNodes.push_back(pcScene->mRootNode->mChildren[i]);
|
|
|
|
delete[] pcScene->mRootNode->mChildren;
|
|
for (std::vector<const BaseNode *>::/*const_*/ iterator i = aiList.begin(); i != aiList.end(); ++i) {
|
|
const ASE::BaseNode *src = *i;
|
|
|
|
// The parent is not known, so we can assume that we must add
|
|
// this node to the root node of the whole scene
|
|
aiNode *pcNode = new aiNode();
|
|
pcNode->mParent = pcScene->mRootNode;
|
|
pcNode->mName.Set(src->mName);
|
|
AddMeshes(src, pcNode);
|
|
AddNodes(nodes, pcNode, pcNode->mName.data);
|
|
apcNodes.push_back(pcNode);
|
|
}
|
|
|
|
// Regenerate our output array
|
|
pcScene->mRootNode->mChildren = new aiNode *[apcNodes.size()];
|
|
for (unsigned int i = 0; i < apcNodes.size(); ++i)
|
|
pcScene->mRootNode->mChildren[i] = apcNodes[i];
|
|
|
|
pcScene->mRootNode->mNumChildren = (unsigned int)apcNodes.size();
|
|
}
|
|
|
|
// Reset the third color set to nullptr - we used this field to store a temporary pointer
|
|
for (unsigned int i = 0; i < pcScene->mNumMeshes; ++i)
|
|
pcScene->mMeshes[i]->mColors[2] = nullptr;
|
|
|
|
// The root node should not have at least one child or the file is valid
|
|
if (!pcScene->mRootNode->mNumChildren) {
|
|
throw DeadlyImportError("ASE: No nodes loaded. The file is either empty or corrupt");
|
|
}
|
|
|
|
// Now rotate the whole scene 90 degrees around the x axis to convert to internal coordinate system
|
|
pcScene->mRootNode->mTransformation = aiMatrix4x4(1.f, 0.f, 0.f, 0.f,
|
|
0.f, 0.f, 1.f, 0.f, 0.f, -1.f, 0.f, 0.f, 0.f, 0.f, 0.f, 1.f);
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Convert the imported data to the internal verbose representation
|
|
void ASEImporter::BuildUniqueRepresentation(ASE::Mesh &mesh) {
|
|
// allocate output storage
|
|
std::vector<aiVector3D> mPositions;
|
|
std::vector<aiVector3D> amTexCoords[AI_MAX_NUMBER_OF_TEXTURECOORDS];
|
|
std::vector<aiColor4D> mVertexColors;
|
|
std::vector<aiVector3D> mNormals;
|
|
std::vector<BoneVertex> mBoneVertices;
|
|
|
|
unsigned int iSize = (unsigned int)mesh.mFaces.size() * 3;
|
|
mPositions.resize(iSize);
|
|
|
|
// optional texture coordinates
|
|
for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) {
|
|
if (!mesh.amTexCoords[i].empty()) {
|
|
amTexCoords[i].resize(iSize);
|
|
}
|
|
}
|
|
// optional vertex colors
|
|
if (!mesh.mVertexColors.empty()) {
|
|
mVertexColors.resize(iSize);
|
|
}
|
|
|
|
// optional vertex normals (vertex normals can simply be copied)
|
|
if (!mesh.mNormals.empty()) {
|
|
mNormals.resize(iSize);
|
|
}
|
|
// bone vertices. There is no need to change the bone list
|
|
if (!mesh.mBoneVertices.empty()) {
|
|
mBoneVertices.resize(iSize);
|
|
}
|
|
|
|
// iterate through all faces in the mesh
|
|
unsigned int iCurrent = 0, fi = 0;
|
|
for (std::vector<ASE::Face>::iterator i = mesh.mFaces.begin(); i != mesh.mFaces.end(); ++i, ++fi) {
|
|
for (unsigned int n = 0; n < 3; ++n, ++iCurrent) {
|
|
mPositions[iCurrent] = mesh.mPositions[(*i).mIndices[n]];
|
|
|
|
// add texture coordinates
|
|
for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++c) {
|
|
if (mesh.amTexCoords[c].empty()) break;
|
|
amTexCoords[c][iCurrent] = mesh.amTexCoords[c][(*i).amUVIndices[c][n]];
|
|
}
|
|
// add vertex colors
|
|
if (!mesh.mVertexColors.empty()) {
|
|
mVertexColors[iCurrent] = mesh.mVertexColors[(*i).mColorIndices[n]];
|
|
}
|
|
// add normal vectors
|
|
if (!mesh.mNormals.empty()) {
|
|
mNormals[iCurrent] = mesh.mNormals[fi * 3 + n];
|
|
mNormals[iCurrent].Normalize();
|
|
}
|
|
|
|
// handle bone vertices
|
|
if ((*i).mIndices[n] < mesh.mBoneVertices.size()) {
|
|
// (sometimes this will cause bone verts to be duplicated
|
|
// however, I' quite sure Schrompf' JoinVerticesStep
|
|
// will fix that again ...)
|
|
mBoneVertices[iCurrent] = mesh.mBoneVertices[(*i).mIndices[n]];
|
|
}
|
|
(*i).mIndices[n] = iCurrent;
|
|
}
|
|
}
|
|
|
|
// replace the old arrays
|
|
mesh.mNormals = mNormals;
|
|
mesh.mPositions = mPositions;
|
|
mesh.mVertexColors = mVertexColors;
|
|
|
|
for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++c)
|
|
mesh.amTexCoords[c] = amTexCoords[c];
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Copy a texture from the ASE structs to the output material
|
|
void CopyASETexture(aiMaterial &mat, ASE::Texture &texture, aiTextureType type) {
|
|
// Setup the texture name
|
|
aiString tex;
|
|
tex.Set(texture.mMapName);
|
|
mat.AddProperty(&tex, AI_MATKEY_TEXTURE(type, 0));
|
|
|
|
// Setup the texture blend factor
|
|
if (is_not_qnan(texture.mTextureBlend))
|
|
mat.AddProperty<ai_real>(&texture.mTextureBlend, 1, AI_MATKEY_TEXBLEND(type, 0));
|
|
|
|
// Setup texture UV transformations
|
|
mat.AddProperty<ai_real>(&texture.mOffsetU, 5, AI_MATKEY_UVTRANSFORM(type, 0));
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Convert from ASE material to output material
|
|
void ASEImporter::ConvertMaterial(ASE::Material &mat) {
|
|
// LARGE TODO: Much code her is copied from 3DS ... join them maybe?
|
|
|
|
// Allocate the output material
|
|
mat.pcInstance = new aiMaterial();
|
|
|
|
// At first add the base ambient color of the
|
|
// scene to the material
|
|
mat.mAmbient.r += mParser->m_clrAmbient.r;
|
|
mat.mAmbient.g += mParser->m_clrAmbient.g;
|
|
mat.mAmbient.b += mParser->m_clrAmbient.b;
|
|
|
|
aiString name;
|
|
name.Set(mat.mName);
|
|
mat.pcInstance->AddProperty(&name, AI_MATKEY_NAME);
|
|
|
|
// material colors
|
|
mat.pcInstance->AddProperty(&mat.mAmbient, 1, AI_MATKEY_COLOR_AMBIENT);
|
|
mat.pcInstance->AddProperty(&mat.mDiffuse, 1, AI_MATKEY_COLOR_DIFFUSE);
|
|
mat.pcInstance->AddProperty(&mat.mSpecular, 1, AI_MATKEY_COLOR_SPECULAR);
|
|
mat.pcInstance->AddProperty(&mat.mEmissive, 1, AI_MATKEY_COLOR_EMISSIVE);
|
|
|
|
// shininess
|
|
if (0.0f != mat.mSpecularExponent && 0.0f != mat.mShininessStrength) {
|
|
mat.pcInstance->AddProperty(&mat.mSpecularExponent, 1, AI_MATKEY_SHININESS);
|
|
mat.pcInstance->AddProperty(&mat.mShininessStrength, 1, AI_MATKEY_SHININESS_STRENGTH);
|
|
}
|
|
// If there is no shininess, we can disable phong lighting
|
|
else if (D3DS::Discreet3DS::Metal == mat.mShading ||
|
|
D3DS::Discreet3DS::Phong == mat.mShading ||
|
|
D3DS::Discreet3DS::Blinn == mat.mShading) {
|
|
mat.mShading = D3DS::Discreet3DS::Gouraud;
|
|
}
|
|
|
|
// opacity
|
|
mat.pcInstance->AddProperty<ai_real>(&mat.mTransparency, 1, AI_MATKEY_OPACITY);
|
|
|
|
// Two sided rendering?
|
|
if (mat.mTwoSided) {
|
|
int i = 1;
|
|
mat.pcInstance->AddProperty<int>(&i, 1, AI_MATKEY_TWOSIDED);
|
|
}
|
|
|
|
// shading mode
|
|
aiShadingMode eShading = aiShadingMode_NoShading;
|
|
switch (mat.mShading) {
|
|
case D3DS::Discreet3DS::Flat:
|
|
eShading = aiShadingMode_Flat;
|
|
break;
|
|
case D3DS::Discreet3DS::Phong:
|
|
eShading = aiShadingMode_Phong;
|
|
break;
|
|
case D3DS::Discreet3DS::Blinn:
|
|
eShading = aiShadingMode_Blinn;
|
|
break;
|
|
|
|
// I don't know what "Wire" shading should be,
|
|
// assume it is simple lambertian diffuse (L dot N) shading
|
|
case D3DS::Discreet3DS::Wire: {
|
|
// set the wireframe flag
|
|
unsigned int iWire = 1;
|
|
mat.pcInstance->AddProperty<int>((int *)&iWire, 1, AI_MATKEY_ENABLE_WIREFRAME);
|
|
}
|
|
// fallthrough
|
|
case D3DS::Discreet3DS::Gouraud:
|
|
eShading = aiShadingMode_Gouraud;
|
|
break;
|
|
case D3DS::Discreet3DS::Metal:
|
|
eShading = aiShadingMode_CookTorrance;
|
|
break;
|
|
}
|
|
mat.pcInstance->AddProperty<int>((int *)&eShading, 1, AI_MATKEY_SHADING_MODEL);
|
|
|
|
// DIFFUSE texture
|
|
if (mat.sTexDiffuse.mMapName.length() > 0)
|
|
CopyASETexture(*mat.pcInstance, mat.sTexDiffuse, aiTextureType_DIFFUSE);
|
|
|
|
// SPECULAR texture
|
|
if (mat.sTexSpecular.mMapName.length() > 0)
|
|
CopyASETexture(*mat.pcInstance, mat.sTexSpecular, aiTextureType_SPECULAR);
|
|
|
|
// AMBIENT texture
|
|
if (mat.sTexAmbient.mMapName.length() > 0)
|
|
CopyASETexture(*mat.pcInstance, mat.sTexAmbient, aiTextureType_AMBIENT);
|
|
|
|
// OPACITY texture
|
|
if (mat.sTexOpacity.mMapName.length() > 0)
|
|
CopyASETexture(*mat.pcInstance, mat.sTexOpacity, aiTextureType_OPACITY);
|
|
|
|
// EMISSIVE texture
|
|
if (mat.sTexEmissive.mMapName.length() > 0)
|
|
CopyASETexture(*mat.pcInstance, mat.sTexEmissive, aiTextureType_EMISSIVE);
|
|
|
|
// BUMP texture
|
|
if (mat.sTexBump.mMapName.length() > 0)
|
|
CopyASETexture(*mat.pcInstance, mat.sTexBump, aiTextureType_HEIGHT);
|
|
|
|
// SHININESS texture
|
|
if (mat.sTexShininess.mMapName.length() > 0)
|
|
CopyASETexture(*mat.pcInstance, mat.sTexShininess, aiTextureType_SHININESS);
|
|
|
|
// store the name of the material itself, too
|
|
if (mat.mName.length() > 0) {
|
|
aiString tex;
|
|
tex.Set(mat.mName);
|
|
mat.pcInstance->AddProperty(&tex, AI_MATKEY_NAME);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Build output meshes
|
|
void ASEImporter::ConvertMeshes(ASE::Mesh &mesh, std::vector<aiMesh *> &avOutMeshes) {
|
|
// validate the material index of the mesh
|
|
if (mesh.iMaterialIndex >= mParser->m_vMaterials.size()) {
|
|
mesh.iMaterialIndex = (unsigned int)mParser->m_vMaterials.size() - 1;
|
|
ASSIMP_LOG_WARN("Material index is out of range");
|
|
}
|
|
|
|
// If the material the mesh is assigned to is consisting of submeshes, split it
|
|
if (!mParser->m_vMaterials[mesh.iMaterialIndex].avSubMaterials.empty()) {
|
|
std::vector<ASE::Material> vSubMaterials = mParser->m_vMaterials[mesh.iMaterialIndex].avSubMaterials;
|
|
|
|
std::vector<unsigned int> *aiSplit = new std::vector<unsigned int>[vSubMaterials.size()];
|
|
|
|
// build a list of all faces per sub-material
|
|
for (unsigned int i = 0; i < mesh.mFaces.size(); ++i) {
|
|
// check range
|
|
if (mesh.mFaces[i].iMaterial >= vSubMaterials.size()) {
|
|
ASSIMP_LOG_WARN("Submaterial index is out of range");
|
|
|
|
// use the last material instead
|
|
aiSplit[vSubMaterials.size() - 1].push_back(i);
|
|
} else
|
|
aiSplit[mesh.mFaces[i].iMaterial].push_back(i);
|
|
}
|
|
|
|
// now generate submeshes
|
|
for (unsigned int p = 0; p < vSubMaterials.size(); ++p) {
|
|
if (!aiSplit[p].empty()) {
|
|
|
|
aiMesh *p_pcOut = new aiMesh();
|
|
p_pcOut->mPrimitiveTypes = aiPrimitiveType_TRIANGLE;
|
|
|
|
// let the sub material index
|
|
p_pcOut->mMaterialIndex = p;
|
|
|
|
// we will need this material
|
|
mParser->m_vMaterials[mesh.iMaterialIndex].avSubMaterials[p].bNeed = true;
|
|
|
|
// store the real index here ... color channel 3
|
|
p_pcOut->mColors[3] = (aiColor4D *)(uintptr_t)mesh.iMaterialIndex;
|
|
|
|
// store a pointer to the mesh in color channel 2
|
|
p_pcOut->mColors[2] = (aiColor4D *)&mesh;
|
|
avOutMeshes.push_back(p_pcOut);
|
|
|
|
// convert vertices
|
|
p_pcOut->mNumVertices = (unsigned int)aiSplit[p].size() * 3;
|
|
p_pcOut->mNumFaces = (unsigned int)aiSplit[p].size();
|
|
|
|
// receive output vertex weights
|
|
std::vector<std::pair<unsigned int, float>> *avOutputBones = nullptr;
|
|
if (!mesh.mBones.empty()) {
|
|
avOutputBones = new std::vector<std::pair<unsigned int, float>>[mesh.mBones.size()];
|
|
}
|
|
|
|
// allocate enough storage for faces
|
|
p_pcOut->mFaces = new aiFace[p_pcOut->mNumFaces];
|
|
|
|
unsigned int iBase = 0, iIndex;
|
|
if (p_pcOut->mNumVertices) {
|
|
p_pcOut->mVertices = new aiVector3D[p_pcOut->mNumVertices];
|
|
p_pcOut->mNormals = new aiVector3D[p_pcOut->mNumVertices];
|
|
for (unsigned int q = 0; q < aiSplit[p].size(); ++q) {
|
|
|
|
iIndex = aiSplit[p][q];
|
|
|
|
p_pcOut->mFaces[q].mIndices = new unsigned int[3];
|
|
p_pcOut->mFaces[q].mNumIndices = 3;
|
|
|
|
for (unsigned int t = 0; t < 3; ++t, ++iBase) {
|
|
const uint32_t iIndex2 = mesh.mFaces[iIndex].mIndices[t];
|
|
|
|
p_pcOut->mVertices[iBase] = mesh.mPositions[iIndex2];
|
|
p_pcOut->mNormals[iBase] = mesh.mNormals[iIndex2];
|
|
|
|
// convert bones, if existing
|
|
if (!mesh.mBones.empty()) {
|
|
ai_assert(avOutputBones);
|
|
// check whether there is a vertex weight for this vertex index
|
|
if (iIndex2 < mesh.mBoneVertices.size()) {
|
|
|
|
for (std::vector<std::pair<int, float>>::const_iterator
|
|
blubb = mesh.mBoneVertices[iIndex2].mBoneWeights.begin();
|
|
blubb != mesh.mBoneVertices[iIndex2].mBoneWeights.end(); ++blubb) {
|
|
|
|
// NOTE: illegal cases have already been filtered out
|
|
avOutputBones[(*blubb).first].emplace_back(
|
|
iBase, (*blubb).second);
|
|
}
|
|
}
|
|
}
|
|
p_pcOut->mFaces[q].mIndices[t] = iBase;
|
|
}
|
|
}
|
|
}
|
|
// convert texture coordinates (up to AI_MAX_NUMBER_OF_TEXTURECOORDS sets supported)
|
|
for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++c) {
|
|
if (!mesh.amTexCoords[c].empty()) {
|
|
p_pcOut->mTextureCoords[c] = new aiVector3D[p_pcOut->mNumVertices];
|
|
iBase = 0;
|
|
for (unsigned int q = 0; q < aiSplit[p].size(); ++q) {
|
|
iIndex = aiSplit[p][q];
|
|
for (unsigned int t = 0; t < 3; ++t) {
|
|
p_pcOut->mTextureCoords[c][iBase++] = mesh.amTexCoords[c][mesh.mFaces[iIndex].mIndices[t]];
|
|
}
|
|
}
|
|
// Setup the number of valid vertex components
|
|
p_pcOut->mNumUVComponents[c] = mesh.mNumUVComponents[c];
|
|
}
|
|
}
|
|
|
|
// Convert vertex colors (only one set supported)
|
|
if (!mesh.mVertexColors.empty()) {
|
|
p_pcOut->mColors[0] = new aiColor4D[p_pcOut->mNumVertices];
|
|
iBase = 0;
|
|
for (unsigned int q = 0; q < aiSplit[p].size(); ++q) {
|
|
iIndex = aiSplit[p][q];
|
|
for (unsigned int t = 0; t < 3; ++t) {
|
|
p_pcOut->mColors[0][iBase++] = mesh.mVertexColors[mesh.mFaces[iIndex].mIndices[t]];
|
|
}
|
|
}
|
|
}
|
|
// Copy bones
|
|
if (!mesh.mBones.empty()) {
|
|
p_pcOut->mNumBones = 0;
|
|
for (unsigned int mrspock = 0; mrspock < mesh.mBones.size(); ++mrspock)
|
|
if (!avOutputBones[mrspock].empty()) p_pcOut->mNumBones++;
|
|
|
|
p_pcOut->mBones = new aiBone *[p_pcOut->mNumBones];
|
|
aiBone **pcBone = p_pcOut->mBones;
|
|
for (unsigned int mrspock = 0; mrspock < mesh.mBones.size(); ++mrspock) {
|
|
if (!avOutputBones[mrspock].empty()) {
|
|
// we will need this bone. add it to the output mesh and
|
|
// add all per-vertex weights
|
|
aiBone *pc = *pcBone = new aiBone();
|
|
pc->mName.Set(mesh.mBones[mrspock].mName);
|
|
|
|
pc->mNumWeights = (unsigned int)avOutputBones[mrspock].size();
|
|
pc->mWeights = new aiVertexWeight[pc->mNumWeights];
|
|
|
|
for (unsigned int captainkirk = 0; captainkirk < pc->mNumWeights; ++captainkirk) {
|
|
const std::pair<unsigned int, float> &ref = avOutputBones[mrspock][captainkirk];
|
|
pc->mWeights[captainkirk].mVertexId = ref.first;
|
|
pc->mWeights[captainkirk].mWeight = ref.second;
|
|
}
|
|
++pcBone;
|
|
}
|
|
}
|
|
// delete allocated storage
|
|
delete[] avOutputBones;
|
|
}
|
|
}
|
|
}
|
|
// delete storage
|
|
delete[] aiSplit;
|
|
} else {
|
|
// Otherwise we can simply copy the data to one output mesh
|
|
// This codepath needs less memory and uses fast memcpy()s
|
|
// to do the actual copying. So I think it is worth the
|
|
// effort here.
|
|
|
|
aiMesh *p_pcOut = new aiMesh();
|
|
p_pcOut->mPrimitiveTypes = aiPrimitiveType_TRIANGLE;
|
|
|
|
// set an empty sub material index
|
|
p_pcOut->mMaterialIndex = ASE::Face::DEFAULT_MATINDEX;
|
|
mParser->m_vMaterials[mesh.iMaterialIndex].bNeed = true;
|
|
|
|
// store the real index here ... in color channel 3
|
|
p_pcOut->mColors[3] = (aiColor4D *)(uintptr_t)mesh.iMaterialIndex;
|
|
|
|
// store a pointer to the mesh in color channel 2
|
|
p_pcOut->mColors[2] = (aiColor4D *)&mesh;
|
|
avOutMeshes.push_back(p_pcOut);
|
|
|
|
// If the mesh hasn't faces or vertices, there are two cases
|
|
// possible: 1. the model is invalid. 2. This is a dummy
|
|
// helper object which we are going to remove later ...
|
|
if (mesh.mFaces.empty() || mesh.mPositions.empty()) {
|
|
return;
|
|
}
|
|
|
|
// convert vertices
|
|
p_pcOut->mNumVertices = (unsigned int)mesh.mPositions.size();
|
|
p_pcOut->mNumFaces = (unsigned int)mesh.mFaces.size();
|
|
|
|
// allocate enough storage for faces
|
|
p_pcOut->mFaces = new aiFace[p_pcOut->mNumFaces];
|
|
|
|
// copy vertices
|
|
p_pcOut->mVertices = new aiVector3D[mesh.mPositions.size()];
|
|
memcpy(p_pcOut->mVertices, &mesh.mPositions[0],
|
|
mesh.mPositions.size() * sizeof(aiVector3D));
|
|
|
|
// copy normals
|
|
p_pcOut->mNormals = new aiVector3D[mesh.mNormals.size()];
|
|
memcpy(p_pcOut->mNormals, &mesh.mNormals[0],
|
|
mesh.mNormals.size() * sizeof(aiVector3D));
|
|
|
|
// copy texture coordinates
|
|
for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++c) {
|
|
if (!mesh.amTexCoords[c].empty()) {
|
|
p_pcOut->mTextureCoords[c] = new aiVector3D[mesh.amTexCoords[c].size()];
|
|
memcpy(p_pcOut->mTextureCoords[c], &mesh.amTexCoords[c][0],
|
|
mesh.amTexCoords[c].size() * sizeof(aiVector3D));
|
|
|
|
// setup the number of valid vertex components
|
|
p_pcOut->mNumUVComponents[c] = mesh.mNumUVComponents[c];
|
|
}
|
|
}
|
|
|
|
// copy vertex colors
|
|
if (!mesh.mVertexColors.empty()) {
|
|
p_pcOut->mColors[0] = new aiColor4D[mesh.mVertexColors.size()];
|
|
memcpy(p_pcOut->mColors[0], &mesh.mVertexColors[0],
|
|
mesh.mVertexColors.size() * sizeof(aiColor4D));
|
|
}
|
|
|
|
// copy faces
|
|
for (unsigned int iFace = 0; iFace < p_pcOut->mNumFaces; ++iFace) {
|
|
p_pcOut->mFaces[iFace].mNumIndices = 3;
|
|
p_pcOut->mFaces[iFace].mIndices = new unsigned int[3];
|
|
|
|
// copy indices
|
|
p_pcOut->mFaces[iFace].mIndices[0] = mesh.mFaces[iFace].mIndices[0];
|
|
p_pcOut->mFaces[iFace].mIndices[1] = mesh.mFaces[iFace].mIndices[1];
|
|
p_pcOut->mFaces[iFace].mIndices[2] = mesh.mFaces[iFace].mIndices[2];
|
|
}
|
|
|
|
// copy vertex bones
|
|
if (!mesh.mBones.empty() && !mesh.mBoneVertices.empty()) {
|
|
std::vector<std::vector<aiVertexWeight>> avBonesOut(mesh.mBones.size());
|
|
|
|
// find all vertex weights for this bone
|
|
unsigned int quak = 0;
|
|
for (std::vector<BoneVertex>::const_iterator harrypotter = mesh.mBoneVertices.begin();
|
|
harrypotter != mesh.mBoneVertices.end(); ++harrypotter, ++quak) {
|
|
|
|
for (std::vector<std::pair<int, float>>::const_iterator
|
|
ronaldweasley = (*harrypotter).mBoneWeights.begin();
|
|
ronaldweasley != (*harrypotter).mBoneWeights.end(); ++ronaldweasley) {
|
|
aiVertexWeight weight;
|
|
weight.mVertexId = quak;
|
|
weight.mWeight = (*ronaldweasley).second;
|
|
avBonesOut[(*ronaldweasley).first].push_back(weight);
|
|
}
|
|
}
|
|
|
|
// now build a final bone list
|
|
p_pcOut->mNumBones = 0;
|
|
for (unsigned int jfkennedy = 0; jfkennedy < mesh.mBones.size(); ++jfkennedy)
|
|
if (!avBonesOut[jfkennedy].empty()) p_pcOut->mNumBones++;
|
|
|
|
p_pcOut->mBones = new aiBone *[p_pcOut->mNumBones];
|
|
aiBone **pcBone = p_pcOut->mBones;
|
|
for (unsigned int jfkennedy = 0; jfkennedy < mesh.mBones.size(); ++jfkennedy) {
|
|
if (!avBonesOut[jfkennedy].empty()) {
|
|
aiBone *pc = *pcBone = new aiBone();
|
|
pc->mName.Set(mesh.mBones[jfkennedy].mName);
|
|
pc->mNumWeights = (unsigned int)avBonesOut[jfkennedy].size();
|
|
pc->mWeights = new aiVertexWeight[pc->mNumWeights];
|
|
::memcpy(pc->mWeights, &avBonesOut[jfkennedy][0],
|
|
sizeof(aiVertexWeight) * pc->mNumWeights);
|
|
++pcBone;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Setup proper material indices and build output materials
|
|
void ASEImporter::BuildMaterialIndices() {
|
|
ai_assert(nullptr != pcScene);
|
|
|
|
// iterate through all materials and check whether we need them
|
|
for (unsigned int iMat = 0; iMat < mParser->m_vMaterials.size(); ++iMat) {
|
|
ASE::Material &mat = mParser->m_vMaterials[iMat];
|
|
if (mat.bNeed) {
|
|
// Convert it to the aiMaterial layout
|
|
ConvertMaterial(mat);
|
|
++pcScene->mNumMaterials;
|
|
}
|
|
for (unsigned int iSubMat = 0; iSubMat < mat.avSubMaterials.size(); ++iSubMat) {
|
|
ASE::Material &submat = mat.avSubMaterials[iSubMat];
|
|
if (submat.bNeed) {
|
|
// Convert it to the aiMaterial layout
|
|
ConvertMaterial(submat);
|
|
++pcScene->mNumMaterials;
|
|
}
|
|
}
|
|
}
|
|
|
|
// allocate the output material array
|
|
pcScene->mMaterials = new aiMaterial *[pcScene->mNumMaterials];
|
|
D3DS::Material **pcIntMaterials = new D3DS::Material *[pcScene->mNumMaterials];
|
|
|
|
unsigned int iNum = 0;
|
|
for (unsigned int iMat = 0; iMat < mParser->m_vMaterials.size(); ++iMat) {
|
|
ASE::Material &mat = mParser->m_vMaterials[iMat];
|
|
if (mat.bNeed) {
|
|
ai_assert(nullptr != mat.pcInstance);
|
|
pcScene->mMaterials[iNum] = mat.pcInstance;
|
|
|
|
// Store the internal material, too
|
|
pcIntMaterials[iNum] = &mat;
|
|
|
|
// Iterate through all meshes and search for one which is using
|
|
// this top-level material index
|
|
for (unsigned int iMesh = 0; iMesh < pcScene->mNumMeshes; ++iMesh) {
|
|
aiMesh *mesh = pcScene->mMeshes[iMesh];
|
|
if (ASE::Face::DEFAULT_MATINDEX == mesh->mMaterialIndex &&
|
|
iMat == (uintptr_t)mesh->mColors[3]) {
|
|
mesh->mMaterialIndex = iNum;
|
|
mesh->mColors[3] = nullptr;
|
|
}
|
|
}
|
|
iNum++;
|
|
}
|
|
for (unsigned int iSubMat = 0; iSubMat < mat.avSubMaterials.size(); ++iSubMat) {
|
|
ASE::Material &submat = mat.avSubMaterials[iSubMat];
|
|
if (submat.bNeed) {
|
|
ai_assert(nullptr != submat.pcInstance);
|
|
pcScene->mMaterials[iNum] = submat.pcInstance;
|
|
|
|
// Store the internal material, too
|
|
pcIntMaterials[iNum] = &submat;
|
|
|
|
// Iterate through all meshes and search for one which is using
|
|
// this sub-level material index
|
|
for (unsigned int iMesh = 0; iMesh < pcScene->mNumMeshes; ++iMesh) {
|
|
aiMesh *mesh = pcScene->mMeshes[iMesh];
|
|
|
|
if (iSubMat == mesh->mMaterialIndex && iMat == (uintptr_t)mesh->mColors[3]) {
|
|
mesh->mMaterialIndex = iNum;
|
|
mesh->mColors[3] = nullptr;
|
|
}
|
|
}
|
|
iNum++;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Delete our temporary array
|
|
delete[] pcIntMaterials;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Generate normal vectors basing on smoothing groups
|
|
bool ASEImporter::GenerateNormals(ASE::Mesh &mesh) {
|
|
|
|
if (!mesh.mNormals.empty() && !configRecomputeNormals) {
|
|
// Check whether there are only uninitialized normals. If there are
|
|
// some, skip all normals from the file and compute them on our own
|
|
for (std::vector<aiVector3D>::const_iterator qq = mesh.mNormals.begin(); qq != mesh.mNormals.end(); ++qq) {
|
|
if ((*qq).x || (*qq).y || (*qq).z) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
// The array is reused.
|
|
ComputeNormalsWithSmoothingsGroups<ASE::Face>(mesh);
|
|
return false;
|
|
}
|
|
|
|
#endif // ASSIMP_BUILD_NO_3DS_IMPORTER
|
|
|
|
#endif // !! ASSIMP_BUILD_NO_BASE_IMPORTER
|