948 lines
37 KiB
C++
948 lines
37 KiB
C++
/*
|
|
Open Asset Import Library (assimp)
|
|
----------------------------------------------------------------------
|
|
|
|
Copyright (c) 2006-2022, assimp team
|
|
|
|
All rights reserved.
|
|
|
|
Redistribution and use of this software in source and binary forms,
|
|
with or without modification, are permitted provided that the
|
|
following conditions are met:
|
|
|
|
* Redistributions of source code must retain the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer in the documentation and/or other
|
|
materials provided with the distribution.
|
|
|
|
* Neither the name of the assimp team, nor the names of its
|
|
contributors may be used to endorse or promote products
|
|
derived from this software without specific prior
|
|
written permission of the assimp team.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
----------------------------------------------------------------------
|
|
*/
|
|
|
|
/* TODO:
|
|
|
|
Material improvements:
|
|
- don't export embedded textures that we're not going to use
|
|
- diffuse roughness
|
|
- what is with the uv mapping, uv transform not coming through??
|
|
- metal? glass? mirror? detect these better?
|
|
- eta/k from RGB?
|
|
- emissive textures: warn at least
|
|
|
|
Other:
|
|
- use aiProcess_GenUVCoords if needed to handle spherical/planar uv mapping?
|
|
- don't build up a big string in memory but write directly to a file
|
|
- aiProcess_Triangulate meshes to get triangles only?
|
|
- animation (allow specifying a time)
|
|
|
|
*/
|
|
|
|
#ifndef ASSIMP_BUILD_NO_EXPORT
|
|
#ifndef ASSIMP_BUILD_NO_PBRT_EXPORTER
|
|
|
|
#include "PbrtExporter.h"
|
|
|
|
#include <assimp/version.h>
|
|
#include <assimp/DefaultIOSystem.h>
|
|
#include <assimp/IOSystem.hpp>
|
|
#include <assimp/Exporter.hpp>
|
|
#include <assimp/DefaultLogger.hpp>
|
|
#include <assimp/StreamWriter.h>
|
|
#include <assimp/Exceptional.h>
|
|
#include <assimp/material.h>
|
|
#include <assimp/scene.h>
|
|
#include <assimp/mesh.h>
|
|
|
|
#include <algorithm>
|
|
#include <cctype>
|
|
#include <cmath>
|
|
#include <fstream>
|
|
#include <functional>
|
|
#include <iostream>
|
|
#include <memory>
|
|
#include <sstream>
|
|
#include <string>
|
|
|
|
#include "stb/stb_image.h"
|
|
|
|
using namespace Assimp;
|
|
|
|
namespace Assimp {
|
|
|
|
void ExportScenePbrt (
|
|
const char* pFile,
|
|
IOSystem* pIOSystem,
|
|
const aiScene* pScene,
|
|
const ExportProperties* /*pProperties*/
|
|
){
|
|
std::string path = DefaultIOSystem::absolutePath(std::string(pFile));
|
|
std::string file = DefaultIOSystem::completeBaseName(std::string(pFile));
|
|
|
|
// initialize the exporter
|
|
PbrtExporter exporter(pScene, pIOSystem, path, file);
|
|
}
|
|
|
|
} // end of namespace Assimp
|
|
|
|
// Constructor
|
|
PbrtExporter::PbrtExporter(
|
|
const aiScene *pScene, IOSystem *pIOSystem,
|
|
const std::string &path, const std::string &file) :
|
|
mScene(pScene),
|
|
mIOSystem(pIOSystem),
|
|
mPath(path),
|
|
mFile(file) {
|
|
// Export embedded textures.
|
|
if (mScene->mNumTextures > 0)
|
|
if (!mIOSystem->CreateDirectory("textures"))
|
|
throw DeadlyExportError("Could not create textures/ directory.");
|
|
for (unsigned int i = 0; i < mScene->mNumTextures; ++i) {
|
|
aiTexture* tex = mScene->mTextures[i];
|
|
std::string fn = CleanTextureFilename(tex->mFilename, false);
|
|
std::cerr << "Writing embedded texture: " << tex->mFilename.C_Str() << " -> "
|
|
<< fn << "\n";
|
|
|
|
std::unique_ptr<IOStream> outfile(mIOSystem->Open(fn, "wb"));
|
|
if (!outfile) {
|
|
throw DeadlyExportError("could not open output texture file: " + fn);
|
|
}
|
|
if (tex->mHeight == 0) {
|
|
// It's binary data
|
|
outfile->Write(tex->pcData, tex->mWidth, 1);
|
|
} else {
|
|
std::cerr << fn << ": TODO handle uncompressed embedded textures.\n";
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
// Debugging: print the full node hierarchy
|
|
std::function<void(aiNode*, int)> visitNode;
|
|
visitNode = [&](aiNode* node, int depth) {
|
|
for (int i = 0; i < depth; ++i) std::cerr << " ";
|
|
std::cerr << node->mName.C_Str() << "\n";
|
|
for (int i = 0; i < node->mNumChildren; ++i)
|
|
visitNode(node->mChildren[i], depth + 1);
|
|
};
|
|
visitNode(mScene->mRootNode, 0);
|
|
#endif
|
|
|
|
mOutput.precision(ASSIMP_AI_REAL_TEXT_PRECISION);
|
|
|
|
// Write everything out
|
|
WriteMetaData();
|
|
WriteCameras();
|
|
WriteWorldDefinition();
|
|
|
|
// And write the file to disk...
|
|
std::unique_ptr<IOStream> outfile(mIOSystem->Open(mPath,"wt"));
|
|
if (!outfile) {
|
|
throw DeadlyExportError("could not open output .pbrt file: " + std::string(mFile));
|
|
}
|
|
outfile->Write(mOutput.str().c_str(), mOutput.str().length(), 1);
|
|
}
|
|
|
|
// Destructor
|
|
PbrtExporter::~PbrtExporter() {
|
|
// Empty
|
|
}
|
|
|
|
void PbrtExporter::WriteMetaData() {
|
|
mOutput << "#############################\n";
|
|
mOutput << "# Scene metadata:\n";
|
|
|
|
aiMetadata* pMetaData = mScene->mMetaData;
|
|
for (unsigned int i = 0; i < pMetaData->mNumProperties; i++) {
|
|
mOutput << "# - ";
|
|
mOutput << pMetaData->mKeys[i].C_Str() << " :";
|
|
switch(pMetaData->mValues[i].mType) {
|
|
case AI_BOOL : {
|
|
mOutput << " ";
|
|
if (*static_cast<bool*>(pMetaData->mValues[i].mData))
|
|
mOutput << "TRUE\n";
|
|
else
|
|
mOutput << "FALSE\n";
|
|
break;
|
|
}
|
|
case AI_INT32 : {
|
|
mOutput << " " <<
|
|
*static_cast<int32_t*>(pMetaData->mValues[i].mData) <<
|
|
std::endl;
|
|
break;
|
|
}
|
|
case AI_UINT64 :
|
|
mOutput << " " <<
|
|
*static_cast<uint64_t*>(pMetaData->mValues[i].mData) <<
|
|
std::endl;
|
|
break;
|
|
case AI_FLOAT :
|
|
mOutput << " " <<
|
|
*static_cast<float*>(pMetaData->mValues[i].mData) <<
|
|
std::endl;
|
|
break;
|
|
case AI_DOUBLE :
|
|
mOutput << " " <<
|
|
*static_cast<double*>(pMetaData->mValues[i].mData) <<
|
|
std::endl;
|
|
break;
|
|
case AI_AISTRING : {
|
|
aiString* value =
|
|
static_cast<aiString*>(pMetaData->mValues[i].mData);
|
|
std::string svalue = value->C_Str();
|
|
std::size_t found = svalue.find_first_of('\n');
|
|
mOutput << "\n";
|
|
while (found != std::string::npos) {
|
|
mOutput << "# " << svalue.substr(0, found) << "\n";
|
|
svalue = svalue.substr(found + 1);
|
|
found = svalue.find_first_of('\n');
|
|
}
|
|
mOutput << "# " << svalue << "\n";
|
|
break;
|
|
}
|
|
case AI_AIVECTOR3D :
|
|
// TODO
|
|
mOutput << " Vector3D (unable to print)\n";
|
|
break;
|
|
default:
|
|
// AI_META_MAX and FORCE_32BIT
|
|
mOutput << " META_MAX or FORCE_32Bit (unable to print)\n";
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void PbrtExporter::WriteCameras() {
|
|
mOutput << "\n";
|
|
mOutput << "###############################\n";
|
|
mOutput << "# Cameras (" << mScene->mNumCameras << ") total\n\n";
|
|
|
|
if (mScene->mNumCameras == 0) {
|
|
std::cerr << "Warning: No cameras found in scene file.\n";
|
|
return;
|
|
}
|
|
|
|
if (mScene->mNumCameras > 1) {
|
|
std::cerr << "Multiple cameras found in scene file; defaulting to first one specified.\n";
|
|
}
|
|
|
|
for (unsigned int i = 0; i < mScene->mNumCameras; i++) {
|
|
WriteCamera(i);
|
|
}
|
|
}
|
|
|
|
aiMatrix4x4 PbrtExporter::GetNodeTransform(const aiString &name) const {
|
|
aiMatrix4x4 m;
|
|
auto node = mScene->mRootNode->FindNode(name);
|
|
if (!node) {
|
|
std::cerr << '"' << name.C_Str() << "\": node not found in scene tree.\n";
|
|
throw DeadlyExportError("Could not find node");
|
|
}
|
|
else {
|
|
while (node) {
|
|
m = node->mTransformation * m;
|
|
node = node->mParent;
|
|
}
|
|
}
|
|
return m;
|
|
}
|
|
|
|
std::string PbrtExporter::TransformAsString(const aiMatrix4x4 &m) {
|
|
// Transpose on the way out to match pbrt's expected layout (sanity
|
|
// check: the translation component should be the last 3 entries
|
|
// before a '1' as the final entry in the matrix, assuming it's
|
|
// non-projective.)
|
|
std::stringstream s;
|
|
s << m.a1 << " " << m.b1 << " " << m.c1 << " " << m.d1 << " "
|
|
<< m.a2 << " " << m.b2 << " " << m.c2 << " " << m.d2 << " "
|
|
<< m.a3 << " " << m.b3 << " " << m.c3 << " " << m.d3 << " "
|
|
<< m.a4 << " " << m.b4 << " " << m.c4 << " " << m.d4;
|
|
return s.str();
|
|
}
|
|
|
|
void PbrtExporter::WriteCamera(int i) {
|
|
auto camera = mScene->mCameras[i];
|
|
bool cameraActive = i == 0;
|
|
|
|
mOutput << "# - Camera " << i+1 << ": "
|
|
<< camera->mName.C_Str() << "\n";
|
|
|
|
// Get camera aspect ratio
|
|
float aspect = camera->mAspect;
|
|
if (aspect == 0) {
|
|
aspect = 4.f/3.f;
|
|
mOutput << "# - Aspect ratio : 1.33333 (no aspect found, defaulting to 4/3)\n";
|
|
} else {
|
|
mOutput << "# - Aspect ratio : " << aspect << "\n";
|
|
}
|
|
|
|
// Get Film xres and yres
|
|
int xres = 1920;
|
|
int yres = (int)round(xres/aspect);
|
|
|
|
// Print Film for this camera
|
|
if (!cameraActive)
|
|
mOutput << "# ";
|
|
mOutput << "Film \"rgb\" \"string filename\" \"" << mFile << ".exr\"\n";
|
|
if (!cameraActive)
|
|
mOutput << "# ";
|
|
mOutput << " \"integer xresolution\" [" << xres << "]\n";
|
|
if (!cameraActive)
|
|
mOutput << "# ";
|
|
mOutput << " \"integer yresolution\" [" << yres << "]\n";
|
|
|
|
// Get camera fov
|
|
float hfov = AI_RAD_TO_DEG(camera->mHorizontalFOV);
|
|
float fov = (aspect >= 1.0) ? hfov : (hfov * aspect);
|
|
if (fov < 5) {
|
|
std::cerr << fov << ": suspiciously low field of view specified by camera. Setting to 45 degrees.\n";
|
|
fov = 45;
|
|
}
|
|
|
|
// Get camera transform
|
|
aiMatrix4x4 worldFromCamera = GetNodeTransform(camera->mName);
|
|
|
|
// Print Camera LookAt
|
|
auto position = worldFromCamera * camera->mPosition;
|
|
auto lookAt = worldFromCamera * (camera->mPosition + camera->mLookAt);
|
|
aiMatrix3x3 worldFromCamera3(worldFromCamera);
|
|
auto up = worldFromCamera3 * camera->mUp;
|
|
up.Normalize();
|
|
|
|
if (!cameraActive)
|
|
mOutput << "# ";
|
|
mOutput << "Scale -1 1 1\n"; // right handed -> left handed
|
|
if (!cameraActive)
|
|
mOutput << "# ";
|
|
mOutput << "LookAt "
|
|
<< position.x << " " << position.y << " " << position.z << "\n";
|
|
if (!cameraActive)
|
|
mOutput << "# ";
|
|
mOutput << " "
|
|
<< lookAt.x << " " << lookAt.y << " " << lookAt.z << "\n";
|
|
if (!cameraActive)
|
|
mOutput << "# ";
|
|
mOutput << " "
|
|
<< up.x << " " << up.y << " " << up.z << "\n";
|
|
|
|
// Print camera descriptor
|
|
if (!cameraActive)
|
|
mOutput << "# ";
|
|
mOutput << "Camera \"perspective\" \"float fov\" " << "[" << fov << "]\n\n";
|
|
}
|
|
|
|
void PbrtExporter::WriteWorldDefinition() {
|
|
// Figure out which meshes are referenced multiple times; those will be
|
|
// emitted as object instances and the rest will be emitted directly.
|
|
std::map<int, int> meshUses;
|
|
std::function<void(aiNode*)> visitNode;
|
|
visitNode = [&](aiNode* node) {
|
|
for (unsigned int i = 0; i < node->mNumMeshes; ++i)
|
|
++meshUses[node->mMeshes[i]];
|
|
for (unsigned int i = 0; i < node->mNumChildren; ++i)
|
|
visitNode(node->mChildren[i]);
|
|
};
|
|
visitNode(mScene->mRootNode);
|
|
int nInstanced = 0, nUnused = 0;
|
|
for (const auto &u : meshUses) {
|
|
if (u.second == 0) ++nUnused;
|
|
else if (u.second > 1) ++nInstanced;
|
|
}
|
|
std::cerr << nInstanced << " / " << mScene->mNumMeshes << " meshes instanced.\n";
|
|
if (nUnused)
|
|
std::cerr << nUnused << " meshes defined but not used in scene.\n";
|
|
|
|
mOutput << "WorldBegin\n";
|
|
|
|
WriteLights();
|
|
WriteTextures();
|
|
WriteMaterials();
|
|
|
|
// Object instance definitions
|
|
mOutput << "# Object instance definitions\n\n";
|
|
for (const auto &mu : meshUses) {
|
|
if (mu.second > 1) {
|
|
WriteInstanceDefinition(mu.first);
|
|
}
|
|
}
|
|
|
|
mOutput << "# Geometry\n\n";
|
|
aiMatrix4x4 worldFromObject;
|
|
WriteGeometricObjects(mScene->mRootNode, worldFromObject, meshUses);
|
|
}
|
|
|
|
void PbrtExporter::WriteTextures() {
|
|
mOutput << "###################\n";
|
|
mOutput << "# Textures\n\n";
|
|
|
|
C_STRUCT aiString path;
|
|
aiTextureMapping mapping;
|
|
unsigned int uvIndex;
|
|
ai_real blend;
|
|
aiTextureOp op;
|
|
aiTextureMapMode mapMode[3];
|
|
|
|
// For every material in the scene,
|
|
for (unsigned int m = 0 ; m < mScene->mNumMaterials; m++) {
|
|
auto material = mScene->mMaterials[m];
|
|
// Parse through all texture types,
|
|
for (int tt = 1; tt <= aiTextureType_UNKNOWN; tt++) {
|
|
int ttCount = material->GetTextureCount(aiTextureType(tt));
|
|
// ... and get every texture
|
|
for (int t = 0; t < ttCount; t++) {
|
|
// TODO write out texture specifics
|
|
// TODO UV transforms may be material specific
|
|
// so those may need to be baked into unique tex name
|
|
if (material->GetTexture(aiTextureType(tt), t, &path, &mapping,
|
|
&uvIndex, &blend, &op, mapMode) != AI_SUCCESS) {
|
|
std::cerr << "Error getting texture! " << m << " " << tt << " " << t << "\n";
|
|
continue;
|
|
}
|
|
|
|
std::string filename = CleanTextureFilename(path);
|
|
|
|
if (uvIndex != 0)
|
|
std::cerr << "Warning: texture \"" << filename << "\" uses uv set #" <<
|
|
uvIndex << " but the pbrt converter only exports uv set 0.\n";
|
|
#if 0
|
|
if (op != aiTextureOp_Multiply)
|
|
std::cerr << "Warning: unexpected texture op " << (int)op <<
|
|
" encountered for texture \"" <<
|
|
filename << "\". The resulting scene may have issues...\n";
|
|
if (blend != 1)
|
|
std::cerr << "Blend value of " << blend << " found for texture \"" << filename
|
|
<< "\" but not handled in converter.\n";
|
|
#endif
|
|
|
|
std::string mappingString;
|
|
#if 0
|
|
if (mapMode[0] != mapMode[1])
|
|
std::cerr << "Different texture boundary mode for u and v for texture \"" <<
|
|
filename << "\". Using u for both.\n";
|
|
switch (mapMode[0]) {
|
|
case aiTextureMapMode_Wrap:
|
|
// pbrt's default
|
|
break;
|
|
case aiTextureMapMode_Clamp:
|
|
mappingString = "\"string wrap\" \"clamp\"";
|
|
break;
|
|
case aiTextureMapMode_Decal:
|
|
std::cerr << "Decal texture boundary mode not supported by pbrt for texture \"" <<
|
|
filename << "\"\n";
|
|
break;
|
|
case aiTextureMapMode_Mirror:
|
|
std::cerr << "Mirror texture boundary mode not supported by pbrt for texture \"" <<
|
|
filename << "\"\n";
|
|
break;
|
|
default:
|
|
std::cerr << "Unexpected map mode " << (int)mapMode[0] << " for texture \"" <<
|
|
filename << "\"\n";
|
|
//throw DeadlyExportError("Unexpected aiTextureMapMode");
|
|
}
|
|
#endif
|
|
|
|
#if 0
|
|
aiUVTransform uvTransform;
|
|
if (material->Get(AI_MATKEY_TEXTURE(tt, t), uvTransform) == AI_SUCCESS) {
|
|
mOutput << "# UV transform " << uvTransform.mTranslation.x << " "
|
|
<< uvTransform.mTranslation.y << " " << uvTransform.mScaling.x << " "
|
|
<< uvTransform.mScaling.y << " " << uvTransform.mRotation << "\n";
|
|
}
|
|
#endif
|
|
|
|
std::string texName, texType, texOptions;
|
|
if (aiTextureType(tt) == aiTextureType_SHININESS ||
|
|
aiTextureType(tt) == aiTextureType_OPACITY ||
|
|
aiTextureType(tt) == aiTextureType_HEIGHT ||
|
|
aiTextureType(tt) == aiTextureType_DISPLACEMENT ||
|
|
aiTextureType(tt) == aiTextureType_METALNESS ||
|
|
aiTextureType(tt) == aiTextureType_DIFFUSE_ROUGHNESS) {
|
|
texType = "float";
|
|
texName = std::string("float:") + RemoveSuffix(filename);
|
|
|
|
if (aiTextureType(tt) == aiTextureType_SHININESS) {
|
|
texOptions = " \"bool invert\" true\n";
|
|
texName += "_Roughness";
|
|
}
|
|
} else if (aiTextureType(tt) == aiTextureType_DIFFUSE ||
|
|
aiTextureType(tt) == aiTextureType_BASE_COLOR) {
|
|
texType = "spectrum";
|
|
texName = std::string("rgb:") + RemoveSuffix(filename);
|
|
}
|
|
|
|
// Don't export textures we're not actually going to use...
|
|
if (texName.empty())
|
|
continue;
|
|
|
|
if (mTextureSet.find(texName) == mTextureSet.end()) {
|
|
mOutput << "Texture \"" << texName << "\" \"" << texType << "\" \"imagemap\"\n"
|
|
<< texOptions
|
|
<< " \"string filename\" \"" << filename << "\" " << mappingString << '\n';
|
|
mTextureSet.insert(texName);
|
|
}
|
|
|
|
// Also emit a float version for use with alpha testing...
|
|
if ((aiTextureType(tt) == aiTextureType_DIFFUSE ||
|
|
aiTextureType(tt) == aiTextureType_BASE_COLOR) &&
|
|
TextureHasAlphaMask(filename)) {
|
|
texType = "float";
|
|
texName = std::string("alpha:") + filename;
|
|
if (mTextureSet.find(texName) == mTextureSet.end()) {
|
|
mOutput << "Texture \"" << texName << "\" \"" << texType << "\" \"imagemap\"\n"
|
|
<< " \"string filename\" \"" << filename << "\" " << mappingString << '\n';
|
|
mTextureSet.insert(texName);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool PbrtExporter::TextureHasAlphaMask(const std::string &filename) {
|
|
// TODO: STBIDEF int stbi_info (char const *filename, int *x, int *y, int *comp);
|
|
// quick return if it's 3
|
|
|
|
int xSize, ySize, nComponents;
|
|
unsigned char *data = stbi_load(filename.c_str(), &xSize, &ySize, &nComponents, 0);
|
|
if (!data) {
|
|
std::cerr << filename << ": unable to load texture and check for alpha mask in texture. "
|
|
"Geometry will not be alpha masked with this texture.\n";
|
|
return false;
|
|
}
|
|
|
|
bool hasMask = false;
|
|
switch (nComponents) {
|
|
case 1:
|
|
for (int i = 0; i < xSize * ySize; ++i)
|
|
if (data[i] != 255) {
|
|
hasMask = true;
|
|
break;
|
|
}
|
|
break;
|
|
case 2:
|
|
for (int y = 0; y < ySize; ++y)
|
|
for (int x = 0; x < xSize; ++x)
|
|
if (data[2 * (x + y * xSize) + 1] != 255) {
|
|
hasMask = true;
|
|
break;
|
|
}
|
|
break;
|
|
case 3:
|
|
break;
|
|
case 4:
|
|
for (int y = 0; y < ySize; ++y)
|
|
for (int x = 0; x < xSize; ++x)
|
|
if (data[4 * (x + y * xSize) + 3] != 255) {
|
|
hasMask = true;
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
std::cerr << filename << ": unexpected number of image channels, " <<
|
|
nComponents << ".\n";
|
|
}
|
|
|
|
stbi_image_free(data);
|
|
return hasMask;
|
|
}
|
|
|
|
void PbrtExporter::WriteMaterials() {
|
|
mOutput << "\n";
|
|
mOutput << "####################\n";
|
|
mOutput << "# Materials (" << mScene->mNumMaterials << ") total\n\n";
|
|
|
|
for (unsigned int i = 0; i < mScene->mNumMaterials; i++) {
|
|
WriteMaterial(i);
|
|
}
|
|
mOutput << "\n\n";
|
|
}
|
|
|
|
void PbrtExporter::WriteMaterial(int m) {
|
|
aiMaterial* material = mScene->mMaterials[m];
|
|
|
|
// get material name
|
|
auto materialName = material->GetName();
|
|
mOutput << std::endl << "# - Material " << m+1 << ": " << materialName.C_Str() << "\n";
|
|
|
|
// Print out number of properties
|
|
mOutput << "# - Number of Material Properties: " << material->mNumProperties << "\n";
|
|
|
|
// Print out texture type counts
|
|
mOutput << "# - Non-Zero Texture Type Counts: ";
|
|
for (int i = 1; i <= aiTextureType_UNKNOWN; i++) {
|
|
int count = material->GetTextureCount(aiTextureType(i));
|
|
if (count > 0)
|
|
mOutput << TextureTypeToString(aiTextureType(i)) << ": " << count << " ";
|
|
}
|
|
mOutput << "\n";
|
|
|
|
auto White = [](const aiColor3D &c) { return c.r == 1 && c.g == 1 && c.b == 1; };
|
|
auto Black = [](const aiColor3D &c) { return c.r == 0 && c.g == 0 && c.b == 0; };
|
|
|
|
aiColor3D diffuse, specular, transparency;
|
|
bool constantDiffuse = (material->Get(AI_MATKEY_COLOR_DIFFUSE, diffuse) == AI_SUCCESS &&
|
|
!White(diffuse));
|
|
bool constantSpecular = (material->Get(AI_MATKEY_COLOR_SPECULAR, specular) == AI_SUCCESS &&
|
|
!White(specular));
|
|
bool constantTransparency = (material->Get(AI_MATKEY_COLOR_TRANSPARENT, transparency) == AI_SUCCESS &&
|
|
!Black(transparency));
|
|
|
|
float opacity, shininess, shininessStrength, eta;
|
|
bool constantOpacity = (material->Get(AI_MATKEY_OPACITY, opacity) == AI_SUCCESS &&
|
|
opacity != 0);
|
|
bool constantShininess = material->Get(AI_MATKEY_SHININESS, shininess) == AI_SUCCESS;
|
|
bool constantShininessStrength = material->Get(AI_MATKEY_SHININESS_STRENGTH, shininessStrength) == AI_SUCCESS;
|
|
bool constantEta = (material->Get(AI_MATKEY_REFRACTI, eta) == AI_SUCCESS &&
|
|
eta != 1);
|
|
|
|
mOutput << "# - Constants: diffuse " << constantDiffuse << " specular " << constantSpecular <<
|
|
" transparency " << constantTransparency << " opacity " << constantOpacity <<
|
|
" shininess " << constantShininess << " shininess strength " << constantShininessStrength <<
|
|
" eta " << constantEta << "\n";
|
|
|
|
aiString roughnessMap;
|
|
if (material->Get(AI_MATKEY_TEXTURE_SHININESS(0), roughnessMap) == AI_SUCCESS) {
|
|
std::string roughnessTexture = std::string("float:") +
|
|
RemoveSuffix(CleanTextureFilename(roughnessMap)) + "_Roughness";
|
|
mOutput << "MakeNamedMaterial \"" << materialName.C_Str() << "\""
|
|
<< " \"string type\" \"coateddiffuse\"\n"
|
|
<< " \"texture roughness\" \"" << roughnessTexture << "\"\n";
|
|
} else if (constantShininess) {
|
|
// Assume plastic for now at least
|
|
float roughness = std::max(0.f, 1.f - shininess);
|
|
mOutput << "MakeNamedMaterial \"" << materialName.C_Str() << "\""
|
|
<< " \"string type\" \"coateddiffuse\"\n"
|
|
<< " \"float roughness\" " << roughness << "\n";
|
|
} else
|
|
// Diffuse
|
|
mOutput << "MakeNamedMaterial \"" << materialName.C_Str() << "\""
|
|
<< " \"string type\" \"diffuse\"\n";
|
|
|
|
aiString diffuseTexture;
|
|
if (material->Get(AI_MATKEY_TEXTURE_DIFFUSE(0), diffuseTexture) == AI_SUCCESS)
|
|
mOutput << " \"texture reflectance\" \"rgb:" << RemoveSuffix(CleanTextureFilename(diffuseTexture)) << "\"\n";
|
|
else
|
|
mOutput << " \"rgb reflectance\" [ " << diffuse.r << " " << diffuse.g <<
|
|
" " << diffuse.b << " ]\n";
|
|
|
|
aiString displacementTexture, normalMap;
|
|
if (material->Get(AI_MATKEY_TEXTURE_NORMALS(0), displacementTexture) == AI_SUCCESS)
|
|
mOutput << " \"string normalmap\" \"" << CleanTextureFilename(displacementTexture) << "\"\n";
|
|
else if (material->Get(AI_MATKEY_TEXTURE_HEIGHT(0), displacementTexture) == AI_SUCCESS)
|
|
mOutput << " \"texture displacement\" \"float:" <<
|
|
RemoveSuffix(CleanTextureFilename(displacementTexture)) << "\"\n";
|
|
else if (material->Get(AI_MATKEY_TEXTURE_DISPLACEMENT(0), displacementTexture) == AI_SUCCESS)
|
|
mOutput << " \"texture displacement\" \"float:" <<
|
|
RemoveSuffix(CleanTextureFilename(displacementTexture)) << "\"\n";
|
|
}
|
|
|
|
std::string PbrtExporter::CleanTextureFilename(const aiString &f, bool rewriteExtension) const {
|
|
std::string fn = f.C_Str();
|
|
// Remove directory name
|
|
size_t offset = fn.find_last_of("/\\");
|
|
if (offset != std::string::npos) {
|
|
fn.erase(0, offset + 1);
|
|
}
|
|
|
|
// Expect all textures in textures
|
|
fn = std::string("textures") + mIOSystem->getOsSeparator() + fn;
|
|
|
|
// Rewrite extension for unsupported file formats.
|
|
if (rewriteExtension) {
|
|
offset = fn.rfind('.');
|
|
if (offset != std::string::npos) {
|
|
std::string extension = fn;
|
|
extension.erase(0, offset + 1);
|
|
std::transform(extension.begin(), extension.end(), extension.begin(),
|
|
[](unsigned char c) { return (char)std::tolower(c); });
|
|
|
|
if (extension != "tga" && extension != "exr" && extension != "png" &&
|
|
extension != "pfm" && extension != "hdr") {
|
|
std::string orig = fn;
|
|
fn.erase(offset + 1);
|
|
fn += "png";
|
|
|
|
// Does it already exist? Warn if not.
|
|
std::ifstream filestream(fn);
|
|
if (!filestream.good())
|
|
std::cerr << orig << ": must convert this texture to PNG.\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
return fn;
|
|
}
|
|
|
|
std::string PbrtExporter::RemoveSuffix(std::string filename) {
|
|
size_t offset = filename.rfind('.');
|
|
if (offset != std::string::npos)
|
|
filename.erase(offset);
|
|
return filename;
|
|
}
|
|
|
|
void PbrtExporter::WriteLights() {
|
|
mOutput << "\n";
|
|
mOutput << "#################\n";
|
|
mOutput << "# Lights\n\n";
|
|
if (mScene->mNumLights == 0) {
|
|
// Skip the default light if no cameras and this is flat up geometry
|
|
if (mScene->mNumCameras > 0) {
|
|
std::cerr << "No lights specified. Using default infinite light.\n";
|
|
|
|
mOutput << "AttributeBegin\n";
|
|
mOutput << " # default light\n";
|
|
mOutput << " LightSource \"infinite\" \"blackbody L\" [6000 1]\n";
|
|
|
|
mOutput << "AttributeEnd\n\n";
|
|
}
|
|
} else {
|
|
for (unsigned int i = 0; i < mScene->mNumLights; ++i) {
|
|
const aiLight *light = mScene->mLights[i];
|
|
|
|
mOutput << "# Light " << light->mName.C_Str() << "\n";
|
|
mOutput << "AttributeBegin\n";
|
|
|
|
aiMatrix4x4 worldFromLight = GetNodeTransform(light->mName);
|
|
mOutput << " Transform [ " << TransformAsString(worldFromLight) << " ]\n";
|
|
|
|
aiColor3D color = light->mColorDiffuse + light->mColorSpecular;
|
|
if (light->mAttenuationConstant != 0)
|
|
color = color * (ai_real)(1. / light->mAttenuationConstant);
|
|
|
|
switch (light->mType) {
|
|
case aiLightSource_DIRECTIONAL: {
|
|
mOutput << " LightSource \"distant\"\n";
|
|
mOutput << " \"point3 from\" [ " << light->mPosition.x << " " <<
|
|
light->mPosition.y << " " << light->mPosition.z << " ]\n";
|
|
aiVector3D to = light->mPosition + light->mDirection;
|
|
mOutput << " \"point3 to\" [ " << to.x << " " << to.y << " " << to.z << " ]\n";
|
|
mOutput << " \"rgb L\" [ " << color.r << " " << color.g << " " << color.b << " ]\n";
|
|
break;
|
|
} case aiLightSource_POINT:
|
|
mOutput << " LightSource \"distant\"\n";
|
|
mOutput << " \"point3 from\" [ " << light->mPosition.x << " " <<
|
|
light->mPosition.y << " " << light->mPosition.z << " ]\n";
|
|
mOutput << " \"rgb L\" [ " << color.r << " " << color.g << " " << color.b << " ]\n";
|
|
break;
|
|
case aiLightSource_SPOT: {
|
|
mOutput << " LightSource \"spot\"\n";
|
|
mOutput << " \"point3 from\" [ " << light->mPosition.x << " " <<
|
|
light->mPosition.y << " " << light->mPosition.z << " ]\n";
|
|
aiVector3D to = light->mPosition + light->mDirection;
|
|
mOutput << " \"point3 to\" [ " << to.x << " " << to.y << " " << to.z << " ]\n";
|
|
mOutput << " \"rgb L\" [ " << color.r << " " << color.g << " " << color.b << " ]\n";
|
|
mOutput << " \"float coneangle\" [ " << AI_RAD_TO_DEG(light->mAngleOuterCone) << " ]\n";
|
|
mOutput << " \"float conedeltaangle\" [ " << AI_RAD_TO_DEG(light->mAngleOuterCone -
|
|
light->mAngleInnerCone) << " ]\n";
|
|
break;
|
|
} case aiLightSource_AMBIENT:
|
|
mOutput << "# ignored ambient light source\n";
|
|
break;
|
|
case aiLightSource_AREA: {
|
|
aiVector3D left = light->mDirection ^ light->mUp;
|
|
// rectangle. center at position, direction is normal vector
|
|
ai_real dLeft = light->mSize.x / 2, dUp = light->mSize.y / 2;
|
|
aiVector3D vertices[4] = {
|
|
light->mPosition - dLeft * left - dUp * light->mUp,
|
|
light->mPosition + dLeft * left - dUp * light->mUp,
|
|
light->mPosition - dLeft * left + dUp * light->mUp,
|
|
light->mPosition + dLeft * left + dUp * light->mUp };
|
|
mOutput << " AreaLightSource \"diffuse\"\n";
|
|
mOutput << " \"rgb L\" [ " << color.r << " " << color.g << " " << color.b << " ]\n";
|
|
mOutput << " Shape \"bilinearmesh\"\n";
|
|
mOutput << " \"point3 p\" [ ";
|
|
for (int j = 0; j < 4; ++j)
|
|
mOutput << vertices[j].x << " " << vertices[j].y << " " << vertices[j].z;
|
|
mOutput << " ]\n";
|
|
mOutput << " \"integer indices\" [ 0 1 2 3 ]\n";
|
|
break;
|
|
} default:
|
|
mOutput << "# ignored undefined light source type\n";
|
|
break;
|
|
}
|
|
mOutput << "AttributeEnd\n\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
void PbrtExporter::WriteMesh(aiMesh* mesh) {
|
|
mOutput << "# - Mesh: ";
|
|
if (mesh->mName == aiString(""))
|
|
mOutput << "<No Name>\n";
|
|
else
|
|
mOutput << mesh->mName.C_Str() << "\n";
|
|
|
|
mOutput << "AttributeBegin\n";
|
|
aiMaterial* material = mScene->mMaterials[mesh->mMaterialIndex];
|
|
mOutput << " NamedMaterial \"" << material->GetName().C_Str() << "\"\n";
|
|
|
|
// Handle area lights
|
|
aiColor3D emission;
|
|
if (material->Get(AI_MATKEY_COLOR_EMISSIVE, emission) == AI_SUCCESS &&
|
|
(emission.r > 0 || emission.g > 0 || emission.b > 0))
|
|
mOutput << " AreaLightSource \"diffuse\" \"rgb L\" [ " << emission.r <<
|
|
" " << emission.g << " " << emission.b << " ]\n";
|
|
|
|
// Check if any types other than tri
|
|
if ( (mesh->mPrimitiveTypes & aiPrimitiveType_POINT)
|
|
|| (mesh->mPrimitiveTypes & aiPrimitiveType_LINE)
|
|
|| (mesh->mPrimitiveTypes & aiPrimitiveType_POLYGON)) {
|
|
std::cerr << "Error: ignoring point / line / polygon mesh " << mesh->mName.C_Str() << ".\n";
|
|
return;
|
|
}
|
|
|
|
// Alpha mask
|
|
std::string alpha;
|
|
aiString opacityTexture;
|
|
if (material->Get(AI_MATKEY_TEXTURE_OPACITY(0), opacityTexture) == AI_SUCCESS ||
|
|
material->Get(AI_MATKEY_TEXTURE_DIFFUSE(0), opacityTexture) == AI_SUCCESS) {
|
|
// material->Get(AI_MATKEY_TEXTURE_BASE_COLOR(0), opacityTexture) == AI_SUCCESS)
|
|
std::string texName = std::string("alpha:") + CleanTextureFilename(opacityTexture);
|
|
if (mTextureSet.find(texName) != mTextureSet.end())
|
|
alpha = std::string(" \"texture alpha\" \"") + texName + "\"\n";
|
|
} else {
|
|
float opacity = 1;
|
|
if (material->Get(AI_MATKEY_OPACITY, opacity) == AI_SUCCESS && opacity < 1)
|
|
alpha = std::string(" \"float alpha\" [ ") + std::to_string(opacity) + " ]\n";
|
|
}
|
|
|
|
// Output the shape specification
|
|
mOutput << "Shape \"trianglemesh\"\n" <<
|
|
alpha <<
|
|
" \"integer indices\" [";
|
|
|
|
// Start with faces (which hold indices)
|
|
for (unsigned int i = 0; i < mesh->mNumFaces; i++) {
|
|
auto face = mesh->mFaces[i];
|
|
if (face.mNumIndices != 3) throw DeadlyExportError("oh no not a tri!");
|
|
|
|
for (unsigned int j = 0; j < face.mNumIndices; j++) {
|
|
mOutput << face.mIndices[j] << " ";
|
|
}
|
|
if ((i % 7) == 6) mOutput << "\n ";
|
|
}
|
|
mOutput << "]\n";
|
|
|
|
// Then go to vertices
|
|
mOutput << " \"point3 P\" [";
|
|
for (unsigned int i = 0; i < mesh->mNumVertices; i++) {
|
|
auto vector = mesh->mVertices[i];
|
|
mOutput << vector.x << " " << vector.y << " " << vector.z << " ";
|
|
if ((i % 4) == 3) mOutput << "\n ";
|
|
}
|
|
mOutput << "]\n";
|
|
|
|
// Normals (if present)
|
|
if (mesh->mNormals) {
|
|
mOutput << " \"normal N\" [";
|
|
for (unsigned int i = 0; i < mesh->mNumVertices; i++) {
|
|
auto normal = mesh->mNormals[i];
|
|
mOutput << normal.x << " " << normal.y << " " << normal.z << " ";
|
|
if ((i % 4) == 3) mOutput << "\n ";
|
|
}
|
|
mOutput << "]\n";
|
|
}
|
|
|
|
// Tangents (if present)
|
|
if (mesh->mTangents) {
|
|
mOutput << " \"vector3 S\" [";
|
|
for (unsigned int i = 0; i < mesh->mNumVertices; i++) {
|
|
auto tangent = mesh->mTangents[i];
|
|
mOutput << tangent.x << " " << tangent.y << " " << tangent.z << " ";
|
|
if ((i % 4) == 3) mOutput << "\n ";
|
|
}
|
|
mOutput << "]\n";
|
|
}
|
|
|
|
// Texture Coords (if present)
|
|
// Find the first set of 2D texture coordinates..
|
|
for (int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) {
|
|
if (mesh->mNumUVComponents[i] == 2) {
|
|
// assert(mesh->mTextureCoords[i] != nullptr);
|
|
aiVector3D* uv = mesh->mTextureCoords[i];
|
|
mOutput << " \"point2 uv\" [";
|
|
for (unsigned int j = 0; j < mesh->mNumVertices; ++j) {
|
|
mOutput << uv[j].x << " " << uv[j].y << " ";
|
|
if ((j % 6) == 5) mOutput << "\n ";
|
|
}
|
|
mOutput << "]\n";
|
|
break;
|
|
}
|
|
}
|
|
// TODO: issue warning if there are additional UV sets?
|
|
|
|
mOutput << "AttributeEnd\n";
|
|
}
|
|
|
|
void PbrtExporter::WriteInstanceDefinition(int i) {
|
|
aiMesh* mesh = mScene->mMeshes[i];
|
|
|
|
mOutput << "ObjectBegin \"";
|
|
if (mesh->mName == aiString(""))
|
|
mOutput << "mesh_" << i+1 << "\"\n";
|
|
else
|
|
mOutput << mesh->mName.C_Str() << "_" << i+1 << "\"\n";
|
|
|
|
WriteMesh(mesh);
|
|
|
|
mOutput << "ObjectEnd\n";
|
|
}
|
|
|
|
void PbrtExporter::WriteGeometricObjects(aiNode* node, aiMatrix4x4 worldFromObject,
|
|
std::map<int, int> &meshUses) {
|
|
// Sometimes interior nodes have degenerate matrices??
|
|
if (node->mTransformation.Determinant() != 0)
|
|
worldFromObject = worldFromObject * node->mTransformation;
|
|
|
|
if (node->mNumMeshes > 0) {
|
|
mOutput << "AttributeBegin\n";
|
|
|
|
mOutput << " Transform [ " << TransformAsString(worldFromObject) << "]\n";
|
|
|
|
for (unsigned int i = 0; i < node->mNumMeshes; i++) {
|
|
aiMesh* mesh = mScene->mMeshes[node->mMeshes[i]];
|
|
if (meshUses[node->mMeshes[i]] == 1) {
|
|
// If it's only used once in the scene, emit it directly as
|
|
// a triangle mesh.
|
|
mOutput << " # " << mesh->mName.C_Str();
|
|
WriteMesh(mesh);
|
|
} else {
|
|
// If it's used multiple times, there will be an object
|
|
// instance for it, so emit a reference to that.
|
|
mOutput << " ObjectInstance \"";
|
|
if (mesh->mName == aiString(""))
|
|
mOutput << "mesh_" << node->mMeshes[i] + 1 << "\"\n";
|
|
else
|
|
mOutput << mesh->mName.C_Str() << "_" << node->mMeshes[i] + 1 << "\"\n";
|
|
}
|
|
}
|
|
mOutput << "AttributeEnd\n\n";
|
|
}
|
|
|
|
// Recurse through children
|
|
for (unsigned int i = 0; i < node->mNumChildren; i++) {
|
|
WriteGeometricObjects(node->mChildren[i], worldFromObject, meshUses);
|
|
}
|
|
}
|
|
|
|
#endif // ASSIMP_BUILD_NO_PBRT_EXPORTER
|
|
#endif // ASSIMP_BUILD_NO_EXPORT
|