767 lines
39 KiB
C++
767 lines
39 KiB
C++
/*
|
|
Open Asset Import Library (assimp)
|
|
----------------------------------------------------------------------
|
|
|
|
Copyright (c) 2006-2020, assimp team
|
|
All rights reserved.
|
|
|
|
Redistribution and use of this software in source and binary forms,
|
|
with or without modification, are permitted provided that the
|
|
following conditions are met:
|
|
|
|
* Redistributions of source code must retain the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer in the documentation and/or other
|
|
materials provided with the distribution.
|
|
|
|
* Neither the name of the assimp team, nor the names of its
|
|
contributors may be used to endorse or promote products
|
|
derived from this software without specific prior
|
|
written permission of the assimp team.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
----------------------------------------------------------------------
|
|
*/
|
|
|
|
/** @file IFCBoolean.cpp
|
|
* @brief Implements a subset of Ifc boolean operations
|
|
*/
|
|
|
|
#ifndef ASSIMP_BUILD_NO_IFC_IMPORTER
|
|
|
|
#include "AssetLib/IFC/IFCUtil.h"
|
|
#include "Common/PolyTools.h"
|
|
#include "PostProcessing/ProcessHelper.h"
|
|
|
|
#include <assimp/Defines.h>
|
|
|
|
#include <iterator>
|
|
#include <tuple>
|
|
|
|
namespace Assimp {
|
|
namespace IFC {
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Calculates intersection between line segment and plane. To catch corner cases, specify which side you prefer.
|
|
// The function then generates a hit only if the end is beyond a certain margin in that direction, filtering out
|
|
// "very close to plane" ghost hits as long as start and end stay directly on or within the given plane side.
|
|
bool IntersectSegmentPlane(const IfcVector3 &p, const IfcVector3 &n, const IfcVector3 &e0,
|
|
const IfcVector3 &e1, bool assumeStartOnWhiteSide, IfcVector3 &out) {
|
|
const IfcVector3 pdelta = e0 - p, seg = e1 - e0;
|
|
const IfcFloat dotOne = n * seg, dotTwo = -(n * pdelta);
|
|
|
|
// if segment ends on plane, do not report a hit. We stay on that side until a following segment starting at this
|
|
// point leaves the plane through the other side
|
|
if (std::abs(dotOne + dotTwo) < 1e-6)
|
|
return false;
|
|
|
|
// if segment starts on the plane, report a hit only if the end lies on the *other* side
|
|
if (std::abs(dotTwo) < 1e-6) {
|
|
if ((assumeStartOnWhiteSide && dotOne + dotTwo < 1e-6) || (!assumeStartOnWhiteSide && dotOne + dotTwo > -1e-6)) {
|
|
out = e0;
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// ignore if segment is parallel to plane and far away from it on either side
|
|
// Warning: if there's a few thousand of such segments which slowly accumulate beyond the epsilon, no hit would be registered
|
|
if (std::abs(dotOne) < 1e-6)
|
|
return false;
|
|
|
|
// t must be in [0..1] if the intersection point is within the given segment
|
|
const IfcFloat t = dotTwo / dotOne;
|
|
if (t > 1.0 || t < 0.0)
|
|
return false;
|
|
|
|
out = e0 + t * seg;
|
|
return true;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void FilterPolygon(std::vector<IfcVector3> &resultpoly) {
|
|
if (resultpoly.size() < 3) {
|
|
resultpoly.clear();
|
|
return;
|
|
}
|
|
|
|
IfcVector3 vmin, vmax;
|
|
ArrayBounds(resultpoly.data(), static_cast<unsigned int>(resultpoly.size()), vmin, vmax);
|
|
|
|
// filter our IfcFloat points - those may happen if a point lies
|
|
// directly on the intersection line or directly on the clipping plane
|
|
const IfcFloat epsilon = (vmax - vmin).SquareLength() / 1e6f;
|
|
FuzzyVectorCompare fz(epsilon);
|
|
std::vector<IfcVector3>::iterator e = std::unique(resultpoly.begin(), resultpoly.end(), fz);
|
|
|
|
if (e != resultpoly.end())
|
|
resultpoly.erase(e, resultpoly.end());
|
|
|
|
if (!resultpoly.empty() && fz(resultpoly.front(), resultpoly.back()))
|
|
resultpoly.pop_back();
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void WritePolygon(std::vector<IfcVector3> &resultpoly, TempMesh &result) {
|
|
FilterPolygon(resultpoly);
|
|
|
|
if (resultpoly.size() > 2) {
|
|
result.mVerts.insert(result.mVerts.end(), resultpoly.begin(), resultpoly.end());
|
|
result.mVertcnt.push_back(static_cast<unsigned int>(resultpoly.size()));
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ProcessBooleanHalfSpaceDifference(const Schema_2x3::IfcHalfSpaceSolid *hs, TempMesh &result,
|
|
const TempMesh &first_operand,
|
|
ConversionData & /*conv*/) {
|
|
ai_assert(hs != NULL);
|
|
|
|
const Schema_2x3::IfcPlane *const plane = hs->BaseSurface->ToPtr<Schema_2x3::IfcPlane>();
|
|
if (!plane) {
|
|
IFCImporter::LogError("expected IfcPlane as base surface for the IfcHalfSpaceSolid");
|
|
return;
|
|
}
|
|
|
|
// extract plane base position vector and normal vector
|
|
IfcVector3 p, n(0.f, 0.f, 1.f);
|
|
if (plane->Position->Axis) {
|
|
ConvertDirection(n, plane->Position->Axis.Get());
|
|
}
|
|
ConvertCartesianPoint(p, plane->Position->Location);
|
|
|
|
if (!IsTrue(hs->AgreementFlag)) {
|
|
n *= -1.f;
|
|
}
|
|
|
|
// clip the current contents of `meshout` against the plane we obtained from the second operand
|
|
const std::vector<IfcVector3> &in = first_operand.mVerts;
|
|
std::vector<IfcVector3> &outvert = result.mVerts;
|
|
|
|
std::vector<unsigned int>::const_iterator begin = first_operand.mVertcnt.begin(),
|
|
end = first_operand.mVertcnt.end(), iit;
|
|
|
|
outvert.reserve(in.size());
|
|
result.mVertcnt.reserve(first_operand.mVertcnt.size());
|
|
|
|
unsigned int vidx = 0;
|
|
for (iit = begin; iit != end; vidx += *iit++) {
|
|
|
|
unsigned int newcount = 0;
|
|
bool isAtWhiteSide = (in[vidx] - p) * n > -1e-6;
|
|
for (unsigned int i = 0; i < *iit; ++i) {
|
|
const IfcVector3 &e0 = in[vidx + i], e1 = in[vidx + (i + 1) % *iit];
|
|
|
|
// does the next segment intersect the plane?
|
|
IfcVector3 isectpos;
|
|
if (IntersectSegmentPlane(p, n, e0, e1, isAtWhiteSide, isectpos)) {
|
|
if (isAtWhiteSide) {
|
|
// e0 is on the right side, so keep it
|
|
outvert.push_back(e0);
|
|
outvert.push_back(isectpos);
|
|
newcount += 2;
|
|
} else {
|
|
// e0 is on the wrong side, so drop it and keep e1 instead
|
|
outvert.push_back(isectpos);
|
|
++newcount;
|
|
}
|
|
isAtWhiteSide = !isAtWhiteSide;
|
|
} else {
|
|
if (isAtWhiteSide) {
|
|
outvert.push_back(e0);
|
|
++newcount;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!newcount) {
|
|
continue;
|
|
}
|
|
|
|
IfcVector3 vmin, vmax;
|
|
ArrayBounds(&*(outvert.end() - newcount), newcount, vmin, vmax);
|
|
|
|
// filter our IfcFloat points - those may happen if a point lies
|
|
// directly on the intersection line. However, due to IfcFloat
|
|
// precision a bitwise comparison is not feasible to detect
|
|
// this case.
|
|
const IfcFloat epsilon = (vmax - vmin).SquareLength() / 1e6f;
|
|
FuzzyVectorCompare fz(epsilon);
|
|
|
|
std::vector<IfcVector3>::iterator e = std::unique(outvert.end() - newcount, outvert.end(), fz);
|
|
|
|
if (e != outvert.end()) {
|
|
newcount -= static_cast<unsigned int>(std::distance(e, outvert.end()));
|
|
outvert.erase(e, outvert.end());
|
|
}
|
|
if (fz(*(outvert.end() - newcount), outvert.back())) {
|
|
outvert.pop_back();
|
|
--newcount;
|
|
}
|
|
if (newcount > 2) {
|
|
result.mVertcnt.push_back(newcount);
|
|
} else
|
|
while (newcount-- > 0) {
|
|
result.mVerts.pop_back();
|
|
}
|
|
}
|
|
IFCImporter::LogVerboseDebug("generating CSG geometry by plane clipping (IfcBooleanClippingResult)");
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Check if e0-e1 intersects a sub-segment of the given boundary line.
|
|
// note: this functions works on 3D vectors, but performs its intersection checks solely in xy.
|
|
// New version takes the supposed inside/outside state as a parameter and treats corner cases as if
|
|
// the line stays on that side. This should make corner cases more stable.
|
|
// Two million assumptions! Boundary should have all z at 0.0, will be treated as closed, should not have
|
|
// segments with length <1e-6, self-intersecting might break the corner case handling... just don't go there, ok?
|
|
bool IntersectsBoundaryProfile(const IfcVector3 &e0, const IfcVector3 &e1, const std::vector<IfcVector3> &boundary,
|
|
const bool isStartAssumedInside, std::vector<std::pair<size_t, IfcVector3>> &intersect_results,
|
|
const bool halfOpen = false) {
|
|
ai_assert(intersect_results.empty());
|
|
|
|
// determine winding order - necessary to detect segments going "inwards" or "outwards" from a point directly on the border
|
|
// positive sum of angles means clockwise order when looking down the -Z axis
|
|
IfcFloat windingOrder = 0.0;
|
|
for (size_t i = 0, bcount = boundary.size(); i < bcount; ++i) {
|
|
IfcVector3 b01 = boundary[(i + 1) % bcount] - boundary[i];
|
|
IfcVector3 b12 = boundary[(i + 2) % bcount] - boundary[(i + 1) % bcount];
|
|
IfcVector3 b1_side = IfcVector3(b01.y, -b01.x, 0.0); // rotated 90° clockwise in Z plane
|
|
// Warning: rough estimate only. A concave poly with lots of small segments each featuring a small counter rotation
|
|
// could fool the accumulation. Correct implementation would be sum( acos( b01 * b2) * sign( b12 * b1_side))
|
|
windingOrder += (b1_side.x * b12.x + b1_side.y * b12.y);
|
|
}
|
|
windingOrder = windingOrder > 0.0 ? 1.0 : -1.0;
|
|
|
|
const IfcVector3 e = e1 - e0;
|
|
|
|
for (size_t i = 0, bcount = boundary.size(); i < bcount; ++i) {
|
|
// boundary segment i: b0-b1
|
|
const IfcVector3 &b0 = boundary[i];
|
|
const IfcVector3 &b1 = boundary[(i + 1) % bcount];
|
|
IfcVector3 b = b1 - b0;
|
|
|
|
// segment-segment intersection
|
|
// solve b0 + b*s = e0 + e*t for (s,t)
|
|
const IfcFloat det = (-b.x * e.y + e.x * b.y);
|
|
if (std::abs(det) < 1e-6) {
|
|
// no solutions (parallel lines)
|
|
continue;
|
|
}
|
|
IfcFloat b_sqlen_inv = 1.0 / b.SquareLength();
|
|
|
|
const IfcFloat x = b0.x - e0.x;
|
|
const IfcFloat y = b0.y - e0.y;
|
|
const IfcFloat s = (x * e.y - e.x * y) / det; // scale along boundary edge
|
|
const IfcFloat t = (x * b.y - b.x * y) / det; // scale along given segment
|
|
const IfcVector3 p = e0 + e * t;
|
|
#ifdef ASSIMP_BUILD_DEBUG
|
|
const IfcVector3 check = b0 + b * s - p;
|
|
ai_assert((IfcVector2(check.x, check.y)).SquareLength() < 1e-5);
|
|
#endif
|
|
|
|
// also calculate the distance of e0 and e1 to the segment. We need to detect the "starts directly on segment"
|
|
// and "ends directly at segment" cases
|
|
bool startsAtSegment, endsAtSegment;
|
|
{
|
|
// calculate closest point to each end on the segment, clamp that point to the segment's length, then check
|
|
// distance to that point. This approach is like testing if e0 is inside a capped cylinder.
|
|
IfcFloat et0 = (b.x * (e0.x - b0.x) + b.y * (e0.y - b0.y)) * b_sqlen_inv;
|
|
IfcVector3 closestPosToE0OnBoundary = b0 + std::max(IfcFloat(0.0), std::min(IfcFloat(1.0), et0)) * b;
|
|
startsAtSegment = (closestPosToE0OnBoundary - IfcVector3(e0.x, e0.y, 0.0)).SquareLength() < 1e-12;
|
|
IfcFloat et1 = (b.x * (e1.x - b0.x) + b.y * (e1.y - b0.y)) * b_sqlen_inv;
|
|
IfcVector3 closestPosToE1OnBoundary = b0 + std::max(IfcFloat(0.0), std::min(IfcFloat(1.0), et1)) * b;
|
|
endsAtSegment = (closestPosToE1OnBoundary - IfcVector3(e1.x, e1.y, 0.0)).SquareLength() < 1e-12;
|
|
}
|
|
|
|
// Line segment ends at boundary -> ignore any hit, it will be handled by possibly following segments
|
|
if (endsAtSegment && !halfOpen)
|
|
continue;
|
|
|
|
// Line segment starts at boundary -> generate a hit only if following that line would change the INSIDE/OUTSIDE
|
|
// state. This should catch the case where a connected set of segments has a point directly on the boundary,
|
|
// one segment not hitting it because it ends there and the next segment not hitting it because it starts there
|
|
// Should NOT generate a hit if the segment only touches the boundary but turns around and stays inside.
|
|
if (startsAtSegment) {
|
|
IfcVector3 inside_dir = IfcVector3(b.y, -b.x, 0.0) * windingOrder;
|
|
bool isGoingInside = (inside_dir * e) > 0.0;
|
|
if (isGoingInside == isStartAssumedInside)
|
|
continue;
|
|
|
|
// only insert the point into the list if it is sufficiently far away from the previous intersection point.
|
|
// This way, we avoid duplicate detection if the intersection is directly on the vertex between two segments.
|
|
if (!intersect_results.empty() && intersect_results.back().first == i - 1) {
|
|
const IfcVector3 diff = intersect_results.back().second - e0;
|
|
if (IfcVector2(diff.x, diff.y).SquareLength() < 1e-10)
|
|
continue;
|
|
}
|
|
intersect_results.push_back(std::make_pair(i, e0));
|
|
continue;
|
|
}
|
|
|
|
// for a valid intersection, s and t should be in range [0,1]. Including a bit of epsilon on s, potential double
|
|
// hits on two consecutive boundary segments are filtered
|
|
if (s >= -1e-6 * b_sqlen_inv && s <= 1.0 + 1e-6 * b_sqlen_inv && t >= 0.0 && (t <= 1.0 || halfOpen)) {
|
|
// only insert the point into the list if it is sufficiently far away from the previous intersection point.
|
|
// This way, we avoid duplicate detection if the intersection is directly on the vertex between two segments.
|
|
if (!intersect_results.empty() && intersect_results.back().first == i - 1) {
|
|
const IfcVector3 diff = intersect_results.back().second - p;
|
|
if (IfcVector2(diff.x, diff.y).SquareLength() < 1e-10)
|
|
continue;
|
|
}
|
|
intersect_results.push_back(std::make_pair(i, p));
|
|
}
|
|
}
|
|
|
|
return !intersect_results.empty();
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// note: this functions works on 3D vectors, but performs its intersection checks solely in xy.
|
|
bool PointInPoly(const IfcVector3 &p, const std::vector<IfcVector3> &boundary) {
|
|
// even-odd algorithm: take a random vector that extends from p to infinite
|
|
// and counts how many times it intersects edges of the boundary.
|
|
// because checking for segment intersections is prone to numeric inaccuracies
|
|
// or double detections (i.e. when hitting multiple adjacent segments at their
|
|
// shared vertices) we do it thrice with different rays and vote on it.
|
|
|
|
// the even-odd algorithm doesn't work for points which lie directly on
|
|
// the border of the polygon. If any of our attempts produces this result,
|
|
// we return false immediately.
|
|
|
|
std::vector<std::pair<size_t, IfcVector3>> intersected_boundary;
|
|
size_t votes = 0;
|
|
|
|
IntersectsBoundaryProfile(p, p + IfcVector3(1.0, 0, 0), boundary, true, intersected_boundary, true);
|
|
votes += intersected_boundary.size() % 2;
|
|
|
|
intersected_boundary.clear();
|
|
IntersectsBoundaryProfile(p, p + IfcVector3(0, 1.0, 0), boundary, true, intersected_boundary, true);
|
|
votes += intersected_boundary.size() % 2;
|
|
|
|
intersected_boundary.clear();
|
|
IntersectsBoundaryProfile(p, p + IfcVector3(0.6, -0.6, 0.0), boundary, true, intersected_boundary, true);
|
|
votes += intersected_boundary.size() % 2;
|
|
|
|
return votes > 1;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ProcessPolygonalBoundedBooleanHalfSpaceDifference(const Schema_2x3::IfcPolygonalBoundedHalfSpace *hs, TempMesh &result,
|
|
const TempMesh &first_operand,
|
|
ConversionData &conv) {
|
|
ai_assert(hs != NULL);
|
|
|
|
const Schema_2x3::IfcPlane *const plane = hs->BaseSurface->ToPtr<Schema_2x3::IfcPlane>();
|
|
if (!plane) {
|
|
IFCImporter::LogError("expected IfcPlane as base surface for the IfcHalfSpaceSolid");
|
|
return;
|
|
}
|
|
|
|
// extract plane base position vector and normal vector
|
|
IfcVector3 p, n(0.f, 0.f, 1.f);
|
|
if (plane->Position->Axis) {
|
|
ConvertDirection(n, plane->Position->Axis.Get());
|
|
}
|
|
ConvertCartesianPoint(p, plane->Position->Location);
|
|
|
|
if (!IsTrue(hs->AgreementFlag)) {
|
|
n *= -1.f;
|
|
}
|
|
|
|
n.Normalize();
|
|
|
|
// obtain the polygonal bounding volume
|
|
std::shared_ptr<TempMesh> profile = std::shared_ptr<TempMesh>(new TempMesh());
|
|
if (!ProcessCurve(hs->PolygonalBoundary, *profile.get(), conv)) {
|
|
IFCImporter::LogError("expected valid polyline for boundary of boolean halfspace");
|
|
return;
|
|
}
|
|
|
|
// determine winding order by calculating the normal.
|
|
IfcVector3 profileNormal = TempMesh::ComputePolygonNormal(profile->mVerts.data(), profile->mVerts.size());
|
|
|
|
IfcMatrix4 proj_inv;
|
|
ConvertAxisPlacement(proj_inv, hs->Position);
|
|
|
|
// and map everything into a plane coordinate space so all intersection
|
|
// tests can be done in 2D space.
|
|
IfcMatrix4 proj = proj_inv;
|
|
proj.Inverse();
|
|
|
|
// clip the current contents of `meshout` against the plane we obtained from the second operand
|
|
const std::vector<IfcVector3> &in = first_operand.mVerts;
|
|
std::vector<IfcVector3> &outvert = result.mVerts;
|
|
std::vector<unsigned int> &outvertcnt = result.mVertcnt;
|
|
|
|
outvert.reserve(in.size());
|
|
outvertcnt.reserve(first_operand.mVertcnt.size());
|
|
|
|
unsigned int vidx = 0;
|
|
std::vector<unsigned int>::const_iterator begin = first_operand.mVertcnt.begin();
|
|
std::vector<unsigned int>::const_iterator end = first_operand.mVertcnt.end();
|
|
std::vector<unsigned int>::const_iterator iit;
|
|
for (iit = begin; iit != end; vidx += *iit++) {
|
|
// Our new approach: we cut the poly along the plane, then we intersect the part on the black side of the plane
|
|
// against the bounding polygon. All the white parts, and the black part outside the boundary polygon, are kept.
|
|
std::vector<IfcVector3> whiteside, blackside;
|
|
|
|
{
|
|
const IfcVector3 *srcVertices = &in[vidx];
|
|
const size_t srcVtxCount = *iit;
|
|
if (srcVtxCount == 0)
|
|
continue;
|
|
|
|
IfcVector3 polyNormal = TempMesh::ComputePolygonNormal(srcVertices, srcVtxCount, true);
|
|
|
|
// if the poly is parallel to the plane, put it completely on the black or white side
|
|
if (std::abs(polyNormal * n) > 0.9999) {
|
|
bool isOnWhiteSide = (srcVertices[0] - p) * n > -1e-6;
|
|
std::vector<IfcVector3> &targetSide = isOnWhiteSide ? whiteside : blackside;
|
|
targetSide.insert(targetSide.end(), srcVertices, srcVertices + srcVtxCount);
|
|
} else {
|
|
// otherwise start building one polygon for each side. Whenever the current line segment intersects the plane
|
|
// we put a point there as an end of the current segment. Then we switch to the other side, put a point there, too,
|
|
// as a beginning of the current segment, and simply continue accumulating vertices.
|
|
bool isCurrentlyOnWhiteSide = ((srcVertices[0]) - p) * n > -1e-6;
|
|
for (size_t a = 0; a < srcVtxCount; ++a) {
|
|
IfcVector3 e0 = srcVertices[a];
|
|
IfcVector3 e1 = srcVertices[(a + 1) % srcVtxCount];
|
|
IfcVector3 ei;
|
|
|
|
// put starting point to the current mesh
|
|
std::vector<IfcVector3> &trgt = isCurrentlyOnWhiteSide ? whiteside : blackside;
|
|
trgt.push_back(srcVertices[a]);
|
|
|
|
// if there's an intersection, put an end vertex there, switch to the other side's mesh,
|
|
// and add a starting vertex there, too
|
|
bool isPlaneHit = IntersectSegmentPlane(p, n, e0, e1, isCurrentlyOnWhiteSide, ei);
|
|
if (isPlaneHit) {
|
|
if (trgt.empty() || (trgt.back() - ei).SquareLength() > 1e-12)
|
|
trgt.push_back(ei);
|
|
isCurrentlyOnWhiteSide = !isCurrentlyOnWhiteSide;
|
|
std::vector<IfcVector3> &newtrgt = isCurrentlyOnWhiteSide ? whiteside : blackside;
|
|
newtrgt.push_back(ei);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// the part on the white side can be written into the target mesh right away
|
|
WritePolygon(whiteside, result);
|
|
|
|
// The black part is the piece we need to get rid of, but only the part of it within the boundary polygon.
|
|
// So we now need to construct all the polygons that result from BlackSidePoly minus BoundaryPoly.
|
|
FilterPolygon(blackside);
|
|
|
|
// Complicated, II. We run along the polygon. a) When we're inside the boundary, we run on until we hit an
|
|
// intersection, which means we're leaving it. We then start a new out poly there. b) When we're outside the
|
|
// boundary, we start collecting vertices until we hit an intersection, then we run along the boundary until we hit
|
|
// an intersection, then we switch back to the poly and run on on this one again, and so on until we got a closed
|
|
// loop. Then we continue with the path we left to catch potential additional polys on the other side of the
|
|
// boundary as described in a)
|
|
if (!blackside.empty()) {
|
|
// poly edge index, intersection point, edge index in boundary poly
|
|
std::vector<std::tuple<size_t, IfcVector3, size_t>> intersections;
|
|
bool startedInside = PointInPoly(proj * blackside.front(), profile->mVerts);
|
|
bool isCurrentlyInside = startedInside;
|
|
|
|
std::vector<std::pair<size_t, IfcVector3>> intersected_boundary;
|
|
|
|
for (size_t a = 0; a < blackside.size(); ++a) {
|
|
const IfcVector3 e0 = proj * blackside[a];
|
|
const IfcVector3 e1 = proj * blackside[(a + 1) % blackside.size()];
|
|
|
|
intersected_boundary.clear();
|
|
IntersectsBoundaryProfile(e0, e1, profile->mVerts, isCurrentlyInside, intersected_boundary);
|
|
// sort the hits by distance from e0 to get the correct in/out/in sequence. Manually :-( I miss you, C++11.
|
|
if (intersected_boundary.size() > 1) {
|
|
bool keepSorting = true;
|
|
while (keepSorting) {
|
|
keepSorting = false;
|
|
for (size_t b = 0; b < intersected_boundary.size() - 1; ++b) {
|
|
if ((intersected_boundary[b + 1].second - e0).SquareLength() < (intersected_boundary[b].second - e0).SquareLength()) {
|
|
keepSorting = true;
|
|
std::swap(intersected_boundary[b + 1], intersected_boundary[b]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// now add them to the list of intersections
|
|
for (size_t b = 0; b < intersected_boundary.size(); ++b)
|
|
intersections.push_back(std::make_tuple(a, proj_inv * intersected_boundary[b].second, intersected_boundary[b].first));
|
|
|
|
// and calculate our new inside/outside state
|
|
if (intersected_boundary.size() & 1)
|
|
isCurrentlyInside = !isCurrentlyInside;
|
|
}
|
|
|
|
// we got a list of in-out-combinations of intersections. That should be an even number of intersections, or
|
|
// we're fucked.
|
|
if ((intersections.size() & 1) != 0) {
|
|
IFCImporter::LogWarn("Odd number of intersections, can't work with that. Omitting half space boundary check.");
|
|
continue;
|
|
}
|
|
|
|
if (intersections.size() > 1) {
|
|
// If we started outside, the first intersection is a out->in intersection. Cycle them so that it
|
|
// starts with an intersection leaving the boundary
|
|
if (!startedInside)
|
|
for (size_t b = 0; b < intersections.size() - 1; ++b)
|
|
std::swap(intersections[b], intersections[(b + intersections.size() - 1) % intersections.size()]);
|
|
|
|
// Filter pairs of out->in->out that lie too close to each other.
|
|
for (size_t a = 0; intersections.size() > 0 && a < intersections.size() - 1; /**/) {
|
|
if ((std::get<1>(intersections[a]) - std::get<1>(intersections[(a + 1) % intersections.size()])).SquareLength() < 1e-10)
|
|
intersections.erase(intersections.begin() + a, intersections.begin() + a + 2);
|
|
else
|
|
a++;
|
|
}
|
|
if (intersections.size() > 1 && (std::get<1>(intersections.back()) - std::get<1>(intersections.front())).SquareLength() < 1e-10) {
|
|
intersections.pop_back();
|
|
intersections.erase(intersections.begin());
|
|
}
|
|
}
|
|
|
|
// no intersections at all: either completely inside the boundary, so everything gets discarded, or completely outside.
|
|
// in the latter case we're implementional lost. I'm simply going to ignore this, so a large poly will not get any
|
|
// holes if the boundary is smaller and does not touch it anywhere.
|
|
if (intersections.empty()) {
|
|
// starting point was outside -> everything is outside the boundary -> nothing is clipped -> add black side
|
|
// to result mesh unchanged
|
|
if (!startedInside) {
|
|
outvertcnt.push_back(static_cast<unsigned int>(blackside.size()));
|
|
outvert.insert(outvert.end(), blackside.begin(), blackside.end());
|
|
continue;
|
|
} else {
|
|
// starting point was inside the boundary -> everything is inside the boundary -> nothing is spared from the
|
|
// clipping -> nothing left to add to the result mesh
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// determine the direction in which we're marching along the boundary polygon. If the src poly is faced upwards
|
|
// and the boundary is also winded this way, we need to march *backwards* on the boundary.
|
|
const IfcVector3 polyNormal = IfcMatrix3(proj) * TempMesh::ComputePolygonNormal(blackside.data(), blackside.size());
|
|
bool marchBackwardsOnBoundary = (profileNormal * polyNormal) >= 0.0;
|
|
|
|
// Build closed loops from these intersections. Starting from an intersection leaving the boundary we
|
|
// walk along the polygon to the next intersection (which should be an IS entering the boundary poly).
|
|
// From there we walk along the boundary until we hit another intersection leaving the boundary,
|
|
// walk along the poly to the next IS and so on until we're back at the starting point.
|
|
// We remove every intersection we "used up", so any remaining intersection is the start of a new loop.
|
|
while (!intersections.empty()) {
|
|
std::vector<IfcVector3> resultpoly;
|
|
size_t currentIntersecIdx = 0;
|
|
|
|
while (true) {
|
|
ai_assert(intersections.size() > currentIntersecIdx + 1);
|
|
std::tuple<size_t, IfcVector3, size_t> currintsec = intersections[currentIntersecIdx + 0];
|
|
std::tuple<size_t, IfcVector3, size_t> nextintsec = intersections[currentIntersecIdx + 1];
|
|
intersections.erase(intersections.begin() + currentIntersecIdx, intersections.begin() + currentIntersecIdx + 2);
|
|
|
|
// we start with an in->out intersection
|
|
resultpoly.push_back(std::get<1>(currintsec));
|
|
// climb along the polygon to the next intersection, which should be an out->in
|
|
size_t numPolyPoints = (std::get<0>(currintsec) > std::get<0>(nextintsec) ? blackside.size() : 0) + std::get<0>(nextintsec) - std::get<0>(currintsec);
|
|
for (size_t a = 1; a <= numPolyPoints; ++a)
|
|
resultpoly.push_back(blackside[(std::get<0>(currintsec) + a) % blackside.size()]);
|
|
// put the out->in intersection
|
|
resultpoly.push_back(std::get<1>(nextintsec));
|
|
|
|
// generate segments along the boundary polygon that lie in the poly's plane until we hit another intersection
|
|
IfcVector3 startingPoint = proj * std::get<1>(nextintsec);
|
|
size_t currentBoundaryEdgeIdx = (std::get<2>(nextintsec) + (marchBackwardsOnBoundary ? 1 : 0)) % profile->mVerts.size();
|
|
size_t nextIntsecIdx = SIZE_MAX;
|
|
while (nextIntsecIdx == SIZE_MAX) {
|
|
IfcFloat t = 1e10;
|
|
|
|
size_t nextBoundaryEdgeIdx = marchBackwardsOnBoundary ? (currentBoundaryEdgeIdx + profile->mVerts.size() - 1) : currentBoundaryEdgeIdx + 1;
|
|
nextBoundaryEdgeIdx %= profile->mVerts.size();
|
|
// vertices of the current boundary segments
|
|
IfcVector3 currBoundaryPoint = profile->mVerts[currentBoundaryEdgeIdx];
|
|
IfcVector3 nextBoundaryPoint = profile->mVerts[nextBoundaryEdgeIdx];
|
|
// project the two onto the polygon
|
|
if (std::abs(polyNormal.z) > 1e-5) {
|
|
currBoundaryPoint.z = startingPoint.z + (currBoundaryPoint.x - startingPoint.x) * polyNormal.x / polyNormal.z + (currBoundaryPoint.y - startingPoint.y) * polyNormal.y / polyNormal.z;
|
|
nextBoundaryPoint.z = startingPoint.z + (nextBoundaryPoint.x - startingPoint.x) * polyNormal.x / polyNormal.z + (nextBoundaryPoint.y - startingPoint.y) * polyNormal.y / polyNormal.z;
|
|
}
|
|
|
|
// build a direction that goes along the boundary border but lies in the poly plane
|
|
IfcVector3 boundaryPlaneNormal = ((nextBoundaryPoint - currBoundaryPoint) ^ profileNormal).Normalize();
|
|
IfcVector3 dirAtPolyPlane = (boundaryPlaneNormal ^ polyNormal).Normalize() * (marchBackwardsOnBoundary ? -1.0 : 1.0);
|
|
// if we can project the direction to the plane, we can calculate a maximum marching distance along that dir
|
|
// until we finish that boundary segment and continue on the next
|
|
if (std::abs(polyNormal.z) > 1e-5) {
|
|
t = std::min(t, (nextBoundaryPoint - startingPoint).Length());
|
|
}
|
|
|
|
// check if the direction hits the loop start - if yes, we got a poly to output
|
|
IfcVector3 dirToThatPoint = proj * resultpoly.front() - startingPoint;
|
|
IfcFloat tpt = dirToThatPoint * dirAtPolyPlane;
|
|
if (tpt > -1e-6 && tpt <= t && (dirToThatPoint - tpt * dirAtPolyPlane).SquareLength() < 1e-10) {
|
|
nextIntsecIdx = intersections.size(); // dirty hack to end marching along the boundary and signal the end of the loop
|
|
t = tpt;
|
|
}
|
|
|
|
// also check if the direction hits any in->out intersections earlier. If we hit one, we can switch back
|
|
// to marching along the poly border from that intersection point
|
|
for (size_t a = 0; a < intersections.size(); a += 2) {
|
|
dirToThatPoint = proj * std::get<1>(intersections[a]) - startingPoint;
|
|
tpt = dirToThatPoint * dirAtPolyPlane;
|
|
if (tpt > -1e-6 && tpt <= t && (dirToThatPoint - tpt * dirAtPolyPlane).SquareLength() < 1e-10) {
|
|
nextIntsecIdx = a; // switch back to poly and march on from this in->out intersection
|
|
t = tpt;
|
|
}
|
|
}
|
|
|
|
// if we keep marching on the boundary, put the segment end point to the result poly and well... keep marching
|
|
if (nextIntsecIdx == SIZE_MAX) {
|
|
resultpoly.push_back(proj_inv * nextBoundaryPoint);
|
|
currentBoundaryEdgeIdx = nextBoundaryEdgeIdx;
|
|
startingPoint = nextBoundaryPoint;
|
|
}
|
|
|
|
// quick endless loop check
|
|
if (resultpoly.size() > blackside.size() + profile->mVerts.size()) {
|
|
IFCImporter::LogError("Encountered endless loop while clipping polygon against poly-bounded half space.");
|
|
break;
|
|
}
|
|
}
|
|
|
|
// we're back on the poly - if this is the intersection we started from, we got a closed loop.
|
|
if (nextIntsecIdx >= intersections.size()) {
|
|
break;
|
|
}
|
|
|
|
// otherwise it's another intersection. Continue marching from there.
|
|
currentIntersecIdx = nextIntsecIdx;
|
|
}
|
|
|
|
WritePolygon(resultpoly, result);
|
|
}
|
|
}
|
|
}
|
|
IFCImporter::LogVerboseDebug("generating CSG geometry by plane clipping with polygonal bounding (IfcBooleanClippingResult)");
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ProcessBooleanExtrudedAreaSolidDifference(const Schema_2x3::IfcExtrudedAreaSolid *as, TempMesh &result,
|
|
const TempMesh &first_operand,
|
|
ConversionData &conv) {
|
|
ai_assert(as != NULL);
|
|
|
|
// This case is handled by reduction to an instance of the quadrify() algorithm.
|
|
// Obviously, this won't work for arbitrarily complex cases. In fact, the first
|
|
// operand should be near-planar. Luckily, this is usually the case in Ifc
|
|
// buildings.
|
|
|
|
std::shared_ptr<TempMesh> meshtmp = std::shared_ptr<TempMesh>(new TempMesh());
|
|
ProcessExtrudedAreaSolid(*as, *meshtmp, conv, false);
|
|
|
|
std::vector<TempOpening> openings(1, TempOpening(as, IfcVector3(0, 0, 0), meshtmp, std::shared_ptr<TempMesh>()));
|
|
|
|
result = first_operand;
|
|
|
|
TempMesh temp;
|
|
|
|
std::vector<IfcVector3>::const_iterator vit = first_operand.mVerts.begin();
|
|
for (unsigned int pcount : first_operand.mVertcnt) {
|
|
temp.Clear();
|
|
|
|
temp.mVerts.insert(temp.mVerts.end(), vit, vit + pcount);
|
|
temp.mVertcnt.push_back(pcount);
|
|
|
|
// The algorithms used to generate mesh geometry sometimes
|
|
// spit out lines or other degenerates which must be
|
|
// filtered to avoid running into assertions later on.
|
|
|
|
// ComputePolygonNormal returns the Newell normal, so the
|
|
// length of the normal is the area of the polygon.
|
|
const IfcVector3 &normal = temp.ComputeLastPolygonNormal(false);
|
|
if (normal.SquareLength() < static_cast<IfcFloat>(1e-5)) {
|
|
IFCImporter::LogWarn("skipping degenerate polygon (ProcessBooleanExtrudedAreaSolidDifference)");
|
|
continue;
|
|
}
|
|
|
|
GenerateOpenings(openings, std::vector<IfcVector3>(1, IfcVector3(1, 0, 0)), temp, false, true);
|
|
result.Append(temp);
|
|
|
|
vit += pcount;
|
|
}
|
|
|
|
IFCImporter::LogVerboseDebug("generating CSG geometry by geometric difference to a solid (IfcExtrudedAreaSolid)");
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ProcessBoolean(const Schema_2x3::IfcBooleanResult &boolean, TempMesh &result, ConversionData &conv) {
|
|
// supported CSG operations:
|
|
// DIFFERENCE
|
|
if (const Schema_2x3::IfcBooleanResult *const clip = boolean.ToPtr<Schema_2x3::IfcBooleanResult>()) {
|
|
if (clip->Operator != "DIFFERENCE") {
|
|
IFCImporter::LogWarn("encountered unsupported boolean operator: " + (std::string)clip->Operator);
|
|
return;
|
|
}
|
|
|
|
// supported cases (1st operand):
|
|
// IfcBooleanResult -- call ProcessBoolean recursively
|
|
// IfcSweptAreaSolid -- obtain polygonal geometry first
|
|
|
|
// supported cases (2nd operand):
|
|
// IfcHalfSpaceSolid -- easy, clip against plane
|
|
// IfcExtrudedAreaSolid -- reduce to an instance of the quadrify() algorithm
|
|
|
|
const Schema_2x3::IfcHalfSpaceSolid *const hs = clip->SecondOperand->ResolveSelectPtr<Schema_2x3::IfcHalfSpaceSolid>(conv.db);
|
|
const Schema_2x3::IfcExtrudedAreaSolid *const as = clip->SecondOperand->ResolveSelectPtr<Schema_2x3::IfcExtrudedAreaSolid>(conv.db);
|
|
if (!hs && !as) {
|
|
IFCImporter::LogError("expected IfcHalfSpaceSolid or IfcExtrudedAreaSolid as second clipping operand");
|
|
return;
|
|
}
|
|
|
|
TempMesh first_operand;
|
|
if (const Schema_2x3::IfcBooleanResult *const op0 = clip->FirstOperand->ResolveSelectPtr<Schema_2x3::IfcBooleanResult>(conv.db)) {
|
|
ProcessBoolean(*op0, first_operand, conv);
|
|
} else if (const Schema_2x3::IfcSweptAreaSolid *const swept = clip->FirstOperand->ResolveSelectPtr<Schema_2x3::IfcSweptAreaSolid>(conv.db)) {
|
|
ProcessSweptAreaSolid(*swept, first_operand, conv);
|
|
} else {
|
|
IFCImporter::LogError("expected IfcSweptAreaSolid or IfcBooleanResult as first clipping operand");
|
|
return;
|
|
}
|
|
|
|
if (hs) {
|
|
|
|
const Schema_2x3::IfcPolygonalBoundedHalfSpace *const hs_bounded = clip->SecondOperand->ResolveSelectPtr<Schema_2x3::IfcPolygonalBoundedHalfSpace>(conv.db);
|
|
if (hs_bounded) {
|
|
ProcessPolygonalBoundedBooleanHalfSpaceDifference(hs_bounded, result, first_operand, conv);
|
|
} else {
|
|
ProcessBooleanHalfSpaceDifference(hs, result, first_operand, conv);
|
|
}
|
|
} else {
|
|
ProcessBooleanExtrudedAreaSolidDifference(as, result, first_operand, conv);
|
|
}
|
|
} else {
|
|
IFCImporter::LogWarn("skipping unknown IfcBooleanResult entity, type is " + boolean.GetClassName());
|
|
}
|
|
}
|
|
|
|
} // namespace IFC
|
|
} // namespace Assimp
|
|
|
|
#endif
|