1035 lines
32 KiB
C++
1035 lines
32 KiB
C++
/*
|
|
---------------------------------------------------------------------------
|
|
Open Asset Import Library (ASSIMP)
|
|
---------------------------------------------------------------------------
|
|
|
|
Copyright (c) 2006-2008, ASSIMP Development Team
|
|
|
|
All rights reserved.
|
|
|
|
Redistribution and use of this software in source and binary forms,
|
|
with or without modification, are permitted provided that the following
|
|
conditions are met:
|
|
|
|
* Redistributions of source code must retain the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer in the documentation and/or other
|
|
materials provided with the distribution.
|
|
|
|
* Neither the name of the ASSIMP team, nor the names of its
|
|
contributors may be used to endorse or promote products
|
|
derived from this software without specific prior
|
|
written permission of the ASSIMP Development Team.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
---------------------------------------------------------------------------
|
|
*/
|
|
|
|
/** @file WriteTextDumb.cpp
|
|
* @brief Implementation of the 'assimp dump' utility
|
|
*/
|
|
|
|
#include "Main.h"
|
|
#include "../code/ProcessHelper.h"
|
|
|
|
const char* AICMD_MSG_DUMP_HELP =
|
|
"todo assimp dumb help";
|
|
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
// Compress a binary dump file (beginning at offset head_size)
|
|
void CompressBinaryDump(const char* file, unsigned int head_size)
|
|
{
|
|
// for simplicity ... copy the file into memory again and compress it there
|
|
FILE* p = ::fopen(file,"r");
|
|
::fseek(p,0,SEEK_END);
|
|
const unsigned int size = (unsigned int)::ftell(p);
|
|
::fseek(p,0,SEEK_SET);
|
|
|
|
if (size<head_size) {
|
|
::fclose(p);
|
|
return;
|
|
}
|
|
|
|
uint8_t* data = new uint8_t[size];
|
|
::fread(data,1,size,p);
|
|
|
|
uLongf out_size = (uLongf)((size-head_size) * 1.001 + 12.);
|
|
uint8_t* out = new uint8_t[out_size];
|
|
|
|
compress2(out,&out_size,data+head_size,size-head_size,9);
|
|
::fclose(p);
|
|
p = ::fopen(file,"w");
|
|
|
|
::fwrite(data,head_size,1,p);
|
|
::fwrite(&out_size,sizeof(uLongf),1,p); // write size of uncompressed data
|
|
::fwrite(out,out_size,1,p);
|
|
|
|
::fclose(p);
|
|
delete[] data;
|
|
delete[] out;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
// Write a magic start value for each serialized data structure
|
|
inline void WriteMagic(const char* msg, FILE* out)
|
|
{
|
|
::fwrite(msg,3,1,out);
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
// Serialize an aiString
|
|
inline void WriteAiString(const aiString& s, FILE* out)
|
|
{
|
|
const uint32_t s2 = (uint32_t)s.length;
|
|
::fwrite(&s,4,1,out);
|
|
::fwrite(s.data,s2,1,out);
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
// Serialize an unsigned int as uint32_t
|
|
inline void WriteInteger(unsigned int w, FILE* out)
|
|
{
|
|
const uint32_t t = (uint32_t)w;
|
|
::fwrite(&t,4,1,out);
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
// Serialize an unsigned int as uint16_t
|
|
inline void WriteShort(unsigned int w, FILE* out)
|
|
{
|
|
const uint16_t t = (uint16_t)w;
|
|
::fwrite(&t,2,1,out);
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
// Serialize a float
|
|
inline void WriteFloat(float f, FILE* out)
|
|
{
|
|
::fwrite(&f,4,1,out);
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
// Serialize a double
|
|
inline void WriteDouble(double f, FILE* out)
|
|
{
|
|
::fwrite(&f,8,1,out);
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
// Serialize a vec3
|
|
inline void WriteVec3(const aiVector3D& v, FILE* out)
|
|
{
|
|
::fwrite(&v,12,1,out);
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
// Serialize a mat4x4
|
|
inline void WriteMat4x4(const aiMatrix4x4& m, FILE* out)
|
|
{
|
|
for (unsigned int i = 0; i < 4;++i)
|
|
for (unsigned int i2 = 0; i2 < 4;++i2)
|
|
WriteFloat(m[i][i2],out);
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
// Write a single node in a binary dump
|
|
void WriteBinaryNode(const aiNode* node, FILE* out)
|
|
{
|
|
WriteMagic("#ND",out);
|
|
WriteAiString(node->mName,out);
|
|
WriteMat4x4(node->mTransformation,out);
|
|
|
|
WriteInteger(node->mNumMeshes,out);
|
|
for (unsigned int i = 0; i < node->mNumMeshes;++i)
|
|
WriteInteger(node->mMeshes[i],out);
|
|
|
|
WriteInteger(node->mNumChildren,out);
|
|
for (unsigned int i = 0; i < node->mNumChildren;++i)
|
|
WriteBinaryNode(node->mChildren[i],out);
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
// Write the min/max values of an array of Ts to the file
|
|
template <typename T>
|
|
inline void WriteBounds(const T* in, unsigned int size, FILE* out)
|
|
{
|
|
T minc,maxc;
|
|
ArrayBounds(in,size,minc,maxc);
|
|
::fwrite(&minc,sizeof(T),1,out);
|
|
::fwrite(&maxc,sizeof(T),1,out);
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
// Write a binary model dump
|
|
void WriteBinaryDump(const aiScene* scene, FILE* out, const char* src, const char* cmd,
|
|
bool shortened, bool compressed, ImportData& imp)
|
|
{
|
|
time_t tt = ::time(NULL);
|
|
tm* p = ::gmtime(&tt);
|
|
|
|
// header
|
|
::fprintf(out,"ASSIMP.binary-dump.%s.",::asctime(p));
|
|
// == 45 bytes
|
|
|
|
WriteInteger(aiGetVersionMajor(),out);
|
|
WriteInteger(aiGetVersionMinor(),out);
|
|
WriteInteger(aiGetVersionRevision(),out);
|
|
WriteInteger(aiGetCompileFlags(),out);
|
|
WriteShort(shortened,out);
|
|
WriteShort(compressed,out);
|
|
// == 20 bytes
|
|
|
|
char buff[256];
|
|
::strncpy(buff,src,256);
|
|
::fwrite(buff,256,1,out);
|
|
|
|
::strncpy(buff,cmd,128);
|
|
::fwrite(buff,128,1,out);
|
|
|
|
// leave 41 bytes free for future extensions
|
|
::memset(buff,0xcd,41);
|
|
::fwrite(buff,32,1,out);
|
|
// == 435 bytes
|
|
|
|
// ==== total header size: 500 bytes
|
|
// Up to here the data is uncompressed. For compressed files, the rest
|
|
// is compressed using standard DEFLATE from zlib.
|
|
|
|
// basic scene information
|
|
WriteInteger(scene->mFlags,out);
|
|
WriteInteger(scene->mNumAnimations,out);
|
|
WriteInteger(scene->mNumTextures,out);
|
|
WriteInteger(scene->mNumMaterials,out);
|
|
WriteInteger(scene->mNumCameras,out);
|
|
WriteInteger(scene->mNumLights,out);
|
|
WriteInteger(scene->mNumMeshes,out);
|
|
|
|
// write node graph
|
|
WriteBinaryNode(scene->mRootNode,out);
|
|
|
|
// write materials
|
|
for (unsigned int i = 0; i< scene->mNumMaterials; ++i) {
|
|
const aiMaterial* mat = scene->mMaterials[i];
|
|
|
|
WriteMagic("#MA",out);
|
|
WriteInteger(mat->mNumProperties,out);
|
|
|
|
for (unsigned int a = 0; a < mat->mNumProperties;++a) {
|
|
const aiMaterialProperty* prop = mat->mProperties[a];
|
|
|
|
WriteMagic("#MP",out);
|
|
WriteAiString(prop->mKey,out);
|
|
WriteInteger(prop->mSemantic,out);
|
|
WriteInteger(prop->mIndex,out);
|
|
|
|
WriteInteger(prop->mDataLength,out);
|
|
::fwrite(prop->mData,prop->mDataLength,1,out);
|
|
}
|
|
}
|
|
|
|
// write cameras
|
|
for (unsigned int i = 0; i < scene->mNumCameras;++i) {
|
|
const aiCamera* cam = scene->mCameras[i];
|
|
|
|
WriteMagic("#CA",out);
|
|
WriteAiString(cam->mName,out);
|
|
WriteVec3(cam->mPosition,out);
|
|
WriteVec3(cam->mLookAt,out);
|
|
WriteVec3(cam->mUp,out);
|
|
WriteFloat(cam->mClipPlaneNear,out);
|
|
WriteFloat(cam->mClipPlaneFar,out);
|
|
WriteFloat(cam->mHorizontalFOV,out);
|
|
WriteFloat(cam->mAspect,out);
|
|
}
|
|
|
|
// write lights
|
|
for (unsigned int i = 0; i < scene->mNumLights;++i) {
|
|
const aiLight* l = scene->mLights[i];
|
|
|
|
WriteMagic("#LI",out);
|
|
WriteAiString(l->mName,out);
|
|
WriteInteger(l->mType,out);
|
|
|
|
WriteVec3((const aiVector3D&)l->mColorDiffuse,out);
|
|
WriteVec3((const aiVector3D&)l->mColorSpecular,out);
|
|
WriteVec3((const aiVector3D&)l->mColorAmbient,out);
|
|
|
|
if (l->mType != aiLightSource_DIRECTIONAL) {
|
|
WriteVec3(l->mPosition,out);
|
|
WriteFloat(l->mAttenuationLinear,out);
|
|
WriteFloat(l->mAttenuationConstant,out);
|
|
WriteFloat(l->mAttenuationQuadratic,out);
|
|
}
|
|
|
|
if (l->mType != aiLightSource_POINT) {
|
|
WriteVec3(l->mDirection,out);
|
|
}
|
|
|
|
if (l->mType == aiLightSource_SPOT) {
|
|
WriteFloat(l->mAttenuationConstant,out);
|
|
WriteFloat(l->mAttenuationQuadratic,out);
|
|
}
|
|
}
|
|
|
|
// write all animations
|
|
for (unsigned int i = 0; i < scene->mNumAnimations;++i) {
|
|
const aiAnimation* anim = scene->mAnimations[i];
|
|
|
|
WriteMagic("#AN",out);
|
|
WriteAiString (anim->mName,out);
|
|
WriteDouble (anim->mTicksPerSecond,out);
|
|
WriteDouble (anim->mDuration,out);
|
|
WriteInteger(anim->mNumChannels,out);
|
|
|
|
for (unsigned int a = 0; a < anim->mNumChannels;++a) {
|
|
const aiNodeAnim* nd = anim->mChannels[a];
|
|
|
|
WriteMagic("#NA",out);
|
|
WriteAiString(nd->mNodeName,out);
|
|
WriteInteger(nd->mPreState,out);
|
|
WriteInteger(nd->mPostState,out);
|
|
WriteInteger(nd->mNumPositionKeys,out);
|
|
WriteInteger(nd->mNumRotationKeys,out);
|
|
WriteInteger(nd->mNumScalingKeys,out);
|
|
|
|
if (nd->mPositionKeys) {
|
|
if (shortened) {
|
|
WriteBounds(nd->mPositionKeys,nd->mNumPositionKeys,out);
|
|
|
|
} // else write as usual
|
|
else ::fwrite(nd->mPositionKeys,sizeof(aiVectorKey),nd->mNumPositionKeys,out);
|
|
}
|
|
if (nd->mRotationKeys) {
|
|
if (shortened) {
|
|
WriteBounds(nd->mRotationKeys,nd->mNumRotationKeys,out);
|
|
|
|
} // else write as usual
|
|
else ::fwrite(nd->mRotationKeys,sizeof(aiQuatKey),nd->mNumRotationKeys,out);
|
|
}
|
|
if (nd->mScalingKeys) {
|
|
if (shortened) {
|
|
WriteBounds(nd->mScalingKeys,nd->mNumScalingKeys,out);
|
|
|
|
} // else write as usual
|
|
else ::fwrite(nd->mScalingKeys,sizeof(aiVectorKey),nd->mNumScalingKeys,out);
|
|
}
|
|
}
|
|
}
|
|
|
|
// write all meshes
|
|
for (unsigned int i = 0; i < scene->mNumMeshes;++i) {
|
|
const aiMesh* mesh = scene->mMeshes[i];
|
|
|
|
WriteMagic("#ME",out);
|
|
WriteInteger(mesh->mPrimitiveTypes,out);
|
|
WriteInteger(mesh->mNumBones,out);
|
|
WriteInteger(mesh->mNumFaces,out);
|
|
WriteInteger(mesh->mNumVertices,out);
|
|
WriteInteger(mesh->mMaterialIndex,out);
|
|
|
|
// write bones
|
|
if (mesh->mNumBones) {
|
|
for (unsigned int a = 0; a < mesh->mNumBones;++a) {
|
|
const aiBone* b = mesh->mBones[a];
|
|
|
|
WriteMagic("#BN",out);
|
|
WriteAiString(b->mName,out);
|
|
WriteMat4x4(b->mOffsetMatrix,out);
|
|
WriteInteger(b->mNumWeights,out);
|
|
|
|
// for the moment we write dumb min/max values for the bones, too.
|
|
// maybe I'll add a better, hash-like solution later
|
|
if (shortened) {
|
|
WriteBounds(b->mWeights,b->mNumWeights,out);
|
|
} // else write as usual
|
|
else ::fwrite(b->mWeights,sizeof(aiVertexWeight),b->mNumWeights,out);
|
|
}
|
|
}
|
|
|
|
// write faces. There are no floating-point calculations involved
|
|
// in these, so we can write a simple hash over the face data
|
|
// to the dump file. We generate a single 32 Bit hash for 512 faces
|
|
// using Assimp's standard hashing function.
|
|
if (shortened) {
|
|
unsigned int processed = 0;
|
|
for (unsigned int job;job = std::min(mesh->mNumFaces-processed,512u);processed += job) {
|
|
|
|
unsigned int hash = 0;
|
|
for (unsigned int a = 0; a < job;++a) {
|
|
|
|
const aiFace& f = mesh->mFaces[processed+a];
|
|
hash = SuperFastHash((const char*)&f.mNumIndices,sizeof(unsigned int),hash);
|
|
hash = SuperFastHash((const char*) f.mIndices,f.mNumIndices*sizeof(unsigned int),hash);
|
|
}
|
|
WriteInteger(hash,out);
|
|
}
|
|
}
|
|
else // else write as usual
|
|
{
|
|
for (unsigned int i = 0; i < mesh->mNumFaces;++i) {
|
|
const aiFace& f = mesh->mFaces[i];
|
|
|
|
WriteInteger(f.mNumIndices,out);
|
|
for (unsigned int a = 0; a < f.mNumIndices;++a)
|
|
WriteInteger(f.mIndices[a],out);
|
|
}
|
|
}
|
|
|
|
// first of all, write bits for all existent vertex components
|
|
unsigned int c = 0;
|
|
if (mesh->mVertices)
|
|
c |= 1;
|
|
if (mesh->mNormals)
|
|
c |= 2;
|
|
if (mesh->mTangents && mesh->mBitangents)
|
|
c |= 4;
|
|
for (unsigned int n = 0; n < AI_MAX_NUMBER_OF_TEXTURECOORDS;++n) {
|
|
if (!mesh->mTextureCoords[n])break;
|
|
c |= (8 << n);
|
|
}
|
|
for (unsigned int n = 0; n < AI_MAX_NUMBER_OF_COLOR_SETS;++n) {
|
|
if (!mesh->mColors[n])break;
|
|
c |= (16 << n);
|
|
}
|
|
WriteInteger(c,out);
|
|
|
|
aiVector3D minVec, maxVec;
|
|
if (mesh->mVertices) {
|
|
if (shortened) {
|
|
WriteBounds(mesh->mVertices,mesh->mNumVertices,out);
|
|
} // else write as usual
|
|
else ::fwrite(mesh->mVertices,12*mesh->mNumVertices,1,out);
|
|
}
|
|
if (mesh->mNormals) {
|
|
if (shortened) {
|
|
WriteBounds(mesh->mNormals,mesh->mNumVertices,out);
|
|
} // else write as usual
|
|
else ::fwrite(mesh->mNormals,12*mesh->mNumVertices,1,out);
|
|
}
|
|
if (mesh->mTangents && mesh->mBitangents) {
|
|
if (shortened) {
|
|
WriteBounds(mesh->mTangents,mesh->mNumVertices,out);
|
|
WriteBounds(mesh->mBitangents,mesh->mNumVertices,out);
|
|
} // else write as usual
|
|
else {
|
|
::fwrite(mesh->mTangents,12*mesh->mNumVertices,1,out);
|
|
::fwrite(mesh->mBitangents,12*mesh->mNumVertices,1,out);
|
|
}
|
|
}
|
|
for (unsigned int n = 0; n < AI_MAX_NUMBER_OF_TEXTURECOORDS;++n) {
|
|
if (!mesh->mTextureCoords[n])break;
|
|
|
|
// write number of UV components
|
|
WriteInteger(mesh->mNumUVComponents[n],out);
|
|
|
|
if (shortened) {
|
|
WriteBounds(mesh->mTextureCoords[n],mesh->mNumVertices,out);
|
|
} // else write as usual
|
|
else ::fwrite(mesh->mTextureCoords[n],12*mesh->mNumVertices,1,out);
|
|
}
|
|
for (unsigned int n = 0; n < AI_MAX_NUMBER_OF_COLOR_SETS;++n) {
|
|
if (!mesh->mColors[n])
|
|
break;
|
|
|
|
if (shortened) {
|
|
WriteBounds(mesh->mColors[n],mesh->mNumVertices,out);
|
|
} // else write as usual
|
|
else ::fwrite(mesh->mColors[n],16*mesh->mNumVertices,1,out);
|
|
}
|
|
}
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
// Convert a name to standard XML format
|
|
void ConvertName(aiString& out, const aiString& in)
|
|
{
|
|
out.length = 0;
|
|
for (unsigned int i = 0; i < in.length; ++i) {
|
|
switch (in.data[i]) {
|
|
case '<':
|
|
out.Append("<");break;
|
|
case '>':
|
|
out.Append(">");break;
|
|
case '&':
|
|
out.Append("&");break;
|
|
case '\"':
|
|
out.Append(""");break;
|
|
case '\'':
|
|
out.Append("'");break;
|
|
default:
|
|
out.data[out.length++] = in.data[i];
|
|
}
|
|
}
|
|
out.data[out.length] = 0;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
// Write a single node as text dump
|
|
void WriteNode(const aiNode* node, FILE* out, unsigned int depth)
|
|
{
|
|
char prefix[512];
|
|
for (unsigned int i = 0; i < depth;++i)
|
|
prefix[i] = '\t';
|
|
prefix[depth] = '\0';
|
|
|
|
const aiMatrix4x4& m = node->mTransformation;
|
|
|
|
aiString name;
|
|
ConvertName(name,node->mName);
|
|
::fprintf(out,"%s<Node name=\"%s\"> \n"
|
|
"%s\t<Matrix4 name=\"trafo\" > \n"
|
|
"%s\t\t%0 6f %0 6f %0 6f %0 6f\n"
|
|
"%s\t\t%0 6f %0 6f %0 6f %0 6f\n"
|
|
"%s\t\t%0 6f %0 6f %0 6f %0 6f\n"
|
|
"%s\t\t%0 6f %0 6f %0 6f %0 6f\n"
|
|
"%s\t</Matrix4> \n",
|
|
prefix,name.data,prefix,
|
|
prefix,m.a1,m.a2,m.a3,m.a4,
|
|
prefix,m.b1,m.b2,m.b3,m.b4,
|
|
prefix,m.c1,m.c2,m.c3,m.c4,
|
|
prefix,m.d1,m.d2,m.d3,m.d4,prefix);
|
|
|
|
if (node->mNumMeshes) {
|
|
::fprintf(out, "%s\t<MeshRefs num=\"%i\">\n%s\t",
|
|
prefix,node->mNumMeshes,prefix);
|
|
|
|
for (unsigned int i = 0; i < node->mNumMeshes;++i) {
|
|
::fprintf(out,"%i ",node->mMeshes[i]);
|
|
}
|
|
::fprintf(out,"\n%s\t</MeshRefs>\n",prefix);
|
|
}
|
|
|
|
::fprintf(out,"%s\t<Integer name=\"num_children\">%i</Integer>\n",
|
|
prefix,node->mNumChildren);
|
|
|
|
for (unsigned int i = 0; i < node->mNumChildren;++i)
|
|
WriteNode(node->mChildren[i],out,depth+1);
|
|
|
|
::fprintf(out,"%s</Node>\n",prefix);
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
// Write a text model dump
|
|
void WriteDump(const aiScene* scene, FILE* out, const char* src, const char* cmd, bool shortened)
|
|
{
|
|
time_t tt = ::time(NULL);
|
|
tm* p = ::gmtime(&tt);
|
|
|
|
aiString name;
|
|
|
|
// write header
|
|
::fprintf(out,
|
|
"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n"
|
|
"<ASSIMP >\n\n"
|
|
|
|
"<!-- XML Model dump produced by assimp dump\n"
|
|
" Library version: %i.%i.%i\n"
|
|
" Source: %s\n"
|
|
" Command line: %s\n"
|
|
" %s\n"
|
|
"-->"
|
|
" \n\n"
|
|
"<Scene NumberOfMeshes=\"%i\" NumberOfMaterials=\"%i\" NumberOfTextures=\"%i\" NumberOfCameras=\"%i\" NumberOfLights=\"%i\" NumberOfAnimations=\"%i\">\n",
|
|
|
|
aiGetVersionMajor(),aiGetVersionMinor(),aiGetVersionRevision(),src,cmd,::asctime(p),
|
|
scene->mNumMeshes, scene->mNumMaterials,scene->mNumTextures,
|
|
scene->mNumCameras,scene->mNumLights,scene->mNumAnimations);
|
|
|
|
// write the node graph
|
|
WriteNode(scene->mRootNode, out, 1);
|
|
|
|
// write cameras
|
|
for (unsigned int i = 0; i < scene->mNumCameras;++i) {
|
|
aiCamera* cam = scene->mCameras[i];
|
|
ConvertName(name,cam->mName);
|
|
|
|
// camera header
|
|
::fprintf(out,"\t<Camera parent=\"%s\">\n"
|
|
"\t\t<Vector3 name=\"up\" > %0 8f %0 8f %0 8f </Vector3>\n"
|
|
"\t\t<Vector3 name=\"lookat\" > %0 8f %0 8f %0 8f </Vector3>\n"
|
|
"\t\t<Vector3 name=\"pos\" > %0 8f %0 8f %0 8f </Vector3>\n"
|
|
"\t\t<Float name=\"fov\" > %f </Float>\n"
|
|
"\t\t<Float name=\"aspect\" > %f </Float>\n"
|
|
"\t\t<Float name=\"near_clip\" > %f </Float>\n"
|
|
"\t\t<Float name=\"far_clip\" > %f </Float>\n"
|
|
"\t</Camera>\n",
|
|
name.data,
|
|
cam->mUp.x,cam->mUp.y,cam->mUp.z,
|
|
cam->mLookAt.x,cam->mLookAt.y,cam->mLookAt.z,
|
|
cam->mPosition.x,cam->mPosition.y,cam->mPosition.z,
|
|
cam->mHorizontalFOV,cam->mAspect,cam->mClipPlaneNear,cam->mClipPlaneFar,i);
|
|
}
|
|
|
|
// write lights
|
|
for (unsigned int i = 0; i < scene->mNumLights;++i) {
|
|
aiLight* l = scene->mLights[i];
|
|
ConvertName(name,l->mName);
|
|
|
|
// light header
|
|
::fprintf(out,"\t<Light parent=\"%s\"> type=\"%s\"\n"
|
|
"\t\t<Vector3 name=\"diffuse\" > %0 8f %0 8f %0 8f </Vector3>\n"
|
|
"\t\t<Vector3 name=\"specular\" > %0 8f %0 8f %0 8f </Vector3>\n"
|
|
"\t\t<Vector3 name=\"ambient\" > %0 8f %0 8f %0 8f </Vector3>\n",
|
|
name.data,
|
|
(l->mType == aiLightSource_DIRECTIONAL ? "directional" :
|
|
(l->mType == aiLightSource_POINT ? "point" : "spot" )),
|
|
l->mColorDiffuse.r, l->mColorDiffuse.g, l->mColorDiffuse.b,
|
|
l->mColorSpecular.r,l->mColorSpecular.g,l->mColorSpecular.b,
|
|
l->mColorAmbient.r, l->mColorAmbient.g, l->mColorAmbient.b);
|
|
|
|
if (l->mType != aiLightSource_DIRECTIONAL) {
|
|
::fprintf(out,
|
|
"\t\t<Vector3 name=\"pos\" > %0 8f %0 8f %0 8f </Vector3>\n"
|
|
"\t\t<Float name=\"atten_cst\" > %f </Float>\n"
|
|
"\t\t<Float name=\"atten_lin\" > %f </Float>\n"
|
|
"\t\t<Float name=\"atten_sqr\" > %f </Float>\n",
|
|
l->mPosition.x,l->mPosition.y,l->mPosition.z,
|
|
l->mAttenuationConstant,l->mAttenuationLinear,l->mAttenuationQuadratic);
|
|
}
|
|
|
|
if (l->mType != aiLightSource_POINT) {
|
|
::fprintf(out,
|
|
"\t\t<Vector3 name=\"lookat\" > %0 8f %0 8f %0 8f </Vector3>\n",
|
|
l->mDirection.x,l->mDirection.y,l->mDirection.z);
|
|
}
|
|
|
|
if (l->mType == aiLightSource_SPOT) {
|
|
::fprintf(out,
|
|
"\t\t<Float name=\"cone_out\" > %f </Float>\n"
|
|
"\t\t<Float name=\"cone_inn\" > %f </Float>\n",
|
|
l->mAngleOuterCone,l->mAngleInnerCone);
|
|
}
|
|
::fprintf(out,"\t</Light>\n");
|
|
}
|
|
|
|
// write textures
|
|
for (unsigned int i = 0; i < scene->mNumTextures;++i) {
|
|
aiTexture* tex = scene->mTextures[i];
|
|
bool compressed = (tex->mHeight == 0);
|
|
|
|
// mesh header
|
|
::fprintf(out,"\t<Texture> \n"
|
|
"\t\t<Integer name=\"width\" > %i </Integer>\n"
|
|
"\t\t<Integer name=\"height\" > %i </Integer>\n"
|
|
"\t\t<Boolean name=\"compressed\" > %s </Boolean>\n",
|
|
(compressed ? -1 : tex->mWidth),
|
|
(compressed ? -1 : tex->mHeight),
|
|
(compressed ? "true" : "false"));
|
|
|
|
if (compressed) {
|
|
::fprintf(out,"\t\t<Data length=\"%i\">\n",tex->mWidth);
|
|
|
|
if (!shortened) {
|
|
const uint8_t* dat = reinterpret_cast<uint8_t*>(tex->pcData);
|
|
for (unsigned int n = 0; n < tex->mWidth;++n) {
|
|
::fprintf(out,"\t\t\t%2x",dat[n]);
|
|
if (n && !(n % 50)) {
|
|
::fprintf(out,"\n");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if (!shortened){
|
|
::fprintf(out,"\t\t<Data length=\"%i\"> \n",tex->mWidth*tex->mHeight*4);
|
|
|
|
const unsigned int width = (unsigned int)log10((double)std::max(tex->mHeight,tex->mWidth))+1;
|
|
for (unsigned int y = 0; y < tex->mHeight;++y) {
|
|
for (unsigned int x = 0; x < tex->mWidth;++x) {
|
|
aiTexel* tx = tex->pcData + y*tex->mWidth+x;
|
|
unsigned int r = tx->r,g=tx->g,b=tx->b,a=tx->a;
|
|
::fprintf(out,"\t\t\t%2x %2x %2x %2x",r,g,b,a);
|
|
|
|
// group by four for readibility
|
|
if (0 == (x+y*tex->mWidth) % 4)
|
|
::fprintf(out,"\n");
|
|
}
|
|
}
|
|
}
|
|
::fprintf(out,"\t\t</Data>\n\t</Texture>\n");
|
|
}
|
|
|
|
// write materials
|
|
for (unsigned int i = 0; i< scene->mNumMaterials; ++i) {
|
|
const aiMaterial* mat = scene->mMaterials[i];
|
|
|
|
::fprintf(out,
|
|
"\t<Material NumberOfProperties=\"%i\">\n",mat->mNumProperties);
|
|
|
|
for (unsigned int n = 0; n < mat->mNumProperties;++n) {
|
|
const aiMaterialProperty* prop = mat->mProperties[n];
|
|
|
|
const char* sz = "";
|
|
if (prop->mType == aiPTI_Float)
|
|
sz = "float";
|
|
else if (prop->mType == aiPTI_Integer)
|
|
sz = "integer";
|
|
else if (prop->mType == aiPTI_String)
|
|
sz = "string";
|
|
else if (prop->mType == aiPTI_Buffer)
|
|
sz = "binary_buffer";
|
|
|
|
::fprintf(out,
|
|
"\t\t<MatProperty key=\"%s\" \n\t\t\ttype=\"%s\" tex_usage=\"%s\" tex_index=\"%i\"",
|
|
prop->mKey.data, sz,
|
|
TextureTypeToString((aiTextureType)prop->mSemantic),prop->mIndex);
|
|
|
|
if (prop->mType == aiPTI_Float) {
|
|
::fprintf(out,
|
|
" size=\"%i\">\n\t\t\t",
|
|
static_cast<unsigned int>(prop->mDataLength/sizeof(float)));
|
|
|
|
for (unsigned int p = 0; p < prop->mDataLength/sizeof(float);++p)
|
|
::fprintf(out,"%f ",*((float*)(prop->mData+p*sizeof(float))));
|
|
}
|
|
else if (prop->mType == aiPTI_Integer) {
|
|
::fprintf(out,
|
|
" size=\"%i\">\n\t\t\t",
|
|
static_cast<unsigned int>(prop->mDataLength/sizeof(int)));
|
|
|
|
for (unsigned int p = 0; p < prop->mDataLength/sizeof(int);++p)
|
|
::fprintf(out,"%i ",*((int*)(prop->mData+p*sizeof(int))));
|
|
}
|
|
else if (prop->mType == aiPTI_Buffer) {
|
|
::fprintf(out,
|
|
" size=\"%i\">\n\t\t\t",
|
|
prop->mDataLength);
|
|
|
|
for (unsigned int p = 0; p < prop->mDataLength;++p) {
|
|
::fprintf(out,"%2x ",prop->mData[p]);
|
|
if (p && 0 == p%30)
|
|
::fprintf(out,"\n\t\t\t");
|
|
}
|
|
}
|
|
else if (prop->mType == aiPTI_String) {
|
|
::fprintf(out,">\n\t\t\t\"%s\"",prop->mData+4 /* skip length */);
|
|
}
|
|
::fprintf(out,"\n\t\t</MatProperty>\n");
|
|
}
|
|
::fprintf(out,"\t</Material>\n");
|
|
}
|
|
|
|
// write animations
|
|
for (unsigned int i = 0; i < scene->mNumAnimations;++i) {
|
|
aiAnimation* anim = scene->mAnimations[i];
|
|
|
|
// anim header
|
|
ConvertName(name,anim->mName);
|
|
::fprintf(out,"\t<Animation name=\"%s\">\n"
|
|
"\t\t<Integer name=\"num_chan\" > %i </Integer>\n"
|
|
"\t\t<Float name=\"duration\" > %e </Float>\n"
|
|
"\t\t<Float name=\"tick_cnt\" > %e </Float>\n",
|
|
name.data, anim->mNumChannels,anim->mDuration, anim->mTicksPerSecond);
|
|
|
|
// write bone animation channels
|
|
for (unsigned int n = 0; n < anim->mNumChannels;++n) {
|
|
aiNodeAnim* nd = anim->mChannels[n];
|
|
|
|
// node anim header
|
|
ConvertName(name,nd->mNodeName);
|
|
::fprintf(out,"\t\t<Channel node=\"%s\">\n"
|
|
"\t\t\t<Integer name=\"num_pos_keys\" > %i </Integer>\n"
|
|
"\t\t\t<Integer name=\"num_scl_keys\" > %i </Integer>\n"
|
|
"\t\t\t<Integer name=\"num_rot_keys\" > %i </Integer>\n",
|
|
name.data,nd->mNumPositionKeys,nd->mNumScalingKeys,nd->mNumRotationKeys);
|
|
|
|
if (!shortened) {
|
|
// write position keys
|
|
for (unsigned int a = 0; a < nd->mNumPositionKeys;++a) {
|
|
aiVectorKey* vc = nd->mPositionKeys+a;
|
|
::fprintf(out,"\t\t\t<PositionKey time=\"%e\">\n"
|
|
"\t\t\t\t%0 8f %0 8f %0 8f\n\t\t\t</PositionKey>\n",
|
|
vc->mTime,vc->mValue.x,vc->mValue.y,vc->mValue.z,a);
|
|
}
|
|
|
|
// write scaling keys
|
|
for (unsigned int a = 0; a < nd->mNumScalingKeys;++a) {
|
|
aiVectorKey* vc = nd->mScalingKeys+a;
|
|
::fprintf(out,"\t\t\t<ScalingKey time=\"%e\">\n"
|
|
"\t\t\t\t%0 8f %0 8f %0 8f\n\t\t\t</ScalingKey>\n",
|
|
vc->mTime,vc->mValue.x,vc->mValue.y,vc->mValue.z,a);
|
|
}
|
|
|
|
// write rotation keys
|
|
for (unsigned int a = 0; a < nd->mNumRotationKeys;++a) {
|
|
aiQuatKey* vc = nd->mRotationKeys+a;
|
|
::fprintf(out,"\t\t\t<RotationKey time=\"%e\">\n"
|
|
"\t\t\t\t%0 8f %0 8f %0 8f %0 8f\n\t\t\t</RotationKey>\n",
|
|
vc->mTime,vc->mValue.x,vc->mValue.y,vc->mValue.z,vc->mValue.w,a);
|
|
}
|
|
}
|
|
::fprintf(out,"\t\t</Channel>\n",n);
|
|
}
|
|
::fprintf(out,"\t</Animation>\n",i);
|
|
}
|
|
|
|
// write meshes
|
|
for (unsigned int i = 0; i < scene->mNumMeshes;++i) {
|
|
aiMesh* mesh = scene->mMeshes[i];
|
|
const unsigned int width = (unsigned int)log10((double)mesh->mNumVertices)+1;
|
|
|
|
// mesh header
|
|
::fprintf(out,"\t<Mesh types=\"%s %s %s %s\">\n"
|
|
"\t\t<Integer name=\"num_verts\" > %i </Integer>\n"
|
|
"\t\t<Integer name=\"num_faces\" > %i </Integer>\n"
|
|
"\t\t<Integer name=\"mat_index\" > %i </Integer>\n",
|
|
(mesh->mPrimitiveTypes & aiPrimitiveType_POINT ? "points" : ""),
|
|
(mesh->mPrimitiveTypes & aiPrimitiveType_LINE ? "lines" : ""),
|
|
(mesh->mPrimitiveTypes & aiPrimitiveType_TRIANGLE ? "triangles" : ""),
|
|
(mesh->mPrimitiveTypes & aiPrimitiveType_POLYGON ? "polygons" : ""),
|
|
mesh->mNumVertices,mesh->mNumFaces,mesh->mMaterialIndex);
|
|
|
|
// bones
|
|
for (unsigned int n = 0; n < mesh->mNumBones;++n) {
|
|
aiBone* bone = mesh->mBones[n];
|
|
|
|
ConvertName(name,bone->mName);
|
|
// bone header
|
|
::fprintf(out,"\t\t<Bone name=\"%s\">\n"
|
|
"\t\t\t<Matrix4 name=\"offset\" > \n"
|
|
"\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n"
|
|
"\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n"
|
|
"\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n"
|
|
"\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n"
|
|
"\t\t\t</Matrix4> \n"
|
|
"\t\t\t<Integer name=\"num_weights\" > %i </Integer>\n",
|
|
name.data,
|
|
bone->mOffsetMatrix.a1,bone->mOffsetMatrix.a2,bone->mOffsetMatrix.a3,bone->mOffsetMatrix.a4,
|
|
bone->mOffsetMatrix.b1,bone->mOffsetMatrix.b2,bone->mOffsetMatrix.b3,bone->mOffsetMatrix.b4,
|
|
bone->mOffsetMatrix.c1,bone->mOffsetMatrix.c2,bone->mOffsetMatrix.c3,bone->mOffsetMatrix.c4,
|
|
bone->mOffsetMatrix.d1,bone->mOffsetMatrix.d2,bone->mOffsetMatrix.d3,bone->mOffsetMatrix.d4,
|
|
bone->mNumWeights);
|
|
|
|
if (!shortened) {
|
|
// bone weights
|
|
for (unsigned int a = 0; a < bone->mNumWeights;++a) {
|
|
aiVertexWeight* wght = bone->mWeights+a;
|
|
|
|
::fprintf(out,"\t\t\t<VertexWeight index=\"%i\">\n\t\t\t\t%f\n\t\t\t</VertexWeight>\n",
|
|
wght->mVertexId,wght->mWeight);
|
|
}
|
|
}
|
|
::fprintf(out,"\t\t</Bone>\n",n);
|
|
}
|
|
|
|
// faces
|
|
if (!shortened) {
|
|
for (unsigned int n = 0; n < mesh->mNumFaces; ++n) {
|
|
aiFace& f = mesh->mFaces[n];
|
|
::fprintf(out,"\t\t<Face num_indices=\"%i\">\n"
|
|
"\t\t\t",f.mNumIndices);
|
|
|
|
for (unsigned int j = 0; j < f.mNumIndices;++j)
|
|
::fprintf(out,"%i ",f.mIndices[j]);
|
|
|
|
::fprintf(out,"\n\t\t</Face>\n");
|
|
}
|
|
}
|
|
|
|
// vertex positions
|
|
if (mesh->HasPositions()) {
|
|
::fprintf(out,"\t\t<Positions> \n");
|
|
if (!shortened) {
|
|
for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
|
|
::fprintf(out,"\t\t%0 8f %0 8f %0 8f\n",
|
|
mesh->mVertices[n].x,
|
|
mesh->mVertices[n].y,
|
|
mesh->mVertices[n].z);
|
|
}
|
|
}
|
|
else {
|
|
}
|
|
::fprintf(out,"\t\t</Positions>\n");
|
|
}
|
|
|
|
// vertex normals
|
|
if (mesh->HasNormals()) {
|
|
::fprintf(out,"\t\t<Normals> \n");
|
|
if (!shortened) {
|
|
for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
|
|
::fprintf(out,"\t\t%0 8f %0 8f %0 8f\n",
|
|
mesh->mNormals[n].x,
|
|
mesh->mNormals[n].y,
|
|
mesh->mNormals[n].z);
|
|
}
|
|
}
|
|
else {
|
|
}
|
|
::fprintf(out,"\t\t</Normals>\n");
|
|
}
|
|
|
|
// vertex tangents and bitangents
|
|
if (mesh->HasTangentsAndBitangents()) {
|
|
::fprintf(out,"\t\t<Tangents> \n");
|
|
if (!shortened) {
|
|
for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
|
|
::fprintf(out,"\t\t%0 8f %0 8f %0 8f \t %0 8f %0 8f %0 8f\n",
|
|
mesh->mTangents[n].x,
|
|
mesh->mTangents[n].y,
|
|
mesh->mTangents[n].z,
|
|
mesh->mBitangents[n].x,
|
|
mesh->mBitangents[n].y,
|
|
mesh->mBitangents[n].z);
|
|
}
|
|
}
|
|
else {
|
|
}
|
|
::fprintf(out,"\t\t</Tangents>\n");
|
|
}
|
|
|
|
// texture coordinates
|
|
for (unsigned int a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a) {
|
|
if (!mesh->mTextureCoords[a])
|
|
break;
|
|
|
|
::fprintf(out,"\t\t<TextureCoords set=\"%i\" num_components=\"%i\"> \n",a,mesh->mNumUVComponents[a]);
|
|
if (!shortened) {
|
|
for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
|
|
::fprintf(out,"\t\t%0 8f %0 8f %0 8f\n",
|
|
mesh->mTextureCoords[a][n].x,
|
|
mesh->mTextureCoords[a][n].y,
|
|
mesh->mTextureCoords[a][n].z);
|
|
}
|
|
}
|
|
else {
|
|
}
|
|
::fprintf(out,"\t\t</TextureCoords>\n");
|
|
}
|
|
|
|
// vertex colors
|
|
for (unsigned int a = 0; a < AI_MAX_NUMBER_OF_COLOR_SETS; ++a) {
|
|
if (!mesh->mColors[a])
|
|
break;
|
|
//::fprintf(out,"\t\t<Colors set=\"%i\"> \n",a);
|
|
if (!shortened) {
|
|
for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
|
|
::fprintf(out,"\t\t%0 8f %0 8f %0 8f %0 8f\n",
|
|
mesh->mColors[a][n].r,
|
|
mesh->mColors[a][n].g,
|
|
mesh->mColors[a][n].b,
|
|
mesh->mColors[a][n].a);
|
|
}
|
|
}
|
|
else {
|
|
}
|
|
::fprintf(out,"\t\t</Color>\n");
|
|
}
|
|
::fprintf(out,"\t</Mesh>\n");
|
|
}
|
|
::fprintf(out,"</Scene>\n</ASSIMP>");
|
|
}
|
|
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
int Assimp_Dump (const char** params, unsigned int num)
|
|
{
|
|
if (num < 1) {
|
|
::printf("assimp dump: Invalid number of arguments. "
|
|
"See \'assimp dump --help\'\r\n");
|
|
return 1;
|
|
}
|
|
|
|
// --help
|
|
if (!::strcmp( params[0], "-h") || !::strcmp( params[0], "--help") || !::strcmp( params[0], "-?") ) {
|
|
printf("%s",AICMD_MSG_DUMP_HELP);
|
|
return 0;
|
|
}
|
|
|
|
// asssimp dump in out [options]
|
|
if (num < 1) {
|
|
::printf("assimp dump: Invalid number of arguments. "
|
|
"See \'assimp dump --help\'\r\n");
|
|
return 1;
|
|
}
|
|
|
|
std::string in = std::string(params[0]);
|
|
std::string out = (num > 1 ? std::string(params[1]) : std::string("-"));
|
|
|
|
// store full command line
|
|
std::string cmd;
|
|
for (unsigned int i = (out[0] == '-' ? 1 : 2); i < num;++i) {
|
|
if (!params[i])continue;
|
|
cmd.append(params[i]);
|
|
cmd.append(" ");
|
|
}
|
|
|
|
// get import flags
|
|
ImportData import;
|
|
ProcessStandardArguments(import,params+1,num-1);
|
|
|
|
bool binary = false, shortened = false,compressed=false;
|
|
|
|
// process other flags
|
|
for (unsigned int i = 1; i < num;++i) {
|
|
if (!params[i])continue;
|
|
if (!::strcmp( params[i],"-b") || !::strcmp( params[i],"--binary")) {
|
|
binary = true;
|
|
}
|
|
else if (!::strcmp( params[i],"-s") || !::strcmp( params[i],"--short")) {
|
|
shortened = true;
|
|
}
|
|
else if (!::strcmp( params[i],"-z") || !::strcmp( params[i],"--compressed")) {
|
|
compressed = true;
|
|
}
|
|
else if (i > 2 || params[i][0] == '-') {
|
|
::printf("Unknown parameter: %s\n",params[i]);
|
|
return 10;
|
|
}
|
|
}
|
|
|
|
if (out[0] == '-') {
|
|
|
|
// take file name from input file
|
|
std::string::size_type s = in.find_last_of('.');
|
|
if (s == std::string::npos)
|
|
s = in.length();
|
|
|
|
out = in.substr(0,s);
|
|
out.append((binary ? ".assbin" : ".assxml"));
|
|
if (shortened && binary)
|
|
out.append(".regress");
|
|
}
|
|
|
|
// import the main model
|
|
const aiScene* scene = ImportModel(import,in);
|
|
if (!scene) {
|
|
::printf("assimp dump: Unable to load input file %s\n",
|
|
in.c_str());
|
|
return 5;
|
|
}
|
|
|
|
// open the output file and build the dump
|
|
FILE* o = ::fopen(out.c_str(),(binary ? "wb" : "wt"));
|
|
if (!o) {
|
|
::printf("assimp dump: Unable to open output file %s\n",
|
|
out.c_str());
|
|
return 12;
|
|
}
|
|
|
|
if (binary)
|
|
WriteBinaryDump (scene,o,in.c_str(),cmd.c_str(),shortened,compressed,import);
|
|
else WriteDump (scene,o,in.c_str(),cmd.c_str(),shortened);
|
|
::fclose(o);
|
|
|
|
if (compressed && binary)
|
|
CompressBinaryDump(out.c_str(),500);
|
|
|
|
::printf("assimp dump: Wrote output dump %s\n",out.c_str());
|
|
return 0;
|
|
}
|
|
|