assimp/code/LWOLoader.cpp

1375 lines
42 KiB
C++

/*
---------------------------------------------------------------------------
Open Asset Import Library (ASSIMP)
---------------------------------------------------------------------------
Copyright (c) 2006-2008, ASSIMP Development Team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the following
conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the ASSIMP team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the ASSIMP Development Team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------
*/
/** @file LWOLoader.cpp
* @brief Implementation of the LWO importer class
*/
#include "AssimpPCH.h"
#ifndef ASSIMP_BUILD_NO_LWO_IMPORTER
// internal headers
#include "LWOLoader.h"
#include "MaterialSystem.h"
#include "StringComparison.h"
#include "SGSpatialSort.h"
#include "ByteSwap.h"
#include "ProcessHelper.h"
using namespace Assimp;
// ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer
LWOImporter::LWOImporter()
{}
// ------------------------------------------------------------------------------------------------
// Destructor, private as well
LWOImporter::~LWOImporter()
{}
// ------------------------------------------------------------------------------------------------
// Returns whether the class can handle the format of the given file.
bool LWOImporter::CanRead( const std::string& pFile, IOSystem* pIOHandler, bool checkSig) const
{
const std::string extension = GetExtension(pFile);
if (extension == "lwo" || extension == "lxo")
return true;
// if check for extension is not enough, check for the magic tokens
if (!extension.length() || checkSig) {
uint32_t tokens[3];
tokens[0] = AI_LWO_FOURCC_LWOB;
tokens[1] = AI_LWO_FOURCC_LWO2;
tokens[2] = AI_LWO_FOURCC_LXOB;
return CheckMagicToken(pIOHandler,pFile,tokens,3,8);
}
return false;
}
// ------------------------------------------------------------------------------------------------
// Setup configuration properties
void LWOImporter::SetupProperties(const Importer* pImp)
{
configSpeedFlag = ( 0 != pImp->GetPropertyInteger(AI_CONFIG_FAVOUR_SPEED,0) ? true : false);
configLayerIndex = pImp->GetPropertyInteger (AI_CONFIG_IMPORT_LWO_ONE_LAYER_ONLY,0xffffffff);
configLayerName = pImp->GetPropertyString (AI_CONFIG_IMPORT_LWO_ONE_LAYER_ONLY,"");
}
// ------------------------------------------------------------------------------------------------
// Imports the given file into the given scene structure.
void LWOImporter::InternReadFile( const std::string& pFile,
aiScene* pScene,
IOSystem* pIOHandler)
{
boost::scoped_ptr<IOStream> file( pIOHandler->Open( pFile, "rb"));
// Check whether we can read from the file
if( file.get() == NULL)
throw new ImportErrorException( "Failed to open LWO file " + pFile + ".");
if((this->fileSize = (unsigned int)file->FileSize()) < 12)
throw new ImportErrorException("LWO: The file is too small to contain the IFF header");
// Allocate storage and copy the contents of the file to a memory buffer
std::vector< uint8_t > mBuffer(fileSize);
file->Read( &mBuffer[0], 1, fileSize);
this->pScene = pScene;
// Determine the type of the file
uint32_t fileType;
const char* sz = IFF::ReadHeader(&mBuffer[0],fileType);
if (sz)throw new ImportErrorException(sz);
mFileBuffer = &mBuffer[0] + 12;
fileSize -= 12;
// Initialize some members with their default values
hasNamedLayer = false;
// Create temporary storage on the stack but store pointers to it in the class
// instance. Therefore everything will be destructed properly if an exception
// is thrown and we needn't take care of that.
LayerList _mLayers;
SurfaceList _mSurfaces;
TagList _mTags;
TagMappingTable _mMapping;
mLayers = &_mLayers;
mTags = &_mTags;
mMapping = &_mMapping;
mSurfaces = &_mSurfaces;
// Allocate a default layer (layer indices are 1-based from now)
mLayers->push_back(Layer());
mCurLayer = &mLayers->back();
mCurLayer->mName = "<LWODefault>";
// old lightwave file format (prior to v6)
if (AI_LWO_FOURCC_LWOB == fileType)
{
DefaultLogger::get()->info("LWO file format: LWOB (<= LightWave 5.5)");
mIsLWO2 = false;
LoadLWOBFile();
}
// New lightwave format
else if (AI_LWO_FOURCC_LWO2 == fileType)
{
DefaultLogger::get()->info("LWO file format: LWO2 (>= LightWave 6)");
}
// MODO file format
else if (AI_LWO_FOURCC_LXOB == fileType)
{
DefaultLogger::get()->info("LWO file format: LXOB (Modo)");
}
// we don't know this format
else
{
char szBuff[5];
szBuff[0] = (char)(fileType >> 24u);
szBuff[1] = (char)(fileType >> 16u);
szBuff[2] = (char)(fileType >> 8u);
szBuff[3] = (char)(fileType);
throw new ImportErrorException(std::string("Unknown LWO sub format: ") + szBuff);
}
if (AI_LWO_FOURCC_LWOB != fileType)
{
mIsLWO2 = true;
LoadLWO2File();
// The newer lightwave format allows the user to configure the
// loader that just one layer is used. If this is the case
// we need to check now whether the requested layer has been found.
if (0xffffffff != configLayerIndex && configLayerIndex > mLayers->size())
throw new ImportErrorException("LWO2: The requested layer was not found");
if (configLayerName.length() && !hasNamedLayer)
{
throw new ImportErrorException("LWO2: Unable to find the requested layer: "
+ configLayerName);
}
}
// now, as we have loaded all data, we can resolve cross-referenced tags and clips
ResolveTags();
ResolveClips();
// now process all layers and build meshes and nodes
std::vector<aiMesh*> apcMeshes;
std::vector<aiNode*> apcNodes;
apcNodes. reserve(mLayers->size());
apcMeshes.reserve(mLayers->size()*std::min(((unsigned int)mSurfaces->size()/2u), 1u));
unsigned int iDefaultSurface = 0xffffffff; // index of the default surface
for (LayerList::iterator lit = mLayers->begin(), lend = mLayers->end();
lit != lend;++lit)
{
LWO::Layer& layer = *lit;
if (layer.skip)continue;
// I don't know whether there could be dummy layers, but it would be possible
const unsigned int meshStart = (unsigned int)apcMeshes.size();
if (!layer.mFaces.empty() && !layer.mTempPoints.empty())
{
// now sort all faces by the surfaces assigned to them
typedef std::vector<unsigned int> SortedRep;
std::vector<SortedRep> pSorted(mSurfaces->size()+1);
unsigned int i = 0;
for (FaceList::iterator it = layer.mFaces.begin(), end = layer.mFaces.end();
it != end;++it,++i)
{
// Check whether we support this face's type
if ((*it).type != AI_LWO_FACE && (*it).type != AI_LWO_PTCH) {
continue;
}
unsigned int idx = (*it).surfaceIndex;
if (idx >= mTags->size())
{
DefaultLogger::get()->warn("LWO: Invalid face surface index");
idx = 0xffffffff;
}
if(0xffffffff == idx || 0xffffffff == (idx = _mMapping[idx]))
{
if (0xffffffff == iDefaultSurface)
{
iDefaultSurface = (unsigned int)mSurfaces->size();
mSurfaces->push_back(LWO::Surface());
LWO::Surface& surf = mSurfaces->back();
surf.mColor.r = surf.mColor.g = surf.mColor.b = 0.6f;
surf.mName = "LWODefaultSurface";
}
idx = iDefaultSurface;
}
pSorted[idx].push_back(i);
}
if (0xffffffff == iDefaultSurface)pSorted.erase(pSorted.end()-1);
for (unsigned int p = 0,i = 0;i < mSurfaces->size();++i)
{
SortedRep& sorted = pSorted[i];
if (sorted.empty())continue;
// generate the mesh
aiMesh* mesh = new aiMesh();
apcMeshes.push_back(mesh);
mesh->mNumFaces = (unsigned int)sorted.size();
// count the number of vertices
SortedRep::const_iterator it = sorted.begin(), end = sorted.end();
for (;it != end;++it)
{
mesh->mNumVertices += layer.mFaces[*it].mNumIndices;
}
aiVector3D *nrm = NULL, * pv = mesh->mVertices = new aiVector3D[mesh->mNumVertices];
aiFace* pf = mesh->mFaces = new aiFace[mesh->mNumFaces];
mesh->mMaterialIndex = i;
// find out which vertex color channels and which texture coordinate
// channels are really required by the material attached to this mesh
unsigned int vUVChannelIndices[AI_MAX_NUMBER_OF_TEXTURECOORDS];
unsigned int vVColorIndices[AI_MAX_NUMBER_OF_COLOR_SETS];
#if _DEBUG
for (unsigned int mui = 0; mui < AI_MAX_NUMBER_OF_TEXTURECOORDS;++mui )
vUVChannelIndices[mui] = 0xffffffff;
for (unsigned int mui = 0; mui < AI_MAX_NUMBER_OF_COLOR_SETS;++mui )
vVColorIndices[mui] = 0xffffffff;
#endif
FindUVChannels(_mSurfaces[i],layer,vUVChannelIndices);
FindVCChannels(_mSurfaces[i],layer,vVColorIndices);
// allocate storage for UV and CV channels
aiVector3D* pvUV[AI_MAX_NUMBER_OF_TEXTURECOORDS];
for (unsigned int mui = 0; mui < AI_MAX_NUMBER_OF_TEXTURECOORDS;++mui )
{
if (0xffffffff == vUVChannelIndices[mui])break;
pvUV[mui] = mesh->mTextureCoords[mui] = new aiVector3D[mesh->mNumVertices];
// LightWave doesn't support more than 2 UV components (?)
// so we can directly setup this value
mesh->mNumUVComponents[0] = 2;
}
if (layer.mNormals.name.length())
nrm = mesh->mNormals = new aiVector3D[mesh->mNumVertices];
aiColor4D* pvVC[AI_MAX_NUMBER_OF_COLOR_SETS];
for (unsigned int mui = 0; mui < AI_MAX_NUMBER_OF_COLOR_SETS;++mui)
{
if (0xffffffff == vVColorIndices[mui])break;
pvVC[mui] = mesh->mColors[mui] = new aiColor4D[mesh->mNumVertices];
}
// we would not need this extra array, but the code is much cleaner if we use it
// FIX: we can use the referrer ID array here. invalidate its contents
// before we resize it to avoid a unnecessary memcpy
std::vector<unsigned int>& smoothingGroups = layer.mPointReferrers;
smoothingGroups.erase (smoothingGroups.begin(),smoothingGroups.end());
smoothingGroups.resize(mesh->mNumFaces,0);
// now convert all faces
unsigned int vert = 0;
std::vector<unsigned int>::iterator outIt = smoothingGroups.begin();
for (it = sorted.begin(); it != end;++it,++outIt)
{
const LWO::Face& face = layer.mFaces[*it];
*outIt = face.smoothGroup;
// copy all vertices
for (unsigned int q = 0; q < face.mNumIndices;++q)
{
register unsigned int idx = face.mIndices[q];
*pv = layer.mTempPoints[idx] + layer.mPivot;
pv->z *= -1.0f; // DX to OGL
//std::swap(pv->z,pv->y);
pv++;
// process UV coordinates
for (unsigned int w = 0; w < AI_MAX_NUMBER_OF_TEXTURECOORDS;++w)
{
if (0xffffffff == vUVChannelIndices[w])break;
aiVector3D*& pp = pvUV[w];
const aiVector2D& src = ((aiVector2D*)&layer.mUVChannels[vUVChannelIndices[w]].rawData[0])[idx];
pp->x = src.x;
pp->y = src.y;
pp++;
}
// process normals (MODO extension)
if (nrm) {
*nrm++ = ((aiVector3D*)&layer.mNormals.rawData[0])[idx];
}
// process vertex colors
for (unsigned int w = 0; w < AI_MAX_NUMBER_OF_COLOR_SETS;++w)
{
if (0xffffffff == vVColorIndices[w])break;
*pvVC[w] = ((aiColor4D*)&layer.mVColorChannels[vVColorIndices[w]].rawData[0])[idx];
// If a RGB color map is explicitly requested delete the
// alpha channel - it could theoretically be != 1.
if(_mSurfaces[i].mVCMapType == AI_LWO_RGB)
pvVC[w]->a = 1.f;
pvVC[w]++;
}
#if 0
// process vertex weights - not yet supported
for (unsigned int w = 0; w < layer.mWeightChannels.size();++w)
{
}
#endif
face.mIndices[q] = vert + (face.mNumIndices-q-1);
}
vert += face.mNumIndices;
pf->mIndices = face.mIndices;
pf->mNumIndices = face.mNumIndices;
unsigned int** p = (unsigned int**)&face.mIndices;*p = NULL; // make sure it won't be deleted
pf++;
}
if (!mesh->mNormals)
{
// Compute normal vectors for the mesh - we can't use our GenSmoothNormal-
// Step here since it wouldn't handle smoothing groups correctly for LWO.
// So we use a separate implementation.
ComputeNormals(mesh,smoothingGroups,_mSurfaces[i]);
}
else DefaultLogger::get()->debug("LWO2: No need to compute normals, they're already there");
++p;
}
}
// Generate nodes to render the mesh. Store the parent index
// in the mParent member of the nodes
aiNode* pcNode = new aiNode();
apcNodes.push_back(pcNode);
pcNode->mName.Set(layer.mName);
pcNode->mParent = (aiNode*)(uintptr_t)(layer.mParent);
pcNode->mNumMeshes = (unsigned int)apcMeshes.size() - meshStart;
pcNode->mMeshes = new unsigned int[pcNode->mNumMeshes];
for (unsigned int p = 0; p < pcNode->mNumMeshes;++p)
pcNode->mMeshes[p] = p + meshStart;
}
if (apcNodes.empty() || apcMeshes.empty())
throw new ImportErrorException("LWO: No meshes loaded");
// The RemoveRedundantMaterials step will clean this up later
pScene->mMaterials = new aiMaterial*[pScene->mNumMaterials = (unsigned int)mSurfaces->size()];
for (unsigned int mat = 0; mat < pScene->mNumMaterials;++mat)
{
MaterialHelper* pcMat = new MaterialHelper();
pScene->mMaterials[mat] = pcMat;
ConvertMaterial((*mSurfaces)[mat],pcMat);
}
// copy the meshes to the output structure
if (apcMeshes.size()) // shouldn't happen, just to be sure we don't crash
{
pScene->mMeshes = new aiMesh*[ pScene->mNumMeshes = (unsigned int)apcMeshes.size() ];
::memcpy(pScene->mMeshes,&apcMeshes[0],pScene->mNumMeshes*sizeof(void*));
}
// generate the final node graph
GenerateNodeGraph(apcNodes);
}
// ------------------------------------------------------------------------------------------------
void LWOImporter::ComputeNormals(aiMesh* mesh, const std::vector<unsigned int>& smoothingGroups,
const LWO::Surface& surface)
{
// Allocate output storage
mesh->mNormals = new aiVector3D[mesh->mNumVertices];
// First generate per-face normals
aiVector3D* out;
std::vector<aiVector3D> faceNormals;
// ... in some cases that's already enough
if (!surface.mMaximumSmoothAngle)
out = mesh->mNormals;
else {
faceNormals.resize(mesh->mNumVertices);
out = &faceNormals[0];
}
aiFace* begin = mesh->mFaces, *const end = mesh->mFaces+mesh->mNumFaces;
for (; begin != end; ++begin) {
aiFace& face = *begin;
// LWO doc: "the normal is defined as the cross product of the first and last edges"
aiVector3D* pV1 = mesh->mVertices + face.mIndices[0];
aiVector3D* pV2 = mesh->mVertices + face.mIndices[1];
aiVector3D* pV3 = mesh->mVertices + face.mIndices[face.mNumIndices-1];
aiVector3D vNor = ((*pV2 - *pV1) ^ (*pV3 - *pV1)).Normalize();
for (unsigned int i = 0; i < face.mNumIndices;++i)
out[face.mIndices[i]] = vNor;
}
if (!surface.mMaximumSmoothAngle)return;
const float posEpsilon = ComputePositionEpsilon(mesh);
// Now generate the spatial sort tree
SGSpatialSort sSort;
std::vector<unsigned int>::const_iterator it = smoothingGroups.begin();
for( begin = mesh->mFaces; begin != end; ++begin, ++it)
{
aiFace& face = *begin;
for (unsigned int i = 0; i < face.mNumIndices;++i)
{
register unsigned int tt = face.mIndices[i];
sSort.Add(mesh->mVertices[tt],tt,*it);
}
}
// Sort everything - this takes O(nlogn) time
sSort.Prepare();
std::vector<unsigned int> poResult;
poResult.reserve(20);
// Generate vertex normals. We have O(logn) for the binary lookup, which we need
// for n elements, thus the EXPECTED complexity is O(nlogn)
if (surface.mMaximumSmoothAngle < 3.f && !configSpeedFlag) {
const float fLimit = cos(surface.mMaximumSmoothAngle);
for( begin = mesh->mFaces, it = smoothingGroups.begin(); begin != end; ++begin, ++it) {
const aiFace& face = *begin;
unsigned int* beginIdx = face.mIndices, *const endIdx = face.mIndices+face.mNumIndices;
for (; beginIdx != endIdx; ++beginIdx)
{
register unsigned int idx = *beginIdx;
sSort.FindPositions(mesh->mVertices[idx],*it,posEpsilon,poResult,true);
std::vector<unsigned int>::const_iterator a, end = poResult.end();
aiVector3D vNormals;
for (a = poResult.begin();a != end;++a) {
const aiVector3D& v = faceNormals[*a];
if (v * faceNormals[idx] < fLimit)
continue;
vNormals += v;
}
mesh->mNormals[idx] = vNormals.Normalize();
}
}
}
// faster code path in case there is no smooth angle
else {
std::vector<bool> vertexDone(mesh->mNumVertices,false);
for( begin = mesh->mFaces, it = smoothingGroups.begin(); begin != end; ++begin, ++it) {
const aiFace& face = *begin;
unsigned int* beginIdx = face.mIndices, *const endIdx = face.mIndices+face.mNumIndices;
for (; beginIdx != endIdx; ++beginIdx)
{
register unsigned int idx = *beginIdx;
if (vertexDone[idx])
continue;
sSort.FindPositions(mesh->mVertices[idx],*it,posEpsilon,poResult,true);
std::vector<unsigned int>::const_iterator a, end = poResult.end();
aiVector3D vNormals;
for (a = poResult.begin();a != end;++a) {
const aiVector3D& v = faceNormals[*a];
vNormals += v;
}
vNormals.Normalize();
for (a = poResult.begin();a != end;++a) {
mesh->mNormals[*a] = vNormals;
vertexDone[*a] = true;
}
}
}
}
}
// ------------------------------------------------------------------------------------------------
void LWOImporter::AddChildren(aiNode* node, uintptr_t parent, std::vector<aiNode*>& apcNodes)
{
for (uintptr_t i = 0; i < (uintptr_t)apcNodes.size();++i)
{
if (i == parent)continue;
if (apcNodes[i] && (uintptr_t)apcNodes[i]->mParent == parent)++node->mNumChildren;
}
if (node->mNumChildren)
{
node->mChildren = new aiNode* [ node->mNumChildren ];
for (uintptr_t i = 0, p = 0; i < (uintptr_t)apcNodes.size();++i)
{
if (i == parent)continue;
if (apcNodes[i] && parent == (uintptr_t)(apcNodes[i]->mParent))
{
node->mChildren[p++] = apcNodes[i];
apcNodes[i]->mParent = node;
// recursively add more children
AddChildren(apcNodes[i],i,apcNodes);
apcNodes[i] = NULL;
}
}
}
}
// ------------------------------------------------------------------------------------------------
void LWOImporter::GenerateNodeGraph(std::vector<aiNode*>& apcNodes)
{
// now generate the final nodegraph - generate a root node
pScene->mRootNode = new aiNode();
pScene->mRootNode->mName.Set("<LWORoot>");
AddChildren(pScene->mRootNode,0,apcNodes);
unsigned int extra = 0;
for (unsigned int i = 0; i < apcNodes.size();++i)
if (apcNodes[i] && apcNodes[i]->mNumMeshes)++extra;
if (extra)
{
// we need to add extra nodes to the root
const unsigned int newSize = extra + pScene->mRootNode->mNumChildren;
aiNode** const apcNewNodes = new aiNode*[newSize];
if((extra = pScene->mRootNode->mNumChildren))
::memcpy(apcNewNodes,pScene->mRootNode->mChildren,extra*sizeof(void*));
aiNode** cc = apcNewNodes+extra;
for (unsigned int i = 0; i < apcNodes.size();++i)
{
if (apcNodes[i] && apcNodes[i]->mNumMeshes)
{
*cc++ = apcNodes[i];
apcNodes[i]->mParent = pScene->mRootNode;
// recursively add more children
AddChildren(apcNodes[i],i,apcNodes);
apcNodes[i] = NULL;
}
}
delete[] pScene->mRootNode->mChildren;
pScene->mRootNode->mChildren = apcNewNodes;
pScene->mRootNode->mNumChildren = newSize;
}
if (!pScene->mRootNode->mNumChildren)
throw new ImportErrorException("LWO: Unable to build a valid node graph");
// remove a single root node
// TODO: implement directly in the above loop, no need to deallocate here
if (1 == pScene->mRootNode->mNumChildren)
{
aiNode* pc = pScene->mRootNode->mChildren[0];
pc->mParent = pScene->mRootNode->mChildren[0] = NULL;
delete pScene->mRootNode;
pScene->mRootNode = pc;
}
}
// ------------------------------------------------------------------------------------------------
void LWOImporter::ResolveTags()
{
// --- this function is used for both LWO2 and LWOB
mMapping->resize(mTags->size(),0xffffffff);
for (unsigned int a = 0; a < mTags->size();++a)
{
const std::string& c = (*mTags)[a];
for (unsigned int i = 0; i < mSurfaces->size();++i)
{
const std::string& d = (*mSurfaces)[i].mName;
if (!ASSIMP_stricmp(c,d))
{
(*mMapping)[a] = i;
break;
}
}
}
}
// ------------------------------------------------------------------------------------------------
void LWOImporter::ResolveClips()
{
for( unsigned int i = 0; i < mClips.size();++i)
{
Clip& clip = mClips[i];
if (Clip::REF == clip.type)
{
if (clip.clipRef >= mClips.size())
{
DefaultLogger::get()->error("LWO2: Clip referrer index is out of range");
clip.clipRef = 0;
}
Clip& dest = mClips[clip.clipRef];
if (Clip::REF == dest.type)
{
DefaultLogger::get()->error("LWO2: Clip references another clip reference");
clip.type = Clip::UNSUPPORTED;
}
else
{
clip.path = dest.path;
clip.type = dest.type;
}
}
}
}
// ------------------------------------------------------------------------------------------------
void LWOImporter::AdjustTexturePath(std::string& out)
{
// --- this function is used for both LWO2 and LWOB
if (!mIsLWO2 && ::strstr(out.c_str(), "(sequence)"))
{
// remove the (sequence) and append 000
DefaultLogger::get()->info("LWOB: Sequence of animated texture found. It will be ignored");
out = out.substr(0,out.length()-10) + "000";
}
// format: drive:path/file - we need to insert a slash after the drive
std::string::size_type n = out.find_first_of(':');
if (std::string::npos != n)
{
out.insert(n+1,"/");
}
}
// ------------------------------------------------------------------------------------------------
void LWOImporter::LoadLWOTags(unsigned int size)
{
// --- this function is used for both LWO2 and LWOB
const char* szCur = (const char*)mFileBuffer, *szLast = szCur;
const char* const szEnd = szLast+size;
while (szCur < szEnd)
{
if (!(*szCur))
{
const size_t len = (size_t)(szCur-szLast);
// FIX: skip empty-sized tags
if (len)
mTags->push_back(std::string(szLast,len));
szCur += (len&0x1 ? 1 : 2);
szLast = szCur;
}
szCur++;
}
}
// ------------------------------------------------------------------------------------------------
void LWOImporter::LoadLWOPoints(unsigned int length)
{
// --- this function is used for both LWO2 and LWOB but for
// LWO2 we need to allocate 25% more storage - it could be we'll
// need to duplicate some points later.
register unsigned int regularSize = (unsigned int)mCurLayer->mTempPoints.size() + length / 12;
if (mIsLWO2)
{
mCurLayer->mTempPoints.reserve ( regularSize + (regularSize>>2u) );
mCurLayer->mTempPoints.resize ( regularSize );
// initialize all point referrers with the default values
mCurLayer->mPointReferrers.reserve ( regularSize + (regularSize>>2u) );
mCurLayer->mPointReferrers.resize ( regularSize, 0xffffffff );
}
else mCurLayer->mTempPoints.resize( regularSize );
// perform endianess conversions
#ifndef AI_BUILD_BIG_ENDIAN
for (unsigned int i = 0; i < length>>2;++i)
ByteSwap::Swap4( mFileBuffer + (i << 2));
#endif
::memcpy(&mCurLayer->mTempPoints[0],mFileBuffer,length);
}
// ------------------------------------------------------------------------------------------------
void LWOImporter::LoadLWO2Polygons(unsigned int length)
{
LE_NCONST uint16_t* const end = (LE_NCONST uint16_t*)(mFileBuffer+length);
const uint32_t type = GetU4();
// Determine the type of the polygons
switch (type)
{
// read unsupported stuff too (although we wont process it)
case AI_LWO_BONE:
DefaultLogger::get()->warn("LWO2: Encountered unsupported primitive chunk (BONE)");
break;
case AI_LWO_MBAL:
DefaultLogger::get()->warn("LWO2: Encountered unsupported primitive chunk (METABALL)");
break;
case AI_LWO_CURV:
DefaultLogger::get()->warn("LWO2: Encountered unsupported primitive chunk (SPLINE)");;
break;
// These are ok with no restrictions
case AI_LWO_PTCH:
case AI_LWO_FACE:
break;
default:
// hm!? wtf is this? ok ...
DefaultLogger::get()->error("LWO2: Encountered unknown polygon type");
break;
}
// first find out how many faces and vertices we'll finally need
uint16_t* cursor= (uint16_t*)mFileBuffer;
unsigned int iNumFaces = 0,iNumVertices = 0;
CountVertsAndFacesLWO2(iNumVertices,iNumFaces,cursor,end);
// allocate the output array and copy face indices
if (iNumFaces) {
cursor = (uint16_t*)mFileBuffer;
mCurLayer->mFaces.resize(iNumFaces,LWO::Face(type));
FaceList::iterator it = mCurLayer->mFaces.begin();
CopyFaceIndicesLWO2(it,cursor,end);
}
}
// ------------------------------------------------------------------------------------------------
void LWOImporter::CountVertsAndFacesLWO2(unsigned int& verts, unsigned int& faces,
uint16_t*& cursor, const uint16_t* const end, unsigned int max)
{
while (cursor < end && max--)
{
AI_LSWAP2P(cursor);
uint16_t numIndices = *cursor++;
numIndices &= 0x03FF;
verts += numIndices;++faces;
for(uint16_t i = 0; i < numIndices; i++)
ReadVSizedIntLWO2((uint8_t*&)cursor);
}
}
// ------------------------------------------------------------------------------------------------
void LWOImporter::CopyFaceIndicesLWO2(FaceList::iterator& it,
uint16_t*& cursor,
const uint16_t* const end)
{
while (cursor < end)
{
LWO::Face& face = *it;++it;
if((face.mNumIndices = (*cursor++) & 0x03FF)) // swapping has already been done
{
face.mIndices = new unsigned int[face.mNumIndices];
for(unsigned int i = 0; i < face.mNumIndices; i++)
{
face.mIndices[i] = ReadVSizedIntLWO2((uint8_t*&)cursor) + mCurLayer->mPointIDXOfs;
if(face.mIndices[i] > mCurLayer->mTempPoints.size())
{
DefaultLogger::get()->warn("LWO2: face index is out of range");
face.mIndices[i] = (unsigned int)mCurLayer->mTempPoints.size()-1;
}
}
}
else DefaultLogger::get()->warn("LWO2: face has 0 indices");
}
}
// ------------------------------------------------------------------------------------------------
void LWOImporter::LoadLWO2PolygonTags(unsigned int length)
{
LE_NCONST uint8_t* const end = mFileBuffer+length;
AI_LWO_VALIDATE_CHUNK_LENGTH(length,PTAG,4);
uint32_t type = GetU4();
if (type != AI_LWO_SURF && type != AI_LWO_SMGP)
return;
while (mFileBuffer < end)
{
unsigned int i = ReadVSizedIntLWO2(mFileBuffer) + mCurLayer->mFaceIDXOfs;
unsigned int j = GetU2();
if (i >= mCurLayer->mFaces.size())
{
DefaultLogger::get()->warn("LWO2: face index in PTAG is out of range");
continue;
}
switch (type)
{
case AI_LWO_SURF:
mCurLayer->mFaces[i].surfaceIndex = j;
break;
case AI_LWO_SMGP:
mCurLayer->mFaces[i].smoothGroup = j;
break;
};
}
}
// ------------------------------------------------------------------------------------------------
template <class T>
VMapEntry* FindEntry(std::vector< T >& list,const std::string& name, bool perPoly)
{
for (typename std::vector< T >::iterator it = list.begin(), end = list.end();
it != end; ++it)
{
if ((*it).name == name)
{
if (!perPoly)
{
DefaultLogger::get()->warn("LWO2: Found two VMAP sections with equal names");
}
return &(*it);
}
}
list.push_back( T() );
VMapEntry* p = &list.back();
p->name = name;
return p;
}
// ------------------------------------------------------------------------------------------------
template <class T>
inline void CreateNewEntry(T& chan, unsigned int srcIdx)
{
if (!chan.name.length())return;
chan.abAssigned[srcIdx] = true;
chan.abAssigned.resize(chan.abAssigned.size()+1,false);
for (unsigned int a = 0; a < chan.dims;++a)
chan.rawData.push_back(chan.rawData[srcIdx*chan.dims+a]);
}
// ------------------------------------------------------------------------------------------------
template <class T>
inline void CreateNewEntry(std::vector< T >& list, unsigned int srcIdx)
{
for (typename std::vector< T >::iterator
it = list.begin(), end = list.end();
it != end;++it)
{
CreateNewEntry( *it, srcIdx );
}
}
// ------------------------------------------------------------------------------------------------
inline void LWOImporter::DoRecursiveVMAPAssignment(VMapEntry* base, unsigned int numRead,
unsigned int idx, float* data)
{
ai_assert(NULL != data);
LWO::ReferrerList& refList = mCurLayer->mPointReferrers;
unsigned int i;
base->abAssigned[idx] = true;
for (i = 0; i < numRead;++i)
base->rawData[idx*base->dims+i]= data[i];
if (0xffffffff != (i = refList[idx]))
DoRecursiveVMAPAssignment(base,numRead,i,data);
}
// ------------------------------------------------------------------------------------------------
inline void AddToSingleLinkedList(ReferrerList& refList, unsigned int srcIdx, unsigned int destIdx)
{
if(0xffffffff == refList[srcIdx])
{
refList[srcIdx] = destIdx;
return;
}
AddToSingleLinkedList(refList,refList[srcIdx],destIdx);
}
// ------------------------------------------------------------------------------------------------
// Load LWO2 vertex map
void LWOImporter::LoadLWO2VertexMap(unsigned int length, bool perPoly)
{
LE_NCONST uint8_t* const end = mFileBuffer+length;
AI_LWO_VALIDATE_CHUNK_LENGTH(length,VMAP,6);
unsigned int type = GetU4();
unsigned int dims = GetU2();
VMapEntry* base;
// read the name of the vertex map
std::string name;
GetS0(name,length);
switch (type)
{
case AI_LWO_TXUV:
if (dims != 2) {
DefaultLogger::get()->warn("LWO2: Found UV channel with != 2 components");
return;
}
base = FindEntry(mCurLayer->mUVChannels,name,perPoly);
break;
case AI_LWO_WGHT:
if (dims != 1) {
DefaultLogger::get()->warn("LWO2: found vertex weight map with != 1 components");
return;
}
base = FindEntry(mCurLayer->mWeightChannels,name,perPoly);
break;
case AI_LWO_RGB:
case AI_LWO_RGBA:
if (dims != 3 && dims != 4) {
DefaultLogger::get()->warn("LWO2: found vertex color map with != 3&4 components");
return;
}
base = FindEntry(mCurLayer->mVColorChannels,name,perPoly);
break;
case AI_LWO_MODO_NORM:
/* This is a non-standard extension chunk used by Luxology's MODO.
* It stores per-vertex normals. This VMAP exists just once, has
* 3 dimensions and is btw extremely beautiful.
*/
if (name != "vert_normals" || dims != 3 || mCurLayer->mNormals.name.length())
return;
DefaultLogger::get()->info("Non-standard extension: MODO VMAP.NORM.vert_normals");
mCurLayer->mNormals.name = name;
base = & mCurLayer->mNormals;
break;
default:
return;
};
base->Allocate((unsigned int)mCurLayer->mTempPoints.size());
// now read all entries in the map
type = std::min(dims,base->dims);
const unsigned int diff = (dims - type)<<2;
LWO::FaceList& list = mCurLayer->mFaces;
LWO::PointList& pointList = mCurLayer->mTempPoints;
LWO::ReferrerList& refList = mCurLayer->mPointReferrers;
float temp[4];
const unsigned int numPoints = (unsigned int)pointList.size();
const unsigned int numFaces = (unsigned int)list.size();
while (mFileBuffer < end)
{
unsigned int idx = ReadVSizedIntLWO2(mFileBuffer) + mCurLayer->mPointIDXOfs;
if (idx >= numPoints)
{
DefaultLogger::get()->warn("LWO2: vertex index in vmap/vmad is out of range");
mFileBuffer += base->dims*4;continue;
}
if (perPoly)
{
unsigned int polyIdx = ReadVSizedIntLWO2(mFileBuffer) + mCurLayer->mFaceIDXOfs;
if (base->abAssigned[idx])
{
// we have already a VMAP entry for this vertex - thus
// we need to duplicate the corresponding polygon.
if (polyIdx >= numFaces)
{
DefaultLogger::get()->warn("LWO2: VMAD polygon index is out of range");
mFileBuffer += base->dims*4;
continue;
}
LWO::Face& src = list[polyIdx];
// generate a new unique vertex for the corresponding index - but only
// if we can find the index in the face
for (unsigned int i = 0; i < src.mNumIndices;++i)
{
register unsigned int srcIdx = src.mIndices[i];
if (idx != srcIdx)continue;
refList.resize(refList.size()+1, 0xffffffff);
idx = (unsigned int)pointList.size();
src.mIndices[i] = (unsigned int)pointList.size();
// store the index of the new vertex in the old vertex
// so we get a single linked list we can traverse in
// only one direction
AddToSingleLinkedList(refList,srcIdx,src.mIndices[i]);
pointList.push_back(pointList[srcIdx]);
CreateNewEntry(mCurLayer->mVColorChannels, srcIdx );
CreateNewEntry(mCurLayer->mUVChannels, srcIdx );
CreateNewEntry(mCurLayer->mWeightChannels, srcIdx );
CreateNewEntry(mCurLayer->mNormals, srcIdx );
}
}
}
for (unsigned int l = 0; l < type;++l)
temp[l] = GetF4();
DoRecursiveVMAPAssignment(base,type,idx, temp);
mFileBuffer += diff;
}
}
// ------------------------------------------------------------------------------------------------
// Load LWO2 clip
void LWOImporter::LoadLWO2Clip(unsigned int length)
{
AI_LWO_VALIDATE_CHUNK_LENGTH(length,CLIP,10);
mClips.push_back(LWO::Clip());
LWO::Clip& clip = mClips.back();
// first - get the index of the clip
clip.idx = GetU4();
IFF::SubChunkHeader* const head = IFF::LoadSubChunk(mFileBuffer);
switch (head->type)
{
case AI_LWO_STIL:
AI_LWO_VALIDATE_CHUNK_LENGTH(head->length,STIL,1);
// "Normal" texture
GetS0(clip.path,head->length);
clip.type = Clip::STILL;
break;
case AI_LWO_ISEQ:
AI_LWO_VALIDATE_CHUNK_LENGTH(head->length,ISEQ,16);
// Image sequence. We'll later take the first.
{
uint8_t digits = GetU1(); mFileBuffer++;
int16_t offset = GetU2(); mFileBuffer+=4;
int16_t start = GetU2(); mFileBuffer+=4;
std::string s;std::stringstream ss;
GetS0(s,head->length);
head->length -= (unsigned int)s.length()+1;
ss << s;
ss << std::setw(digits) << offset + start;
GetS0(s,head->length);
ss << s;
clip.path = ss.str();
clip.type = Clip::SEQ;
}
break;
case AI_LWO_STCC:
DefaultLogger::get()->warn("LWO2: Color shifted images are not supported");
break;
case AI_LWO_ANIM:
DefaultLogger::get()->warn("LWO2: Animated textures are not supported");
break;
case AI_LWO_XREF:
AI_LWO_VALIDATE_CHUNK_LENGTH(head->length,XREF,4);
// Just a cross-reference to another CLIp
clip.type = Clip::REF;
clip.clipRef = GetU4();
break;
case AI_LWO_NEGA:
AI_LWO_VALIDATE_CHUNK_LENGTH(head->length,NEGA,2);
clip.negate = (0 != GetU2());
break;
default:
DefaultLogger::get()->warn("LWO2: Encountered unknown CLIP subchunk");
}
}
// ------------------------------------------------------------------------------------------------
// Load envelope description
void LWOImporter::LoadLWO2Envelope(unsigned int length)
{
LE_NCONST uint8_t* const end = mFileBuffer + length;
AI_LWO_VALIDATE_CHUNK_LENGTH(length,ENVL,4);
mEnvelopes.push_back(LWO::Envelope());
LWO::Envelope& envelope = mEnvelopes.back();
// Get the index of the envelope
envelope.index = ReadVSizedIntLWO2(mFileBuffer);
// ... and read all subchunks
while (true)
{
if (mFileBuffer + 6 >= end)break;
LE_NCONST IFF::SubChunkHeader* const head = IFF::LoadSubChunk(mFileBuffer);
if (mFileBuffer + head->length > end)
throw new ImportErrorException("LWO2: Invalid envelope chunk length");
uint8_t* const next = mFileBuffer+head->length;
switch (head->type)
{
// Type & representation of the envelope
case AI_LWO_TYPE:
AI_LWO_VALIDATE_CHUNK_LENGTH(head->length,TYPE,2);
mFileBuffer++; // skip user format
// Determine type of envelope
envelope.type = (LWO::EnvelopeType)*mFileBuffer;
++mFileBuffer;
break;
// precondition
case AI_LWO_PRE:
AI_LWO_VALIDATE_CHUNK_LENGTH(head->length,PRE,2);
envelope.pre = (LWO::PrePostBehaviour)GetU2();
break;
// postcondition
case AI_LWO_POST:
AI_LWO_VALIDATE_CHUNK_LENGTH(head->length,POST,2);
envelope.post = (LWO::PrePostBehaviour)GetU2();
break;
// keyframe
case AI_LWO_KEY:
{
AI_LWO_VALIDATE_CHUNK_LENGTH(head->length,KEY,8);
envelope.keys.push_back(LWO::Key());
LWO::Key& key = envelope.keys.back();
key.time = GetF4();
key.value = GetF4();
break;
}
// interval interpolation
case AI_LWO_SPAN:
{
AI_LWO_VALIDATE_CHUNK_LENGTH(head->length,SPAN,4);
if (envelope.keys.size()<2)
DefaultLogger::get()->warn("LWO2: Unexpected SPAN chunk");
else {
LWO::Key& key = envelope.keys.back();
switch (GetU4())
{
case AI_LWO_STEP:
key.inter = LWO::IT_STEP;break;
case AI_LWO_LINE:
key.inter = LWO::IT_LINE;break;
case AI_LWO_TCB:
key.inter = LWO::IT_TCB;break;
case AI_LWO_HERM:
key.inter = LWO::IT_HERM;break;
case AI_LWO_BEZI:
key.inter = LWO::IT_BEZI;break;
case AI_LWO_BEZ2:
key.inter = LWO::IT_BEZ2;break;
default:
DefaultLogger::get()->warn("LWO2: Unknown interval interpolation mode");
};
// todo ... read params
}
break;
}
default:
DefaultLogger::get()->warn("LWO2: Encountered unknown ENVL subchunk");
}
// regardless how much we did actually read, go to the next chunk
mFileBuffer = next;
}
}
// ------------------------------------------------------------------------------------------------
// Load file - master function
void LWOImporter::LoadLWO2File()
{
bool skip = false;
LE_NCONST uint8_t* const end = mFileBuffer + fileSize;
while (true)
{
if (mFileBuffer + sizeof(IFF::ChunkHeader) > end)break;
IFF::ChunkHeader* const head = IFF::LoadChunk(mFileBuffer);
if (mFileBuffer + head->length > end)
{
throw new ImportErrorException("LWO2: Chunk length points behind the file");
break;
}
uint8_t* const next = mFileBuffer+head->length;
unsigned int iUnnamed = 0;
switch (head->type)
{
// new layer
case AI_LWO_LAYR:
{
// add a new layer to the list ....
mLayers->push_back ( LWO::Layer() );
LWO::Layer& layer = mLayers->back();
mCurLayer = &layer;
// load this layer or ignore it? Check the layer index property
// NOTE: The first layer is the default layer, so the layer
// index is one-based now
if (0xffffffff != configLayerIndex && configLayerIndex != mLayers->size()-1) {
skip = true;
}
else skip = false;
AI_LWO_VALIDATE_CHUNK_LENGTH(head->length,LAYR,16);
// and parse its properties, e.g. the pivot point
mFileBuffer += 2;
mCurLayer->mPivot.x = GetF4();
mCurLayer->mPivot.y = GetF4();
mCurLayer->mPivot.z = GetF4();
mFileBuffer += 2;
GetS0(layer.mName,head->length-16);
// if the name is empty, generate a default name
if (layer.mName.empty()) {
char buffer[128]; // should be sufficiently large
::sprintf(buffer,"Layer_%i", iUnnamed++);
layer.mName = buffer;
}
// load this layer or ignore it? Check the layer name property
if (configLayerName.length() && configLayerName != layer.mName) {
skip = true;
}
else hasNamedLayer = true;
if (mFileBuffer + 2 <= next)
layer.mParent = GetU2();
break;
}
// vertex list
case AI_LWO_PNTS:
{
if (skip)
break;
unsigned int old = (unsigned int)mCurLayer->mTempPoints.size();
LoadLWOPoints(head->length);
mCurLayer->mPointIDXOfs = old;
break;
}
// vertex tags
case AI_LWO_VMAD:
if (mCurLayer->mFaces.empty())
{
DefaultLogger::get()->warn("LWO2: Unexpected VMAD chunk");
break;
}
// --- intentionally no break here
case AI_LWO_VMAP:
{
if (skip)
break;
if (mCurLayer->mTempPoints.empty())
DefaultLogger::get()->warn("LWO2: Unexpected VMAP chunk");
else LoadLWO2VertexMap(head->length,head->type == AI_LWO_VMAD);
break;
}
// face list
case AI_LWO_POLS:
{
if (skip)
break;
unsigned int old = (unsigned int)mCurLayer->mFaces.size();
LoadLWO2Polygons(head->length);
mCurLayer->mFaceIDXOfs = old;
break;
}
// polygon tags
case AI_LWO_PTAG:
{
if (skip)
break;
if (mCurLayer->mFaces.empty())
DefaultLogger::get()->warn("LWO2: Unexpected PTAG");
else LoadLWO2PolygonTags(head->length);
break;
}
// list of tags
case AI_LWO_TAGS:
{
if (!mTags->empty())
DefaultLogger::get()->warn("LWO2: SRFS chunk encountered twice");
else LoadLWOTags(head->length);
break;
}
// surface chunk
case AI_LWO_SURF:
{
LoadLWO2Surface(head->length);
break;
}
// clip chunk
case AI_LWO_CLIP:
{
LoadLWO2Clip(head->length);
break;
}
// envelope chunk
case AI_LWO_ENVL:
{
LoadLWO2Envelope(head->length);
break;
}
}
mFileBuffer = next;
}
}
#endif // !! ASSIMP_BUILD_NO_LWO_IMPORTER