3516 lines
150 KiB
C++
3516 lines
150 KiB
C++
/*
|
|
Open Asset Import Library (assimp)
|
|
----------------------------------------------------------------------
|
|
|
|
Copyright (c) 2006-2019, assimp team
|
|
|
|
|
|
All rights reserved.
|
|
|
|
Redistribution and use of this software in source and binary forms,
|
|
with or without modification, are permitted provided that the
|
|
following conditions are met:
|
|
|
|
* Redistributions of source code must retain the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer in the documentation and/or other
|
|
materials provided with the distribution.
|
|
|
|
* Neither the name of the assimp team, nor the names of its
|
|
contributors may be used to endorse or promote products
|
|
derived from this software without specific prior
|
|
written permission of the assimp team.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
----------------------------------------------------------------------
|
|
*/
|
|
|
|
/** @file FBXConverter.cpp
|
|
* @brief Implementation of the FBX DOM -> aiScene converter
|
|
*/
|
|
|
|
#ifndef ASSIMP_BUILD_NO_FBX_IMPORTER
|
|
|
|
#include "FBXConverter.h"
|
|
#include "FBXParser.h"
|
|
#include "FBXMeshGeometry.h"
|
|
#include "FBXDocument.h"
|
|
#include "FBXUtil.h"
|
|
#include "FBXProperties.h"
|
|
#include "FBXImporter.h"
|
|
|
|
#include <assimp/StringComparison.h>
|
|
|
|
#include <assimp/scene.h>
|
|
|
|
#include <assimp/CreateAnimMesh.h>
|
|
|
|
#include <tuple>
|
|
#include <memory>
|
|
#include <iterator>
|
|
#include <vector>
|
|
#include <sstream>
|
|
#include <iomanip>
|
|
|
|
namespace Assimp {
|
|
namespace FBX {
|
|
|
|
using namespace Util;
|
|
|
|
#define MAGIC_NODE_TAG "_$AssimpFbx$"
|
|
|
|
#define CONVERT_FBX_TIME(time) static_cast<double>(time) / 46186158000L
|
|
|
|
FBXConverter::FBXConverter(aiScene* out, const Document& doc)
|
|
: defaultMaterialIndex()
|
|
, out(out)
|
|
, doc(doc) {
|
|
// animations need to be converted first since this will
|
|
// populate the node_anim_chain_bits map, which is needed
|
|
// to determine which nodes need to be generated.
|
|
ConvertAnimations();
|
|
ConvertRootNode();
|
|
|
|
if (doc.Settings().readAllMaterials) {
|
|
// unfortunately this means we have to evaluate all objects
|
|
for (const ObjectMap::value_type& v : doc.Objects()) {
|
|
|
|
const Object* ob = v.second->Get();
|
|
if (!ob) {
|
|
continue;
|
|
}
|
|
|
|
const Material* mat = dynamic_cast<const Material*>(ob);
|
|
if (mat) {
|
|
|
|
if (materials_converted.find(mat) == materials_converted.end()) {
|
|
ConvertMaterial(*mat, 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
ConvertGlobalSettings();
|
|
TransferDataToScene();
|
|
|
|
// if we didn't read any meshes set the AI_SCENE_FLAGS_INCOMPLETE
|
|
// to make sure the scene passes assimp's validation. FBX files
|
|
// need not contain geometry (i.e. camera animations, raw armatures).
|
|
if (out->mNumMeshes == 0) {
|
|
out->mFlags |= AI_SCENE_FLAGS_INCOMPLETE;
|
|
}
|
|
}
|
|
|
|
|
|
FBXConverter::~FBXConverter() {
|
|
std::for_each(meshes.begin(), meshes.end(), Util::delete_fun<aiMesh>());
|
|
std::for_each(materials.begin(), materials.end(), Util::delete_fun<aiMaterial>());
|
|
std::for_each(animations.begin(), animations.end(), Util::delete_fun<aiAnimation>());
|
|
std::for_each(lights.begin(), lights.end(), Util::delete_fun<aiLight>());
|
|
std::for_each(cameras.begin(), cameras.end(), Util::delete_fun<aiCamera>());
|
|
std::for_each(textures.begin(), textures.end(), Util::delete_fun<aiTexture>());
|
|
}
|
|
|
|
void FBXConverter::ConvertRootNode() {
|
|
out->mRootNode = new aiNode();
|
|
out->mRootNode->mName.Set("RootNode");
|
|
|
|
// root has ID 0
|
|
ConvertNodes(0L, *out->mRootNode);
|
|
}
|
|
|
|
void FBXConverter::ConvertNodes(uint64_t id, aiNode& parent, const aiMatrix4x4& parent_transform) {
|
|
const std::vector<const Connection*>& conns = doc.GetConnectionsByDestinationSequenced(id, "Model");
|
|
|
|
std::vector<aiNode*> nodes;
|
|
nodes.reserve(conns.size());
|
|
|
|
std::vector<aiNode*> nodes_chain;
|
|
std::vector<aiNode*> post_nodes_chain;
|
|
|
|
try {
|
|
for (const Connection* con : conns) {
|
|
|
|
// ignore object-property links
|
|
if (con->PropertyName().length()) {
|
|
continue;
|
|
}
|
|
|
|
const Object* const object = con->SourceObject();
|
|
if (nullptr == object) {
|
|
FBXImporter::LogWarn("failed to convert source object for Model link");
|
|
continue;
|
|
}
|
|
|
|
const Model* const model = dynamic_cast<const Model*>(object);
|
|
|
|
if (nullptr != model) {
|
|
nodes_chain.clear();
|
|
post_nodes_chain.clear();
|
|
|
|
aiMatrix4x4 new_abs_transform = parent_transform;
|
|
|
|
// even though there is only a single input node, the design of
|
|
// assimp (or rather: the complicated transformation chain that
|
|
// is employed by fbx) means that we may need multiple aiNode's
|
|
// to represent a fbx node's transformation.
|
|
GenerateTransformationNodeChain(*model, nodes_chain, post_nodes_chain);
|
|
|
|
ai_assert(nodes_chain.size());
|
|
|
|
std::string original_name = FixNodeName(model->Name());
|
|
|
|
// check if any of the nodes in the chain has the name the fbx node
|
|
// is supposed to have. If there is none, add another node to
|
|
// preserve the name - people might have scripts etc. that rely
|
|
// on specific node names.
|
|
aiNode* name_carrier = NULL;
|
|
for (aiNode* prenode : nodes_chain) {
|
|
if (!strcmp(prenode->mName.C_Str(), original_name.c_str())) {
|
|
name_carrier = prenode;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!name_carrier) {
|
|
std::string old_original_name = original_name;
|
|
GetUniqueName(old_original_name, original_name);
|
|
nodes_chain.push_back(new aiNode(original_name));
|
|
}
|
|
else {
|
|
original_name = nodes_chain.back()->mName.C_Str();
|
|
}
|
|
|
|
//setup metadata on newest node
|
|
SetupNodeMetadata(*model, *nodes_chain.back());
|
|
|
|
// link all nodes in a row
|
|
aiNode* last_parent = &parent;
|
|
for (aiNode* prenode : nodes_chain) {
|
|
ai_assert(prenode);
|
|
|
|
if (last_parent != &parent) {
|
|
last_parent->mNumChildren = 1;
|
|
last_parent->mChildren = new aiNode*[1];
|
|
last_parent->mChildren[0] = prenode;
|
|
}
|
|
|
|
prenode->mParent = last_parent;
|
|
last_parent = prenode;
|
|
|
|
new_abs_transform *= prenode->mTransformation;
|
|
}
|
|
|
|
// attach geometry
|
|
ConvertModel(*model, *nodes_chain.back(), new_abs_transform);
|
|
|
|
// check if there will be any child nodes
|
|
const std::vector<const Connection*>& child_conns
|
|
= doc.GetConnectionsByDestinationSequenced(model->ID(), "Model");
|
|
|
|
// if so, link the geometric transform inverse nodes
|
|
// before we attach any child nodes
|
|
if (child_conns.size()) {
|
|
for (aiNode* postnode : post_nodes_chain) {
|
|
ai_assert(postnode);
|
|
|
|
if (last_parent != &parent) {
|
|
last_parent->mNumChildren = 1;
|
|
last_parent->mChildren = new aiNode*[1];
|
|
last_parent->mChildren[0] = postnode;
|
|
}
|
|
|
|
postnode->mParent = last_parent;
|
|
last_parent = postnode;
|
|
|
|
new_abs_transform *= postnode->mTransformation;
|
|
}
|
|
}
|
|
else {
|
|
// free the nodes we allocated as we don't need them
|
|
Util::delete_fun<aiNode> deleter;
|
|
std::for_each(
|
|
post_nodes_chain.begin(),
|
|
post_nodes_chain.end(),
|
|
deleter
|
|
);
|
|
}
|
|
|
|
// attach sub-nodes (if any)
|
|
ConvertNodes(model->ID(), *last_parent, new_abs_transform);
|
|
|
|
if (doc.Settings().readLights) {
|
|
ConvertLights(*model, original_name);
|
|
}
|
|
|
|
if (doc.Settings().readCameras) {
|
|
ConvertCameras(*model, original_name);
|
|
}
|
|
|
|
nodes.push_back(nodes_chain.front());
|
|
nodes_chain.clear();
|
|
}
|
|
}
|
|
|
|
if (nodes.size()) {
|
|
parent.mChildren = new aiNode*[nodes.size()]();
|
|
parent.mNumChildren = static_cast<unsigned int>(nodes.size());
|
|
|
|
std::swap_ranges(nodes.begin(), nodes.end(), parent.mChildren);
|
|
}
|
|
}
|
|
catch (std::exception&) {
|
|
Util::delete_fun<aiNode> deleter;
|
|
std::for_each(nodes.begin(), nodes.end(), deleter);
|
|
std::for_each(nodes_chain.begin(), nodes_chain.end(), deleter);
|
|
std::for_each(post_nodes_chain.begin(), post_nodes_chain.end(), deleter);
|
|
}
|
|
}
|
|
|
|
|
|
void FBXConverter::ConvertLights(const Model& model, const std::string &orig_name) {
|
|
const std::vector<const NodeAttribute*>& node_attrs = model.GetAttributes();
|
|
for (const NodeAttribute* attr : node_attrs) {
|
|
const Light* const light = dynamic_cast<const Light*>(attr);
|
|
if (light) {
|
|
ConvertLight(*light, orig_name);
|
|
}
|
|
}
|
|
}
|
|
|
|
void FBXConverter::ConvertCameras(const Model& model, const std::string &orig_name) {
|
|
const std::vector<const NodeAttribute*>& node_attrs = model.GetAttributes();
|
|
for (const NodeAttribute* attr : node_attrs) {
|
|
const Camera* const cam = dynamic_cast<const Camera*>(attr);
|
|
if (cam) {
|
|
ConvertCamera(*cam, orig_name);
|
|
}
|
|
}
|
|
}
|
|
|
|
void FBXConverter::ConvertLight(const Light& light, const std::string &orig_name) {
|
|
lights.push_back(new aiLight());
|
|
aiLight* const out_light = lights.back();
|
|
|
|
out_light->mName.Set(orig_name);
|
|
|
|
const float intensity = light.Intensity() / 100.0f;
|
|
const aiVector3D& col = light.Color();
|
|
|
|
out_light->mColorDiffuse = aiColor3D(col.x, col.y, col.z);
|
|
out_light->mColorDiffuse.r *= intensity;
|
|
out_light->mColorDiffuse.g *= intensity;
|
|
out_light->mColorDiffuse.b *= intensity;
|
|
|
|
out_light->mColorSpecular = out_light->mColorDiffuse;
|
|
|
|
//lights are defined along negative y direction
|
|
out_light->mPosition = aiVector3D(0.0f);
|
|
out_light->mDirection = aiVector3D(0.0f, -1.0f, 0.0f);
|
|
out_light->mUp = aiVector3D(0.0f, 0.0f, -1.0f);
|
|
|
|
switch (light.LightType())
|
|
{
|
|
case Light::Type_Point:
|
|
out_light->mType = aiLightSource_POINT;
|
|
break;
|
|
|
|
case Light::Type_Directional:
|
|
out_light->mType = aiLightSource_DIRECTIONAL;
|
|
break;
|
|
|
|
case Light::Type_Spot:
|
|
out_light->mType = aiLightSource_SPOT;
|
|
out_light->mAngleOuterCone = AI_DEG_TO_RAD(light.OuterAngle());
|
|
out_light->mAngleInnerCone = AI_DEG_TO_RAD(light.InnerAngle());
|
|
break;
|
|
|
|
case Light::Type_Area:
|
|
FBXImporter::LogWarn("cannot represent area light, set to UNDEFINED");
|
|
out_light->mType = aiLightSource_UNDEFINED;
|
|
break;
|
|
|
|
case Light::Type_Volume:
|
|
FBXImporter::LogWarn("cannot represent volume light, set to UNDEFINED");
|
|
out_light->mType = aiLightSource_UNDEFINED;
|
|
break;
|
|
default:
|
|
ai_assert(false);
|
|
}
|
|
|
|
float decay = light.DecayStart();
|
|
switch (light.DecayType())
|
|
{
|
|
case Light::Decay_None:
|
|
out_light->mAttenuationConstant = decay;
|
|
out_light->mAttenuationLinear = 0.0f;
|
|
out_light->mAttenuationQuadratic = 0.0f;
|
|
break;
|
|
case Light::Decay_Linear:
|
|
out_light->mAttenuationConstant = 0.0f;
|
|
out_light->mAttenuationLinear = 2.0f / decay;
|
|
out_light->mAttenuationQuadratic = 0.0f;
|
|
break;
|
|
case Light::Decay_Quadratic:
|
|
out_light->mAttenuationConstant = 0.0f;
|
|
out_light->mAttenuationLinear = 0.0f;
|
|
out_light->mAttenuationQuadratic = 2.0f / (decay * decay);
|
|
break;
|
|
case Light::Decay_Cubic:
|
|
FBXImporter::LogWarn("cannot represent cubic attenuation, set to Quadratic");
|
|
out_light->mAttenuationQuadratic = 1.0f;
|
|
break;
|
|
default:
|
|
ai_assert(false);
|
|
}
|
|
}
|
|
|
|
void FBXConverter::ConvertCamera(const Camera& cam, const std::string &orig_name)
|
|
{
|
|
cameras.push_back(new aiCamera());
|
|
aiCamera* const out_camera = cameras.back();
|
|
|
|
out_camera->mName.Set(orig_name);
|
|
|
|
out_camera->mAspect = cam.AspectWidth() / cam.AspectHeight();
|
|
|
|
//cameras are defined along positive x direction
|
|
/*out_camera->mPosition = cam.Position();
|
|
out_camera->mLookAt = (cam.InterestPosition() - out_camera->mPosition).Normalize();
|
|
out_camera->mUp = cam.UpVector();*/
|
|
|
|
out_camera->mPosition = aiVector3D(0.0f);
|
|
out_camera->mLookAt = aiVector3D(1.0f, 0.0f, 0.0f);
|
|
out_camera->mUp = aiVector3D(0.0f, 1.0f, 0.0f);
|
|
|
|
out_camera->mHorizontalFOV = AI_DEG_TO_RAD(cam.FieldOfView());
|
|
|
|
out_camera->mClipPlaneNear = cam.NearPlane();
|
|
out_camera->mClipPlaneFar = cam.FarPlane();
|
|
|
|
out_camera->mHorizontalFOV = AI_DEG_TO_RAD(cam.FieldOfView());
|
|
out_camera->mClipPlaneNear = cam.NearPlane();
|
|
out_camera->mClipPlaneFar = cam.FarPlane();
|
|
}
|
|
|
|
void FBXConverter::GetUniqueName(const std::string &name, std::string &uniqueName)
|
|
{
|
|
int i = 0;
|
|
uniqueName = name;
|
|
while (mNodeNames.find(uniqueName) != mNodeNames.end())
|
|
{
|
|
++i;
|
|
std::stringstream ext;
|
|
ext << name << std::setfill('0') << std::setw(3) << i;
|
|
uniqueName = ext.str();
|
|
}
|
|
mNodeNames.insert(uniqueName);
|
|
}
|
|
|
|
|
|
const char* FBXConverter::NameTransformationComp(TransformationComp comp) {
|
|
switch (comp) {
|
|
case TransformationComp_Translation:
|
|
return "Translation";
|
|
case TransformationComp_RotationOffset:
|
|
return "RotationOffset";
|
|
case TransformationComp_RotationPivot:
|
|
return "RotationPivot";
|
|
case TransformationComp_PreRotation:
|
|
return "PreRotation";
|
|
case TransformationComp_Rotation:
|
|
return "Rotation";
|
|
case TransformationComp_PostRotation:
|
|
return "PostRotation";
|
|
case TransformationComp_RotationPivotInverse:
|
|
return "RotationPivotInverse";
|
|
case TransformationComp_ScalingOffset:
|
|
return "ScalingOffset";
|
|
case TransformationComp_ScalingPivot:
|
|
return "ScalingPivot";
|
|
case TransformationComp_Scaling:
|
|
return "Scaling";
|
|
case TransformationComp_ScalingPivotInverse:
|
|
return "ScalingPivotInverse";
|
|
case TransformationComp_GeometricScaling:
|
|
return "GeometricScaling";
|
|
case TransformationComp_GeometricRotation:
|
|
return "GeometricRotation";
|
|
case TransformationComp_GeometricTranslation:
|
|
return "GeometricTranslation";
|
|
case TransformationComp_GeometricScalingInverse:
|
|
return "GeometricScalingInverse";
|
|
case TransformationComp_GeometricRotationInverse:
|
|
return "GeometricRotationInverse";
|
|
case TransformationComp_GeometricTranslationInverse:
|
|
return "GeometricTranslationInverse";
|
|
case TransformationComp_MAXIMUM: // this is to silence compiler warnings
|
|
default:
|
|
break;
|
|
}
|
|
|
|
ai_assert(false);
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
const char* FBXConverter::NameTransformationCompProperty(TransformationComp comp) {
|
|
switch (comp) {
|
|
case TransformationComp_Translation:
|
|
return "Lcl Translation";
|
|
case TransformationComp_RotationOffset:
|
|
return "RotationOffset";
|
|
case TransformationComp_RotationPivot:
|
|
return "RotationPivot";
|
|
case TransformationComp_PreRotation:
|
|
return "PreRotation";
|
|
case TransformationComp_Rotation:
|
|
return "Lcl Rotation";
|
|
case TransformationComp_PostRotation:
|
|
return "PostRotation";
|
|
case TransformationComp_RotationPivotInverse:
|
|
return "RotationPivotInverse";
|
|
case TransformationComp_ScalingOffset:
|
|
return "ScalingOffset";
|
|
case TransformationComp_ScalingPivot:
|
|
return "ScalingPivot";
|
|
case TransformationComp_Scaling:
|
|
return "Lcl Scaling";
|
|
case TransformationComp_ScalingPivotInverse:
|
|
return "ScalingPivotInverse";
|
|
case TransformationComp_GeometricScaling:
|
|
return "GeometricScaling";
|
|
case TransformationComp_GeometricRotation:
|
|
return "GeometricRotation";
|
|
case TransformationComp_GeometricTranslation:
|
|
return "GeometricTranslation";
|
|
case TransformationComp_GeometricScalingInverse:
|
|
return "GeometricScalingInverse";
|
|
case TransformationComp_GeometricRotationInverse:
|
|
return "GeometricRotationInverse";
|
|
case TransformationComp_GeometricTranslationInverse:
|
|
return "GeometricTranslationInverse";
|
|
case TransformationComp_MAXIMUM: // this is to silence compiler warnings
|
|
break;
|
|
}
|
|
|
|
ai_assert(false);
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
aiVector3D FBXConverter::TransformationCompDefaultValue(TransformationComp comp)
|
|
{
|
|
// XXX a neat way to solve the never-ending special cases for scaling
|
|
// would be to do everything in log space!
|
|
return comp == TransformationComp_Scaling ? aiVector3D(1.f, 1.f, 1.f) : aiVector3D();
|
|
}
|
|
|
|
void FBXConverter::GetRotationMatrix(Model::RotOrder mode, const aiVector3D& rotation, aiMatrix4x4& out)
|
|
{
|
|
if (mode == Model::RotOrder_SphericXYZ) {
|
|
FBXImporter::LogError("Unsupported RotationMode: SphericXYZ");
|
|
out = aiMatrix4x4();
|
|
return;
|
|
}
|
|
|
|
const float angle_epsilon = 1e-6f;
|
|
|
|
out = aiMatrix4x4();
|
|
|
|
bool is_id[3] = { true, true, true };
|
|
|
|
aiMatrix4x4 temp[3];
|
|
if (std::fabs(rotation.z) > angle_epsilon) {
|
|
aiMatrix4x4::RotationZ(AI_DEG_TO_RAD(rotation.z), temp[2]);
|
|
is_id[2] = false;
|
|
}
|
|
if (std::fabs(rotation.y) > angle_epsilon) {
|
|
aiMatrix4x4::RotationY(AI_DEG_TO_RAD(rotation.y), temp[1]);
|
|
is_id[1] = false;
|
|
}
|
|
if (std::fabs(rotation.x) > angle_epsilon) {
|
|
aiMatrix4x4::RotationX(AI_DEG_TO_RAD(rotation.x), temp[0]);
|
|
is_id[0] = false;
|
|
}
|
|
|
|
int order[3] = { -1, -1, -1 };
|
|
|
|
// note: rotation order is inverted since we're left multiplying as is usual in assimp
|
|
switch (mode)
|
|
{
|
|
case Model::RotOrder_EulerXYZ:
|
|
order[0] = 2;
|
|
order[1] = 1;
|
|
order[2] = 0;
|
|
break;
|
|
|
|
case Model::RotOrder_EulerXZY:
|
|
order[0] = 1;
|
|
order[1] = 2;
|
|
order[2] = 0;
|
|
break;
|
|
|
|
case Model::RotOrder_EulerYZX:
|
|
order[0] = 0;
|
|
order[1] = 2;
|
|
order[2] = 1;
|
|
break;
|
|
|
|
case Model::RotOrder_EulerYXZ:
|
|
order[0] = 2;
|
|
order[1] = 0;
|
|
order[2] = 1;
|
|
break;
|
|
|
|
case Model::RotOrder_EulerZXY:
|
|
order[0] = 1;
|
|
order[1] = 0;
|
|
order[2] = 2;
|
|
break;
|
|
|
|
case Model::RotOrder_EulerZYX:
|
|
order[0] = 0;
|
|
order[1] = 1;
|
|
order[2] = 2;
|
|
break;
|
|
|
|
default:
|
|
ai_assert(false);
|
|
break;
|
|
}
|
|
|
|
ai_assert(order[0] >= 0);
|
|
ai_assert(order[0] <= 2);
|
|
ai_assert(order[1] >= 0);
|
|
ai_assert(order[1] <= 2);
|
|
ai_assert(order[2] >= 0);
|
|
ai_assert(order[2] <= 2);
|
|
|
|
if (!is_id[order[0]]) {
|
|
out = temp[order[0]];
|
|
}
|
|
|
|
if (!is_id[order[1]]) {
|
|
out = out * temp[order[1]];
|
|
}
|
|
|
|
if (!is_id[order[2]]) {
|
|
out = out * temp[order[2]];
|
|
}
|
|
}
|
|
|
|
bool FBXConverter::NeedsComplexTransformationChain(const Model& model)
|
|
{
|
|
const PropertyTable& props = model.Props();
|
|
bool ok;
|
|
|
|
const float zero_epsilon = 1e-6f;
|
|
const aiVector3D all_ones(1.0f, 1.0f, 1.0f);
|
|
for (size_t i = 0; i < TransformationComp_MAXIMUM; ++i) {
|
|
const TransformationComp comp = static_cast<TransformationComp>(i);
|
|
|
|
if (comp == TransformationComp_Rotation || comp == TransformationComp_Scaling || comp == TransformationComp_Translation) {
|
|
continue;
|
|
}
|
|
|
|
bool scale_compare = (comp == TransformationComp_GeometricScaling || comp == TransformationComp_Scaling);
|
|
|
|
const aiVector3D& v = PropertyGet<aiVector3D>(props, NameTransformationCompProperty(comp), ok);
|
|
if (ok && scale_compare) {
|
|
if ((v - all_ones).SquareLength() > zero_epsilon) {
|
|
return true;
|
|
}
|
|
}
|
|
else if (ok) {
|
|
if (v.SquareLength() > zero_epsilon) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
std::string FBXConverter::NameTransformationChainNode(const std::string& name, TransformationComp comp)
|
|
{
|
|
return name + std::string(MAGIC_NODE_TAG) + "_" + NameTransformationComp(comp);
|
|
}
|
|
|
|
void FBXConverter::GenerateTransformationNodeChain(const Model& model, std::vector<aiNode*>& output_nodes,
|
|
std::vector<aiNode*>& post_output_nodes) {
|
|
const PropertyTable& props = model.Props();
|
|
const Model::RotOrder rot = model.RotationOrder();
|
|
|
|
bool ok;
|
|
|
|
aiMatrix4x4 chain[TransformationComp_MAXIMUM];
|
|
std::fill_n(chain, static_cast<unsigned int>(TransformationComp_MAXIMUM), aiMatrix4x4());
|
|
|
|
// generate transformation matrices for all the different transformation components
|
|
const float zero_epsilon = 1e-6f;
|
|
const aiVector3D all_ones(1.0f, 1.0f, 1.0f);
|
|
bool is_complex = false;
|
|
|
|
const aiVector3D& PreRotation = PropertyGet<aiVector3D>(props, "PreRotation", ok);
|
|
if (ok && PreRotation.SquareLength() > zero_epsilon) {
|
|
is_complex = true;
|
|
|
|
GetRotationMatrix(Model::RotOrder::RotOrder_EulerXYZ, PreRotation, chain[TransformationComp_PreRotation]);
|
|
}
|
|
|
|
const aiVector3D& PostRotation = PropertyGet<aiVector3D>(props, "PostRotation", ok);
|
|
if (ok && PostRotation.SquareLength() > zero_epsilon) {
|
|
is_complex = true;
|
|
|
|
GetRotationMatrix(Model::RotOrder::RotOrder_EulerXYZ, PostRotation, chain[TransformationComp_PostRotation]);
|
|
}
|
|
|
|
const aiVector3D& RotationPivot = PropertyGet<aiVector3D>(props, "RotationPivot", ok);
|
|
if (ok && RotationPivot.SquareLength() > zero_epsilon) {
|
|
is_complex = true;
|
|
|
|
aiMatrix4x4::Translation(RotationPivot, chain[TransformationComp_RotationPivot]);
|
|
aiMatrix4x4::Translation(-RotationPivot, chain[TransformationComp_RotationPivotInverse]);
|
|
}
|
|
|
|
const aiVector3D& RotationOffset = PropertyGet<aiVector3D>(props, "RotationOffset", ok);
|
|
if (ok && RotationOffset.SquareLength() > zero_epsilon) {
|
|
is_complex = true;
|
|
|
|
aiMatrix4x4::Translation(RotationOffset, chain[TransformationComp_RotationOffset]);
|
|
}
|
|
|
|
const aiVector3D& ScalingOffset = PropertyGet<aiVector3D>(props, "ScalingOffset", ok);
|
|
if (ok && ScalingOffset.SquareLength() > zero_epsilon) {
|
|
is_complex = true;
|
|
|
|
aiMatrix4x4::Translation(ScalingOffset, chain[TransformationComp_ScalingOffset]);
|
|
}
|
|
|
|
const aiVector3D& ScalingPivot = PropertyGet<aiVector3D>(props, "ScalingPivot", ok);
|
|
if (ok && ScalingPivot.SquareLength() > zero_epsilon) {
|
|
is_complex = true;
|
|
|
|
aiMatrix4x4::Translation(ScalingPivot, chain[TransformationComp_ScalingPivot]);
|
|
aiMatrix4x4::Translation(-ScalingPivot, chain[TransformationComp_ScalingPivotInverse]);
|
|
}
|
|
|
|
const aiVector3D& Translation = PropertyGet<aiVector3D>(props, "Lcl Translation", ok);
|
|
if (ok && Translation.SquareLength() > zero_epsilon) {
|
|
aiMatrix4x4::Translation(Translation, chain[TransformationComp_Translation]);
|
|
}
|
|
|
|
const aiVector3D& Scaling = PropertyGet<aiVector3D>(props, "Lcl Scaling", ok);
|
|
if (ok && (Scaling - all_ones).SquareLength() > zero_epsilon) {
|
|
aiMatrix4x4::Scaling(Scaling, chain[TransformationComp_Scaling]);
|
|
}
|
|
|
|
const aiVector3D& Rotation = PropertyGet<aiVector3D>(props, "Lcl Rotation", ok);
|
|
if (ok && Rotation.SquareLength() > zero_epsilon) {
|
|
GetRotationMatrix(rot, Rotation, chain[TransformationComp_Rotation]);
|
|
}
|
|
|
|
const aiVector3D& GeometricScaling = PropertyGet<aiVector3D>(props, "GeometricScaling", ok);
|
|
if (ok && (GeometricScaling - all_ones).SquareLength() > zero_epsilon) {
|
|
is_complex = true;
|
|
aiMatrix4x4::Scaling(GeometricScaling, chain[TransformationComp_GeometricScaling]);
|
|
aiVector3D GeometricScalingInverse = GeometricScaling;
|
|
bool canscale = true;
|
|
for (unsigned int i = 0; i < 3; ++i) {
|
|
if (std::fabs(GeometricScalingInverse[i]) > zero_epsilon) {
|
|
GeometricScalingInverse[i] = 1.0f / GeometricScaling[i];
|
|
}
|
|
else {
|
|
FBXImporter::LogError("cannot invert geometric scaling matrix with a 0.0 scale component");
|
|
canscale = false;
|
|
break;
|
|
}
|
|
}
|
|
if (canscale) {
|
|
aiMatrix4x4::Scaling(GeometricScalingInverse, chain[TransformationComp_GeometricScalingInverse]);
|
|
}
|
|
}
|
|
|
|
const aiVector3D& GeometricRotation = PropertyGet<aiVector3D>(props, "GeometricRotation", ok);
|
|
if (ok && GeometricRotation.SquareLength() > zero_epsilon) {
|
|
is_complex = true;
|
|
GetRotationMatrix(rot, GeometricRotation, chain[TransformationComp_GeometricRotation]);
|
|
GetRotationMatrix(rot, GeometricRotation, chain[TransformationComp_GeometricRotationInverse]);
|
|
chain[TransformationComp_GeometricRotationInverse].Inverse();
|
|
}
|
|
|
|
const aiVector3D& GeometricTranslation = PropertyGet<aiVector3D>(props, "GeometricTranslation", ok);
|
|
if (ok && GeometricTranslation.SquareLength() > zero_epsilon) {
|
|
is_complex = true;
|
|
aiMatrix4x4::Translation(GeometricTranslation, chain[TransformationComp_GeometricTranslation]);
|
|
aiMatrix4x4::Translation(-GeometricTranslation, chain[TransformationComp_GeometricTranslationInverse]);
|
|
}
|
|
|
|
// is_complex needs to be consistent with NeedsComplexTransformationChain()
|
|
// or the interplay between this code and the animation converter would
|
|
// not be guaranteed.
|
|
ai_assert(NeedsComplexTransformationChain(model) == is_complex);
|
|
|
|
std::string name = FixNodeName(model.Name());
|
|
|
|
// now, if we have more than just Translation, Scaling and Rotation,
|
|
// we need to generate a full node chain to accommodate for assimp's
|
|
// lack to express pivots and offsets.
|
|
if (is_complex && doc.Settings().preservePivots) {
|
|
FBXImporter::LogInfo("generating full transformation chain for node: " + name);
|
|
|
|
// query the anim_chain_bits dictionary to find out which chain elements
|
|
// have associated node animation channels. These can not be dropped
|
|
// even if they have identity transform in bind pose.
|
|
NodeAnimBitMap::const_iterator it = node_anim_chain_bits.find(name);
|
|
const unsigned int anim_chain_bitmask = (it == node_anim_chain_bits.end() ? 0 : (*it).second);
|
|
|
|
unsigned int bit = 0x1;
|
|
for (size_t i = 0; i < TransformationComp_MAXIMUM; ++i, bit <<= 1) {
|
|
const TransformationComp comp = static_cast<TransformationComp>(i);
|
|
|
|
if (chain[i].IsIdentity() && (anim_chain_bitmask & bit) == 0) {
|
|
continue;
|
|
}
|
|
|
|
if (comp == TransformationComp_PostRotation) {
|
|
chain[i] = chain[i].Inverse();
|
|
}
|
|
|
|
aiNode* nd = new aiNode();
|
|
nd->mName.Set(NameTransformationChainNode(name, comp));
|
|
nd->mTransformation = chain[i];
|
|
|
|
// geometric inverses go in a post-node chain
|
|
if (comp == TransformationComp_GeometricScalingInverse ||
|
|
comp == TransformationComp_GeometricRotationInverse ||
|
|
comp == TransformationComp_GeometricTranslationInverse
|
|
) {
|
|
post_output_nodes.push_back(nd);
|
|
}
|
|
else {
|
|
output_nodes.push_back(nd);
|
|
}
|
|
}
|
|
|
|
ai_assert(output_nodes.size());
|
|
return;
|
|
}
|
|
|
|
// else, we can just multiply the matrices together
|
|
aiNode* nd = new aiNode();
|
|
output_nodes.push_back(nd);
|
|
std::string uniqueName;
|
|
GetUniqueName(name, uniqueName);
|
|
|
|
nd->mName.Set(uniqueName);
|
|
|
|
for (const auto &transform : chain) {
|
|
nd->mTransformation = nd->mTransformation * transform;
|
|
}
|
|
}
|
|
|
|
void FBXConverter::SetupNodeMetadata(const Model& model, aiNode& nd)
|
|
{
|
|
const PropertyTable& props = model.Props();
|
|
DirectPropertyMap unparsedProperties = props.GetUnparsedProperties();
|
|
|
|
// create metadata on node
|
|
const std::size_t numStaticMetaData = 2;
|
|
aiMetadata* data = aiMetadata::Alloc(static_cast<unsigned int>(unparsedProperties.size() + numStaticMetaData));
|
|
nd.mMetaData = data;
|
|
int index = 0;
|
|
|
|
// find user defined properties (3ds Max)
|
|
data->Set(index++, "UserProperties", aiString(PropertyGet<std::string>(props, "UDP3DSMAX", "")));
|
|
// preserve the info that a node was marked as Null node in the original file.
|
|
data->Set(index++, "IsNull", model.IsNull() ? true : false);
|
|
|
|
// add unparsed properties to the node's metadata
|
|
for (const DirectPropertyMap::value_type& prop : unparsedProperties) {
|
|
// Interpret the property as a concrete type
|
|
if (const TypedProperty<bool>* interpreted = prop.second->As<TypedProperty<bool> >()) {
|
|
data->Set(index++, prop.first, interpreted->Value());
|
|
}
|
|
else if (const TypedProperty<int>* interpreted = prop.second->As<TypedProperty<int> >()) {
|
|
data->Set(index++, prop.first, interpreted->Value());
|
|
}
|
|
else if (const TypedProperty<uint64_t>* interpreted = prop.second->As<TypedProperty<uint64_t> >()) {
|
|
data->Set(index++, prop.first, interpreted->Value());
|
|
}
|
|
else if (const TypedProperty<float>* interpreted = prop.second->As<TypedProperty<float> >()) {
|
|
data->Set(index++, prop.first, interpreted->Value());
|
|
}
|
|
else if (const TypedProperty<std::string>* interpreted = prop.second->As<TypedProperty<std::string> >()) {
|
|
data->Set(index++, prop.first, aiString(interpreted->Value()));
|
|
}
|
|
else if (const TypedProperty<aiVector3D>* interpreted = prop.second->As<TypedProperty<aiVector3D> >()) {
|
|
data->Set(index++, prop.first, interpreted->Value());
|
|
}
|
|
else {
|
|
ai_assert(false);
|
|
}
|
|
}
|
|
}
|
|
|
|
void FBXConverter::ConvertModel(const Model& model, aiNode& nd, const aiMatrix4x4& node_global_transform)
|
|
{
|
|
const std::vector<const Geometry*>& geos = model.GetGeometry();
|
|
|
|
std::vector<unsigned int> meshes;
|
|
meshes.reserve(geos.size());
|
|
|
|
for (const Geometry* geo : geos) {
|
|
|
|
const MeshGeometry* const mesh = dynamic_cast<const MeshGeometry*>(geo);
|
|
const LineGeometry* const line = dynamic_cast<const LineGeometry*>(geo);
|
|
if (mesh) {
|
|
const std::vector<unsigned int>& indices = ConvertMesh(*mesh, model, node_global_transform, nd);
|
|
std::copy(indices.begin(), indices.end(), std::back_inserter(meshes));
|
|
}
|
|
else if (line) {
|
|
const std::vector<unsigned int>& indices = ConvertLine(*line, model, node_global_transform, nd);
|
|
std::copy(indices.begin(), indices.end(), std::back_inserter(meshes));
|
|
}
|
|
else {
|
|
FBXImporter::LogWarn("ignoring unrecognized geometry: " + geo->Name());
|
|
}
|
|
}
|
|
|
|
if (meshes.size()) {
|
|
nd.mMeshes = new unsigned int[meshes.size()]();
|
|
nd.mNumMeshes = static_cast<unsigned int>(meshes.size());
|
|
|
|
std::swap_ranges(meshes.begin(), meshes.end(), nd.mMeshes);
|
|
}
|
|
}
|
|
|
|
std::vector<unsigned int> FBXConverter::ConvertMesh(const MeshGeometry& mesh, const Model& model,
|
|
const aiMatrix4x4& node_global_transform, aiNode& nd)
|
|
{
|
|
std::vector<unsigned int> temp;
|
|
|
|
MeshMap::const_iterator it = meshes_converted.find(&mesh);
|
|
if (it != meshes_converted.end()) {
|
|
std::copy((*it).second.begin(), (*it).second.end(), std::back_inserter(temp));
|
|
return temp;
|
|
}
|
|
|
|
const std::vector<aiVector3D>& vertices = mesh.GetVertices();
|
|
const std::vector<unsigned int>& faces = mesh.GetFaceIndexCounts();
|
|
if (vertices.empty() || faces.empty()) {
|
|
FBXImporter::LogWarn("ignoring empty geometry: " + mesh.Name());
|
|
return temp;
|
|
}
|
|
|
|
// one material per mesh maps easily to aiMesh. Multiple material
|
|
// meshes need to be split.
|
|
const MatIndexArray& mindices = mesh.GetMaterialIndices();
|
|
if (doc.Settings().readMaterials && !mindices.empty()) {
|
|
const MatIndexArray::value_type base = mindices[0];
|
|
for (MatIndexArray::value_type index : mindices) {
|
|
if (index != base) {
|
|
return ConvertMeshMultiMaterial(mesh, model, node_global_transform, nd);
|
|
}
|
|
}
|
|
}
|
|
|
|
// faster code-path, just copy the data
|
|
temp.push_back(ConvertMeshSingleMaterial(mesh, model, node_global_transform, nd));
|
|
return temp;
|
|
}
|
|
|
|
std::vector<unsigned int> FBXConverter::ConvertLine(const LineGeometry& line, const Model& model,
|
|
const aiMatrix4x4& node_global_transform, aiNode& nd)
|
|
{
|
|
std::vector<unsigned int> temp;
|
|
|
|
const std::vector<aiVector3D>& vertices = line.GetVertices();
|
|
const std::vector<int>& indices = line.GetIndices();
|
|
if (vertices.empty() || indices.empty()) {
|
|
FBXImporter::LogWarn("ignoring empty line: " + line.Name());
|
|
return temp;
|
|
}
|
|
|
|
aiMesh* const out_mesh = SetupEmptyMesh(line, nd);
|
|
out_mesh->mPrimitiveTypes |= aiPrimitiveType_LINE;
|
|
|
|
// copy vertices
|
|
out_mesh->mNumVertices = static_cast<unsigned int>(vertices.size());
|
|
out_mesh->mVertices = new aiVector3D[out_mesh->mNumVertices];
|
|
std::copy(vertices.begin(), vertices.end(), out_mesh->mVertices);
|
|
|
|
//Number of line segments (faces) is "Number of Points - Number of Endpoints"
|
|
//N.B.: Endpoints in FbxLine are denoted by negative indices.
|
|
//If such an Index is encountered, add 1 and multiply by -1 to get the real index.
|
|
unsigned int epcount = 0;
|
|
for (unsigned i = 0; i < indices.size(); i++)
|
|
{
|
|
if (indices[i] < 0) epcount++;
|
|
}
|
|
unsigned int pcount = indices.size();
|
|
unsigned int scount = out_mesh->mNumFaces = pcount - epcount;
|
|
|
|
aiFace* fac = out_mesh->mFaces = new aiFace[scount]();
|
|
for (unsigned int i = 0; i < pcount; ++i) {
|
|
if (indices[i] < 0) continue;
|
|
aiFace& f = *fac++;
|
|
f.mNumIndices = 2; //2 == aiPrimitiveType_LINE
|
|
f.mIndices = new unsigned int[2];
|
|
f.mIndices[0] = indices[i];
|
|
int segid = indices[(i + 1 == pcount ? 0 : i + 1)]; //If we have reached he last point, wrap around
|
|
f.mIndices[1] = (segid < 0 ? (segid + 1)*-1 : segid); //Convert EndPoint Index to normal Index
|
|
}
|
|
temp.push_back(static_cast<unsigned int>(meshes.size() - 1));
|
|
return temp;
|
|
}
|
|
|
|
aiMesh* FBXConverter::SetupEmptyMesh(const Geometry& mesh, aiNode& nd)
|
|
{
|
|
aiMesh* const out_mesh = new aiMesh();
|
|
meshes.push_back(out_mesh);
|
|
meshes_converted[&mesh].push_back(static_cast<unsigned int>(meshes.size() - 1));
|
|
|
|
// set name
|
|
std::string name = mesh.Name();
|
|
if (name.substr(0, 10) == "Geometry::") {
|
|
name = name.substr(10);
|
|
}
|
|
|
|
if (name.length()) {
|
|
out_mesh->mName.Set(name);
|
|
}
|
|
else
|
|
{
|
|
out_mesh->mName = nd.mName;
|
|
}
|
|
|
|
return out_mesh;
|
|
}
|
|
|
|
unsigned int FBXConverter::ConvertMeshSingleMaterial(const MeshGeometry& mesh, const Model& model,
|
|
const aiMatrix4x4& node_global_transform, aiNode& nd)
|
|
{
|
|
const MatIndexArray& mindices = mesh.GetMaterialIndices();
|
|
aiMesh* const out_mesh = SetupEmptyMesh(mesh, nd);
|
|
|
|
const std::vector<aiVector3D>& vertices = mesh.GetVertices();
|
|
const std::vector<unsigned int>& faces = mesh.GetFaceIndexCounts();
|
|
|
|
// copy vertices
|
|
out_mesh->mNumVertices = static_cast<unsigned int>(vertices.size());
|
|
out_mesh->mVertices = new aiVector3D[vertices.size()];
|
|
|
|
std::copy(vertices.begin(), vertices.end(), out_mesh->mVertices);
|
|
|
|
// generate dummy faces
|
|
out_mesh->mNumFaces = static_cast<unsigned int>(faces.size());
|
|
aiFace* fac = out_mesh->mFaces = new aiFace[faces.size()]();
|
|
|
|
unsigned int cursor = 0;
|
|
for (unsigned int pcount : faces) {
|
|
aiFace& f = *fac++;
|
|
f.mNumIndices = pcount;
|
|
f.mIndices = new unsigned int[pcount];
|
|
switch (pcount)
|
|
{
|
|
case 1:
|
|
out_mesh->mPrimitiveTypes |= aiPrimitiveType_POINT;
|
|
break;
|
|
case 2:
|
|
out_mesh->mPrimitiveTypes |= aiPrimitiveType_LINE;
|
|
break;
|
|
case 3:
|
|
out_mesh->mPrimitiveTypes |= aiPrimitiveType_TRIANGLE;
|
|
break;
|
|
default:
|
|
out_mesh->mPrimitiveTypes |= aiPrimitiveType_POLYGON;
|
|
break;
|
|
}
|
|
for (unsigned int i = 0; i < pcount; ++i) {
|
|
f.mIndices[i] = cursor++;
|
|
}
|
|
}
|
|
|
|
// copy normals
|
|
const std::vector<aiVector3D>& normals = mesh.GetNormals();
|
|
if (normals.size()) {
|
|
ai_assert(normals.size() == vertices.size());
|
|
|
|
out_mesh->mNormals = new aiVector3D[vertices.size()];
|
|
std::copy(normals.begin(), normals.end(), out_mesh->mNormals);
|
|
}
|
|
|
|
// copy tangents - assimp requires both tangents and bitangents (binormals)
|
|
// to be present, or neither of them. Compute binormals from normals
|
|
// and tangents if needed.
|
|
const std::vector<aiVector3D>& tangents = mesh.GetTangents();
|
|
const std::vector<aiVector3D>* binormals = &mesh.GetBinormals();
|
|
|
|
if (tangents.size()) {
|
|
std::vector<aiVector3D> tempBinormals;
|
|
if (!binormals->size()) {
|
|
if (normals.size()) {
|
|
tempBinormals.resize(normals.size());
|
|
for (unsigned int i = 0; i < tangents.size(); ++i) {
|
|
tempBinormals[i] = normals[i] ^ tangents[i];
|
|
}
|
|
|
|
binormals = &tempBinormals;
|
|
}
|
|
else {
|
|
binormals = NULL;
|
|
}
|
|
}
|
|
|
|
if (binormals) {
|
|
ai_assert(tangents.size() == vertices.size());
|
|
ai_assert(binormals->size() == vertices.size());
|
|
|
|
out_mesh->mTangents = new aiVector3D[vertices.size()];
|
|
std::copy(tangents.begin(), tangents.end(), out_mesh->mTangents);
|
|
|
|
out_mesh->mBitangents = new aiVector3D[vertices.size()];
|
|
std::copy(binormals->begin(), binormals->end(), out_mesh->mBitangents);
|
|
}
|
|
}
|
|
|
|
// copy texture coords
|
|
for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) {
|
|
const std::vector<aiVector2D>& uvs = mesh.GetTextureCoords(i);
|
|
if (uvs.empty()) {
|
|
break;
|
|
}
|
|
|
|
aiVector3D* out_uv = out_mesh->mTextureCoords[i] = new aiVector3D[vertices.size()];
|
|
for (const aiVector2D& v : uvs) {
|
|
*out_uv++ = aiVector3D(v.x, v.y, 0.0f);
|
|
}
|
|
|
|
out_mesh->mNumUVComponents[i] = 2;
|
|
}
|
|
|
|
// copy vertex colors
|
|
for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_COLOR_SETS; ++i) {
|
|
const std::vector<aiColor4D>& colors = mesh.GetVertexColors(i);
|
|
if (colors.empty()) {
|
|
break;
|
|
}
|
|
|
|
out_mesh->mColors[i] = new aiColor4D[vertices.size()];
|
|
std::copy(colors.begin(), colors.end(), out_mesh->mColors[i]);
|
|
}
|
|
|
|
if (!doc.Settings().readMaterials || mindices.empty()) {
|
|
FBXImporter::LogError("no material assigned to mesh, setting default material");
|
|
out_mesh->mMaterialIndex = GetDefaultMaterial();
|
|
}
|
|
else {
|
|
ConvertMaterialForMesh(out_mesh, model, mesh, mindices[0]);
|
|
}
|
|
|
|
if (doc.Settings().readWeights && mesh.DeformerSkin() != NULL) {
|
|
ConvertWeights(out_mesh, model, mesh, node_global_transform, NO_MATERIAL_SEPARATION);
|
|
}
|
|
|
|
std::vector<aiAnimMesh*> animMeshes;
|
|
for (const BlendShape* blendShape : mesh.GetBlendShapes()) {
|
|
for (const BlendShapeChannel* blendShapeChannel : blendShape->BlendShapeChannels()) {
|
|
const std::vector<const ShapeGeometry*>& shapeGeometries = blendShapeChannel->GetShapeGeometries();
|
|
for (size_t i = 0; i < shapeGeometries.size(); i++) {
|
|
aiAnimMesh *animMesh = aiCreateAnimMesh(out_mesh);
|
|
const ShapeGeometry* shapeGeometry = shapeGeometries.at(i);
|
|
const std::vector<aiVector3D>& vertices = shapeGeometry->GetVertices();
|
|
const std::vector<aiVector3D>& normals = shapeGeometry->GetNormals();
|
|
const std::vector<unsigned int>& indices = shapeGeometry->GetIndices();
|
|
animMesh->mName.Set(FixAnimMeshName(shapeGeometry->Name()));
|
|
for (size_t j = 0; j < indices.size(); j++) {
|
|
unsigned int index = indices.at(j);
|
|
aiVector3D vertex = vertices.at(j);
|
|
aiVector3D normal = normals.at(j);
|
|
unsigned int count = 0;
|
|
const unsigned int* outIndices = mesh.ToOutputVertexIndex(index, count);
|
|
for (unsigned int k = 0; k < count; k++) {
|
|
unsigned int index = outIndices[k];
|
|
animMesh->mVertices[index] += vertex;
|
|
if (animMesh->mNormals != nullptr) {
|
|
animMesh->mNormals[index] += normal;
|
|
animMesh->mNormals[index].NormalizeSafe();
|
|
}
|
|
}
|
|
}
|
|
animMesh->mWeight = shapeGeometries.size() > 1 ? blendShapeChannel->DeformPercent() / 100.0f : 1.0f;
|
|
animMeshes.push_back(animMesh);
|
|
}
|
|
}
|
|
}
|
|
size_t numAnimMeshes = animMeshes.size();
|
|
if (numAnimMeshes > 0) {
|
|
out_mesh->mNumAnimMeshes = static_cast<unsigned int>(numAnimMeshes);
|
|
out_mesh->mAnimMeshes = new aiAnimMesh*[numAnimMeshes];
|
|
for (size_t i = 0; i < numAnimMeshes; i++) {
|
|
out_mesh->mAnimMeshes[i] = animMeshes.at(i);
|
|
}
|
|
}
|
|
return static_cast<unsigned int>(meshes.size() - 1);
|
|
}
|
|
|
|
std::vector<unsigned int> FBXConverter::ConvertMeshMultiMaterial(const MeshGeometry& mesh, const Model& model,
|
|
const aiMatrix4x4& node_global_transform, aiNode& nd)
|
|
{
|
|
const MatIndexArray& mindices = mesh.GetMaterialIndices();
|
|
ai_assert(mindices.size());
|
|
|
|
std::set<MatIndexArray::value_type> had;
|
|
std::vector<unsigned int> indices;
|
|
|
|
for (MatIndexArray::value_type index : mindices) {
|
|
if (had.find(index) == had.end()) {
|
|
|
|
indices.push_back(ConvertMeshMultiMaterial(mesh, model, index, node_global_transform, nd));
|
|
had.insert(index);
|
|
}
|
|
}
|
|
|
|
return indices;
|
|
}
|
|
|
|
unsigned int FBXConverter::ConvertMeshMultiMaterial(const MeshGeometry& mesh, const Model& model,
|
|
MatIndexArray::value_type index,
|
|
const aiMatrix4x4& node_global_transform,
|
|
aiNode& nd)
|
|
{
|
|
aiMesh* const out_mesh = SetupEmptyMesh(mesh, nd);
|
|
|
|
const MatIndexArray& mindices = mesh.GetMaterialIndices();
|
|
const std::vector<aiVector3D>& vertices = mesh.GetVertices();
|
|
const std::vector<unsigned int>& faces = mesh.GetFaceIndexCounts();
|
|
|
|
const bool process_weights = doc.Settings().readWeights && mesh.DeformerSkin() != NULL;
|
|
|
|
unsigned int count_faces = 0;
|
|
unsigned int count_vertices = 0;
|
|
|
|
// count faces
|
|
std::vector<unsigned int>::const_iterator itf = faces.begin();
|
|
for (MatIndexArray::const_iterator it = mindices.begin(),
|
|
end = mindices.end(); it != end; ++it, ++itf)
|
|
{
|
|
if ((*it) != index) {
|
|
continue;
|
|
}
|
|
++count_faces;
|
|
count_vertices += *itf;
|
|
}
|
|
|
|
ai_assert(count_faces);
|
|
ai_assert(count_vertices);
|
|
|
|
// mapping from output indices to DOM indexing, needed to resolve weights
|
|
std::vector<unsigned int> reverseMapping;
|
|
|
|
if (process_weights) {
|
|
reverseMapping.resize(count_vertices);
|
|
}
|
|
|
|
// allocate output data arrays, but don't fill them yet
|
|
out_mesh->mNumVertices = count_vertices;
|
|
out_mesh->mVertices = new aiVector3D[count_vertices];
|
|
|
|
out_mesh->mNumFaces = count_faces;
|
|
aiFace* fac = out_mesh->mFaces = new aiFace[count_faces]();
|
|
|
|
|
|
// allocate normals
|
|
const std::vector<aiVector3D>& normals = mesh.GetNormals();
|
|
if (normals.size()) {
|
|
ai_assert(normals.size() == vertices.size());
|
|
out_mesh->mNormals = new aiVector3D[vertices.size()];
|
|
}
|
|
|
|
// allocate tangents, binormals.
|
|
const std::vector<aiVector3D>& tangents = mesh.GetTangents();
|
|
const std::vector<aiVector3D>* binormals = &mesh.GetBinormals();
|
|
std::vector<aiVector3D> tempBinormals;
|
|
|
|
if (tangents.size()) {
|
|
if (!binormals->size()) {
|
|
if (normals.size()) {
|
|
// XXX this computes the binormals for the entire mesh, not only
|
|
// the part for which we need them.
|
|
tempBinormals.resize(normals.size());
|
|
for (unsigned int i = 0; i < tangents.size(); ++i) {
|
|
tempBinormals[i] = normals[i] ^ tangents[i];
|
|
}
|
|
|
|
binormals = &tempBinormals;
|
|
}
|
|
else {
|
|
binormals = NULL;
|
|
}
|
|
}
|
|
|
|
if (binormals) {
|
|
ai_assert(tangents.size() == vertices.size() && binormals->size() == vertices.size());
|
|
|
|
out_mesh->mTangents = new aiVector3D[vertices.size()];
|
|
out_mesh->mBitangents = new aiVector3D[vertices.size()];
|
|
}
|
|
}
|
|
|
|
// allocate texture coords
|
|
unsigned int num_uvs = 0;
|
|
for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i, ++num_uvs) {
|
|
const std::vector<aiVector2D>& uvs = mesh.GetTextureCoords(i);
|
|
if (uvs.empty()) {
|
|
break;
|
|
}
|
|
|
|
out_mesh->mTextureCoords[i] = new aiVector3D[vertices.size()];
|
|
out_mesh->mNumUVComponents[i] = 2;
|
|
}
|
|
|
|
// allocate vertex colors
|
|
unsigned int num_vcs = 0;
|
|
for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_COLOR_SETS; ++i, ++num_vcs) {
|
|
const std::vector<aiColor4D>& colors = mesh.GetVertexColors(i);
|
|
if (colors.empty()) {
|
|
break;
|
|
}
|
|
|
|
out_mesh->mColors[i] = new aiColor4D[vertices.size()];
|
|
}
|
|
|
|
unsigned int cursor = 0, in_cursor = 0;
|
|
|
|
itf = faces.begin();
|
|
for (MatIndexArray::const_iterator it = mindices.begin(), end = mindices.end(); it != end; ++it, ++itf)
|
|
{
|
|
const unsigned int pcount = *itf;
|
|
if ((*it) != index) {
|
|
in_cursor += pcount;
|
|
continue;
|
|
}
|
|
|
|
aiFace& f = *fac++;
|
|
|
|
f.mNumIndices = pcount;
|
|
f.mIndices = new unsigned int[pcount];
|
|
switch (pcount)
|
|
{
|
|
case 1:
|
|
out_mesh->mPrimitiveTypes |= aiPrimitiveType_POINT;
|
|
break;
|
|
case 2:
|
|
out_mesh->mPrimitiveTypes |= aiPrimitiveType_LINE;
|
|
break;
|
|
case 3:
|
|
out_mesh->mPrimitiveTypes |= aiPrimitiveType_TRIANGLE;
|
|
break;
|
|
default:
|
|
out_mesh->mPrimitiveTypes |= aiPrimitiveType_POLYGON;
|
|
break;
|
|
}
|
|
for (unsigned int i = 0; i < pcount; ++i, ++cursor, ++in_cursor) {
|
|
f.mIndices[i] = cursor;
|
|
|
|
if (reverseMapping.size()) {
|
|
reverseMapping[cursor] = in_cursor;
|
|
}
|
|
|
|
out_mesh->mVertices[cursor] = vertices[in_cursor];
|
|
|
|
if (out_mesh->mNormals) {
|
|
out_mesh->mNormals[cursor] = normals[in_cursor];
|
|
}
|
|
|
|
if (out_mesh->mTangents) {
|
|
out_mesh->mTangents[cursor] = tangents[in_cursor];
|
|
out_mesh->mBitangents[cursor] = (*binormals)[in_cursor];
|
|
}
|
|
|
|
for (unsigned int j = 0; j < num_uvs; ++j) {
|
|
const std::vector<aiVector2D>& uvs = mesh.GetTextureCoords(j);
|
|
out_mesh->mTextureCoords[j][cursor] = aiVector3D(uvs[in_cursor].x, uvs[in_cursor].y, 0.0f);
|
|
}
|
|
|
|
for (unsigned int j = 0; j < num_vcs; ++j) {
|
|
const std::vector<aiColor4D>& cols = mesh.GetVertexColors(j);
|
|
out_mesh->mColors[j][cursor] = cols[in_cursor];
|
|
}
|
|
}
|
|
}
|
|
|
|
ConvertMaterialForMesh(out_mesh, model, mesh, index);
|
|
|
|
if (process_weights) {
|
|
ConvertWeights(out_mesh, model, mesh, node_global_transform, index, &reverseMapping);
|
|
}
|
|
|
|
return static_cast<unsigned int>(meshes.size() - 1);
|
|
}
|
|
|
|
void FBXConverter::ConvertWeights(aiMesh* out, const Model& model, const MeshGeometry& geo,
|
|
const aiMatrix4x4& node_global_transform,
|
|
unsigned int materialIndex,
|
|
std::vector<unsigned int>* outputVertStartIndices)
|
|
{
|
|
ai_assert(geo.DeformerSkin());
|
|
|
|
std::vector<size_t> out_indices;
|
|
std::vector<size_t> index_out_indices;
|
|
std::vector<size_t> count_out_indices;
|
|
|
|
const Skin& sk = *geo.DeformerSkin();
|
|
|
|
std::vector<aiBone*> bones;
|
|
bones.reserve(sk.Clusters().size());
|
|
|
|
const bool no_mat_check = materialIndex == NO_MATERIAL_SEPARATION;
|
|
ai_assert(no_mat_check || outputVertStartIndices);
|
|
|
|
try {
|
|
|
|
for (const Cluster* cluster : sk.Clusters()) {
|
|
ai_assert(cluster);
|
|
|
|
const WeightIndexArray& indices = cluster->GetIndices();
|
|
|
|
if (indices.empty()) {
|
|
continue;
|
|
}
|
|
|
|
const MatIndexArray& mats = geo.GetMaterialIndices();
|
|
|
|
bool ok = false;
|
|
|
|
const size_t no_index_sentinel = std::numeric_limits<size_t>::max();
|
|
|
|
count_out_indices.clear();
|
|
index_out_indices.clear();
|
|
out_indices.clear();
|
|
|
|
// now check if *any* of these weights is contained in the output mesh,
|
|
// taking notes so we don't need to do it twice.
|
|
for (WeightIndexArray::value_type index : indices) {
|
|
|
|
unsigned int count = 0;
|
|
const unsigned int* const out_idx = geo.ToOutputVertexIndex(index, count);
|
|
// ToOutputVertexIndex only returns NULL if index is out of bounds
|
|
// which should never happen
|
|
ai_assert(out_idx != NULL);
|
|
|
|
index_out_indices.push_back(no_index_sentinel);
|
|
count_out_indices.push_back(0);
|
|
|
|
for (unsigned int i = 0; i < count; ++i) {
|
|
if (no_mat_check || static_cast<size_t>(mats[geo.FaceForVertexIndex(out_idx[i])]) == materialIndex) {
|
|
|
|
if (index_out_indices.back() == no_index_sentinel) {
|
|
index_out_indices.back() = out_indices.size();
|
|
|
|
}
|
|
|
|
if (no_mat_check) {
|
|
out_indices.push_back(out_idx[i]);
|
|
}
|
|
else {
|
|
// this extra lookup is in O(logn), so the entire algorithm becomes O(nlogn)
|
|
const std::vector<unsigned int>::iterator it = std::lower_bound(
|
|
outputVertStartIndices->begin(),
|
|
outputVertStartIndices->end(),
|
|
out_idx[i]
|
|
);
|
|
|
|
out_indices.push_back(std::distance(outputVertStartIndices->begin(), it));
|
|
}
|
|
|
|
++count_out_indices.back();
|
|
ok = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// if we found at least one, generate the output bones
|
|
// XXX this could be heavily simplified by collecting the bone
|
|
// data in a single step.
|
|
if (ok) {
|
|
ConvertCluster(bones, model, *cluster, out_indices, index_out_indices,
|
|
count_out_indices, node_global_transform);
|
|
}
|
|
}
|
|
}
|
|
catch (std::exception&) {
|
|
std::for_each(bones.begin(), bones.end(), Util::delete_fun<aiBone>());
|
|
throw;
|
|
}
|
|
|
|
if (bones.empty()) {
|
|
return;
|
|
}
|
|
|
|
out->mBones = new aiBone*[bones.size()]();
|
|
out->mNumBones = static_cast<unsigned int>(bones.size());
|
|
|
|
std::swap_ranges(bones.begin(), bones.end(), out->mBones);
|
|
}
|
|
|
|
void FBXConverter::ConvertCluster(std::vector<aiBone*>& bones, const Model& /*model*/, const Cluster& cl,
|
|
std::vector<size_t>& out_indices,
|
|
std::vector<size_t>& index_out_indices,
|
|
std::vector<size_t>& count_out_indices,
|
|
const aiMatrix4x4& node_global_transform)
|
|
{
|
|
|
|
aiBone* const bone = new aiBone();
|
|
bones.push_back(bone);
|
|
|
|
bone->mName = FixNodeName(cl.TargetNode()->Name());
|
|
|
|
bone->mOffsetMatrix = cl.TransformLink();
|
|
bone->mOffsetMatrix.Inverse();
|
|
|
|
bone->mOffsetMatrix = bone->mOffsetMatrix * node_global_transform;
|
|
|
|
bone->mNumWeights = static_cast<unsigned int>(out_indices.size());
|
|
aiVertexWeight* cursor = bone->mWeights = new aiVertexWeight[out_indices.size()];
|
|
|
|
const size_t no_index_sentinel = std::numeric_limits<size_t>::max();
|
|
const WeightArray& weights = cl.GetWeights();
|
|
|
|
const size_t c = index_out_indices.size();
|
|
for (size_t i = 0; i < c; ++i) {
|
|
const size_t index_index = index_out_indices[i];
|
|
|
|
if (index_index == no_index_sentinel) {
|
|
continue;
|
|
}
|
|
|
|
const size_t cc = count_out_indices[i];
|
|
for (size_t j = 0; j < cc; ++j) {
|
|
aiVertexWeight& out_weight = *cursor++;
|
|
|
|
out_weight.mVertexId = static_cast<unsigned int>(out_indices[index_index + j]);
|
|
out_weight.mWeight = weights[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
void FBXConverter::ConvertMaterialForMesh(aiMesh* out, const Model& model, const MeshGeometry& geo,
|
|
MatIndexArray::value_type materialIndex)
|
|
{
|
|
// locate source materials for this mesh
|
|
const std::vector<const Material*>& mats = model.GetMaterials();
|
|
if (static_cast<unsigned int>(materialIndex) >= mats.size() || materialIndex < 0) {
|
|
FBXImporter::LogError("material index out of bounds, setting default material");
|
|
out->mMaterialIndex = GetDefaultMaterial();
|
|
return;
|
|
}
|
|
|
|
const Material* const mat = mats[materialIndex];
|
|
MaterialMap::const_iterator it = materials_converted.find(mat);
|
|
if (it != materials_converted.end()) {
|
|
out->mMaterialIndex = (*it).second;
|
|
return;
|
|
}
|
|
|
|
out->mMaterialIndex = ConvertMaterial(*mat, &geo);
|
|
materials_converted[mat] = out->mMaterialIndex;
|
|
}
|
|
|
|
unsigned int FBXConverter::GetDefaultMaterial()
|
|
{
|
|
if (defaultMaterialIndex) {
|
|
return defaultMaterialIndex - 1;
|
|
}
|
|
|
|
aiMaterial* out_mat = new aiMaterial();
|
|
materials.push_back(out_mat);
|
|
|
|
const aiColor3D diffuse = aiColor3D(0.8f, 0.8f, 0.8f);
|
|
out_mat->AddProperty(&diffuse, 1, AI_MATKEY_COLOR_DIFFUSE);
|
|
|
|
aiString s;
|
|
s.Set(AI_DEFAULT_MATERIAL_NAME);
|
|
|
|
out_mat->AddProperty(&s, AI_MATKEY_NAME);
|
|
|
|
defaultMaterialIndex = static_cast<unsigned int>(materials.size());
|
|
return defaultMaterialIndex - 1;
|
|
}
|
|
|
|
|
|
unsigned int FBXConverter::ConvertMaterial(const Material& material, const MeshGeometry* const mesh)
|
|
{
|
|
const PropertyTable& props = material.Props();
|
|
|
|
// generate empty output material
|
|
aiMaterial* out_mat = new aiMaterial();
|
|
materials_converted[&material] = static_cast<unsigned int>(materials.size());
|
|
|
|
materials.push_back(out_mat);
|
|
|
|
aiString str;
|
|
|
|
// strip Material:: prefix
|
|
std::string name = material.Name();
|
|
if (name.substr(0, 10) == "Material::") {
|
|
name = name.substr(10);
|
|
}
|
|
|
|
// set material name if not empty - this could happen
|
|
// and there should be no key for it in this case.
|
|
if (name.length()) {
|
|
str.Set(name);
|
|
out_mat->AddProperty(&str, AI_MATKEY_NAME);
|
|
}
|
|
|
|
// shading stuff and colors
|
|
SetShadingPropertiesCommon(out_mat, props);
|
|
SetShadingPropertiesRaw( out_mat, props, material.Textures(), mesh );
|
|
|
|
// texture assignments
|
|
SetTextureProperties(out_mat, material.Textures(), mesh);
|
|
SetTextureProperties(out_mat, material.LayeredTextures(), mesh);
|
|
|
|
return static_cast<unsigned int>(materials.size() - 1);
|
|
}
|
|
|
|
unsigned int FBXConverter::ConvertVideo(const Video& video)
|
|
{
|
|
// generate empty output texture
|
|
aiTexture* out_tex = new aiTexture();
|
|
textures.push_back(out_tex);
|
|
|
|
// assuming the texture is compressed
|
|
out_tex->mWidth = static_cast<unsigned int>(video.ContentLength()); // total data size
|
|
out_tex->mHeight = 0; // fixed to 0
|
|
|
|
// steal the data from the Video to avoid an additional copy
|
|
out_tex->pcData = reinterpret_cast<aiTexel*>(const_cast<Video&>(video).RelinquishContent());
|
|
|
|
// try to extract a hint from the file extension
|
|
const std::string& filename = video.FileName().empty() ? video.RelativeFilename() : video.FileName();
|
|
std::string ext = BaseImporter::GetExtension(filename);
|
|
|
|
if (ext == "jpeg") {
|
|
ext = "jpg";
|
|
}
|
|
|
|
if (ext.size() <= 3) {
|
|
memcpy(out_tex->achFormatHint, ext.c_str(), ext.size());
|
|
}
|
|
|
|
out_tex->mFilename.Set(video.FileName().c_str());
|
|
|
|
return static_cast<unsigned int>(textures.size() - 1);
|
|
}
|
|
|
|
aiString FBXConverter::GetTexturePath(const Texture* tex)
|
|
{
|
|
aiString path;
|
|
path.Set(tex->RelativeFilename());
|
|
|
|
const Video* media = tex->Media();
|
|
if (media != nullptr) {
|
|
bool textureReady = false; //tells if our texture is ready (if it was loaded or if it was found)
|
|
unsigned int index;
|
|
|
|
VideoMap::const_iterator it = textures_converted.find(media);
|
|
if (it != textures_converted.end()) {
|
|
index = (*it).second;
|
|
textureReady = true;
|
|
}
|
|
else {
|
|
if (media->ContentLength() > 0) {
|
|
index = ConvertVideo(*media);
|
|
textures_converted[media] = index;
|
|
textureReady = true;
|
|
}
|
|
}
|
|
|
|
// setup texture reference string (copied from ColladaLoader::FindFilenameForEffectTexture), if the texture is ready
|
|
if (doc.Settings().useLegacyEmbeddedTextureNaming) {
|
|
if (textureReady) {
|
|
// TODO: check the possibility of using the flag "AI_CONFIG_IMPORT_FBX_EMBEDDED_TEXTURES_LEGACY_NAMING"
|
|
// In FBX files textures are now stored internally by Assimp with their filename included
|
|
// Now Assimp can lookup through the loaded textures after all data is processed
|
|
// We need to load all textures before referencing them, as FBX file format order may reference a texture before loading it
|
|
// This may occur on this case too, it has to be studied
|
|
path.data[0] = '*';
|
|
path.length = 1 + ASSIMP_itoa10(path.data + 1, MAXLEN - 1, index);
|
|
}
|
|
}
|
|
}
|
|
|
|
return path;
|
|
}
|
|
|
|
void FBXConverter::TrySetTextureProperties(aiMaterial* out_mat, const TextureMap& textures,
|
|
const std::string& propName,
|
|
aiTextureType target, const MeshGeometry* const mesh)
|
|
{
|
|
TextureMap::const_iterator it = textures.find(propName);
|
|
if (it == textures.end()) {
|
|
return;
|
|
}
|
|
|
|
const Texture* const tex = (*it).second;
|
|
if (tex != 0)
|
|
{
|
|
aiString path = GetTexturePath(tex);
|
|
out_mat->AddProperty(&path, _AI_MATKEY_TEXTURE_BASE, target, 0);
|
|
|
|
aiUVTransform uvTrafo;
|
|
// XXX handle all kinds of UV transformations
|
|
uvTrafo.mScaling = tex->UVScaling();
|
|
uvTrafo.mTranslation = tex->UVTranslation();
|
|
out_mat->AddProperty(&uvTrafo, 1, _AI_MATKEY_UVTRANSFORM_BASE, target, 0);
|
|
|
|
const PropertyTable& props = tex->Props();
|
|
|
|
int uvIndex = 0;
|
|
|
|
bool ok;
|
|
const std::string& uvSet = PropertyGet<std::string>(props, "UVSet", ok);
|
|
if (ok) {
|
|
// "default" is the name which usually appears in the FbxFileTexture template
|
|
if (uvSet != "default" && uvSet.length()) {
|
|
// this is a bit awkward - we need to find a mesh that uses this
|
|
// material and scan its UV channels for the given UV name because
|
|
// assimp references UV channels by index, not by name.
|
|
|
|
// XXX: the case that UV channels may appear in different orders
|
|
// in meshes is unhandled. A possible solution would be to sort
|
|
// the UV channels alphabetically, but this would have the side
|
|
// effect that the primary (first) UV channel would sometimes
|
|
// be moved, causing trouble when users read only the first
|
|
// UV channel and ignore UV channel assignments altogether.
|
|
|
|
const unsigned int matIndex = static_cast<unsigned int>(std::distance(materials.begin(),
|
|
std::find(materials.begin(), materials.end(), out_mat)
|
|
));
|
|
|
|
|
|
uvIndex = -1;
|
|
if (!mesh)
|
|
{
|
|
for (const MeshMap::value_type& v : meshes_converted) {
|
|
const MeshGeometry* const mesh = dynamic_cast<const MeshGeometry*> (v.first);
|
|
if (!mesh) {
|
|
continue;
|
|
}
|
|
|
|
const MatIndexArray& mats = mesh->GetMaterialIndices();
|
|
if (std::find(mats.begin(), mats.end(), matIndex) == mats.end()) {
|
|
continue;
|
|
}
|
|
|
|
int index = -1;
|
|
for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) {
|
|
if (mesh->GetTextureCoords(i).empty()) {
|
|
break;
|
|
}
|
|
const std::string& name = mesh->GetTextureCoordChannelName(i);
|
|
if (name == uvSet) {
|
|
index = static_cast<int>(i);
|
|
break;
|
|
}
|
|
}
|
|
if (index == -1) {
|
|
FBXImporter::LogWarn("did not find UV channel named " + uvSet + " in a mesh using this material");
|
|
continue;
|
|
}
|
|
|
|
if (uvIndex == -1) {
|
|
uvIndex = index;
|
|
}
|
|
else {
|
|
FBXImporter::LogWarn("the UV channel named " + uvSet +
|
|
" appears at different positions in meshes, results will be wrong");
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
int index = -1;
|
|
for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) {
|
|
if (mesh->GetTextureCoords(i).empty()) {
|
|
break;
|
|
}
|
|
const std::string& name = mesh->GetTextureCoordChannelName(i);
|
|
if (name == uvSet) {
|
|
index = static_cast<int>(i);
|
|
break;
|
|
}
|
|
}
|
|
if (index == -1) {
|
|
FBXImporter::LogWarn("did not find UV channel named " + uvSet + " in a mesh using this material");
|
|
}
|
|
|
|
if (uvIndex == -1) {
|
|
uvIndex = index;
|
|
}
|
|
}
|
|
|
|
if (uvIndex == -1) {
|
|
FBXImporter::LogWarn("failed to resolve UV channel " + uvSet + ", using first UV channel");
|
|
uvIndex = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
out_mat->AddProperty(&uvIndex, 1, _AI_MATKEY_UVWSRC_BASE, target, 0);
|
|
}
|
|
}
|
|
|
|
void FBXConverter::TrySetTextureProperties(aiMaterial* out_mat, const LayeredTextureMap& layeredTextures,
|
|
const std::string& propName,
|
|
aiTextureType target, const MeshGeometry* const mesh) {
|
|
LayeredTextureMap::const_iterator it = layeredTextures.find(propName);
|
|
if (it == layeredTextures.end()) {
|
|
return;
|
|
}
|
|
|
|
int texCount = (*it).second->textureCount();
|
|
|
|
// Set the blend mode for layered textures
|
|
int blendmode = (*it).second->GetBlendMode();
|
|
out_mat->AddProperty(&blendmode, 1, _AI_MATKEY_TEXOP_BASE, target, 0);
|
|
|
|
for (int texIndex = 0; texIndex < texCount; texIndex++) {
|
|
|
|
const Texture* const tex = (*it).second->getTexture(texIndex);
|
|
|
|
aiString path = GetTexturePath(tex);
|
|
out_mat->AddProperty(&path, _AI_MATKEY_TEXTURE_BASE, target, texIndex);
|
|
|
|
aiUVTransform uvTrafo;
|
|
// XXX handle all kinds of UV transformations
|
|
uvTrafo.mScaling = tex->UVScaling();
|
|
uvTrafo.mTranslation = tex->UVTranslation();
|
|
out_mat->AddProperty(&uvTrafo, 1, _AI_MATKEY_UVTRANSFORM_BASE, target, texIndex);
|
|
|
|
const PropertyTable& props = tex->Props();
|
|
|
|
int uvIndex = 0;
|
|
|
|
bool ok;
|
|
const std::string& uvSet = PropertyGet<std::string>(props, "UVSet", ok);
|
|
if (ok) {
|
|
// "default" is the name which usually appears in the FbxFileTexture template
|
|
if (uvSet != "default" && uvSet.length()) {
|
|
// this is a bit awkward - we need to find a mesh that uses this
|
|
// material and scan its UV channels for the given UV name because
|
|
// assimp references UV channels by index, not by name.
|
|
|
|
// XXX: the case that UV channels may appear in different orders
|
|
// in meshes is unhandled. A possible solution would be to sort
|
|
// the UV channels alphabetically, but this would have the side
|
|
// effect that the primary (first) UV channel would sometimes
|
|
// be moved, causing trouble when users read only the first
|
|
// UV channel and ignore UV channel assignments altogether.
|
|
|
|
const unsigned int matIndex = static_cast<unsigned int>(std::distance(materials.begin(),
|
|
std::find(materials.begin(), materials.end(), out_mat)
|
|
));
|
|
|
|
uvIndex = -1;
|
|
if (!mesh)
|
|
{
|
|
for (const MeshMap::value_type& v : meshes_converted) {
|
|
const MeshGeometry* const mesh = dynamic_cast<const MeshGeometry*> (v.first);
|
|
if (!mesh) {
|
|
continue;
|
|
}
|
|
|
|
const MatIndexArray& mats = mesh->GetMaterialIndices();
|
|
if (std::find(mats.begin(), mats.end(), matIndex) == mats.end()) {
|
|
continue;
|
|
}
|
|
|
|
int index = -1;
|
|
for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) {
|
|
if (mesh->GetTextureCoords(i).empty()) {
|
|
break;
|
|
}
|
|
const std::string& name = mesh->GetTextureCoordChannelName(i);
|
|
if (name == uvSet) {
|
|
index = static_cast<int>(i);
|
|
break;
|
|
}
|
|
}
|
|
if (index == -1) {
|
|
FBXImporter::LogWarn("did not find UV channel named " + uvSet + " in a mesh using this material");
|
|
continue;
|
|
}
|
|
|
|
if (uvIndex == -1) {
|
|
uvIndex = index;
|
|
}
|
|
else {
|
|
FBXImporter::LogWarn("the UV channel named " + uvSet +
|
|
" appears at different positions in meshes, results will be wrong");
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
int index = -1;
|
|
for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) {
|
|
if (mesh->GetTextureCoords(i).empty()) {
|
|
break;
|
|
}
|
|
const std::string& name = mesh->GetTextureCoordChannelName(i);
|
|
if (name == uvSet) {
|
|
index = static_cast<int>(i);
|
|
break;
|
|
}
|
|
}
|
|
if (index == -1) {
|
|
FBXImporter::LogWarn("did not find UV channel named " + uvSet + " in a mesh using this material");
|
|
}
|
|
|
|
if (uvIndex == -1) {
|
|
uvIndex = index;
|
|
}
|
|
}
|
|
|
|
if (uvIndex == -1) {
|
|
FBXImporter::LogWarn("failed to resolve UV channel " + uvSet + ", using first UV channel");
|
|
uvIndex = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
out_mat->AddProperty(&uvIndex, 1, _AI_MATKEY_UVWSRC_BASE, target, texIndex);
|
|
}
|
|
}
|
|
|
|
void FBXConverter::SetTextureProperties(aiMaterial* out_mat, const TextureMap& textures, const MeshGeometry* const mesh)
|
|
{
|
|
TrySetTextureProperties(out_mat, textures, "DiffuseColor", aiTextureType_DIFFUSE, mesh);
|
|
TrySetTextureProperties(out_mat, textures, "AmbientColor", aiTextureType_AMBIENT, mesh);
|
|
TrySetTextureProperties(out_mat, textures, "EmissiveColor", aiTextureType_EMISSIVE, mesh);
|
|
TrySetTextureProperties(out_mat, textures, "SpecularColor", aiTextureType_SPECULAR, mesh);
|
|
TrySetTextureProperties(out_mat, textures, "SpecularFactor", aiTextureType_SPECULAR, mesh);
|
|
TrySetTextureProperties(out_mat, textures, "TransparentColor", aiTextureType_OPACITY, mesh);
|
|
TrySetTextureProperties(out_mat, textures, "ReflectionColor", aiTextureType_REFLECTION, mesh);
|
|
TrySetTextureProperties(out_mat, textures, "DisplacementColor", aiTextureType_DISPLACEMENT, mesh);
|
|
TrySetTextureProperties(out_mat, textures, "NormalMap", aiTextureType_NORMALS, mesh);
|
|
TrySetTextureProperties(out_mat, textures, "Bump", aiTextureType_HEIGHT, mesh);
|
|
TrySetTextureProperties(out_mat, textures, "ShininessExponent", aiTextureType_SHININESS, mesh);
|
|
TrySetTextureProperties( out_mat, textures, "TransparencyFactor", aiTextureType_OPACITY, mesh );
|
|
TrySetTextureProperties( out_mat, textures, "EmissiveFactor", aiTextureType_EMISSIVE, mesh );
|
|
//Maya counterparts
|
|
TrySetTextureProperties(out_mat, textures, "Maya|DiffuseTexture", aiTextureType_DIFFUSE, mesh);
|
|
TrySetTextureProperties(out_mat, textures, "Maya|NormalTexture", aiTextureType_NORMALS, mesh);
|
|
TrySetTextureProperties(out_mat, textures, "Maya|SpecularTexture", aiTextureType_SPECULAR, mesh);
|
|
TrySetTextureProperties(out_mat, textures, "Maya|FalloffTexture", aiTextureType_OPACITY, mesh);
|
|
TrySetTextureProperties(out_mat, textures, "Maya|ReflectionMapTexture", aiTextureType_REFLECTION, mesh);
|
|
}
|
|
|
|
void FBXConverter::SetTextureProperties(aiMaterial* out_mat, const LayeredTextureMap& layeredTextures, const MeshGeometry* const mesh)
|
|
{
|
|
TrySetTextureProperties(out_mat, layeredTextures, "DiffuseColor", aiTextureType_DIFFUSE, mesh);
|
|
TrySetTextureProperties(out_mat, layeredTextures, "AmbientColor", aiTextureType_AMBIENT, mesh);
|
|
TrySetTextureProperties(out_mat, layeredTextures, "EmissiveColor", aiTextureType_EMISSIVE, mesh);
|
|
TrySetTextureProperties(out_mat, layeredTextures, "SpecularColor", aiTextureType_SPECULAR, mesh);
|
|
TrySetTextureProperties(out_mat, layeredTextures, "SpecularFactor", aiTextureType_SPECULAR, mesh);
|
|
TrySetTextureProperties(out_mat, layeredTextures, "TransparentColor", aiTextureType_OPACITY, mesh);
|
|
TrySetTextureProperties(out_mat, layeredTextures, "ReflectionColor", aiTextureType_REFLECTION, mesh);
|
|
TrySetTextureProperties(out_mat, layeredTextures, "DisplacementColor", aiTextureType_DISPLACEMENT, mesh);
|
|
TrySetTextureProperties(out_mat, layeredTextures, "NormalMap", aiTextureType_NORMALS, mesh);
|
|
TrySetTextureProperties(out_mat, layeredTextures, "Bump", aiTextureType_HEIGHT, mesh);
|
|
TrySetTextureProperties(out_mat, layeredTextures, "ShininessExponent", aiTextureType_SHININESS, mesh);
|
|
TrySetTextureProperties( out_mat, layeredTextures, "EmissiveFactor", aiTextureType_EMISSIVE, mesh );
|
|
TrySetTextureProperties( out_mat, layeredTextures, "TransparencyFactor", aiTextureType_OPACITY, mesh );
|
|
}
|
|
|
|
aiColor3D FBXConverter::GetColorPropertyFactored(const PropertyTable& props, const std::string& colorName,
|
|
const std::string& factorName, bool& result, bool useTemplate)
|
|
{
|
|
result = true;
|
|
|
|
bool ok;
|
|
aiVector3D BaseColor = PropertyGet<aiVector3D>(props, colorName, ok, useTemplate);
|
|
if (!ok) {
|
|
result = false;
|
|
return aiColor3D(0.0f, 0.0f, 0.0f);
|
|
}
|
|
|
|
// if no factor name, return the colour as is
|
|
if (factorName.empty()) {
|
|
return aiColor3D(BaseColor.x, BaseColor.y, BaseColor.z);
|
|
}
|
|
|
|
// otherwise it should be multiplied by the factor, if found.
|
|
float factor = PropertyGet<float>(props, factorName, ok, useTemplate);
|
|
if (ok) {
|
|
BaseColor *= factor;
|
|
}
|
|
return aiColor3D(BaseColor.x, BaseColor.y, BaseColor.z);
|
|
}
|
|
|
|
aiColor3D FBXConverter::GetColorPropertyFromMaterial(const PropertyTable& props, const std::string& baseName,
|
|
bool& result)
|
|
{
|
|
return GetColorPropertyFactored(props, baseName + "Color", baseName + "Factor", result, true);
|
|
}
|
|
|
|
aiColor3D FBXConverter::GetColorProperty(const PropertyTable& props, const std::string& colorName,
|
|
bool& result, bool useTemplate)
|
|
{
|
|
result = true;
|
|
bool ok;
|
|
const aiVector3D& ColorVec = PropertyGet<aiVector3D>(props, colorName, ok, useTemplate);
|
|
if (!ok) {
|
|
result = false;
|
|
return aiColor3D(0.0f, 0.0f, 0.0f);
|
|
}
|
|
return aiColor3D(ColorVec.x, ColorVec.y, ColorVec.z);
|
|
}
|
|
|
|
void FBXConverter::SetShadingPropertiesCommon(aiMaterial* out_mat, const PropertyTable& props)
|
|
{
|
|
// Set shading properties.
|
|
// Modern FBX Files have two separate systems for defining these,
|
|
// with only the more comprehensive one described in the property template.
|
|
// Likely the other values are a legacy system,
|
|
// which is still always exported by the official FBX SDK.
|
|
//
|
|
// Blender's FBX import and export mostly ignore this legacy system,
|
|
// and as we only support recent versions of FBX anyway, we can do the same.
|
|
bool ok;
|
|
|
|
const aiColor3D& Diffuse = GetColorPropertyFromMaterial(props, "Diffuse", ok);
|
|
if (ok) {
|
|
out_mat->AddProperty(&Diffuse, 1, AI_MATKEY_COLOR_DIFFUSE);
|
|
}
|
|
|
|
const aiColor3D& Emissive = GetColorPropertyFromMaterial(props, "Emissive", ok);
|
|
if (ok) {
|
|
out_mat->AddProperty(&Emissive, 1, AI_MATKEY_COLOR_EMISSIVE);
|
|
}
|
|
|
|
const aiColor3D& Ambient = GetColorPropertyFromMaterial(props, "Ambient", ok);
|
|
if (ok) {
|
|
out_mat->AddProperty(&Ambient, 1, AI_MATKEY_COLOR_AMBIENT);
|
|
}
|
|
|
|
// we store specular factor as SHININESS_STRENGTH, so just get the color
|
|
const aiColor3D& Specular = GetColorProperty(props, "SpecularColor", ok, true);
|
|
if (ok) {
|
|
out_mat->AddProperty(&Specular, 1, AI_MATKEY_COLOR_SPECULAR);
|
|
}
|
|
|
|
// and also try to get SHININESS_STRENGTH
|
|
const float SpecularFactor = PropertyGet<float>(props, "SpecularFactor", ok, true);
|
|
if (ok) {
|
|
out_mat->AddProperty(&SpecularFactor, 1, AI_MATKEY_SHININESS_STRENGTH);
|
|
}
|
|
|
|
// and the specular exponent
|
|
const float ShininessExponent = PropertyGet<float>(props, "ShininessExponent", ok);
|
|
if (ok) {
|
|
out_mat->AddProperty(&ShininessExponent, 1, AI_MATKEY_SHININESS);
|
|
}
|
|
|
|
// TransparentColor / TransparencyFactor... gee thanks FBX :rolleyes:
|
|
const aiColor3D& Transparent = GetColorPropertyFactored(props, "TransparentColor", "TransparencyFactor", ok);
|
|
float CalculatedOpacity = 1.0f;
|
|
if (ok) {
|
|
out_mat->AddProperty(&Transparent, 1, AI_MATKEY_COLOR_TRANSPARENT);
|
|
// as calculated by FBX SDK 2017:
|
|
CalculatedOpacity = 1.0f - ((Transparent.r + Transparent.g + Transparent.b) / 3.0f);
|
|
}
|
|
|
|
// use of TransparencyFactor is inconsistent.
|
|
// Maya always stores it as 1.0,
|
|
// so we can't use it to set AI_MATKEY_OPACITY.
|
|
// Blender is more sensible and stores it as the alpha value.
|
|
// However both the FBX SDK and Blender always write an additional
|
|
// legacy "Opacity" field, so we can try to use that.
|
|
//
|
|
// If we can't find it,
|
|
// we can fall back to the value which the FBX SDK calculates
|
|
// from transparency colour (RGB) and factor (F) as
|
|
// 1.0 - F*((R+G+B)/3).
|
|
//
|
|
// There's no consistent way to interpret this opacity value,
|
|
// so it's up to clients to do the correct thing.
|
|
const float Opacity = PropertyGet<float>(props, "Opacity", ok);
|
|
if (ok) {
|
|
out_mat->AddProperty(&Opacity, 1, AI_MATKEY_OPACITY);
|
|
}
|
|
else if (CalculatedOpacity != 1.0) {
|
|
out_mat->AddProperty(&CalculatedOpacity, 1, AI_MATKEY_OPACITY);
|
|
}
|
|
|
|
// reflection color and factor are stored separately
|
|
const aiColor3D& Reflection = GetColorProperty(props, "ReflectionColor", ok, true);
|
|
if (ok) {
|
|
out_mat->AddProperty(&Reflection, 1, AI_MATKEY_COLOR_REFLECTIVE);
|
|
}
|
|
|
|
float ReflectionFactor = PropertyGet<float>(props, "ReflectionFactor", ok, true);
|
|
if (ok) {
|
|
out_mat->AddProperty(&ReflectionFactor, 1, AI_MATKEY_REFLECTIVITY);
|
|
}
|
|
|
|
const float BumpFactor = PropertyGet<float>(props, "BumpFactor", ok);
|
|
if (ok) {
|
|
out_mat->AddProperty(&BumpFactor, 1, AI_MATKEY_BUMPSCALING);
|
|
}
|
|
|
|
const float DispFactor = PropertyGet<float>(props, "DisplacementFactor", ok);
|
|
if (ok) {
|
|
out_mat->AddProperty(&DispFactor, 1, "$mat.displacementscaling", 0, 0);
|
|
}
|
|
}
|
|
|
|
|
|
void FBXConverter::SetShadingPropertiesRaw(aiMaterial* out_mat, const PropertyTable& props, const TextureMap& textures, const MeshGeometry* const mesh)
|
|
{
|
|
// Add all the unparsed properties with a "$raw." prefix
|
|
|
|
const std::string prefix = "$raw.";
|
|
|
|
for (const DirectPropertyMap::value_type& prop : props.GetUnparsedProperties()) {
|
|
|
|
std::string name = prefix + prop.first;
|
|
|
|
if (const TypedProperty<aiVector3D>* interpreted = prop.second->As<TypedProperty<aiVector3D> >())
|
|
{
|
|
out_mat->AddProperty(&interpreted->Value(), 1, name.c_str(), 0, 0);
|
|
}
|
|
else if (const TypedProperty<aiColor3D>* interpreted = prop.second->As<TypedProperty<aiColor3D> >())
|
|
{
|
|
out_mat->AddProperty(&interpreted->Value(), 1, name.c_str(), 0, 0);
|
|
}
|
|
else if (const TypedProperty<aiColor4D>* interpreted = prop.second->As<TypedProperty<aiColor4D> >())
|
|
{
|
|
out_mat->AddProperty(&interpreted->Value(), 1, name.c_str(), 0, 0);
|
|
}
|
|
else if (const TypedProperty<float>* interpreted = prop.second->As<TypedProperty<float> >())
|
|
{
|
|
out_mat->AddProperty(&interpreted->Value(), 1, name.c_str(), 0, 0);
|
|
}
|
|
else if (const TypedProperty<int>* interpreted = prop.second->As<TypedProperty<int> >())
|
|
{
|
|
out_mat->AddProperty(&interpreted->Value(), 1, name.c_str(), 0, 0);
|
|
}
|
|
else if (const TypedProperty<bool>* interpreted = prop.second->As<TypedProperty<bool> >())
|
|
{
|
|
int value = interpreted->Value() ? 1 : 0;
|
|
out_mat->AddProperty(&value, 1, name.c_str(), 0, 0);
|
|
}
|
|
else if (const TypedProperty<std::string>* interpreted = prop.second->As<TypedProperty<std::string> >())
|
|
{
|
|
const aiString value = aiString(interpreted->Value());
|
|
out_mat->AddProperty(&value, name.c_str(), 0, 0);
|
|
}
|
|
}
|
|
|
|
// Add the textures' properties
|
|
|
|
for (TextureMap::const_iterator it = textures.begin(); it != textures.end(); it++) {
|
|
|
|
std::string name = prefix + it->first;
|
|
|
|
const Texture* const tex = (*it).second;
|
|
if (tex != nullptr)
|
|
{
|
|
aiString path;
|
|
path.Set(tex->RelativeFilename());
|
|
|
|
const Video* media = tex->Media();
|
|
if (media != nullptr && media->ContentLength() > 0) {
|
|
unsigned int index;
|
|
|
|
VideoMap::const_iterator it = textures_converted.find(media);
|
|
if (it != textures_converted.end()) {
|
|
index = (*it).second;
|
|
}
|
|
else {
|
|
index = ConvertVideo(*media);
|
|
textures_converted[media] = index;
|
|
}
|
|
|
|
// setup texture reference string (copied from ColladaLoader::FindFilenameForEffectTexture)
|
|
path.data[0] = '*';
|
|
path.length = 1 + ASSIMP_itoa10(path.data + 1, MAXLEN - 1, index);
|
|
}
|
|
|
|
out_mat->AddProperty(&path, (name + "|file").c_str(), aiTextureType_UNKNOWN, 0);
|
|
|
|
aiUVTransform uvTrafo;
|
|
// XXX handle all kinds of UV transformations
|
|
uvTrafo.mScaling = tex->UVScaling();
|
|
uvTrafo.mTranslation = tex->UVTranslation();
|
|
out_mat->AddProperty(&uvTrafo, 1, (name + "|uvtrafo").c_str(), aiTextureType_UNKNOWN, 0);
|
|
|
|
int uvIndex = 0;
|
|
|
|
bool uvFound = false;
|
|
const std::string& uvSet = PropertyGet<std::string>(tex->Props(), "UVSet", uvFound);
|
|
if (uvFound) {
|
|
// "default" is the name which usually appears in the FbxFileTexture template
|
|
if (uvSet != "default" && uvSet.length()) {
|
|
// this is a bit awkward - we need to find a mesh that uses this
|
|
// material and scan its UV channels for the given UV name because
|
|
// assimp references UV channels by index, not by name.
|
|
|
|
// XXX: the case that UV channels may appear in different orders
|
|
// in meshes is unhandled. A possible solution would be to sort
|
|
// the UV channels alphabetically, but this would have the side
|
|
// effect that the primary (first) UV channel would sometimes
|
|
// be moved, causing trouble when users read only the first
|
|
// UV channel and ignore UV channel assignments altogether.
|
|
|
|
std::vector<aiMaterial*>::iterator materialIt = std::find(materials.begin(), materials.end(), out_mat);
|
|
const unsigned int matIndex = static_cast<unsigned int>(std::distance(materials.begin(), materialIt));
|
|
|
|
uvIndex = -1;
|
|
if (!mesh)
|
|
{
|
|
for (const MeshMap::value_type& v : meshes_converted) {
|
|
const MeshGeometry* const mesh = dynamic_cast<const MeshGeometry*>(v.first);
|
|
if (!mesh) {
|
|
continue;
|
|
}
|
|
|
|
const MatIndexArray& mats = mesh->GetMaterialIndices();
|
|
if (std::find(mats.begin(), mats.end(), matIndex) == mats.end()) {
|
|
continue;
|
|
}
|
|
|
|
int index = -1;
|
|
for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) {
|
|
if (mesh->GetTextureCoords(i).empty()) {
|
|
break;
|
|
}
|
|
const std::string& name = mesh->GetTextureCoordChannelName(i);
|
|
if (name == uvSet) {
|
|
index = static_cast<int>(i);
|
|
break;
|
|
}
|
|
}
|
|
if (index == -1) {
|
|
FBXImporter::LogWarn("did not find UV channel named " + uvSet + " in a mesh using this material");
|
|
continue;
|
|
}
|
|
|
|
if (uvIndex == -1) {
|
|
uvIndex = index;
|
|
}
|
|
else {
|
|
FBXImporter::LogWarn("the UV channel named " + uvSet + " appears at different positions in meshes, results will be wrong");
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
int index = -1;
|
|
for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) {
|
|
if (mesh->GetTextureCoords(i).empty()) {
|
|
break;
|
|
}
|
|
const std::string& name = mesh->GetTextureCoordChannelName(i);
|
|
if (name == uvSet) {
|
|
index = static_cast<int>(i);
|
|
break;
|
|
}
|
|
}
|
|
if (index == -1) {
|
|
FBXImporter::LogWarn("did not find UV channel named " + uvSet + " in a mesh using this material");
|
|
}
|
|
|
|
if (uvIndex == -1) {
|
|
uvIndex = index;
|
|
}
|
|
}
|
|
|
|
if (uvIndex == -1) {
|
|
FBXImporter::LogWarn("failed to resolve UV channel " + uvSet + ", using first UV channel");
|
|
uvIndex = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
out_mat->AddProperty(&uvIndex, 1, (name + "|uvwsrc").c_str(), aiTextureType_UNKNOWN, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
double FBXConverter::FrameRateToDouble(FileGlobalSettings::FrameRate fp, double customFPSVal) {
|
|
switch (fp) {
|
|
case FileGlobalSettings::FrameRate_DEFAULT:
|
|
return 1.0;
|
|
|
|
case FileGlobalSettings::FrameRate_120:
|
|
return 120.0;
|
|
|
|
case FileGlobalSettings::FrameRate_100:
|
|
return 100.0;
|
|
|
|
case FileGlobalSettings::FrameRate_60:
|
|
return 60.0;
|
|
|
|
case FileGlobalSettings::FrameRate_50:
|
|
return 50.0;
|
|
|
|
case FileGlobalSettings::FrameRate_48:
|
|
return 48.0;
|
|
|
|
case FileGlobalSettings::FrameRate_30:
|
|
case FileGlobalSettings::FrameRate_30_DROP:
|
|
return 30.0;
|
|
|
|
case FileGlobalSettings::FrameRate_NTSC_DROP_FRAME:
|
|
case FileGlobalSettings::FrameRate_NTSC_FULL_FRAME:
|
|
return 29.9700262;
|
|
|
|
case FileGlobalSettings::FrameRate_PAL:
|
|
return 25.0;
|
|
|
|
case FileGlobalSettings::FrameRate_CINEMA:
|
|
return 24.0;
|
|
|
|
case FileGlobalSettings::FrameRate_1000:
|
|
return 1000.0;
|
|
|
|
case FileGlobalSettings::FrameRate_CINEMA_ND:
|
|
return 23.976;
|
|
|
|
case FileGlobalSettings::FrameRate_CUSTOM:
|
|
return customFPSVal;
|
|
|
|
case FileGlobalSettings::FrameRate_MAX: // this is to silence compiler warnings
|
|
break;
|
|
}
|
|
|
|
ai_assert(false);
|
|
|
|
return -1.0f;
|
|
}
|
|
|
|
|
|
void FBXConverter::ConvertAnimations()
|
|
{
|
|
// first of all determine framerate
|
|
const FileGlobalSettings::FrameRate fps = doc.GlobalSettings().TimeMode();
|
|
const float custom = doc.GlobalSettings().CustomFrameRate();
|
|
anim_fps = FrameRateToDouble(fps, custom);
|
|
|
|
const std::vector<const AnimationStack*>& animations = doc.AnimationStacks();
|
|
for (const AnimationStack* stack : animations) {
|
|
ConvertAnimationStack(*stack);
|
|
}
|
|
}
|
|
|
|
std::string FBXConverter::FixNodeName(const std::string& name) {
|
|
// strip Model:: prefix, avoiding ambiguities (i.e. don't strip if
|
|
// this causes ambiguities, well possible between empty identifiers,
|
|
// such as "Model::" and ""). Make sure the behaviour is consistent
|
|
// across multiple calls to FixNodeName().
|
|
if (name.substr(0, 7) == "Model::") {
|
|
std::string temp = name.substr(7);
|
|
return temp;
|
|
}
|
|
|
|
return name;
|
|
}
|
|
|
|
std::string FBXConverter::FixAnimMeshName(const std::string& name) {
|
|
if (name.length()) {
|
|
size_t indexOf = name.find_first_of("::");
|
|
if (indexOf != std::string::npos && indexOf < name.size() - 2) {
|
|
return name.substr(indexOf + 2);
|
|
}
|
|
}
|
|
return name.length() ? name : "AnimMesh";
|
|
}
|
|
|
|
void FBXConverter::ConvertAnimationStack(const AnimationStack& st)
|
|
{
|
|
const AnimationLayerList& layers = st.Layers();
|
|
if (layers.empty()) {
|
|
return;
|
|
}
|
|
|
|
aiAnimation* const anim = new aiAnimation();
|
|
animations.push_back(anim);
|
|
|
|
// strip AnimationStack:: prefix
|
|
std::string name = st.Name();
|
|
if (name.substr(0, 16) == "AnimationStack::") {
|
|
name = name.substr(16);
|
|
}
|
|
else if (name.substr(0, 11) == "AnimStack::") {
|
|
name = name.substr(11);
|
|
}
|
|
|
|
anim->mName.Set(name);
|
|
|
|
// need to find all nodes for which we need to generate node animations -
|
|
// it may happen that we need to merge multiple layers, though.
|
|
NodeMap node_map;
|
|
|
|
// reverse mapping from curves to layers, much faster than querying
|
|
// the FBX DOM for it.
|
|
LayerMap layer_map;
|
|
|
|
const char* prop_whitelist[] = {
|
|
"Lcl Scaling",
|
|
"Lcl Rotation",
|
|
"Lcl Translation",
|
|
"DeformPercent"
|
|
};
|
|
|
|
std::map<std::string, morphAnimData*> morphAnimDatas;
|
|
|
|
for (const AnimationLayer* layer : layers) {
|
|
ai_assert(layer);
|
|
const AnimationCurveNodeList& nodes = layer->Nodes(prop_whitelist, 4);
|
|
for (const AnimationCurveNode* node : nodes) {
|
|
ai_assert(node);
|
|
const Model* const model = dynamic_cast<const Model*>(node->Target());
|
|
if (model) {
|
|
const std::string& name = FixNodeName(model->Name());
|
|
node_map[name].push_back(node);
|
|
layer_map[node] = layer;
|
|
continue;
|
|
}
|
|
const BlendShapeChannel* const bsc = dynamic_cast<const BlendShapeChannel*>(node->Target());
|
|
if (bsc) {
|
|
ProcessMorphAnimDatas(&morphAnimDatas, bsc, node);
|
|
}
|
|
}
|
|
}
|
|
|
|
// generate node animations
|
|
std::vector<aiNodeAnim*> node_anims;
|
|
|
|
double min_time = 1e10;
|
|
double max_time = -1e10;
|
|
|
|
int64_t start_time = st.LocalStart();
|
|
int64_t stop_time = st.LocalStop();
|
|
bool has_local_startstop = start_time != 0 || stop_time != 0;
|
|
if (!has_local_startstop) {
|
|
// no time range given, so accept every keyframe and use the actual min/max time
|
|
// the numbers are INT64_MIN/MAX, the 20000 is for safety because GenerateNodeAnimations uses an epsilon of 10000
|
|
start_time = -9223372036854775807ll + 20000;
|
|
stop_time = 9223372036854775807ll - 20000;
|
|
}
|
|
|
|
try {
|
|
for (const NodeMap::value_type& kv : node_map) {
|
|
GenerateNodeAnimations(node_anims,
|
|
kv.first,
|
|
kv.second,
|
|
layer_map,
|
|
start_time, stop_time,
|
|
max_time,
|
|
min_time);
|
|
}
|
|
}
|
|
catch (std::exception&) {
|
|
std::for_each(node_anims.begin(), node_anims.end(), Util::delete_fun<aiNodeAnim>());
|
|
throw;
|
|
}
|
|
|
|
if (node_anims.size() || morphAnimDatas.size()) {
|
|
if (node_anims.size()) {
|
|
anim->mChannels = new aiNodeAnim*[node_anims.size()]();
|
|
anim->mNumChannels = static_cast<unsigned int>(node_anims.size());
|
|
std::swap_ranges(node_anims.begin(), node_anims.end(), anim->mChannels);
|
|
}
|
|
if (morphAnimDatas.size()) {
|
|
unsigned int numMorphMeshChannels = static_cast<unsigned int>(morphAnimDatas.size());
|
|
anim->mMorphMeshChannels = new aiMeshMorphAnim*[numMorphMeshChannels];
|
|
anim->mNumMorphMeshChannels = numMorphMeshChannels;
|
|
unsigned int i = 0;
|
|
for (auto morphAnimIt : morphAnimDatas) {
|
|
morphAnimData* animData = morphAnimIt.second;
|
|
unsigned int numKeys = static_cast<unsigned int>(animData->size());
|
|
aiMeshMorphAnim* meshMorphAnim = new aiMeshMorphAnim();
|
|
meshMorphAnim->mName.Set(morphAnimIt.first);
|
|
meshMorphAnim->mNumKeys = numKeys;
|
|
meshMorphAnim->mKeys = new aiMeshMorphKey[numKeys];
|
|
unsigned int j = 0;
|
|
for (auto animIt : *animData) {
|
|
morphKeyData* keyData = animIt.second;
|
|
unsigned int numValuesAndWeights = static_cast<unsigned int>(keyData->values.size());
|
|
meshMorphAnim->mKeys[j].mNumValuesAndWeights = numValuesAndWeights;
|
|
meshMorphAnim->mKeys[j].mValues = new unsigned int[numValuesAndWeights];
|
|
meshMorphAnim->mKeys[j].mWeights = new double[numValuesAndWeights];
|
|
meshMorphAnim->mKeys[j].mTime = CONVERT_FBX_TIME(animIt.first) * anim_fps;
|
|
for (unsigned int k = 0; k < numValuesAndWeights; k++) {
|
|
meshMorphAnim->mKeys[j].mValues[k] = keyData->values.at(k);
|
|
meshMorphAnim->mKeys[j].mWeights[k] = keyData->weights.at(k);
|
|
}
|
|
j++;
|
|
}
|
|
anim->mMorphMeshChannels[i++] = meshMorphAnim;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
// empty animations would fail validation, so drop them
|
|
delete anim;
|
|
animations.pop_back();
|
|
FBXImporter::LogInfo("ignoring empty AnimationStack (using IK?): " + name);
|
|
return;
|
|
}
|
|
|
|
double start_time_fps = has_local_startstop ? (CONVERT_FBX_TIME(start_time) * anim_fps) : min_time;
|
|
double stop_time_fps = has_local_startstop ? (CONVERT_FBX_TIME(stop_time) * anim_fps) : max_time;
|
|
|
|
// adjust relative timing for animation
|
|
for (unsigned int c = 0; c < anim->mNumChannels; c++) {
|
|
aiNodeAnim* channel = anim->mChannels[c];
|
|
for (uint32_t i = 0; i < channel->mNumPositionKeys; i++) {
|
|
channel->mPositionKeys[i].mTime -= start_time_fps;
|
|
}
|
|
for (uint32_t i = 0; i < channel->mNumRotationKeys; i++) {
|
|
channel->mRotationKeys[i].mTime -= start_time_fps;
|
|
}
|
|
for (uint32_t i = 0; i < channel->mNumScalingKeys; i++) {
|
|
channel->mScalingKeys[i].mTime -= start_time_fps;
|
|
}
|
|
}
|
|
for (unsigned int c = 0; c < anim->mNumMorphMeshChannels; c++) {
|
|
aiMeshMorphAnim* channel = anim->mMorphMeshChannels[c];
|
|
for (uint32_t i = 0; i < channel->mNumKeys; i++) {
|
|
channel->mKeys[i].mTime -= start_time_fps;
|
|
}
|
|
}
|
|
|
|
// for some mysterious reason, mDuration is simply the maximum key -- the
|
|
// validator always assumes animations to start at zero.
|
|
anim->mDuration = stop_time_fps - start_time_fps;
|
|
anim->mTicksPerSecond = anim_fps;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void FBXConverter::ProcessMorphAnimDatas(std::map<std::string, morphAnimData*>* morphAnimDatas, const BlendShapeChannel* bsc, const AnimationCurveNode* node) {
|
|
std::vector<const Connection*> bscConnections = doc.GetConnectionsBySourceSequenced(bsc->ID(), "Deformer");
|
|
for (const Connection* bscConnection : bscConnections) {
|
|
auto bs = dynamic_cast<const BlendShape*>(bscConnection->DestinationObject());
|
|
if (bs) {
|
|
auto channelIt = std::find(bs->BlendShapeChannels().begin(), bs->BlendShapeChannels().end(), bsc);
|
|
if (channelIt != bs->BlendShapeChannels().end()) {
|
|
auto channelIndex = static_cast<unsigned int>(std::distance(bs->BlendShapeChannels().begin(), channelIt));
|
|
std::vector<const Connection*> bsConnections = doc.GetConnectionsBySourceSequenced(bs->ID(), "Geometry");
|
|
for (const Connection* bsConnection : bsConnections) {
|
|
auto geo = dynamic_cast<const Geometry*>(bsConnection->DestinationObject());
|
|
if (geo) {
|
|
std::vector<const Connection*> geoConnections = doc.GetConnectionsBySourceSequenced(geo->ID(), "Model");
|
|
for (const Connection* geoConnection : geoConnections) {
|
|
auto model = dynamic_cast<const Model*>(geoConnection->DestinationObject());
|
|
if (model) {
|
|
auto geoIt = std::find(model->GetGeometry().begin(), model->GetGeometry().end(), geo);
|
|
auto geoIndex = static_cast<unsigned int>(std::distance(model->GetGeometry().begin(), geoIt));
|
|
auto name = aiString(FixNodeName(model->Name() + "*"));
|
|
name.length = 1 + ASSIMP_itoa10(name.data + name.length, MAXLEN - 1, geoIndex);
|
|
morphAnimData* animData;
|
|
auto animIt = morphAnimDatas->find(name.C_Str());
|
|
if (animIt == morphAnimDatas->end()) {
|
|
animData = new morphAnimData();
|
|
morphAnimDatas->insert(std::make_pair(name.C_Str(), animData));
|
|
}
|
|
else {
|
|
animData = animIt->second;
|
|
}
|
|
for (std::pair<std::string, const AnimationCurve*> curvesIt : node->Curves()) {
|
|
if (curvesIt.first == "d|DeformPercent") {
|
|
const AnimationCurve* animationCurve = curvesIt.second;
|
|
const KeyTimeList& keys = animationCurve->GetKeys();
|
|
const KeyValueList& values = animationCurve->GetValues();
|
|
unsigned int k = 0;
|
|
for (auto key : keys) {
|
|
morphKeyData* keyData;
|
|
auto keyIt = animData->find(key);
|
|
if (keyIt == animData->end()) {
|
|
keyData = new morphKeyData();
|
|
animData->insert(std::make_pair(key, keyData));
|
|
}
|
|
else {
|
|
keyData = keyIt->second;
|
|
}
|
|
keyData->values.push_back(channelIndex);
|
|
keyData->weights.push_back(values.at(k) / 100.0f);
|
|
k++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
#ifdef ASSIMP_BUILD_DEBUG
|
|
// ------------------------------------------------------------------------------------------------
|
|
// sanity check whether the input is ok
|
|
static void validateAnimCurveNodes(const std::vector<const AnimationCurveNode*>& curves,
|
|
bool strictMode) {
|
|
const Object* target(NULL);
|
|
for (const AnimationCurveNode* node : curves) {
|
|
if (!target) {
|
|
target = node->Target();
|
|
}
|
|
if (node->Target() != target) {
|
|
FBXImporter::LogWarn("Node target is nullptr type.");
|
|
}
|
|
if (strictMode) {
|
|
ai_assert(node->Target() == target);
|
|
}
|
|
}
|
|
}
|
|
#endif // ASSIMP_BUILD_DEBUG
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void FBXConverter::GenerateNodeAnimations(std::vector<aiNodeAnim*>& node_anims,
|
|
const std::string& fixed_name,
|
|
const std::vector<const AnimationCurveNode*>& curves,
|
|
const LayerMap& layer_map,
|
|
int64_t start, int64_t stop,
|
|
double& max_time,
|
|
double& min_time)
|
|
{
|
|
|
|
NodeMap node_property_map;
|
|
ai_assert(curves.size());
|
|
|
|
#ifdef ASSIMP_BUILD_DEBUG
|
|
validateAnimCurveNodes(curves, doc.Settings().strictMode);
|
|
#endif
|
|
const AnimationCurveNode* curve_node = NULL;
|
|
for (const AnimationCurveNode* node : curves) {
|
|
ai_assert(node);
|
|
|
|
if (node->TargetProperty().empty()) {
|
|
FBXImporter::LogWarn("target property for animation curve not set: " + node->Name());
|
|
continue;
|
|
}
|
|
|
|
curve_node = node;
|
|
if (node->Curves().empty()) {
|
|
FBXImporter::LogWarn("no animation curves assigned to AnimationCurveNode: " + node->Name());
|
|
continue;
|
|
}
|
|
|
|
node_property_map[node->TargetProperty()].push_back(node);
|
|
}
|
|
|
|
ai_assert(curve_node);
|
|
ai_assert(curve_node->TargetAsModel());
|
|
|
|
const Model& target = *curve_node->TargetAsModel();
|
|
|
|
// check for all possible transformation components
|
|
NodeMap::const_iterator chain[TransformationComp_MAXIMUM];
|
|
|
|
bool has_any = false;
|
|
bool has_complex = false;
|
|
|
|
for (size_t i = 0; i < TransformationComp_MAXIMUM; ++i) {
|
|
const TransformationComp comp = static_cast<TransformationComp>(i);
|
|
|
|
// inverse pivots don't exist in the input, we just generate them
|
|
if (comp == TransformationComp_RotationPivotInverse || comp == TransformationComp_ScalingPivotInverse) {
|
|
chain[i] = node_property_map.end();
|
|
continue;
|
|
}
|
|
|
|
chain[i] = node_property_map.find(NameTransformationCompProperty(comp));
|
|
if (chain[i] != node_property_map.end()) {
|
|
|
|
// check if this curves contains redundant information by looking
|
|
// up the corresponding node's transformation chain.
|
|
if (doc.Settings().optimizeEmptyAnimationCurves &&
|
|
IsRedundantAnimationData(target, comp, (*chain[i]).second)) {
|
|
|
|
FBXImporter::LogDebug("dropping redundant animation channel for node " + target.Name());
|
|
continue;
|
|
}
|
|
|
|
has_any = true;
|
|
|
|
if (comp != TransformationComp_Rotation && comp != TransformationComp_Scaling && comp != TransformationComp_Translation)
|
|
{
|
|
has_complex = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!has_any) {
|
|
FBXImporter::LogWarn("ignoring node animation, did not find any transformation key frames");
|
|
return;
|
|
}
|
|
|
|
// this needs to play nicely with GenerateTransformationNodeChain() which will
|
|
// be invoked _later_ (animations come first). If this node has only rotation,
|
|
// scaling and translation _and_ there are no animated other components either,
|
|
// we can use a single node and also a single node animation channel.
|
|
if (!has_complex && !NeedsComplexTransformationChain(target)) {
|
|
|
|
aiNodeAnim* const nd = GenerateSimpleNodeAnim(fixed_name, target, chain,
|
|
node_property_map.end(),
|
|
layer_map,
|
|
start, stop,
|
|
max_time,
|
|
min_time,
|
|
true // input is TRS order, assimp is SRT
|
|
);
|
|
|
|
ai_assert(nd);
|
|
if (nd->mNumPositionKeys == 0 && nd->mNumRotationKeys == 0 && nd->mNumScalingKeys == 0) {
|
|
delete nd;
|
|
}
|
|
else {
|
|
node_anims.push_back(nd);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// otherwise, things get gruesome and we need separate animation channels
|
|
// for each part of the transformation chain. Remember which channels
|
|
// we generated and pass this information to the node conversion
|
|
// code to avoid nodes that have identity transform, but non-identity
|
|
// animations, being dropped.
|
|
unsigned int flags = 0, bit = 0x1;
|
|
for (size_t i = 0; i < TransformationComp_MAXIMUM; ++i, bit <<= 1) {
|
|
const TransformationComp comp = static_cast<TransformationComp>(i);
|
|
|
|
if (chain[i] != node_property_map.end()) {
|
|
flags |= bit;
|
|
|
|
ai_assert(comp != TransformationComp_RotationPivotInverse);
|
|
ai_assert(comp != TransformationComp_ScalingPivotInverse);
|
|
|
|
const std::string& chain_name = NameTransformationChainNode(fixed_name, comp);
|
|
|
|
aiNodeAnim* na = nullptr;
|
|
switch (comp)
|
|
{
|
|
case TransformationComp_Rotation:
|
|
case TransformationComp_PreRotation:
|
|
case TransformationComp_PostRotation:
|
|
case TransformationComp_GeometricRotation:
|
|
na = GenerateRotationNodeAnim(chain_name,
|
|
target,
|
|
(*chain[i]).second,
|
|
layer_map,
|
|
start, stop,
|
|
max_time,
|
|
min_time);
|
|
|
|
break;
|
|
|
|
case TransformationComp_RotationOffset:
|
|
case TransformationComp_RotationPivot:
|
|
case TransformationComp_ScalingOffset:
|
|
case TransformationComp_ScalingPivot:
|
|
case TransformationComp_Translation:
|
|
case TransformationComp_GeometricTranslation:
|
|
na = GenerateTranslationNodeAnim(chain_name,
|
|
target,
|
|
(*chain[i]).second,
|
|
layer_map,
|
|
start, stop,
|
|
max_time,
|
|
min_time);
|
|
|
|
// pivoting requires us to generate an implicit inverse channel to undo the pivot translation
|
|
if (comp == TransformationComp_RotationPivot) {
|
|
const std::string& invName = NameTransformationChainNode(fixed_name,
|
|
TransformationComp_RotationPivotInverse);
|
|
|
|
aiNodeAnim* const inv = GenerateTranslationNodeAnim(invName,
|
|
target,
|
|
(*chain[i]).second,
|
|
layer_map,
|
|
start, stop,
|
|
max_time,
|
|
min_time,
|
|
true);
|
|
|
|
ai_assert(inv);
|
|
if (inv->mNumPositionKeys == 0 && inv->mNumRotationKeys == 0 && inv->mNumScalingKeys == 0) {
|
|
delete inv;
|
|
}
|
|
else {
|
|
node_anims.push_back(inv);
|
|
}
|
|
|
|
ai_assert(TransformationComp_RotationPivotInverse > i);
|
|
flags |= bit << (TransformationComp_RotationPivotInverse - i);
|
|
}
|
|
else if (comp == TransformationComp_ScalingPivot) {
|
|
const std::string& invName = NameTransformationChainNode(fixed_name,
|
|
TransformationComp_ScalingPivotInverse);
|
|
|
|
aiNodeAnim* const inv = GenerateTranslationNodeAnim(invName,
|
|
target,
|
|
(*chain[i]).second,
|
|
layer_map,
|
|
start, stop,
|
|
max_time,
|
|
min_time,
|
|
true);
|
|
|
|
ai_assert(inv);
|
|
if (inv->mNumPositionKeys == 0 && inv->mNumRotationKeys == 0 && inv->mNumScalingKeys == 0) {
|
|
delete inv;
|
|
}
|
|
else {
|
|
node_anims.push_back(inv);
|
|
}
|
|
|
|
ai_assert(TransformationComp_RotationPivotInverse > i);
|
|
flags |= bit << (TransformationComp_RotationPivotInverse - i);
|
|
}
|
|
|
|
break;
|
|
|
|
case TransformationComp_Scaling:
|
|
case TransformationComp_GeometricScaling:
|
|
na = GenerateScalingNodeAnim(chain_name,
|
|
target,
|
|
(*chain[i]).second,
|
|
layer_map,
|
|
start, stop,
|
|
max_time,
|
|
min_time);
|
|
|
|
break;
|
|
|
|
default:
|
|
ai_assert(false);
|
|
}
|
|
|
|
ai_assert(na);
|
|
if (na->mNumPositionKeys == 0 && na->mNumRotationKeys == 0 && na->mNumScalingKeys == 0) {
|
|
delete na;
|
|
}
|
|
else {
|
|
node_anims.push_back(na);
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
|
|
node_anim_chain_bits[fixed_name] = flags;
|
|
}
|
|
|
|
|
|
bool FBXConverter::IsRedundantAnimationData(const Model& target,
|
|
TransformationComp comp,
|
|
const std::vector<const AnimationCurveNode*>& curves) {
|
|
ai_assert(curves.size());
|
|
|
|
// look for animation nodes with
|
|
// * sub channels for all relevant components set
|
|
// * one key/value pair per component
|
|
// * combined values match up the corresponding value in the bind pose node transformation
|
|
// only such nodes are 'redundant' for this function.
|
|
|
|
if (curves.size() > 1) {
|
|
return false;
|
|
}
|
|
|
|
const AnimationCurveNode& nd = *curves.front();
|
|
const AnimationCurveMap& sub_curves = nd.Curves();
|
|
|
|
const AnimationCurveMap::const_iterator dx = sub_curves.find("d|X");
|
|
const AnimationCurveMap::const_iterator dy = sub_curves.find("d|Y");
|
|
const AnimationCurveMap::const_iterator dz = sub_curves.find("d|Z");
|
|
|
|
if (dx == sub_curves.end() || dy == sub_curves.end() || dz == sub_curves.end()) {
|
|
return false;
|
|
}
|
|
|
|
const KeyValueList& vx = (*dx).second->GetValues();
|
|
const KeyValueList& vy = (*dy).second->GetValues();
|
|
const KeyValueList& vz = (*dz).second->GetValues();
|
|
|
|
if (vx.size() != 1 || vy.size() != 1 || vz.size() != 1) {
|
|
return false;
|
|
}
|
|
|
|
const aiVector3D dyn_val = aiVector3D(vx[0], vy[0], vz[0]);
|
|
const aiVector3D& static_val = PropertyGet<aiVector3D>(target.Props(),
|
|
NameTransformationCompProperty(comp),
|
|
TransformationCompDefaultValue(comp)
|
|
);
|
|
|
|
const float epsilon = 1e-6f;
|
|
return (dyn_val - static_val).SquareLength() < epsilon;
|
|
}
|
|
|
|
|
|
aiNodeAnim* FBXConverter::GenerateRotationNodeAnim(const std::string& name,
|
|
const Model& target,
|
|
const std::vector<const AnimationCurveNode*>& curves,
|
|
const LayerMap& layer_map,
|
|
int64_t start, int64_t stop,
|
|
double& max_time,
|
|
double& min_time)
|
|
{
|
|
std::unique_ptr<aiNodeAnim> na(new aiNodeAnim());
|
|
na->mNodeName.Set(name);
|
|
|
|
ConvertRotationKeys(na.get(), curves, layer_map, start, stop, max_time, min_time, target.RotationOrder());
|
|
|
|
// dummy scaling key
|
|
na->mScalingKeys = new aiVectorKey[1];
|
|
na->mNumScalingKeys = 1;
|
|
|
|
na->mScalingKeys[0].mTime = 0.;
|
|
na->mScalingKeys[0].mValue = aiVector3D(1.0f, 1.0f, 1.0f);
|
|
|
|
// dummy position key
|
|
na->mPositionKeys = new aiVectorKey[1];
|
|
na->mNumPositionKeys = 1;
|
|
|
|
na->mPositionKeys[0].mTime = 0.;
|
|
na->mPositionKeys[0].mValue = aiVector3D();
|
|
|
|
return na.release();
|
|
}
|
|
|
|
aiNodeAnim* FBXConverter::GenerateScalingNodeAnim(const std::string& name,
|
|
const Model& /*target*/,
|
|
const std::vector<const AnimationCurveNode*>& curves,
|
|
const LayerMap& layer_map,
|
|
int64_t start, int64_t stop,
|
|
double& max_time,
|
|
double& min_time)
|
|
{
|
|
std::unique_ptr<aiNodeAnim> na(new aiNodeAnim());
|
|
na->mNodeName.Set(name);
|
|
|
|
ConvertScaleKeys(na.get(), curves, layer_map, start, stop, max_time, min_time);
|
|
|
|
// dummy rotation key
|
|
na->mRotationKeys = new aiQuatKey[1];
|
|
na->mNumRotationKeys = 1;
|
|
|
|
na->mRotationKeys[0].mTime = 0.;
|
|
na->mRotationKeys[0].mValue = aiQuaternion();
|
|
|
|
// dummy position key
|
|
na->mPositionKeys = new aiVectorKey[1];
|
|
na->mNumPositionKeys = 1;
|
|
|
|
na->mPositionKeys[0].mTime = 0.;
|
|
na->mPositionKeys[0].mValue = aiVector3D();
|
|
|
|
return na.release();
|
|
}
|
|
|
|
aiNodeAnim* FBXConverter::GenerateTranslationNodeAnim(const std::string& name,
|
|
const Model& /*target*/,
|
|
const std::vector<const AnimationCurveNode*>& curves,
|
|
const LayerMap& layer_map,
|
|
int64_t start, int64_t stop,
|
|
double& max_time,
|
|
double& min_time,
|
|
bool inverse) {
|
|
std::unique_ptr<aiNodeAnim> na(new aiNodeAnim());
|
|
na->mNodeName.Set(name);
|
|
|
|
ConvertTranslationKeys(na.get(), curves, layer_map, start, stop, max_time, min_time);
|
|
|
|
if (inverse) {
|
|
for (unsigned int i = 0; i < na->mNumPositionKeys; ++i) {
|
|
na->mPositionKeys[i].mValue *= -1.0f;
|
|
}
|
|
}
|
|
|
|
// dummy scaling key
|
|
na->mScalingKeys = new aiVectorKey[1];
|
|
na->mNumScalingKeys = 1;
|
|
|
|
na->mScalingKeys[0].mTime = 0.;
|
|
na->mScalingKeys[0].mValue = aiVector3D(1.0f, 1.0f, 1.0f);
|
|
|
|
// dummy rotation key
|
|
na->mRotationKeys = new aiQuatKey[1];
|
|
na->mNumRotationKeys = 1;
|
|
|
|
na->mRotationKeys[0].mTime = 0.;
|
|
na->mRotationKeys[0].mValue = aiQuaternion();
|
|
|
|
return na.release();
|
|
}
|
|
|
|
aiNodeAnim* FBXConverter::GenerateSimpleNodeAnim(const std::string& name,
|
|
const Model& target,
|
|
NodeMap::const_iterator chain[TransformationComp_MAXIMUM],
|
|
NodeMap::const_iterator iter_end,
|
|
const LayerMap& layer_map,
|
|
int64_t start, int64_t stop,
|
|
double& max_time,
|
|
double& min_time,
|
|
bool reverse_order)
|
|
|
|
{
|
|
std::unique_ptr<aiNodeAnim> na(new aiNodeAnim());
|
|
na->mNodeName.Set(name);
|
|
|
|
const PropertyTable& props = target.Props();
|
|
|
|
// need to convert from TRS order to SRT?
|
|
if (reverse_order) {
|
|
|
|
aiVector3D def_scale = PropertyGet(props, "Lcl Scaling", aiVector3D(1.f, 1.f, 1.f));
|
|
aiVector3D def_translate = PropertyGet(props, "Lcl Translation", aiVector3D(0.f, 0.f, 0.f));
|
|
aiVector3D def_rot = PropertyGet(props, "Lcl Rotation", aiVector3D(0.f, 0.f, 0.f));
|
|
|
|
KeyFrameListList scaling;
|
|
KeyFrameListList translation;
|
|
KeyFrameListList rotation;
|
|
|
|
if (chain[TransformationComp_Scaling] != iter_end) {
|
|
scaling = GetKeyframeList((*chain[TransformationComp_Scaling]).second, start, stop);
|
|
}
|
|
|
|
if (chain[TransformationComp_Translation] != iter_end) {
|
|
translation = GetKeyframeList((*chain[TransformationComp_Translation]).second, start, stop);
|
|
}
|
|
|
|
if (chain[TransformationComp_Rotation] != iter_end) {
|
|
rotation = GetKeyframeList((*chain[TransformationComp_Rotation]).second, start, stop);
|
|
}
|
|
|
|
KeyFrameListList joined;
|
|
joined.insert(joined.end(), scaling.begin(), scaling.end());
|
|
joined.insert(joined.end(), translation.begin(), translation.end());
|
|
joined.insert(joined.end(), rotation.begin(), rotation.end());
|
|
|
|
const KeyTimeList& times = GetKeyTimeList(joined);
|
|
|
|
aiQuatKey* out_quat = new aiQuatKey[times.size()];
|
|
aiVectorKey* out_scale = new aiVectorKey[times.size()];
|
|
aiVectorKey* out_translation = new aiVectorKey[times.size()];
|
|
|
|
if (times.size())
|
|
{
|
|
ConvertTransformOrder_TRStoSRT(out_quat, out_scale, out_translation,
|
|
scaling,
|
|
translation,
|
|
rotation,
|
|
times,
|
|
max_time,
|
|
min_time,
|
|
target.RotationOrder(),
|
|
def_scale,
|
|
def_translate,
|
|
def_rot);
|
|
}
|
|
|
|
// XXX remove duplicates / redundant keys which this operation did
|
|
// likely produce if not all three channels were equally dense.
|
|
|
|
na->mNumScalingKeys = static_cast<unsigned int>(times.size());
|
|
na->mNumRotationKeys = na->mNumScalingKeys;
|
|
na->mNumPositionKeys = na->mNumScalingKeys;
|
|
|
|
na->mScalingKeys = out_scale;
|
|
na->mRotationKeys = out_quat;
|
|
na->mPositionKeys = out_translation;
|
|
}
|
|
else {
|
|
|
|
// if a particular transformation is not given, grab it from
|
|
// the corresponding node to meet the semantics of aiNodeAnim,
|
|
// which requires all of rotation, scaling and translation
|
|
// to be set.
|
|
if (chain[TransformationComp_Scaling] != iter_end) {
|
|
ConvertScaleKeys(na.get(), (*chain[TransformationComp_Scaling]).second,
|
|
layer_map,
|
|
start, stop,
|
|
max_time,
|
|
min_time);
|
|
}
|
|
else {
|
|
na->mScalingKeys = new aiVectorKey[1];
|
|
na->mNumScalingKeys = 1;
|
|
|
|
na->mScalingKeys[0].mTime = 0.;
|
|
na->mScalingKeys[0].mValue = PropertyGet(props, "Lcl Scaling",
|
|
aiVector3D(1.f, 1.f, 1.f));
|
|
}
|
|
|
|
if (chain[TransformationComp_Rotation] != iter_end) {
|
|
ConvertRotationKeys(na.get(), (*chain[TransformationComp_Rotation]).second,
|
|
layer_map,
|
|
start, stop,
|
|
max_time,
|
|
min_time,
|
|
target.RotationOrder());
|
|
}
|
|
else {
|
|
na->mRotationKeys = new aiQuatKey[1];
|
|
na->mNumRotationKeys = 1;
|
|
|
|
na->mRotationKeys[0].mTime = 0.;
|
|
na->mRotationKeys[0].mValue = EulerToQuaternion(
|
|
PropertyGet(props, "Lcl Rotation", aiVector3D(0.f, 0.f, 0.f)),
|
|
target.RotationOrder());
|
|
}
|
|
|
|
if (chain[TransformationComp_Translation] != iter_end) {
|
|
ConvertTranslationKeys(na.get(), (*chain[TransformationComp_Translation]).second,
|
|
layer_map,
|
|
start, stop,
|
|
max_time,
|
|
min_time);
|
|
}
|
|
else {
|
|
na->mPositionKeys = new aiVectorKey[1];
|
|
na->mNumPositionKeys = 1;
|
|
|
|
na->mPositionKeys[0].mTime = 0.;
|
|
na->mPositionKeys[0].mValue = PropertyGet(props, "Lcl Translation",
|
|
aiVector3D(0.f, 0.f, 0.f));
|
|
}
|
|
|
|
}
|
|
return na.release();
|
|
}
|
|
|
|
FBXConverter::KeyFrameListList FBXConverter::GetKeyframeList(const std::vector<const AnimationCurveNode*>& nodes, int64_t start, int64_t stop)
|
|
{
|
|
KeyFrameListList inputs;
|
|
inputs.reserve(nodes.size() * 3);
|
|
|
|
//give some breathing room for rounding errors
|
|
int64_t adj_start = start - 10000;
|
|
int64_t adj_stop = stop + 10000;
|
|
|
|
for (const AnimationCurveNode* node : nodes) {
|
|
ai_assert(node);
|
|
|
|
const AnimationCurveMap& curves = node->Curves();
|
|
for (const AnimationCurveMap::value_type& kv : curves) {
|
|
|
|
unsigned int mapto;
|
|
if (kv.first == "d|X") {
|
|
mapto = 0;
|
|
}
|
|
else if (kv.first == "d|Y") {
|
|
mapto = 1;
|
|
}
|
|
else if (kv.first == "d|Z") {
|
|
mapto = 2;
|
|
}
|
|
else {
|
|
FBXImporter::LogWarn("ignoring scale animation curve, did not recognize target component");
|
|
continue;
|
|
}
|
|
|
|
const AnimationCurve* const curve = kv.second;
|
|
ai_assert(curve->GetKeys().size() == curve->GetValues().size() && curve->GetKeys().size());
|
|
|
|
//get values within the start/stop time window
|
|
std::shared_ptr<KeyTimeList> Keys(new KeyTimeList());
|
|
std::shared_ptr<KeyValueList> Values(new KeyValueList());
|
|
const size_t count = curve->GetKeys().size();
|
|
Keys->reserve(count);
|
|
Values->reserve(count);
|
|
for (size_t n = 0; n < count; n++)
|
|
{
|
|
int64_t k = curve->GetKeys().at(n);
|
|
if (k >= adj_start && k <= adj_stop)
|
|
{
|
|
Keys->push_back(k);
|
|
Values->push_back(curve->GetValues().at(n));
|
|
}
|
|
}
|
|
|
|
inputs.push_back(std::make_tuple(Keys, Values, mapto));
|
|
}
|
|
}
|
|
return inputs; // pray for NRVO :-)
|
|
}
|
|
|
|
|
|
KeyTimeList FBXConverter::GetKeyTimeList(const KeyFrameListList& inputs) {
|
|
ai_assert(!inputs.empty());
|
|
|
|
// reserve some space upfront - it is likely that the key-frame lists
|
|
// have matching time values, so max(of all key-frame lists) should
|
|
// be a good estimate.
|
|
KeyTimeList keys;
|
|
|
|
size_t estimate = 0;
|
|
for (const KeyFrameList& kfl : inputs) {
|
|
estimate = std::max(estimate, std::get<0>(kfl)->size());
|
|
}
|
|
|
|
keys.reserve(estimate);
|
|
|
|
std::vector<unsigned int> next_pos;
|
|
next_pos.resize(inputs.size(), 0);
|
|
|
|
const size_t count = inputs.size();
|
|
while (true) {
|
|
|
|
int64_t min_tick = std::numeric_limits<int64_t>::max();
|
|
for (size_t i = 0; i < count; ++i) {
|
|
const KeyFrameList& kfl = inputs[i];
|
|
|
|
if (std::get<0>(kfl)->size() > next_pos[i] && std::get<0>(kfl)->at(next_pos[i]) < min_tick) {
|
|
min_tick = std::get<0>(kfl)->at(next_pos[i]);
|
|
}
|
|
}
|
|
|
|
if (min_tick == std::numeric_limits<int64_t>::max()) {
|
|
break;
|
|
}
|
|
keys.push_back(min_tick);
|
|
|
|
for (size_t i = 0; i < count; ++i) {
|
|
const KeyFrameList& kfl = inputs[i];
|
|
|
|
|
|
while (std::get<0>(kfl)->size() > next_pos[i] && std::get<0>(kfl)->at(next_pos[i]) == min_tick) {
|
|
++next_pos[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
return keys;
|
|
}
|
|
|
|
void FBXConverter::InterpolateKeys(aiVectorKey* valOut, const KeyTimeList& keys, const KeyFrameListList& inputs,
|
|
const aiVector3D& def_value,
|
|
double& max_time,
|
|
double& min_time) {
|
|
ai_assert(!keys.empty());
|
|
ai_assert(nullptr != valOut);
|
|
|
|
std::vector<unsigned int> next_pos;
|
|
const size_t count(inputs.size());
|
|
|
|
next_pos.resize(inputs.size(), 0);
|
|
|
|
for (KeyTimeList::value_type time : keys) {
|
|
ai_real result[3] = { def_value.x, def_value.y, def_value.z };
|
|
|
|
for (size_t i = 0; i < count; ++i) {
|
|
const KeyFrameList& kfl = inputs[i];
|
|
|
|
const size_t ksize = std::get<0>(kfl)->size();
|
|
if (ksize == 0) {
|
|
continue;
|
|
}
|
|
if (ksize > next_pos[i] && std::get<0>(kfl)->at(next_pos[i]) == time) {
|
|
++next_pos[i];
|
|
}
|
|
|
|
const size_t id0 = next_pos[i] > 0 ? next_pos[i] - 1 : 0;
|
|
const size_t id1 = next_pos[i] == ksize ? ksize - 1 : next_pos[i];
|
|
|
|
// use lerp for interpolation
|
|
const KeyValueList::value_type valueA = std::get<1>(kfl)->at(id0);
|
|
const KeyValueList::value_type valueB = std::get<1>(kfl)->at(id1);
|
|
|
|
const KeyTimeList::value_type timeA = std::get<0>(kfl)->at(id0);
|
|
const KeyTimeList::value_type timeB = std::get<0>(kfl)->at(id1);
|
|
|
|
const ai_real factor = timeB == timeA ? ai_real(0.) : static_cast<ai_real>((time - timeA)) / (timeB - timeA);
|
|
const ai_real interpValue = static_cast<ai_real>(valueA + (valueB - valueA) * factor);
|
|
|
|
result[std::get<2>(kfl)] = interpValue;
|
|
}
|
|
|
|
// magic value to convert fbx times to seconds
|
|
valOut->mTime = CONVERT_FBX_TIME(time) * anim_fps;
|
|
|
|
min_time = std::min(min_time, valOut->mTime);
|
|
max_time = std::max(max_time, valOut->mTime);
|
|
|
|
valOut->mValue.x = result[0];
|
|
valOut->mValue.y = result[1];
|
|
valOut->mValue.z = result[2];
|
|
|
|
++valOut;
|
|
}
|
|
}
|
|
|
|
void FBXConverter::InterpolateKeys(aiQuatKey* valOut, const KeyTimeList& keys, const KeyFrameListList& inputs,
|
|
const aiVector3D& def_value,
|
|
double& maxTime,
|
|
double& minTime,
|
|
Model::RotOrder order)
|
|
{
|
|
ai_assert(!keys.empty());
|
|
ai_assert(nullptr != valOut);
|
|
|
|
std::unique_ptr<aiVectorKey[]> temp(new aiVectorKey[keys.size()]);
|
|
InterpolateKeys(temp.get(), keys, inputs, def_value, maxTime, minTime);
|
|
|
|
aiMatrix4x4 m;
|
|
|
|
aiQuaternion lastq;
|
|
|
|
for (size_t i = 0, c = keys.size(); i < c; ++i) {
|
|
|
|
valOut[i].mTime = temp[i].mTime;
|
|
|
|
GetRotationMatrix(order, temp[i].mValue, m);
|
|
aiQuaternion quat = aiQuaternion(aiMatrix3x3(m));
|
|
|
|
// take shortest path by checking the inner product
|
|
// http://www.3dkingdoms.com/weekly/weekly.php?a=36
|
|
if (quat.x * lastq.x + quat.y * lastq.y + quat.z * lastq.z + quat.w * lastq.w < 0)
|
|
{
|
|
quat.x = -quat.x;
|
|
quat.y = -quat.y;
|
|
quat.z = -quat.z;
|
|
quat.w = -quat.w;
|
|
}
|
|
lastq = quat;
|
|
|
|
valOut[i].mValue = quat;
|
|
}
|
|
}
|
|
|
|
void FBXConverter::ConvertTransformOrder_TRStoSRT(aiQuatKey* out_quat, aiVectorKey* out_scale,
|
|
aiVectorKey* out_translation,
|
|
const KeyFrameListList& scaling,
|
|
const KeyFrameListList& translation,
|
|
const KeyFrameListList& rotation,
|
|
const KeyTimeList& times,
|
|
double& maxTime,
|
|
double& minTime,
|
|
Model::RotOrder order,
|
|
const aiVector3D& def_scale,
|
|
const aiVector3D& def_translate,
|
|
const aiVector3D& def_rotation)
|
|
{
|
|
if (rotation.size()) {
|
|
InterpolateKeys(out_quat, times, rotation, def_rotation, maxTime, minTime, order);
|
|
}
|
|
else {
|
|
for (size_t i = 0; i < times.size(); ++i) {
|
|
out_quat[i].mTime = CONVERT_FBX_TIME(times[i]) * anim_fps;
|
|
out_quat[i].mValue = EulerToQuaternion(def_rotation, order);
|
|
}
|
|
}
|
|
|
|
if (scaling.size()) {
|
|
InterpolateKeys(out_scale, times, scaling, def_scale, maxTime, minTime);
|
|
}
|
|
else {
|
|
for (size_t i = 0; i < times.size(); ++i) {
|
|
out_scale[i].mTime = CONVERT_FBX_TIME(times[i]) * anim_fps;
|
|
out_scale[i].mValue = def_scale;
|
|
}
|
|
}
|
|
|
|
if (translation.size()) {
|
|
InterpolateKeys(out_translation, times, translation, def_translate, maxTime, minTime);
|
|
}
|
|
else {
|
|
for (size_t i = 0; i < times.size(); ++i) {
|
|
out_translation[i].mTime = CONVERT_FBX_TIME(times[i]) * anim_fps;
|
|
out_translation[i].mValue = def_translate;
|
|
}
|
|
}
|
|
|
|
const size_t count = times.size();
|
|
for (size_t i = 0; i < count; ++i) {
|
|
aiQuaternion& r = out_quat[i].mValue;
|
|
aiVector3D& s = out_scale[i].mValue;
|
|
aiVector3D& t = out_translation[i].mValue;
|
|
|
|
aiMatrix4x4 mat, temp;
|
|
aiMatrix4x4::Translation(t, mat);
|
|
mat *= aiMatrix4x4(r.GetMatrix());
|
|
mat *= aiMatrix4x4::Scaling(s, temp);
|
|
|
|
mat.Decompose(s, r, t);
|
|
}
|
|
}
|
|
|
|
aiQuaternion FBXConverter::EulerToQuaternion(const aiVector3D& rot, Model::RotOrder order)
|
|
{
|
|
aiMatrix4x4 m;
|
|
GetRotationMatrix(order, rot, m);
|
|
|
|
return aiQuaternion(aiMatrix3x3(m));
|
|
}
|
|
|
|
void FBXConverter::ConvertScaleKeys(aiNodeAnim* na, const std::vector<const AnimationCurveNode*>& nodes, const LayerMap& /*layers*/,
|
|
int64_t start, int64_t stop,
|
|
double& maxTime,
|
|
double& minTime)
|
|
{
|
|
ai_assert(nodes.size());
|
|
|
|
// XXX for now, assume scale should be blended geometrically (i.e. two
|
|
// layers should be multiplied with each other). There is a FBX
|
|
// property in the layer to specify the behaviour, though.
|
|
|
|
const KeyFrameListList& inputs = GetKeyframeList(nodes, start, stop);
|
|
const KeyTimeList& keys = GetKeyTimeList(inputs);
|
|
|
|
na->mNumScalingKeys = static_cast<unsigned int>(keys.size());
|
|
na->mScalingKeys = new aiVectorKey[keys.size()];
|
|
if (keys.size() > 0)
|
|
InterpolateKeys(na->mScalingKeys, keys, inputs, aiVector3D(1.0f, 1.0f, 1.0f), maxTime, minTime);
|
|
}
|
|
|
|
void FBXConverter::ConvertTranslationKeys(aiNodeAnim* na, const std::vector<const AnimationCurveNode*>& nodes,
|
|
const LayerMap& /*layers*/,
|
|
int64_t start, int64_t stop,
|
|
double& maxTime,
|
|
double& minTime)
|
|
{
|
|
ai_assert(nodes.size());
|
|
|
|
// XXX see notes in ConvertScaleKeys()
|
|
const KeyFrameListList& inputs = GetKeyframeList(nodes, start, stop);
|
|
const KeyTimeList& keys = GetKeyTimeList(inputs);
|
|
|
|
na->mNumPositionKeys = static_cast<unsigned int>(keys.size());
|
|
na->mPositionKeys = new aiVectorKey[keys.size()];
|
|
if (keys.size() > 0)
|
|
InterpolateKeys(na->mPositionKeys, keys, inputs, aiVector3D(0.0f, 0.0f, 0.0f), maxTime, minTime);
|
|
}
|
|
|
|
void FBXConverter::ConvertRotationKeys(aiNodeAnim* na, const std::vector<const AnimationCurveNode*>& nodes,
|
|
const LayerMap& /*layers*/,
|
|
int64_t start, int64_t stop,
|
|
double& maxTime,
|
|
double& minTime,
|
|
Model::RotOrder order)
|
|
{
|
|
ai_assert(nodes.size());
|
|
|
|
// XXX see notes in ConvertScaleKeys()
|
|
const std::vector< KeyFrameList >& inputs = GetKeyframeList(nodes, start, stop);
|
|
const KeyTimeList& keys = GetKeyTimeList(inputs);
|
|
|
|
na->mNumRotationKeys = static_cast<unsigned int>(keys.size());
|
|
na->mRotationKeys = new aiQuatKey[keys.size()];
|
|
if (!keys.empty()) {
|
|
InterpolateKeys(na->mRotationKeys, keys, inputs, aiVector3D(0.0f, 0.0f, 0.0f), maxTime, minTime, order);
|
|
}
|
|
}
|
|
|
|
void FBXConverter::ConvertGlobalSettings() {
|
|
if (nullptr == out) {
|
|
return;
|
|
}
|
|
|
|
out->mMetaData = aiMetadata::Alloc(15);
|
|
out->mMetaData->Set(0, "UpAxis", doc.GlobalSettings().UpAxis());
|
|
out->mMetaData->Set(1, "UpAxisSign", doc.GlobalSettings().UpAxisSign());
|
|
out->mMetaData->Set(2, "FrontAxis", doc.GlobalSettings().FrontAxis());
|
|
out->mMetaData->Set(3, "FrontAxisSign", doc.GlobalSettings().FrontAxisSign());
|
|
out->mMetaData->Set(4, "CoordAxis", doc.GlobalSettings().CoordAxis());
|
|
out->mMetaData->Set(5, "CoordAxisSign", doc.GlobalSettings().CoordAxisSign());
|
|
out->mMetaData->Set(6, "OriginalUpAxis", doc.GlobalSettings().OriginalUpAxis());
|
|
out->mMetaData->Set(7, "OriginalUpAxisSign", doc.GlobalSettings().OriginalUpAxisSign());
|
|
out->mMetaData->Set(8, "UnitScaleFactor", (double)doc.GlobalSettings().UnitScaleFactor());
|
|
out->mMetaData->Set(9, "OriginalUnitScaleFactor", doc.GlobalSettings().OriginalUnitScaleFactor());
|
|
out->mMetaData->Set(10, "AmbientColor", doc.GlobalSettings().AmbientColor());
|
|
out->mMetaData->Set(11, "FrameRate", (int)doc.GlobalSettings().TimeMode());
|
|
out->mMetaData->Set(12, "TimeSpanStart", doc.GlobalSettings().TimeSpanStart());
|
|
out->mMetaData->Set(13, "TimeSpanStop", doc.GlobalSettings().TimeSpanStop());
|
|
out->mMetaData->Set(14, "CustomFrameRate", doc.GlobalSettings().CustomFrameRate());
|
|
}
|
|
|
|
void FBXConverter::TransferDataToScene()
|
|
{
|
|
ai_assert(!out->mMeshes);
|
|
ai_assert(!out->mNumMeshes);
|
|
|
|
// note: the trailing () ensures initialization with NULL - not
|
|
// many C++ users seem to know this, so pointing it out to avoid
|
|
// confusion why this code works.
|
|
|
|
if (meshes.size()) {
|
|
out->mMeshes = new aiMesh*[meshes.size()]();
|
|
out->mNumMeshes = static_cast<unsigned int>(meshes.size());
|
|
|
|
std::swap_ranges(meshes.begin(), meshes.end(), out->mMeshes);
|
|
}
|
|
|
|
if (materials.size()) {
|
|
out->mMaterials = new aiMaterial*[materials.size()]();
|
|
out->mNumMaterials = static_cast<unsigned int>(materials.size());
|
|
|
|
std::swap_ranges(materials.begin(), materials.end(), out->mMaterials);
|
|
}
|
|
|
|
if (animations.size()) {
|
|
out->mAnimations = new aiAnimation*[animations.size()]();
|
|
out->mNumAnimations = static_cast<unsigned int>(animations.size());
|
|
|
|
std::swap_ranges(animations.begin(), animations.end(), out->mAnimations);
|
|
}
|
|
|
|
if (lights.size()) {
|
|
out->mLights = new aiLight*[lights.size()]();
|
|
out->mNumLights = static_cast<unsigned int>(lights.size());
|
|
|
|
std::swap_ranges(lights.begin(), lights.end(), out->mLights);
|
|
}
|
|
|
|
if (cameras.size()) {
|
|
out->mCameras = new aiCamera*[cameras.size()]();
|
|
out->mNumCameras = static_cast<unsigned int>(cameras.size());
|
|
|
|
std::swap_ranges(cameras.begin(), cameras.end(), out->mCameras);
|
|
}
|
|
|
|
if (textures.size()) {
|
|
out->mTextures = new aiTexture*[textures.size()]();
|
|
out->mNumTextures = static_cast<unsigned int>(textures.size());
|
|
|
|
std::swap_ranges(textures.begin(), textures.end(), out->mTextures);
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ConvertToAssimpScene(aiScene* out, const Document& doc)
|
|
{
|
|
FBXConverter converter(out, doc);
|
|
}
|
|
|
|
} // !FBX
|
|
} // !Assimp
|
|
|
|
#endif
|