1016 lines
32 KiB
C++
1016 lines
32 KiB
C++
/*
|
|
Open Asset Import Library (assimp)
|
|
----------------------------------------------------------------------
|
|
|
|
Copyright (c) 2006-2018, assimp team
|
|
|
|
|
|
All rights reserved.
|
|
|
|
Redistribution and use of this software in source and binary forms,
|
|
with or without modification, are permitted provided that the
|
|
following conditions are met:
|
|
|
|
* Redistributions of source code must retain the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer in the documentation and/or other
|
|
materials provided with the distribution.
|
|
|
|
* Neither the name of the assimp team, nor the names of its
|
|
contributors may be used to endorse or promote products
|
|
derived from this software without specific prior
|
|
written permission of the assimp team.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
----------------------------------------------------------------------
|
|
*/
|
|
|
|
#ifndef INCLUDED_AI_STEPFILE_H
|
|
#define INCLUDED_AI_STEPFILE_H
|
|
|
|
#include <bitset>
|
|
#include <memory>
|
|
#include <typeinfo>
|
|
#include <vector>
|
|
#include <map>
|
|
#include <set>
|
|
|
|
#include "FBXDocument.h" //ObjectMap::value_type
|
|
#include <assimp/DefaultLogger.hpp>
|
|
|
|
//
|
|
#if _MSC_VER > 1500 || (defined __GNUC___)
|
|
# define ASSIMP_STEP_USE_UNORDERED_MULTIMAP
|
|
#else
|
|
# define step_unordered_map map
|
|
# define step_unordered_multimap multimap
|
|
#endif
|
|
|
|
#ifdef ASSIMP_STEP_USE_UNORDERED_MULTIMAP
|
|
# include <unordered_map>
|
|
# if _MSC_VER > 1600
|
|
# define step_unordered_map unordered_map
|
|
# define step_unordered_multimap unordered_multimap
|
|
# else
|
|
# define step_unordered_map tr1::unordered_map
|
|
# define step_unordered_multimap tr1::unordered_multimap
|
|
# endif
|
|
#endif
|
|
|
|
#include <assimp/LineSplitter.h>
|
|
|
|
// uncomment this to have the loader evaluate all entities upon loading.
|
|
// this is intended as stress test - by default, entities are evaluated
|
|
// lazily and therefore not unless needed.
|
|
|
|
//#define ASSIMP_IFC_TEST
|
|
|
|
namespace Assimp {
|
|
|
|
// ********************************************************************************
|
|
// before things get complicated, this is the basic outline:
|
|
|
|
|
|
namespace STEP {
|
|
|
|
namespace EXPRESS {
|
|
|
|
// base data types known by EXPRESS schemata - any custom data types will derive one of those
|
|
class DataType;
|
|
class UNSET; /*: public DataType */
|
|
class ISDERIVED; /*: public DataType */
|
|
// class REAL; /*: public DataType */
|
|
class ENUM; /*: public DataType */
|
|
// class STRING; /*: public DataType */
|
|
// class INTEGER; /*: public DataType */
|
|
class ENTITY; /*: public DataType */
|
|
class LIST; /*: public DataType */
|
|
// class SELECT; /*: public DataType */
|
|
|
|
// a conversion schema is not exactly an EXPRESS schema, rather it
|
|
// is a list of pointers to conversion functions to build up the
|
|
// object tree from an input file.
|
|
class ConversionSchema;
|
|
}
|
|
|
|
struct HeaderInfo;
|
|
class Object;
|
|
class LazyObject;
|
|
class DB;
|
|
|
|
|
|
typedef Object* (*ConvertObjectProc)(const DB& db, const EXPRESS::LIST& params);
|
|
}
|
|
|
|
// ********************************************************************************
|
|
|
|
namespace STEP {
|
|
|
|
// -------------------------------------------------------------------------------
|
|
/** Exception class used by the STEP loading & parsing code. It is typically
|
|
* coupled with a line number. */
|
|
// -------------------------------------------------------------------------------
|
|
struct SyntaxError : DeadlyImportError {
|
|
enum {
|
|
LINE_NOT_SPECIFIED = 0xffffffffffffffffLL
|
|
};
|
|
|
|
SyntaxError (const std::string& s,uint64_t line = LINE_NOT_SPECIFIED);
|
|
};
|
|
|
|
|
|
// -------------------------------------------------------------------------------
|
|
/** Exception class used by the STEP loading & parsing code when a type
|
|
* error (i.e. an entity expects a string but receives a bool) occurs.
|
|
* It is typically coupled with both an entity id and a line number.*/
|
|
// -------------------------------------------------------------------------------
|
|
struct TypeError : DeadlyImportError
|
|
{
|
|
enum {
|
|
ENTITY_NOT_SPECIFIED = 0xffffffffffffffffLL
|
|
};
|
|
|
|
TypeError (const std::string& s,uint64_t entity = ENTITY_NOT_SPECIFIED, uint64_t line = SyntaxError::LINE_NOT_SPECIFIED);
|
|
};
|
|
|
|
|
|
// hack to make a given member template-dependent
|
|
template <typename T, typename T2>
|
|
T2& Couple(T2& in) {
|
|
return in;
|
|
}
|
|
|
|
|
|
namespace EXPRESS {
|
|
|
|
// -------------------------------------------------------------------------------
|
|
//** Base class for all STEP data types */
|
|
// -------------------------------------------------------------------------------
|
|
class DataType
|
|
{
|
|
public:
|
|
typedef std::shared_ptr<const DataType> Out;
|
|
|
|
public:
|
|
|
|
virtual ~DataType() {
|
|
}
|
|
|
|
public:
|
|
|
|
template <typename T>
|
|
const T& To() const {
|
|
return dynamic_cast<const T&>(*this);
|
|
}
|
|
|
|
template <typename T>
|
|
T& To() {
|
|
return dynamic_cast<T&>(*this);
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
const T* ToPtr() const {
|
|
return dynamic_cast<const T*>(this);
|
|
}
|
|
|
|
template <typename T>
|
|
T* ToPtr() {
|
|
return dynamic_cast<T*>(this);
|
|
}
|
|
|
|
// utilities to deal with SELECT entities, which currently lack automatic
|
|
// conversion support.
|
|
template <typename T>
|
|
const T& ResolveSelect(const DB& db) const {
|
|
return Couple<T>(db).MustGetObject(To<EXPRESS::ENTITY>())->template To<T>();
|
|
}
|
|
|
|
template <typename T>
|
|
const T* ResolveSelectPtr(const DB& db) const {
|
|
const EXPRESS::ENTITY* e = ToPtr<EXPRESS::ENTITY>();
|
|
return e?Couple<T>(db).MustGetObject(*e)->template ToPtr<T>():(const T*)0;
|
|
}
|
|
|
|
public:
|
|
|
|
/** parse a variable from a string and set 'inout' to the character
|
|
* behind the last consumed character. An optional schema enables,
|
|
* if specified, automatic conversion of custom data types.
|
|
*
|
|
* @throw SyntaxError
|
|
*/
|
|
static std::shared_ptr<const EXPRESS::DataType> Parse(const char*& inout,
|
|
uint64_t line = SyntaxError::LINE_NOT_SPECIFIED,
|
|
const EXPRESS::ConversionSchema* schema = NULL);
|
|
|
|
public:
|
|
};
|
|
|
|
typedef DataType SELECT;
|
|
typedef DataType LOGICAL;
|
|
|
|
// -------------------------------------------------------------------------------
|
|
/** Sentinel class to represent explicitly unset (optional) fields ($) */
|
|
// -------------------------------------------------------------------------------
|
|
class UNSET : public DataType
|
|
{
|
|
public:
|
|
private:
|
|
};
|
|
|
|
// -------------------------------------------------------------------------------
|
|
/** Sentinel class to represent explicitly derived fields (*) */
|
|
// -------------------------------------------------------------------------------
|
|
class ISDERIVED : public DataType
|
|
{
|
|
public:
|
|
private:
|
|
};
|
|
|
|
// -------------------------------------------------------------------------------
|
|
/** Shared implementation for some of the primitive data type, i.e. int, float */
|
|
// -------------------------------------------------------------------------------
|
|
template <typename T>
|
|
class PrimitiveDataType : public DataType
|
|
{
|
|
public:
|
|
|
|
// This is the type that will cd ultimatively be used to
|
|
// expose this data type to the user.
|
|
typedef T Out;
|
|
|
|
public:
|
|
|
|
PrimitiveDataType() {}
|
|
PrimitiveDataType(const T& val)
|
|
: val(val)
|
|
{}
|
|
|
|
PrimitiveDataType(const PrimitiveDataType& o) {
|
|
(*this) = o;
|
|
}
|
|
|
|
|
|
public:
|
|
|
|
operator const T& () const {
|
|
return val;
|
|
}
|
|
|
|
PrimitiveDataType& operator=(const PrimitiveDataType& o) {
|
|
val = o.val;
|
|
return *this;
|
|
}
|
|
|
|
protected:
|
|
T val;
|
|
|
|
};
|
|
|
|
typedef PrimitiveDataType<int64_t> INTEGER;
|
|
typedef PrimitiveDataType<double> REAL;
|
|
typedef PrimitiveDataType<double> NUMBER;
|
|
typedef PrimitiveDataType<std::string> STRING;
|
|
|
|
|
|
|
|
// -------------------------------------------------------------------------------
|
|
/** Generic base class for all enumerated types */
|
|
// -------------------------------------------------------------------------------
|
|
class ENUMERATION : public STRING
|
|
{
|
|
public:
|
|
|
|
ENUMERATION (const std::string& val)
|
|
: STRING(val)
|
|
{}
|
|
|
|
private:
|
|
};
|
|
|
|
typedef ENUMERATION BOOLEAN;
|
|
|
|
// -------------------------------------------------------------------------------
|
|
/** This is just a reference to an entity/object somewhere else */
|
|
// -------------------------------------------------------------------------------
|
|
class ENTITY : public PrimitiveDataType<uint64_t>
|
|
{
|
|
public:
|
|
|
|
ENTITY(uint64_t val)
|
|
: PrimitiveDataType<uint64_t>(val)
|
|
{
|
|
ai_assert(val!=0);
|
|
}
|
|
|
|
ENTITY()
|
|
: PrimitiveDataType<uint64_t>(TypeError::ENTITY_NOT_SPECIFIED)
|
|
{
|
|
}
|
|
|
|
private:
|
|
};
|
|
|
|
// -------------------------------------------------------------------------------
|
|
/** Wrap any STEP aggregate: LIST, SET, ... */
|
|
// -------------------------------------------------------------------------------
|
|
class LIST : public DataType
|
|
{
|
|
public:
|
|
|
|
// access a particular list index, throw std::range_error for wrong indices
|
|
std::shared_ptr<const DataType> operator[] (size_t index) const {
|
|
return members[index];
|
|
}
|
|
|
|
size_t GetSize() const {
|
|
return members.size();
|
|
}
|
|
|
|
public:
|
|
|
|
/** @see DaraType::Parse */
|
|
static std::shared_ptr<const EXPRESS::LIST> Parse(const char*& inout,
|
|
uint64_t line = SyntaxError::LINE_NOT_SPECIFIED,
|
|
const EXPRESS::ConversionSchema* schema = NULL);
|
|
|
|
|
|
private:
|
|
typedef std::vector< std::shared_ptr<const DataType> > MemberList;
|
|
MemberList members;
|
|
};
|
|
|
|
class BINARY : public PrimitiveDataType<uint32_t> {
|
|
public:
|
|
BINARY(uint32_t val)
|
|
: PrimitiveDataType<uint32_t>(val) {
|
|
// empty
|
|
}
|
|
|
|
BINARY()
|
|
: PrimitiveDataType<uint32_t>(TypeError::ENTITY_NOT_SPECIFIED) {
|
|
// empty
|
|
}
|
|
};
|
|
|
|
// -------------------------------------------------------------------------------
|
|
/* Not exactly a full EXPRESS schema but rather a list of conversion functions
|
|
* to extract valid C++ objects out of a STEP file. Those conversion functions
|
|
* may, however, perform further schema validations. */
|
|
// -------------------------------------------------------------------------------
|
|
class ConversionSchema {
|
|
public:
|
|
struct SchemaEntry {
|
|
SchemaEntry( const char *name, ConvertObjectProc func )
|
|
: mName( name )
|
|
, mFunc(func) {
|
|
// empty
|
|
}
|
|
|
|
const char* mName;
|
|
ConvertObjectProc mFunc;
|
|
};
|
|
|
|
typedef std::map<std::string,ConvertObjectProc> ConverterMap;
|
|
|
|
template <size_t N>
|
|
explicit ConversionSchema( const SchemaEntry (& schemas)[N]) {
|
|
*this = schemas;
|
|
}
|
|
|
|
ConversionSchema() {
|
|
|
|
}
|
|
|
|
ConvertObjectProc GetConverterProc(const std::string& name) const {
|
|
ConverterMap::const_iterator it = converters.find(name);
|
|
return it == converters.end() ? nullptr : (*it).second;
|
|
}
|
|
|
|
bool IsKnownToken(const std::string& name) const {
|
|
return converters.find(name) != converters.end();
|
|
}
|
|
|
|
const char* GetStaticStringForToken(const std::string& token) const {
|
|
ConverterMap::const_iterator it = converters.find(token);
|
|
return it == converters.end() ? nullptr : (*it).first.c_str();
|
|
}
|
|
|
|
|
|
template <size_t N>
|
|
const ConversionSchema& operator=( const SchemaEntry (& schemas)[N]) {
|
|
for(size_t i = 0; i < N; ++i ) {
|
|
const SchemaEntry& schema = schemas[i];
|
|
converters[schema.mName] = schema.mFunc;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
private:
|
|
ConverterMap converters;
|
|
};
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------
|
|
/** Bundle all the relevant info from a STEP header, parts of which may later
|
|
* be plainly dumped to the logfile, whereas others may help the caller pick an
|
|
* appropriate loading strategy.*/
|
|
// ------------------------------------------------------------------------------
|
|
struct HeaderInfo
|
|
{
|
|
std::string timestamp;
|
|
std::string app;
|
|
std::string fileSchema;
|
|
};
|
|
|
|
|
|
// ------------------------------------------------------------------------------
|
|
/** Base class for all concrete object instances */
|
|
// ------------------------------------------------------------------------------
|
|
class Object {
|
|
public:
|
|
Object(const char* classname = "unknown")
|
|
: id( 0 )
|
|
, classname(classname) {
|
|
// empty
|
|
}
|
|
|
|
virtual ~Object() {
|
|
// empty
|
|
}
|
|
|
|
// utilities to simplify casting to concrete types
|
|
template <typename T>
|
|
const T& To() const {
|
|
return dynamic_cast<const T&>(*this);
|
|
}
|
|
|
|
template <typename T>
|
|
T& To() {
|
|
return dynamic_cast<T&>(*this);
|
|
}
|
|
|
|
template <typename T>
|
|
const T* ToPtr() const {
|
|
return dynamic_cast<const T*>(this);
|
|
}
|
|
|
|
template <typename T>
|
|
T* ToPtr() {
|
|
return dynamic_cast<T*>(this);
|
|
}
|
|
|
|
uint64_t GetID() const {
|
|
return id;
|
|
}
|
|
|
|
std::string GetClassName() const {
|
|
return classname;
|
|
}
|
|
|
|
void SetID(uint64_t newval) {
|
|
id = newval;
|
|
}
|
|
|
|
private:
|
|
uint64_t id;
|
|
const char* const classname;
|
|
};
|
|
|
|
template <typename T>
|
|
size_t GenericFill(const STEP::DB& db, const EXPRESS::LIST& params, T* in);
|
|
// (intentionally undefined)
|
|
|
|
|
|
// ------------------------------------------------------------------------------
|
|
/** CRTP shared base class for use by concrete entity implementation classes */
|
|
// ------------------------------------------------------------------------------
|
|
template <typename TDerived, size_t arg_count>
|
|
struct ObjectHelper : virtual Object {
|
|
ObjectHelper()
|
|
: aux_is_derived(0) {
|
|
// empty
|
|
}
|
|
|
|
static Object* Construct(const STEP::DB& db, const EXPRESS::LIST& params) {
|
|
// make sure we don't leak if Fill() throws an exception
|
|
std::unique_ptr<TDerived> impl(new TDerived());
|
|
|
|
// GenericFill<T> is undefined so we need to have a specialization
|
|
const size_t num_args = GenericFill<TDerived>(db,params,&*impl);
|
|
(void)num_args;
|
|
|
|
// the following check is commented because it will always trigger if
|
|
// parts of the entities are generated with dummy wrapper code.
|
|
// This is currently done to reduce the size of the loader
|
|
// code.
|
|
//if (num_args != params.GetSize() && impl->GetClassName() != "NotImplemented") {
|
|
// DefaultLogger::get()->debug("STEP: not all parameters consumed");
|
|
//}
|
|
return impl.release();
|
|
}
|
|
|
|
// note that this member always exists multiple times within the hierarchy
|
|
// of an individual object, so any access to it must be disambiguated.
|
|
std::bitset<arg_count> aux_is_derived;
|
|
};
|
|
|
|
// ------------------------------------------------------------------------------
|
|
/** Class template used to represent OPTIONAL data members in the converted schema */
|
|
// ------------------------------------------------------------------------------
|
|
template <typename T>
|
|
struct Maybe {
|
|
Maybe()
|
|
: have() {
|
|
// empty
|
|
}
|
|
|
|
explicit Maybe(const T& ptr)
|
|
: ptr(ptr)
|
|
, have(true) {
|
|
// empty
|
|
}
|
|
|
|
|
|
void flag_invalid() {
|
|
have = false;
|
|
}
|
|
|
|
void flag_valid() {
|
|
have = true;
|
|
}
|
|
|
|
|
|
bool operator! () const {
|
|
return !have;
|
|
}
|
|
|
|
operator bool() const {
|
|
return have;
|
|
}
|
|
|
|
operator const T&() const {
|
|
return Get();
|
|
}
|
|
|
|
const T& Get() const {
|
|
ai_assert(have);
|
|
return ptr;
|
|
}
|
|
|
|
Maybe& operator=(const T& _ptr) {
|
|
ptr = _ptr;
|
|
have = true;
|
|
return *this;
|
|
}
|
|
|
|
private:
|
|
template <typename T2> friend struct InternGenericConvert;
|
|
|
|
operator T&() {
|
|
return ptr;
|
|
}
|
|
|
|
T ptr;
|
|
bool have;
|
|
};
|
|
|
|
// ------------------------------------------------------------------------------
|
|
/** A LazyObject is created when needed. Before this happens, we just keep
|
|
the text line that contains the object definition. */
|
|
// -------------------------------------------------------------------------------
|
|
class LazyObject {
|
|
friend class DB;
|
|
|
|
public:
|
|
LazyObject(DB& db, uint64_t id, uint64_t line, const char* type,const char* args);
|
|
~LazyObject();
|
|
|
|
Object& operator * () {
|
|
if (!obj) {
|
|
LazyInit();
|
|
ai_assert(obj);
|
|
}
|
|
return *obj;
|
|
}
|
|
|
|
const Object& operator * () const {
|
|
if (!obj) {
|
|
LazyInit();
|
|
ai_assert(obj);
|
|
}
|
|
return *obj;
|
|
}
|
|
|
|
template <typename T>
|
|
const T& To() const {
|
|
return dynamic_cast<const T&>( **this );
|
|
}
|
|
|
|
template <typename T>
|
|
T& To() {
|
|
return dynamic_cast<T&>( **this );
|
|
}
|
|
|
|
template <typename T>
|
|
const T* ToPtr() const {
|
|
return dynamic_cast<const T*>( &**this );
|
|
}
|
|
|
|
template <typename T>
|
|
T* ToPtr() {
|
|
return dynamic_cast<T*>( &**this );
|
|
}
|
|
|
|
Object* operator -> () {
|
|
return &**this;
|
|
}
|
|
|
|
const Object* operator -> () const {
|
|
return &**this;
|
|
}
|
|
|
|
bool operator== (const std::string& atype) const {
|
|
return type == atype;
|
|
}
|
|
|
|
bool operator!= (const std::string& atype) const {
|
|
return type != atype;
|
|
}
|
|
|
|
uint64_t GetID() const {
|
|
return id;
|
|
}
|
|
|
|
private:
|
|
void LazyInit() const;
|
|
|
|
private:
|
|
mutable uint64_t id;
|
|
const char* const type;
|
|
DB& db;
|
|
mutable const char* args;
|
|
mutable Object* obj;
|
|
};
|
|
|
|
template <typename T>
|
|
inline
|
|
bool operator==( std::shared_ptr<LazyObject> lo, T whatever ) {
|
|
return *lo == whatever; // XXX use std::forward if we have 0x
|
|
}
|
|
|
|
template <typename T>
|
|
inline
|
|
bool operator==( const std::pair<uint64_t, std::shared_ptr<LazyObject> >& lo, T whatever ) {
|
|
return *(lo.second) == whatever; // XXX use std::forward if we have 0x
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------
|
|
/** Class template used to represent lazily evaluated object references in the converted schema */
|
|
// ------------------------------------------------------------------------------
|
|
template <typename T>
|
|
struct Lazy {
|
|
typedef Lazy Out;
|
|
Lazy(const LazyObject* obj = nullptr)
|
|
: obj(obj) {
|
|
// empty
|
|
}
|
|
|
|
operator const T*() const {
|
|
return obj->ToPtr<T>();
|
|
}
|
|
|
|
operator const T&() const {
|
|
return obj->To<T>();
|
|
}
|
|
|
|
const T& operator * () const {
|
|
return obj->To<T>();
|
|
}
|
|
|
|
const T* operator -> () const {
|
|
return &obj->To<T>();
|
|
}
|
|
|
|
const LazyObject* obj;
|
|
};
|
|
|
|
// ------------------------------------------------------------------------------
|
|
/** Class template used to represent LIST and SET data members in the converted schema */
|
|
// ------------------------------------------------------------------------------
|
|
template <typename T, uint64_t min_cnt, uint64_t max_cnt=0uL>
|
|
struct ListOf : public std::vector<typename T::Out> {
|
|
typedef typename T::Out OutScalar;
|
|
typedef ListOf Out;
|
|
|
|
ListOf() {
|
|
static_assert(min_cnt <= max_cnt || !max_cnt, "min_cnt <= max_cnt || !max_cnt");
|
|
}
|
|
};
|
|
|
|
// ------------------------------------------------------------------------------
|
|
template <typename TOut>
|
|
struct PickBaseType {
|
|
typedef EXPRESS::PrimitiveDataType<TOut> Type;
|
|
};
|
|
|
|
template <typename TOut>
|
|
struct PickBaseType< Lazy<TOut> > {
|
|
typedef EXPRESS::ENTITY Type;
|
|
};
|
|
|
|
template<>
|
|
struct PickBaseType< std::shared_ptr< const EXPRESS::DataType > >;
|
|
|
|
// ------------------------------------------------------------------------------
|
|
template <typename T>
|
|
struct InternGenericConvert {
|
|
void operator()(T& out, const std::shared_ptr< const EXPRESS::DataType >& in, const STEP::DB& /*db*/) {
|
|
try{
|
|
out = dynamic_cast< const typename PickBaseType<T>::Type& > ( *in );
|
|
} catch(std::bad_cast&) {
|
|
throw TypeError("type error reading literal field");
|
|
}
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct InternGenericConvert< std::shared_ptr< const EXPRESS::DataType > > {
|
|
void operator()(std::shared_ptr< const EXPRESS::DataType >& out, const std::shared_ptr< const EXPRESS::DataType >& in, const STEP::DB& /*db*/) {
|
|
out = in;
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct InternGenericConvert< Maybe<T> > {
|
|
void operator()(Maybe<T>& out, const std::shared_ptr< const EXPRESS::DataType >& in, const STEP::DB& db) {
|
|
GenericConvert((T&)out,in,db);
|
|
out.flag_valid();
|
|
}
|
|
};
|
|
|
|
template <typename T,uint64_t min_cnt, uint64_t max_cnt>
|
|
struct InternGenericConvertList {
|
|
void operator()(ListOf<T, min_cnt, max_cnt>& out, const std::shared_ptr< const EXPRESS::DataType >& inp_base, const STEP::DB& db) {
|
|
|
|
const EXPRESS::LIST* inp = dynamic_cast<const EXPRESS::LIST*>(inp_base.get());
|
|
if (!inp) {
|
|
throw TypeError("type error reading aggregate");
|
|
}
|
|
|
|
// XXX is this really how the EXPRESS notation ([?:3],[1:3]) is intended?
|
|
if (max_cnt && inp->GetSize() > max_cnt) {
|
|
ASSIMP_LOG_WARN("too many aggregate elements");
|
|
}
|
|
else if (inp->GetSize() < min_cnt) {
|
|
ASSIMP_LOG_WARN("too few aggregate elements");
|
|
}
|
|
|
|
out.reserve(inp->GetSize());
|
|
for(size_t i = 0; i < inp->GetSize(); ++i) {
|
|
|
|
out.push_back( typename ListOf<T, min_cnt, max_cnt>::OutScalar() );
|
|
try{
|
|
GenericConvert(out.back(),(*inp)[i], db);
|
|
}
|
|
catch(const TypeError& t) {
|
|
throw TypeError(t.what() +std::string(" of aggregate"));
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct InternGenericConvert< Lazy<T> > {
|
|
void operator()(Lazy<T>& out, const std::shared_ptr< const EXPRESS::DataType >& in_base, const STEP::DB& db) {
|
|
const EXPRESS::ENTITY* in = dynamic_cast<const EXPRESS::ENTITY*>(in_base.get());
|
|
if (!in) {
|
|
throw TypeError("type error reading entity");
|
|
}
|
|
out = Couple<T>(db).GetObject(*in);
|
|
}
|
|
};
|
|
|
|
template <typename T1>
|
|
inline void GenericConvert(T1& a, const std::shared_ptr< const EXPRESS::DataType >& b, const STEP::DB& db) {
|
|
return InternGenericConvert<T1>()(a,b,db);
|
|
}
|
|
|
|
template <typename T1,uint64_t N1, uint64_t N2>
|
|
inline void GenericConvert(ListOf<T1,N1,N2>& a, const std::shared_ptr< const EXPRESS::DataType >& b, const STEP::DB& db) {
|
|
return InternGenericConvertList<T1,N1,N2>()(a,b,db);
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------
|
|
/** Lightweight manager class that holds the map of all objects in a
|
|
* STEP file. DB's are exclusively maintained by the functions in
|
|
* STEPFileReader.h*/
|
|
// -------------------------------------------------------------------------------
|
|
class DB
|
|
{
|
|
friend DB* ReadFileHeader(std::shared_ptr<IOStream> stream);
|
|
friend void ReadFile(DB& db,const EXPRESS::ConversionSchema& scheme,
|
|
const char* const* types_to_track, size_t len,
|
|
const char* const* inverse_indices_to_track, size_t len2
|
|
);
|
|
|
|
friend class LazyObject;
|
|
|
|
public:
|
|
// objects indexed by ID - this can grow pretty large (i.e some hundred million
|
|
// entries), so use raw pointers to avoid *any* overhead.
|
|
typedef std::map<uint64_t,const LazyObject* > ObjectMap;
|
|
|
|
// objects indexed by their declarative type, but only for those that we truly want
|
|
typedef std::set< const LazyObject*> ObjectSet;
|
|
typedef std::map<std::string, ObjectSet > ObjectMapByType;
|
|
|
|
// list of types for which to keep inverse indices for all references
|
|
// that the respective objects keep.
|
|
// the list keeps pointers to strings in static storage
|
|
typedef std::set<const char*> InverseWhitelist;
|
|
|
|
// references - for each object id the ids of all objects which reference it
|
|
// this is used to simulate STEP inverse indices for selected types.
|
|
typedef std::step_unordered_multimap<uint64_t, uint64_t > RefMap;
|
|
typedef std::pair<RefMap::const_iterator,RefMap::const_iterator> RefMapRange;
|
|
|
|
private:
|
|
|
|
DB(std::shared_ptr<StreamReaderLE> reader)
|
|
: reader(reader)
|
|
, splitter(*reader,true,true)
|
|
, evaluated_count()
|
|
, schema( nullptr )
|
|
{}
|
|
|
|
public:
|
|
~DB() {
|
|
for(ObjectMap::value_type& o : objects) {
|
|
delete o.second;
|
|
}
|
|
}
|
|
|
|
uint64_t GetObjectCount() const {
|
|
return objects.size();
|
|
}
|
|
|
|
uint64_t GetEvaluatedObjectCount() const {
|
|
return evaluated_count;
|
|
}
|
|
|
|
const HeaderInfo& GetHeader() const {
|
|
return header;
|
|
}
|
|
|
|
const EXPRESS::ConversionSchema& GetSchema() const {
|
|
return *schema;
|
|
}
|
|
|
|
const ObjectMap& GetObjects() const {
|
|
return objects;
|
|
}
|
|
|
|
const ObjectMapByType& GetObjectsByType() const {
|
|
return objects_bytype;
|
|
}
|
|
|
|
const RefMap& GetRefs() const {
|
|
return refs;
|
|
}
|
|
|
|
bool KeepInverseIndicesForType(const char* const type) const {
|
|
return inv_whitelist.find(type) != inv_whitelist.end();
|
|
}
|
|
|
|
|
|
// get the yet unevaluated object record with a given id
|
|
const LazyObject* GetObject(uint64_t id) const {
|
|
const ObjectMap::const_iterator it = objects.find(id);
|
|
if (it != objects.end()) {
|
|
return (*it).second;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
|
|
// get an arbitrary object out of the soup with the only restriction being its type.
|
|
const LazyObject* GetObject(const std::string& type) const {
|
|
const ObjectMapByType::const_iterator it = objects_bytype.find(type);
|
|
if (it != objects_bytype.end() && (*it).second.size()) {
|
|
return *(*it).second.begin();
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
// same, but raise an exception if the object doesn't exist and return a reference
|
|
const LazyObject& MustGetObject(uint64_t id) const {
|
|
const LazyObject* o = GetObject(id);
|
|
if (!o) {
|
|
throw TypeError("requested entity is not present",id);
|
|
}
|
|
return *o;
|
|
}
|
|
|
|
const LazyObject& MustGetObject(const std::string& type) const {
|
|
const LazyObject* o = GetObject(type);
|
|
if (!o) {
|
|
throw TypeError("requested entity of type "+type+"is not present");
|
|
}
|
|
return *o;
|
|
}
|
|
|
|
|
|
#ifdef ASSIMP_IFC_TEST
|
|
|
|
// evaluate *all* entities in the file. this is a power test for the loader
|
|
void EvaluateAll() {
|
|
for(ObjectMap::value_type& e :objects) {
|
|
**e.second;
|
|
}
|
|
ai_assert(evaluated_count == objects.size());
|
|
}
|
|
|
|
#endif
|
|
|
|
private:
|
|
|
|
// full access only offered to close friends - they should
|
|
// use the provided getters rather than messing around with
|
|
// the members directly.
|
|
LineSplitter& GetSplitter() {
|
|
return splitter;
|
|
}
|
|
|
|
void InternInsert(const LazyObject* lz) {
|
|
objects[lz->GetID()] = lz;
|
|
|
|
const ObjectMapByType::iterator it = objects_bytype.find( lz->type );
|
|
if (it != objects_bytype.end()) {
|
|
(*it).second.insert(lz);
|
|
}
|
|
}
|
|
|
|
void SetSchema(const EXPRESS::ConversionSchema& _schema) {
|
|
schema = &_schema;
|
|
}
|
|
|
|
|
|
void SetTypesToTrack(const char* const* types, size_t N) {
|
|
for(size_t i = 0; i < N;++i) {
|
|
objects_bytype[types[i]] = ObjectSet();
|
|
}
|
|
}
|
|
|
|
void SetInverseIndicesToTrack( const char* const* types, size_t N ) {
|
|
for(size_t i = 0; i < N;++i) {
|
|
const char* const sz = schema->GetStaticStringForToken(types[i]);
|
|
ai_assert(sz);
|
|
inv_whitelist.insert(sz);
|
|
}
|
|
}
|
|
|
|
HeaderInfo& GetHeader() {
|
|
return header;
|
|
}
|
|
|
|
void MarkRef(uint64_t who, uint64_t by_whom) {
|
|
refs.insert(std::make_pair(who,by_whom));
|
|
}
|
|
|
|
private:
|
|
HeaderInfo header;
|
|
ObjectMap objects;
|
|
ObjectMapByType objects_bytype;
|
|
RefMap refs;
|
|
InverseWhitelist inv_whitelist;
|
|
std::shared_ptr<StreamReaderLE> reader;
|
|
LineSplitter splitter;
|
|
uint64_t evaluated_count;
|
|
const EXPRESS::ConversionSchema* schema;
|
|
};
|
|
|
|
}
|
|
|
|
} // end Assimp
|
|
|
|
#endif // INCLUDED_AI_STEPFILE_H
|