427 lines
15 KiB
C++
427 lines
15 KiB
C++
/*
|
||
---------------------------------------------------------------------------
|
||
Open Asset Import Library (ASSIMP)
|
||
---------------------------------------------------------------------------
|
||
|
||
Copyright (c) 2006-2010, ASSIMP Development Team
|
||
|
||
All rights reserved.
|
||
|
||
Redistribution and use of this software in source and binary forms,
|
||
with or without modification, are permitted provided that the following
|
||
conditions are met:
|
||
|
||
* Redistributions of source code must retain the above
|
||
copyright notice, this list of conditions and the
|
||
following disclaimer.
|
||
|
||
* Redistributions in binary form must reproduce the above
|
||
copyright notice, this list of conditions and the
|
||
following disclaimer in the documentation and/or other
|
||
materials provided with the distribution.
|
||
|
||
* Neither the name of the ASSIMP team, nor the names of its
|
||
contributors may be used to endorse or promote products
|
||
derived from this software without specific prior
|
||
written permission of the ASSIMP Development Team.
|
||
|
||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
---------------------------------------------------------------------------
|
||
*/
|
||
|
||
/** @file aiMatrix4x4.inl
|
||
* @brief Inline implementation of the 4x4 matrix operators
|
||
*/
|
||
#ifndef AI_MATRIX4x4_INL_INC
|
||
#define AI_MATRIX4x4_INL_INC
|
||
|
||
#include "aiMatrix4x4.h"
|
||
|
||
#ifdef __cplusplus
|
||
#include "aiMatrix3x3.h"
|
||
|
||
#include <algorithm>
|
||
#include <limits>
|
||
#include <math.h>
|
||
|
||
#include "aiAssert.h"
|
||
#include "aiQuaternion.h"
|
||
|
||
// ----------------------------------------------------------------------------------------
|
||
inline aiMatrix4x4::aiMatrix4x4( const aiMatrix3x3& m)
|
||
{
|
||
a1 = m.a1; a2 = m.a2; a3 = m.a3; a4 = 0.0f;
|
||
b1 = m.b1; b2 = m.b2; b3 = m.b3; b4 = 0.0f;
|
||
c1 = m.c1; c2 = m.c2; c3 = m.c3; c4 = 0.0f;
|
||
d1 = 0.0f; d2 = 0.0f; d3 = 0.0f; d4 = 1.0f;
|
||
}
|
||
|
||
// ----------------------------------------------------------------------------------------
|
||
inline aiMatrix4x4& aiMatrix4x4::operator *= (const aiMatrix4x4& m)
|
||
{
|
||
*this = aiMatrix4x4(
|
||
m.a1 * a1 + m.b1 * a2 + m.c1 * a3 + m.d1 * a4,
|
||
m.a2 * a1 + m.b2 * a2 + m.c2 * a3 + m.d2 * a4,
|
||
m.a3 * a1 + m.b3 * a2 + m.c3 * a3 + m.d3 * a4,
|
||
m.a4 * a1 + m.b4 * a2 + m.c4 * a3 + m.d4 * a4,
|
||
m.a1 * b1 + m.b1 * b2 + m.c1 * b3 + m.d1 * b4,
|
||
m.a2 * b1 + m.b2 * b2 + m.c2 * b3 + m.d2 * b4,
|
||
m.a3 * b1 + m.b3 * b2 + m.c3 * b3 + m.d3 * b4,
|
||
m.a4 * b1 + m.b4 * b2 + m.c4 * b3 + m.d4 * b4,
|
||
m.a1 * c1 + m.b1 * c2 + m.c1 * c3 + m.d1 * c4,
|
||
m.a2 * c1 + m.b2 * c2 + m.c2 * c3 + m.d2 * c4,
|
||
m.a3 * c1 + m.b3 * c2 + m.c3 * c3 + m.d3 * c4,
|
||
m.a4 * c1 + m.b4 * c2 + m.c4 * c3 + m.d4 * c4,
|
||
m.a1 * d1 + m.b1 * d2 + m.c1 * d3 + m.d1 * d4,
|
||
m.a2 * d1 + m.b2 * d2 + m.c2 * d3 + m.d2 * d4,
|
||
m.a3 * d1 + m.b3 * d2 + m.c3 * d3 + m.d3 * d4,
|
||
m.a4 * d1 + m.b4 * d2 + m.c4 * d3 + m.d4 * d4);
|
||
return *this;
|
||
}
|
||
|
||
// ----------------------------------------------------------------------------------------
|
||
inline aiMatrix4x4 aiMatrix4x4::operator* (const aiMatrix4x4& m) const
|
||
{
|
||
aiMatrix4x4 temp( *this);
|
||
temp *= m;
|
||
return temp;
|
||
}
|
||
|
||
|
||
// ----------------------------------------------------------------------------------------
|
||
inline aiMatrix4x4& aiMatrix4x4::Transpose()
|
||
{
|
||
// (float&) don't remove, GCC complains cause of packed fields
|
||
std::swap( (float&)b1, (float&)a2);
|
||
std::swap( (float&)c1, (float&)a3);
|
||
std::swap( (float&)c2, (float&)b3);
|
||
std::swap( (float&)d1, (float&)a4);
|
||
std::swap( (float&)d2, (float&)b4);
|
||
std::swap( (float&)d3, (float&)c4);
|
||
return *this;
|
||
}
|
||
|
||
|
||
// ----------------------------------------------------------------------------------------
|
||
inline float aiMatrix4x4::Determinant() const
|
||
{
|
||
return a1*b2*c3*d4 - a1*b2*c4*d3 + a1*b3*c4*d2 - a1*b3*c2*d4
|
||
+ a1*b4*c2*d3 - a1*b4*c3*d2 - a2*b3*c4*d1 + a2*b3*c1*d4
|
||
- a2*b4*c1*d3 + a2*b4*c3*d1 - a2*b1*c3*d4 + a2*b1*c4*d3
|
||
+ a3*b4*c1*d2 - a3*b4*c2*d1 + a3*b1*c2*d4 - a3*b1*c4*d2
|
||
+ a3*b2*c4*d1 - a3*b2*c1*d4 - a4*b1*c2*d3 + a4*b1*c3*d2
|
||
- a4*b2*c3*d1 + a4*b2*c1*d3 - a4*b3*c1*d2 + a4*b3*c2*d1;
|
||
}
|
||
|
||
// ----------------------------------------------------------------------------------------
|
||
inline aiMatrix4x4& aiMatrix4x4::Inverse()
|
||
{
|
||
// Compute the reciprocal determinant
|
||
float det = Determinant();
|
||
if(det == 0.0f)
|
||
{
|
||
// Matrix not invertible. Setting all elements to nan is not really
|
||
// correct in a mathematical sense but it is easy to debug for the
|
||
// programmer.
|
||
const float nan = std::numeric_limits<float>::quiet_NaN();
|
||
*this = aiMatrix4x4(
|
||
nan,nan,nan,nan,
|
||
nan,nan,nan,nan,
|
||
nan,nan,nan,nan,
|
||
nan,nan,nan,nan);
|
||
|
||
return *this;
|
||
}
|
||
|
||
float invdet = 1.0f / det;
|
||
|
||
aiMatrix4x4 res;
|
||
res.a1 = invdet * (b2 * (c3 * d4 - c4 * d3) + b3 * (c4 * d2 - c2 * d4) + b4 * (c2 * d3 - c3 * d2));
|
||
res.a2 = -invdet * (a2 * (c3 * d4 - c4 * d3) + a3 * (c4 * d2 - c2 * d4) + a4 * (c2 * d3 - c3 * d2));
|
||
res.a3 = invdet * (a2 * (b3 * d4 - b4 * d3) + a3 * (b4 * d2 - b2 * d4) + a4 * (b2 * d3 - b3 * d2));
|
||
res.a4 = -invdet * (a2 * (b3 * c4 - b4 * c3) + a3 * (b4 * c2 - b2 * c4) + a4 * (b2 * c3 - b3 * c2));
|
||
res.b1 = -invdet * (b1 * (c3 * d4 - c4 * d3) + b3 * (c4 * d1 - c1 * d4) + b4 * (c1 * d3 - c3 * d1));
|
||
res.b2 = invdet * (a1 * (c3 * d4 - c4 * d3) + a3 * (c4 * d1 - c1 * d4) + a4 * (c1 * d3 - c3 * d1));
|
||
res.b3 = -invdet * (a1 * (b3 * d4 - b4 * d3) + a3 * (b4 * d1 - b1 * d4) + a4 * (b1 * d3 - b3 * d1));
|
||
res.b4 = invdet * (a1 * (b3 * c4 - b4 * c3) + a3 * (b4 * c1 - b1 * c4) + a4 * (b1 * c3 - b3 * c1));
|
||
res.c1 = invdet * (b1 * (c2 * d4 - c4 * d2) + b2 * (c4 * d1 - c1 * d4) + b4 * (c1 * d2 - c2 * d1));
|
||
res.c2 = -invdet * (a1 * (c2 * d4 - c4 * d2) + a2 * (c4 * d1 - c1 * d4) + a4 * (c1 * d2 - c2 * d1));
|
||
res.c3 = invdet * (a1 * (b2 * d4 - b4 * d2) + a2 * (b4 * d1 - b1 * d4) + a4 * (b1 * d2 - b2 * d1));
|
||
res.c4 = -invdet * (a1 * (b2 * c4 - b4 * c2) + a2 * (b4 * c1 - b1 * c4) + a4 * (b1 * c2 - b2 * c1));
|
||
res.d1 = -invdet * (b1 * (c2 * d3 - c3 * d2) + b2 * (c3 * d1 - c1 * d3) + b3 * (c1 * d2 - c2 * d1));
|
||
res.d2 = invdet * (a1 * (c2 * d3 - c3 * d2) + a2 * (c3 * d1 - c1 * d3) + a3 * (c1 * d2 - c2 * d1));
|
||
res.d3 = -invdet * (a1 * (b2 * d3 - b3 * d2) + a2 * (b3 * d1 - b1 * d3) + a3 * (b1 * d2 - b2 * d1));
|
||
res.d4 = invdet * (a1 * (b2 * c3 - b3 * c2) + a2 * (b3 * c1 - b1 * c3) + a3 * (b1 * c2 - b2 * c1));
|
||
*this = res;
|
||
|
||
return *this;
|
||
}
|
||
|
||
// ----------------------------------------------------------------------------------------
|
||
inline float* aiMatrix4x4::operator[](unsigned int p_iIndex)
|
||
{
|
||
return &this->a1 + p_iIndex * 4;
|
||
}
|
||
|
||
// ----------------------------------------------------------------------------------------
|
||
inline const float* aiMatrix4x4::operator[](unsigned int p_iIndex) const
|
||
{
|
||
return &this->a1 + p_iIndex * 4;
|
||
}
|
||
|
||
// ----------------------------------------------------------------------------------------
|
||
inline bool aiMatrix4x4::operator== (const aiMatrix4x4 m) const
|
||
{
|
||
return (a1 == m.a1 && a2 == m.a2 && a3 == m.a3 && a4 == m.a4 &&
|
||
b1 == m.b1 && b2 == m.b2 && b3 == m.b3 && b4 == m.b4 &&
|
||
c1 == m.c1 && c2 == m.c2 && c3 == m.c3 && c4 == m.c4 &&
|
||
d1 == m.d1 && d2 == m.d2 && d3 == m.d3 && d4 == m.d4);
|
||
}
|
||
|
||
// ----------------------------------------------------------------------------------------
|
||
inline bool aiMatrix4x4::operator!= (const aiMatrix4x4 m) const
|
||
{
|
||
return !(*this == m);
|
||
}
|
||
|
||
// ----------------------------------------------------------------------------------------
|
||
inline void aiMatrix4x4::Decompose (aiVector3D& scaling, aiQuaternion& rotation,
|
||
aiVector3D& position) const
|
||
{
|
||
const aiMatrix4x4& _this = *this;
|
||
|
||
// extract translation
|
||
position.x = _this[0][3];
|
||
position.y = _this[1][3];
|
||
position.z = _this[2][3];
|
||
|
||
// extract the rows of the matrix
|
||
aiVector3D vRows[3] = {
|
||
aiVector3D(_this[0][0],_this[1][0],_this[2][0]),
|
||
aiVector3D(_this[0][1],_this[1][1],_this[2][1]),
|
||
aiVector3D(_this[0][2],_this[1][2],_this[2][2])
|
||
};
|
||
|
||
// extract the scaling factors
|
||
scaling.x = vRows[0].Length();
|
||
scaling.y = vRows[1].Length();
|
||
scaling.z = vRows[2].Length();
|
||
|
||
// and the sign of the scaling
|
||
if (Determinant() < 0) {
|
||
scaling.x = -scaling.x;
|
||
scaling.y = -scaling.y;
|
||
scaling.z = -scaling.z;
|
||
}
|
||
|
||
// and remove all scaling from the matrix
|
||
if(scaling.x)
|
||
{
|
||
vRows[0] /= scaling.x;
|
||
}
|
||
if(scaling.y)
|
||
{
|
||
vRows[1] /= scaling.y;
|
||
}
|
||
if(scaling.z)
|
||
{
|
||
vRows[2] /= scaling.z;
|
||
}
|
||
|
||
// build a 3x3 rotation matrix
|
||
aiMatrix3x3 m(vRows[0].x,vRows[1].x,vRows[2].x,
|
||
vRows[0].y,vRows[1].y,vRows[2].y,
|
||
vRows[0].z,vRows[1].z,vRows[2].z);
|
||
|
||
// and generate the rotation quaternion from it
|
||
rotation = aiQuaternion(m);
|
||
}
|
||
|
||
// ----------------------------------------------------------------------------------------
|
||
inline void aiMatrix4x4::DecomposeNoScaling (aiQuaternion& rotation,
|
||
aiVector3D& position) const
|
||
{
|
||
const aiMatrix4x4& _this = *this;
|
||
|
||
// extract translation
|
||
position.x = _this[0][3];
|
||
position.y = _this[1][3];
|
||
position.z = _this[2][3];
|
||
|
||
// extract rotation
|
||
rotation = aiQuaternion((aiMatrix3x3)_this);
|
||
}
|
||
|
||
// ----------------------------------------------------------------------------------------
|
||
inline aiMatrix4x4& aiMatrix4x4::FromEulerAnglesXYZ(const aiVector3D& blubb)
|
||
{
|
||
return FromEulerAnglesXYZ(blubb.x,blubb.y,blubb.z);
|
||
}
|
||
|
||
// ----------------------------------------------------------------------------------------
|
||
inline aiMatrix4x4& aiMatrix4x4::FromEulerAnglesXYZ(float x, float y, float z)
|
||
{
|
||
aiMatrix4x4& _this = *this;
|
||
|
||
float cr = cos( x );
|
||
float sr = sin( x );
|
||
float cp = cos( y );
|
||
float sp = sin( y );
|
||
float cy = cos( z );
|
||
float sy = sin( z );
|
||
|
||
_this.a1 = cp*cy ;
|
||
_this.a2 = cp*sy;
|
||
_this.a3 = -sp ;
|
||
|
||
float srsp = sr*sp;
|
||
float crsp = cr*sp;
|
||
|
||
_this.b1 = srsp*cy-cr*sy ;
|
||
_this.b2 = srsp*sy+cr*cy ;
|
||
_this.b3 = sr*cp ;
|
||
|
||
_this.c1 = crsp*cy+sr*sy ;
|
||
_this.c2 = crsp*sy-sr*cy ;
|
||
_this.c3 = cr*cp ;
|
||
|
||
return *this;
|
||
}
|
||
|
||
// ----------------------------------------------------------------------------------------
|
||
inline bool aiMatrix4x4::IsIdentity() const
|
||
{
|
||
// Use a small epsilon to solve floating-point inaccuracies
|
||
const static float epsilon = 10e-3f;
|
||
|
||
return (a2 <= epsilon && a2 >= -epsilon &&
|
||
a3 <= epsilon && a3 >= -epsilon &&
|
||
a4 <= epsilon && a4 >= -epsilon &&
|
||
b1 <= epsilon && b1 >= -epsilon &&
|
||
b3 <= epsilon && b3 >= -epsilon &&
|
||
b4 <= epsilon && b4 >= -epsilon &&
|
||
c1 <= epsilon && c1 >= -epsilon &&
|
||
c2 <= epsilon && c2 >= -epsilon &&
|
||
c4 <= epsilon && c4 >= -epsilon &&
|
||
d1 <= epsilon && d1 >= -epsilon &&
|
||
d2 <= epsilon && d2 >= -epsilon &&
|
||
d3 <= epsilon && d3 >= -epsilon &&
|
||
a1 <= 1.f+epsilon && a1 >= 1.f-epsilon &&
|
||
b2 <= 1.f+epsilon && b2 >= 1.f-epsilon &&
|
||
c3 <= 1.f+epsilon && c3 >= 1.f-epsilon &&
|
||
d4 <= 1.f+epsilon && d4 >= 1.f-epsilon);
|
||
}
|
||
|
||
// ----------------------------------------------------------------------------------------
|
||
inline aiMatrix4x4& aiMatrix4x4::RotationX(float a, aiMatrix4x4& out)
|
||
{
|
||
/*
|
||
| 1 0 0 0 |
|
||
M = | 0 cos(A) -sin(A) 0 |
|
||
| 0 sin(A) cos(A) 0 |
|
||
| 0 0 0 1 | */
|
||
out = aiMatrix4x4();
|
||
out.b2 = out.c3 = cos(a);
|
||
out.b3 = -(out.c2 = sin(a));
|
||
return out;
|
||
}
|
||
|
||
// ----------------------------------------------------------------------------------------
|
||
inline aiMatrix4x4& aiMatrix4x4::RotationY(float a, aiMatrix4x4& out)
|
||
{
|
||
/*
|
||
| cos(A) 0 sin(A) 0 |
|
||
M = | 0 1 0 0 |
|
||
| -sin(A) 0 cos(A) 0 |
|
||
| 0 0 0 1 |
|
||
*/
|
||
out = aiMatrix4x4();
|
||
out.a1 = out.c3 = cos(a);
|
||
out.c1 = -(out.a3 = sin(a));
|
||
return out;
|
||
}
|
||
|
||
// ----------------------------------------------------------------------------------------
|
||
inline aiMatrix4x4& aiMatrix4x4::RotationZ(float a, aiMatrix4x4& out)
|
||
{
|
||
/*
|
||
| cos(A) -sin(A) 0 0 |
|
||
M = | sin(A) cos(A) 0 0 |
|
||
| 0 0 1 0 |
|
||
| 0 0 0 1 | */
|
||
out = aiMatrix4x4();
|
||
out.a1 = out.b2 = cos(a);
|
||
out.a2 = -(out.b1 = sin(a));
|
||
return out;
|
||
}
|
||
|
||
// ----------------------------------------------------------------------------------------
|
||
// Returns a rotation matrix for a rotation around an arbitrary axis.
|
||
inline aiMatrix4x4& aiMatrix4x4::Rotation( float a, const aiVector3D& axis, aiMatrix4x4& out)
|
||
{
|
||
float c = cos( a), s = sin( a), t = 1 - c;
|
||
float x = axis.x, y = axis.y, z = axis.z;
|
||
|
||
// Many thanks to MathWorld and Wikipedia
|
||
out.a1 = t*x*x + c; out.a2 = t*x*y - s*z; out.a3 = t*x*z + s*y;
|
||
out.b1 = t*x*y + s*z; out.b2 = t*y*y + c; out.b3 = t*y*z - s*x;
|
||
out.c1 = t*x*z - s*y; out.c2 = t*y*z + s*x; out.c3 = t*z*z + c;
|
||
out.a4 = out.b4 = out.c4 = 0.0f;
|
||
out.d1 = out.d2 = out.d3 = 0.0f;
|
||
out.d4 = 1.0f;
|
||
|
||
return out;
|
||
}
|
||
|
||
// ----------------------------------------------------------------------------------------
|
||
inline aiMatrix4x4& aiMatrix4x4::Translation( const aiVector3D& v, aiMatrix4x4& out)
|
||
{
|
||
out = aiMatrix4x4();
|
||
out.a4 = v.x;
|
||
out.b4 = v.y;
|
||
out.c4 = v.z;
|
||
return out;
|
||
}
|
||
|
||
// ----------------------------------------------------------------------------------------
|
||
inline aiMatrix4x4& aiMatrix4x4::Scaling( const aiVector3D& v, aiMatrix4x4& out)
|
||
{
|
||
out = aiMatrix4x4();
|
||
out.a1 = v.x;
|
||
out.b2 = v.y;
|
||
out.c3 = v.z;
|
||
return out;
|
||
}
|
||
|
||
// ----------------------------------------------------------------------------------------
|
||
/** A function for creating a rotation matrix that rotates a vector called
|
||
* "from" into another vector called "to".
|
||
* Input : from[3], to[3] which both must be *normalized* non-zero vectors
|
||
* Output: mtx[3][3] -- a 3x3 matrix in colum-major form
|
||
* Authors: Tomas M<>ller, John Hughes
|
||
* "Efficiently Building a Matrix to Rotate One Vector to Another"
|
||
* Journal of Graphics Tools, 4(4):1-4, 1999
|
||
*/
|
||
// ----------------------------------------------------------------------------------------
|
||
inline aiMatrix4x4& aiMatrix4x4::FromToMatrix(const aiVector3D& from,
|
||
const aiVector3D& to, aiMatrix4x4& mtx)
|
||
{
|
||
aiMatrix3x3 m3;
|
||
aiMatrix3x3::FromToMatrix(from,to,m3);
|
||
mtx = aiMatrix4x4(m3);
|
||
return mtx;
|
||
}
|
||
|
||
#endif // __cplusplus
|
||
#endif // AI_MATRIX4x4_INL_INC
|