1162 lines
38 KiB
C++
1162 lines
38 KiB
C++
/*
|
|
---------------------------------------------------------------------------
|
|
Open Asset Import Library (assimp)
|
|
---------------------------------------------------------------------------
|
|
|
|
Copyright (c) 2006-2018, assimp team
|
|
|
|
|
|
|
|
All rights reserved.
|
|
|
|
Redistribution and use of this software in source and binary forms,
|
|
with or without modification, are permitted provided that the following
|
|
conditions are met:
|
|
|
|
* Redistributions of source code must retain the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer in the documentation and/or other
|
|
materials provided with the distribution.
|
|
|
|
* Neither the name of the assimp team, nor the names of its
|
|
contributors may be used to endorse or promote products
|
|
derived from this software without specific prior
|
|
written permission of the assimp team.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
---------------------------------------------------------------------------
|
|
*/
|
|
#include "glview.hpp"
|
|
|
|
// Header files, Qt.
|
|
#include <QTime>
|
|
|
|
// Header files, OpenGL.
|
|
#if defined(__APPLE__)
|
|
# include <OpenGL/glu.h>
|
|
#else
|
|
# include <GL/glu.h>
|
|
#endif
|
|
|
|
// Header files, DevIL.
|
|
|
|
// Header files, Assimp.
|
|
#include <assimp/DefaultLogger.hpp>
|
|
|
|
#define STB_IMAGE_IMPLEMENTATION
|
|
#include "contrib/stb_image/stb_image.h"
|
|
|
|
CGLView::SHelper_Mesh::SHelper_Mesh(const size_t pQuantity_Point, const size_t pQuantity_Line, const size_t pQuantity_Triangle, const SBBox& pBBox)
|
|
: Quantity_Point(pQuantity_Point)
|
|
, Quantity_Line(pQuantity_Line)
|
|
, Quantity_Triangle(pQuantity_Triangle)
|
|
, BBox(pBBox) {
|
|
Index_Point = pQuantity_Point ? new GLuint[pQuantity_Point * 1] : nullptr;
|
|
Index_Line = pQuantity_Line ? new GLuint[pQuantity_Line * 2] : nullptr;
|
|
Index_Triangle = pQuantity_Triangle ? new GLuint[pQuantity_Triangle * 3] : nullptr;
|
|
}
|
|
|
|
CGLView::SHelper_Mesh::~SHelper_Mesh() {
|
|
delete [] Index_Point;
|
|
delete [] Index_Line;
|
|
delete [] Index_Triangle;
|
|
}
|
|
|
|
void CGLView::SHelper_Camera::SetDefault() {
|
|
Position.Set(0, 0, 0);
|
|
Target.Set(0, 0, -1);
|
|
Rotation_AroundCamera = aiMatrix4x4();
|
|
Rotation_Scene = aiMatrix4x4();
|
|
Translation_ToScene.Set(0, 0, 2);
|
|
}
|
|
|
|
static void set_float4(float f[4], float a, float b, float c, float d) {
|
|
f[0] = a;
|
|
f[1] = b;
|
|
f[2] = c;
|
|
f[3] = d;
|
|
}
|
|
|
|
static void color4_to_float4(const aiColor4D *c, float f[4]) {
|
|
f[0] = c->r;
|
|
f[1] = c->g;
|
|
f[2] = c->b;
|
|
f[3] = c->a;
|
|
}
|
|
|
|
void CGLView::Material_Apply(const aiMaterial* pMaterial) {
|
|
GLfloat tcol[4];
|
|
aiColor4D taicol;
|
|
unsigned int max;
|
|
int ret1, ret2;
|
|
int texture_index = 0;
|
|
aiString texture_path;
|
|
|
|
///TODO: cache materials
|
|
// Disable color material because glMaterial is used.
|
|
glDisable(GL_COLOR_MATERIAL);///TODO: cache
|
|
|
|
// Set texture. If assigned.
|
|
if(AI_SUCCESS == pMaterial->GetTexture(aiTextureType_DIFFUSE, texture_index, &texture_path)) {
|
|
//bind texture
|
|
unsigned int texture_ID = mTexture_IDMap.value(texture_path.data, 0);
|
|
|
|
glBindTexture(GL_TEXTURE_2D, texture_ID);
|
|
}
|
|
//
|
|
// Set material parameters from scene or default values.
|
|
//
|
|
// Diffuse
|
|
set_float4(tcol, 0.8f, 0.8f, 0.8f, 1.0f);
|
|
if ( AI_SUCCESS == aiGetMaterialColor( pMaterial, AI_MATKEY_COLOR_DIFFUSE, &taicol )) {
|
|
color4_to_float4( &taicol, tcol );
|
|
}
|
|
|
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, tcol);
|
|
|
|
// Specular
|
|
set_float4(tcol, 0.0f, 0.0f, 0.0f, 1.0f);
|
|
if ( AI_SUCCESS == aiGetMaterialColor( pMaterial, AI_MATKEY_COLOR_SPECULAR, &taicol )) {
|
|
color4_to_float4( &taicol, tcol );
|
|
}
|
|
|
|
glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, tcol);
|
|
// Ambient
|
|
set_float4(tcol, 0.2f, 0.2f, 0.2f, 1.0f);
|
|
if ( AI_SUCCESS == aiGetMaterialColor( pMaterial, AI_MATKEY_COLOR_AMBIENT, &taicol )) {
|
|
color4_to_float4( &taicol, tcol );
|
|
}
|
|
glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, tcol);
|
|
|
|
// Emission
|
|
set_float4(tcol, 0.0f, 0.0f, 0.0f, 1.0f);
|
|
if(AI_SUCCESS == aiGetMaterialColor(pMaterial, AI_MATKEY_COLOR_EMISSIVE, &taicol)) color4_to_float4(&taicol, tcol);
|
|
|
|
glMaterialfv(GL_FRONT_AND_BACK, GL_EMISSION, tcol);
|
|
// Shininess
|
|
ai_real shininess, strength;
|
|
|
|
max = 1;
|
|
ret1 = aiGetMaterialFloatArray(pMaterial, AI_MATKEY_SHININESS, &shininess, &max);
|
|
// Shininess strength
|
|
max = 1;
|
|
ret2 = aiGetMaterialFloatArray(pMaterial, AI_MATKEY_SHININESS_STRENGTH, &strength, &max);
|
|
if((ret1 == AI_SUCCESS) && (ret2 == AI_SUCCESS)) {
|
|
glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, shininess * strength);///TODO: cache
|
|
} else {
|
|
glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, 0.0f);///TODO: cache
|
|
set_float4(tcol, 0.0f, 0.0f, 0.0f, 0.0f);
|
|
glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, tcol);
|
|
}
|
|
|
|
// Fill mode
|
|
GLenum fill_mode;
|
|
int wireframe;
|
|
|
|
max = 1;
|
|
if(AI_SUCCESS == aiGetMaterialIntegerArray(pMaterial, AI_MATKEY_ENABLE_WIREFRAME, &wireframe, &max))
|
|
fill_mode = wireframe ? GL_LINE : GL_FILL;
|
|
else
|
|
fill_mode = GL_FILL;
|
|
|
|
glPolygonMode(GL_FRONT_AND_BACK, fill_mode);///TODO: cache
|
|
// Fill side
|
|
int two_sided;
|
|
|
|
max = 1;
|
|
if((AI_SUCCESS == aiGetMaterialIntegerArray(pMaterial, AI_MATKEY_TWOSIDED, &two_sided, &max)) && two_sided)///TODO: cache
|
|
glDisable(GL_CULL_FACE);
|
|
else
|
|
glEnable(GL_CULL_FACE);
|
|
}
|
|
|
|
void CGLView::Matrix_NodeToRoot(const aiNode* pNode, aiMatrix4x4& pOutMatrix)
|
|
{
|
|
const aiNode* node_cur;
|
|
std::list<aiMatrix4x4> mat_list;
|
|
|
|
pOutMatrix = aiMatrix4x4();
|
|
// starting walk from current element to root
|
|
node_cur = pNode;
|
|
if(node_cur != nullptr)
|
|
{
|
|
do
|
|
{
|
|
// if cur_node is group then store group transformation matrix in list.
|
|
mat_list.push_back(node_cur->mTransformation);
|
|
node_cur = node_cur->mParent;
|
|
} while(node_cur != nullptr);
|
|
}
|
|
|
|
// multiply all matrices in reverse order
|
|
for ( std::list<aiMatrix4x4>::reverse_iterator rit = mat_list.rbegin(); rit != mat_list.rend(); ++rit)
|
|
{
|
|
pOutMatrix = pOutMatrix * (*rit);
|
|
}
|
|
}
|
|
|
|
void CGLView::ImportTextures(const QString& scenePath) {
|
|
auto LoadTexture = [&](const QString& pFileName) -> bool ///TODO: IME texture mode, operation.
|
|
{
|
|
GLuint id_ogl_texture;// OpenGL texture ID.
|
|
|
|
if(!pFileName.startsWith(AI_EMBEDDED_TEXNAME_PREFIX))
|
|
{
|
|
QString basepath = scenePath.left(scenePath.lastIndexOf('/') + 1);// path with '/' at the end.
|
|
QString fileloc = (basepath + pFileName);
|
|
|
|
fileloc.replace('\\', "/");
|
|
int x, y, n;
|
|
unsigned char *data = stbi_load(fileloc.toLocal8Bit(), &x, &y, &n, STBI_rgb_alpha );
|
|
if ( nullptr == data ) {
|
|
LogError(QString("Couldn't load Image: %1").arg(fileloc));
|
|
|
|
return false;
|
|
}
|
|
|
|
// Convert every colour component into unsigned byte. If your image contains alpha channel you can replace IL_RGB with IL_RGBA.
|
|
|
|
glGenTextures(1, &id_ogl_texture);// Texture ID generation.
|
|
mTexture_IDMap[pFileName] = id_ogl_texture;// save texture ID for filename in map
|
|
glBindTexture(GL_TEXTURE_2D, id_ogl_texture);// Binding of texture ID.
|
|
// Redefine standard texture values
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);// We will use linear interpolation for magnification filter.
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);// We will use linear interpolation for minifying filter.
|
|
glTexImage2D(GL_TEXTURE_2D, 0, n, x, y, 0, GL_RGBA_INTEGER, GL_UNSIGNED_BYTE, data );// Texture specification.
|
|
stbi_image_free(data);
|
|
// Cleanup
|
|
}
|
|
else
|
|
{
|
|
struct SPixel_Description
|
|
{
|
|
const char* FormatHint;
|
|
const GLint Image_InternalFormat;
|
|
const GLint Pixel_Format;
|
|
};
|
|
|
|
constexpr SPixel_Description Pixel_Description[] = {
|
|
{"rgba8880", GL_RGB, GL_RGB},
|
|
{"rgba8888", GL_RGBA, GL_RGBA}
|
|
};
|
|
|
|
constexpr size_t Pixel_Description_Count = sizeof(Pixel_Description) / sizeof(SPixel_Description);
|
|
|
|
size_t idx_description;
|
|
// Get texture index.
|
|
bool ok;
|
|
size_t idx_texture = pFileName.right(strlen(AI_EMBEDDED_TEXNAME_PREFIX)).toULong(&ok);
|
|
|
|
if(!ok)
|
|
{
|
|
LogError("Can not get index of the embedded texture from path in material.");
|
|
|
|
return false;
|
|
}
|
|
|
|
// Create alias for conveniance.
|
|
const aiTexture& als = *mScene->mTextures[idx_texture];
|
|
|
|
if(als.mHeight == 0)// Compressed texture.
|
|
{
|
|
LogError("IME: compressed embedded textures are not implemented.");
|
|
}
|
|
else
|
|
{
|
|
ok = false;
|
|
for(size_t idx = 0; idx < Pixel_Description_Count; idx++)
|
|
{
|
|
if(als.CheckFormat(Pixel_Description[idx].FormatHint))
|
|
{
|
|
idx_description = idx;
|
|
ok = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if(!ok)
|
|
{
|
|
LogError(QString("Unsupported format hint for embedded texture: [%1]").arg(als.achFormatHint));
|
|
|
|
return false;
|
|
}
|
|
|
|
glGenTextures(1, &id_ogl_texture);// Texture ID generation.
|
|
mTexture_IDMap[pFileName] = id_ogl_texture;// save texture ID for filename in map
|
|
glBindTexture(GL_TEXTURE_2D, id_ogl_texture);// Binding of texture ID.
|
|
// Redefine standard texture values
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);// We will use linear interpolation for magnification filter.
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);// We will use linear interpolation for minifying filter.
|
|
// Texture specification.
|
|
glTexImage2D(GL_TEXTURE_2D, 0, Pixel_Description[idx_description].Image_InternalFormat, als.mWidth, als.mHeight, 0,
|
|
Pixel_Description[idx_description].Pixel_Format, GL_UNSIGNED_BYTE, (uint8_t*)als.pcData);
|
|
}// if(als.mHeight == 0) else
|
|
}// if(!filename.startsWith(AI_EMBEDDED_TEXNAME_PREFIX)) else
|
|
|
|
return true;
|
|
};// auto LoadTexture = [&](const aiString& pPath)
|
|
|
|
if(mScene == nullptr)
|
|
{
|
|
LogError("Trying to load textures for empty scene.");
|
|
|
|
return;
|
|
}
|
|
|
|
//
|
|
// Load textures.
|
|
//
|
|
// Get textures file names and number of textures.
|
|
for(size_t idx_material = 0; idx_material < mScene->mNumMaterials; idx_material++) {
|
|
int idx_texture = 0;
|
|
aiString path;
|
|
|
|
do {
|
|
if (mScene->mMaterials[ idx_material ]->GetTexture( aiTextureType_DIFFUSE, idx_texture, &path ) != AI_SUCCESS) {
|
|
break;
|
|
}
|
|
|
|
LoadTexture(QString(path.C_Str()));
|
|
idx_texture++;
|
|
} while(true);
|
|
}// for(size_t idx_material = 0; idx_material < mScene->mNumMaterials; idx_material++)
|
|
|
|
// Textures list is empty, exit.
|
|
if(mTexture_IDMap.empty()) {
|
|
LogInfo("No textures for import.");
|
|
}
|
|
}
|
|
|
|
void CGLView::BBox_GetForNode(const aiNode& pNode, const aiMatrix4x4& pParent_TransformationMatrix, SBBox& pNodeBBox, bool& pFirstAssign)
|
|
{
|
|
aiMatrix4x4 mat_trans = pParent_TransformationMatrix * pNode.mTransformation;
|
|
|
|
// Check if node has meshes
|
|
for(size_t idx_idx_mesh = 0; idx_idx_mesh < pNode.mNumMeshes; idx_idx_mesh++)
|
|
{
|
|
size_t idx_mesh;
|
|
SBBox bbox_local;
|
|
aiVector3D bbox_vertices[8];
|
|
|
|
idx_mesh = pNode.mMeshes[idx_idx_mesh];
|
|
// Get vertices of mesh BBox
|
|
BBox_GetVertices(mHelper_Mesh[idx_mesh]->BBox, bbox_vertices);
|
|
// Transform vertices
|
|
for(size_t idx_vert = 0; idx_vert < 8; idx_vert++) bbox_vertices[idx_vert] *= mat_trans;
|
|
|
|
// And create BBox for transformed mesh
|
|
BBox_GetFromVertices(bbox_vertices, 8, bbox_local);
|
|
|
|
if(!pFirstAssign)
|
|
{
|
|
BBox_Extend(bbox_local, pNodeBBox);
|
|
}
|
|
else
|
|
{
|
|
pFirstAssign = false;
|
|
pNodeBBox = bbox_local;
|
|
}
|
|
}// for(size_t idx_idx_mesh = 0; idx_idx_mesh < pNode.mNumMeshes; idx_idx_mesh++)
|
|
|
|
for(size_t idx_node = 0; idx_node < pNode.mNumChildren; idx_node++)
|
|
{
|
|
BBox_GetForNode(*pNode.mChildren[idx_node], mat_trans, pNodeBBox, pFirstAssign);
|
|
}
|
|
}
|
|
|
|
void CGLView::BBox_Extend(const SBBox& pChild, SBBox& pParent)
|
|
{
|
|
// search minimal...
|
|
AssignIfLesser(&pParent.Minimum.x, pChild.Minimum.x);
|
|
AssignIfLesser(&pParent.Minimum.y, pChild.Minimum.y);
|
|
AssignIfLesser(&pParent.Minimum.z, pChild.Minimum.z);
|
|
// and maximal values
|
|
AssignIfGreater(&pParent.Maximum.x, pChild.Maximum.x);
|
|
AssignIfGreater(&pParent.Maximum.y, pChild.Maximum.y);
|
|
AssignIfGreater(&pParent.Maximum.z, pChild.Maximum.z);
|
|
}
|
|
|
|
void CGLView::BBox_GetVertices(const SBBox& pBBox, aiVector3D pVertex[8])
|
|
{
|
|
pVertex[0] = pBBox.Minimum;
|
|
pVertex[1].Set(pBBox.Minimum.x, pBBox.Minimum.y, pBBox.Maximum.z);
|
|
pVertex[2].Set(pBBox.Minimum.x, pBBox.Maximum.y, pBBox.Maximum.z);
|
|
pVertex[3].Set(pBBox.Minimum.x, pBBox.Maximum.y, pBBox.Minimum.z);
|
|
|
|
pVertex[4].Set(pBBox.Maximum.x, pBBox.Minimum.y, pBBox.Minimum.z);
|
|
pVertex[5].Set(pBBox.Maximum.x, pBBox.Minimum.y, pBBox.Maximum.z);
|
|
pVertex[6] = pBBox.Maximum;
|
|
pVertex[7].Set(pBBox.Maximum.x, pBBox.Maximum.y, pBBox.Minimum.z);
|
|
|
|
}
|
|
|
|
void CGLView::BBox_GetFromVertices(const aiVector3D* pVertices, const size_t pVerticesQuantity, SBBox& pBBox)
|
|
{
|
|
if(pVerticesQuantity == 0)
|
|
{
|
|
pBBox.Maximum.Set(0, 0, 0);
|
|
pBBox.Minimum.Set(0, 0, 0);
|
|
|
|
return;
|
|
}
|
|
|
|
// Assign first values.
|
|
pBBox.Minimum = pVertices[0];
|
|
pBBox.Maximum = pVertices[0];
|
|
|
|
for(size_t idx_vert = 1; idx_vert < pVerticesQuantity; idx_vert++)
|
|
{
|
|
const ai_real x = pVertices[idx_vert].x;
|
|
const ai_real y = pVertices[idx_vert].y;
|
|
const ai_real z = pVertices[idx_vert].z;
|
|
|
|
// search minimal...
|
|
AssignIfLesser(&pBBox.Minimum.x, x);
|
|
AssignIfLesser(&pBBox.Minimum.y, y);
|
|
AssignIfLesser(&pBBox.Minimum.z, z);
|
|
// and maximal values
|
|
AssignIfGreater(&pBBox.Maximum.x, x);
|
|
AssignIfGreater(&pBBox.Maximum.y, y);
|
|
AssignIfGreater(&pBBox.Maximum.z, z);
|
|
}
|
|
}
|
|
|
|
void CGLView::LogInfo(const QString& pMessage) {
|
|
Assimp::DefaultLogger::get()->info(pMessage.toStdString());
|
|
}
|
|
|
|
void CGLView::LogError(const QString& pMessage) {
|
|
Assimp::DefaultLogger::get()->error(pMessage.toStdString());
|
|
}
|
|
|
|
void CGLView::Draw_Node(const aiNode* pNode) {
|
|
aiMatrix4x4 mat_node = pNode->mTransformation;
|
|
|
|
// Apply node transformation matrix.
|
|
mat_node.Transpose();
|
|
glPushMatrix();
|
|
#ifdef ASSIMP_DOUBLE_PRECISION
|
|
glMultMatrixd((GLdouble*)mat_node[0]);
|
|
#else
|
|
glMultMatrixf((GLfloat*)&mat_node);
|
|
#endif // ASSIMP_DOUBLE_PRECISION
|
|
|
|
// Draw all meshes assigned to this node
|
|
for(size_t idx_mesh_arr = 0; idx_mesh_arr < pNode->mNumMeshes; idx_mesh_arr++) Draw_Mesh(pNode->mMeshes[idx_mesh_arr]);
|
|
|
|
// Draw all children nodes
|
|
for(size_t idx_node = 0; idx_node < pNode->mNumChildren; idx_node++) Draw_Node(pNode->mChildren[idx_node]);
|
|
|
|
// Restore transformation matrix.
|
|
glPopMatrix();
|
|
}
|
|
|
|
void CGLView::Draw_Mesh(const size_t pMesh_Index)
|
|
{
|
|
// Check argument
|
|
if(pMesh_Index >= mHelper_Mesh_Quantity) return;
|
|
|
|
aiMesh& mesh_cur = *mScene->mMeshes[pMesh_Index];
|
|
|
|
if(!mesh_cur.HasPositions()) return;// Nothing to draw.
|
|
|
|
// If mesh use material then apply it
|
|
if(mScene->HasMaterials()) Material_Apply(mScene->mMaterials[mesh_cur.mMaterialIndex]);
|
|
|
|
//
|
|
// Vertices array
|
|
//
|
|
glEnableClientState(GL_VERTEX_ARRAY);
|
|
#if ASSIMP_DOUBLE_PRECISION
|
|
glVertexPointer(3, GL_DOUBLE, 0, mesh_cur.mVertices);
|
|
#else
|
|
glVertexPointer(3, GL_FLOAT, 0, mesh_cur.mVertices);
|
|
#endif // ASSIMP_DOUBLE_PRECISION
|
|
|
|
if(mesh_cur.HasVertexColors(0))
|
|
{
|
|
glEnable(GL_COLOR_MATERIAL);///TODO: cache
|
|
glEnableClientState(GL_COLOR_ARRAY);
|
|
#ifdef ASSIMP_DOUBLE_PRECISION
|
|
glColorPointer(4, GL_DOUBLE, 0, mesh_cur.mColors[0]);
|
|
#else
|
|
glColorPointer(4, GL_FLOAT, 0, mesh_cur.mColors[0]);
|
|
#endif // ASSIMP_DOUBLE_PRECISION
|
|
}
|
|
|
|
//
|
|
// Texture coordinates array
|
|
//
|
|
if(mesh_cur.HasTextureCoords(0))
|
|
{
|
|
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
|
|
#ifdef ASSIMP_DOUBLE_PRECISION
|
|
glTexCoordPointer(2, GL_DOUBLE, sizeof(aiVector3D), mesh_cur.mTextureCoords[0]);
|
|
#else
|
|
glTexCoordPointer(2, GL_FLOAT, sizeof(aiVector3D), mesh_cur.mTextureCoords[0]);
|
|
#endif // ASSIMP_DOUBLE_PRECISION
|
|
}
|
|
|
|
//
|
|
// Normals array
|
|
//
|
|
if(mesh_cur.HasNormals())
|
|
{
|
|
glEnableClientState(GL_NORMAL_ARRAY);
|
|
#ifdef ASSIMP_DOUBLE_PRECISION
|
|
glNormalPointer(GL_DOUBLE, 0, mesh_cur.mNormals);
|
|
#else
|
|
glNormalPointer(GL_FLOAT, 0, mesh_cur.mNormals);
|
|
#endif // ASSIMP_DOUBLE_PRECISION
|
|
}
|
|
|
|
//
|
|
// Draw arrays
|
|
//
|
|
SHelper_Mesh& helper_cur = *mHelper_Mesh[pMesh_Index];
|
|
|
|
if(helper_cur.Quantity_Triangle > 0) glDrawElements(GL_TRIANGLES, helper_cur.Quantity_Triangle * 3, GL_UNSIGNED_INT, helper_cur.Index_Triangle);
|
|
if(helper_cur.Quantity_Line > 0) glDrawElements(GL_LINES,helper_cur.Quantity_Line * 2, GL_UNSIGNED_INT, helper_cur.Index_Line);
|
|
if(helper_cur.Quantity_Point > 0) glDrawElements(GL_POINTS, helper_cur.Quantity_Point, GL_UNSIGNED_INT, helper_cur.Index_Point);
|
|
|
|
//
|
|
// Clean up
|
|
//
|
|
glDisableClientState(GL_VERTEX_ARRAY);
|
|
glDisableClientState(GL_COLOR_ARRAY);
|
|
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
|
|
glDisableClientState(GL_NORMAL_ARRAY);
|
|
}
|
|
|
|
void CGLView::Draw_BBox(const SBBox& pBBox)
|
|
{
|
|
aiVector3D vertex[8];
|
|
|
|
BBox_GetVertices(pBBox, vertex);
|
|
// Draw
|
|
if(mLightingEnabled) glDisable(GL_LIGHTING);///TODO: display list
|
|
|
|
glEnable(GL_COLOR_MATERIAL);
|
|
glBindTexture(GL_TEXTURE_1D, 0);
|
|
glBindTexture(GL_TEXTURE_2D, 0);
|
|
glBindTexture(GL_TEXTURE_3D, 0);
|
|
const QColor c_w(Qt::white);
|
|
|
|
glColor3f(c_w.redF(), c_w.greenF(), c_w.blueF());
|
|
|
|
glBegin(GL_LINE_STRIP);
|
|
# ifdef ASSIMP_DOUBLE_PRECISION
|
|
glVertex3dv(&vertex[0][0]), glVertex3dv(&vertex[1][0]), glVertex3dv(&vertex[2][0]), glVertex3dv(&vertex[3][0]), glVertex3dv(&vertex[0][0]);// "Minimum" side.
|
|
glVertex3dv(&vertex[4][0]), glVertex3dv(&vertex[5][0]), glVertex3dv(&vertex[6][0]), glVertex3dv(&vertex[7][0]), glVertex3dv(&vertex[4][0]);// Edge and "maximum" side.
|
|
# else
|
|
glVertex3fv(&vertex[0][0]), glVertex3fv(&vertex[1][0]), glVertex3fv(&vertex[2][0]), glVertex3fv(&vertex[3][0]), glVertex3fv(&vertex[0][0]);// "Minimum" side.
|
|
glVertex3fv(&vertex[4][0]), glVertex3fv(&vertex[5][0]), glVertex3fv(&vertex[6][0]), glVertex3fv(&vertex[7][0]), glVertex3fv(&vertex[4][0]);// Edge and "maximum" side.
|
|
# endif // ASSIMP_DOUBLE_PRECISION
|
|
glEnd();
|
|
|
|
glBegin(GL_LINES);
|
|
# ifdef ASSIMP_DOUBLE_PRECISION
|
|
glVertex3dv(&vertex[1][0]), glVertex3dv(&vertex[5][0]);
|
|
glVertex3dv(&vertex[2][0]), glVertex3dv(&vertex[6][0]);
|
|
glVertex3dv(&vertex[3][0]), glVertex3dv(&vertex[7][0]);
|
|
# else
|
|
glVertex3fv(&vertex[1][0]), glVertex3fv(&vertex[5][0]);
|
|
glVertex3fv(&vertex[2][0]), glVertex3fv(&vertex[6][0]);
|
|
glVertex3fv(&vertex[3][0]), glVertex3fv(&vertex[7][0]);
|
|
# endif // ASSIMP_DOUBLE_PRECISION
|
|
glEnd();
|
|
glDisable(GL_COLOR_MATERIAL);
|
|
if(mLightingEnabled) glEnable(GL_LIGHTING);
|
|
|
|
}
|
|
|
|
void CGLView::Enable_Textures(const bool pEnable) {
|
|
if(pEnable) {
|
|
glEnable(GL_TEXTURE_1D);
|
|
glEnable(GL_TEXTURE_2D);
|
|
glEnable(GL_TEXTURE_3D);
|
|
} else {
|
|
glDisable(GL_TEXTURE_1D);
|
|
glDisable(GL_TEXTURE_2D);
|
|
glDisable(GL_TEXTURE_3D);
|
|
}
|
|
}
|
|
|
|
void CGLView::initializeGL() {
|
|
mGLContext_Current = true;
|
|
initializeOpenGLFunctions();
|
|
glClearColor(0.5f, 0.5f, 0.5f, 1.0f);
|
|
glShadeModel(GL_SMOOTH);
|
|
|
|
glEnable(GL_DEPTH_TEST);
|
|
glEnable(GL_NORMALIZE);
|
|
glEnable(GL_TEXTURE_2D);
|
|
glEnable( GL_MULTISAMPLE );
|
|
|
|
glColorMaterial(GL_FRONT_AND_BACK, GL_AMBIENT);
|
|
glColorMaterial(GL_FRONT_AND_BACK, GL_DIFFUSE);
|
|
glDisable(GL_COLOR_MATERIAL);
|
|
|
|
glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST);
|
|
|
|
glEnable(GL_CULL_FACE);
|
|
glCullFace(GL_BACK);
|
|
|
|
glFrontFace(GL_CCW);
|
|
}
|
|
|
|
void CGLView::resizeGL(int width, int height) {
|
|
mCamera_Viewport_AspectRatio = (GLdouble)width / height;
|
|
glViewport(0, 0, width, height);
|
|
glMatrixMode(GL_PROJECTION);
|
|
glLoadIdentity();
|
|
gluPerspective(mCamera_FOVY, mCamera_Viewport_AspectRatio, 1.0, 100000.0);///TODO: znear/zfar depend on scene size.
|
|
}
|
|
|
|
void CGLView::drawCoordSystem() {
|
|
// Disable lighting. Colors must be bright and colorful)
|
|
if ( mLightingEnabled ) glDisable( GL_LIGHTING );///TODO: display list
|
|
|
|
// For same reason - disable textures.
|
|
glBindTexture(GL_TEXTURE_1D, 0);
|
|
glBindTexture(GL_TEXTURE_2D, 0);
|
|
glBindTexture(GL_TEXTURE_3D, 0);
|
|
glEnable(GL_COLOR_MATERIAL);
|
|
glBegin(GL_LINES);
|
|
|
|
// X, -X
|
|
glColor3f(1.0f, 0.0f, 0.0f), glVertex3f(0.0, 0.0, 0.0), glVertex3f(100000.0, 0.0, 0.0);
|
|
glColor3f(0.5f, 0.5f, 1.0f), glVertex3f(0.0, 0.0, 0.0), glVertex3f(-100000.0, 0.0, 0.0);
|
|
// Y, -Y
|
|
glColor3f(0.0f, 1.0f, 0.0f), glVertex3f(0.0, 0.0, 0.0), glVertex3f(0.0, 100000.0, 0.0);
|
|
glColor3f(1.0f, 0.0f, 1.0f), glVertex3f(0.0, 0.0, 0.0), glVertex3f(0.0, -100000.0, 0.0);
|
|
// Z, -Z
|
|
glColor3f(0.0f, 0.0f, 1.0f), glVertex3f(0.0, 0.0, 0.0), glVertex3f(0.0, 0.0, 100000.0);
|
|
glColor3f(1.0f, 1.0f, 0.0f), glVertex3f(0.0, 0.0, 0.0), glVertex3f(0.0, 0.0, -100000.0);
|
|
glColor3f(1.0f, 1.0f, 1.0f);
|
|
|
|
glEnd();
|
|
// Restore previous state of lighting.
|
|
if (mLightingEnabled) {
|
|
glEnable( GL_LIGHTING );
|
|
}
|
|
}
|
|
|
|
void CGLView::paintGL() {
|
|
QTime time_paintbegin;
|
|
|
|
time_paintbegin = QTime::currentTime();
|
|
|
|
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
|
|
glMatrixMode(GL_MODELVIEW);
|
|
glLoadIdentity();
|
|
|
|
// Apply current camera transformations.
|
|
#if ASSIMP_DOUBLE_PRECISION
|
|
glMultMatrixd((GLdouble*)&mHelper_Camera.Rotation_AroundCamera);
|
|
glTranslated(-mHelper_Camera.Translation_ToScene.x, -mHelper_Camera.Translation_ToScene.y, -mHelper_Camera.Translation_ToScene.z);
|
|
glMultMatrixd((GLdouble*)&mHelper_Camera.Rotation_Scene);
|
|
#else
|
|
glMultMatrixf((GLfloat*)&mHelper_Camera.Rotation_AroundCamera);
|
|
glTranslatef(-mHelper_Camera.Translation_ToScene.x, -mHelper_Camera.Translation_ToScene.y, -mHelper_Camera.Translation_ToScene.z);
|
|
glMultMatrixf((GLfloat*)&mHelper_Camera.Rotation_Scene);
|
|
#endif // ASSIMP_DOUBLE_PRECISION
|
|
|
|
// Coordinate system
|
|
if ( mScene_AxesEnabled ) {
|
|
drawCoordSystem();
|
|
}
|
|
|
|
glDisable(GL_COLOR_MATERIAL);
|
|
|
|
// Scene
|
|
if(mScene != nullptr) {
|
|
Draw_Node(mScene->mRootNode);
|
|
// Scene BBox
|
|
if (mScene_DrawBBox) {
|
|
Draw_BBox( mScene_BBox );
|
|
}
|
|
}
|
|
|
|
emit Paint_Finished((size_t) time_paintbegin.msecsTo(QTime::currentTime()), mHelper_Camera.Translation_ToScene.Length());
|
|
}
|
|
|
|
|
|
CGLView::CGLView( QWidget *pParent )
|
|
: QOpenGLWidget( pParent )
|
|
, mGLContext_Current( false ) {
|
|
// set initial view
|
|
mHelper_CameraDefault.SetDefault();
|
|
Camera_Set( 0 );
|
|
}
|
|
|
|
CGLView::~CGLView() {
|
|
FreeScene();
|
|
}
|
|
|
|
void CGLView::FreeScene() {
|
|
// Set scene to null and after that \ref paintGL will not try to render it.
|
|
mScene = nullptr;
|
|
// Clean helper objects.
|
|
if(mHelper_Mesh != nullptr)
|
|
{
|
|
for(size_t idx_mesh = 0; idx_mesh < mHelper_Mesh_Quantity; idx_mesh++) delete mHelper_Mesh[idx_mesh];
|
|
|
|
delete [] mHelper_Mesh;
|
|
mHelper_Mesh = nullptr;
|
|
}
|
|
|
|
mHelper_Mesh_Quantity = 0;
|
|
// Delete textures
|
|
const int id_tex_size = mTexture_IDMap.size();
|
|
|
|
if(id_tex_size)
|
|
{
|
|
GLuint* id_tex = new GLuint[id_tex_size];
|
|
QMap<QString, GLuint>::iterator it = mTexture_IDMap.begin();
|
|
|
|
for(int idx = 0; idx < id_tex_size; idx++, ++it)
|
|
{
|
|
id_tex[idx] = it.value();
|
|
}
|
|
|
|
glDeleteTextures(id_tex_size, id_tex);
|
|
mTexture_IDMap.clear();
|
|
delete [] id_tex;
|
|
}
|
|
}
|
|
|
|
void CGLView::SetScene(const aiScene *pScene, const QString& pScenePath) {
|
|
FreeScene();// Clear old data
|
|
// Why checking here, not at begin of function. Because old scene may not exist at know. So, need cleanup.
|
|
if (pScene == nullptr) {
|
|
return;
|
|
}
|
|
|
|
mScene = pScene;// Copy pointer of new scene.
|
|
|
|
//
|
|
// Meshes
|
|
//
|
|
// Create helper objects for meshes. This allow to render meshes as OpenGL arrays.
|
|
if(mScene->HasMeshes())
|
|
{
|
|
// Create mesh helpers array.
|
|
mHelper_Mesh_Quantity = mScene->mNumMeshes;
|
|
mHelper_Mesh = new SHelper_Mesh*[mScene->mNumMeshes];
|
|
|
|
// Walk through the meshes and extract needed data and, also calculate BBox.
|
|
for(size_t idx_mesh = 0; idx_mesh < mScene->mNumMeshes; idx_mesh++)
|
|
{
|
|
aiMesh& mesh_cur = *mScene->mMeshes[idx_mesh];
|
|
|
|
//
|
|
// Calculate BBox
|
|
//
|
|
SBBox mesh_bbox;
|
|
|
|
BBox_GetFromVertices(mesh_cur.mVertices, mesh_cur.mNumVertices, mesh_bbox);
|
|
//
|
|
// Create vertices indices arrays splitted by primitive type.
|
|
//
|
|
size_t indcnt_p = 0;// points quantity
|
|
size_t indcnt_l = 0;// lines quantity
|
|
size_t indcnt_t = 0;// triangles quantity
|
|
|
|
if(mesh_cur.HasFaces())
|
|
{
|
|
// Usual way: all faces are triangles
|
|
if(mesh_cur.mPrimitiveTypes == aiPrimitiveType_TRIANGLE)
|
|
{
|
|
indcnt_t = mesh_cur.mNumFaces;
|
|
}
|
|
else
|
|
{
|
|
// Calculate count of primitives by types.
|
|
for(size_t idx_face = 0; idx_face < mesh_cur.mNumFaces; idx_face++)
|
|
{
|
|
if(mesh_cur.mFaces[idx_face].mNumIndices == 3)
|
|
indcnt_t++;
|
|
else if(mesh_cur.mFaces[idx_face].mNumIndices == 2)
|
|
indcnt_l++;
|
|
else if(mesh_cur.mFaces[idx_face].mNumIndices == 1)
|
|
indcnt_p++;
|
|
}
|
|
}// if(mesh_cur.mPrimitiveTypes == aiPrimitiveType_TRIANGLE) else
|
|
|
|
// Create helper
|
|
mHelper_Mesh[idx_mesh] = new SHelper_Mesh(indcnt_p, indcnt_l, indcnt_t, mesh_bbox);
|
|
// Fill indices arrays
|
|
indcnt_p = 0, indcnt_l = 0, indcnt_t = 0;// Reuse variables as indices
|
|
for(size_t idx_face = 0; idx_face < mesh_cur.mNumFaces; idx_face++)
|
|
{
|
|
if(mesh_cur.mFaces[idx_face].mNumIndices == 3)
|
|
{
|
|
mHelper_Mesh[idx_mesh]->Index_Triangle[indcnt_t++] = mesh_cur.mFaces[idx_face].mIndices[0];
|
|
mHelper_Mesh[idx_mesh]->Index_Triangle[indcnt_t++] = mesh_cur.mFaces[idx_face].mIndices[1];
|
|
mHelper_Mesh[idx_mesh]->Index_Triangle[indcnt_t++] = mesh_cur.mFaces[idx_face].mIndices[2];
|
|
}
|
|
else if(mesh_cur.mFaces[idx_face].mNumIndices == 2)
|
|
{
|
|
mHelper_Mesh[idx_mesh]->Index_Line[indcnt_l++] = mesh_cur.mFaces[idx_face].mIndices[0];
|
|
mHelper_Mesh[idx_mesh]->Index_Line[indcnt_l++] = mesh_cur.mFaces[idx_face].mIndices[1];
|
|
}
|
|
else if(mesh_cur.mFaces[idx_face].mNumIndices == 1)
|
|
{
|
|
mHelper_Mesh[idx_mesh]->Index_Point[indcnt_p++] = mesh_cur.mFaces[idx_face].mIndices[0];
|
|
}
|
|
}// for(size_t idx_face = 0; idx_face < mesh_cur.mNumFaces; idx_face++)
|
|
}// if(mesh_cur.HasFaces())
|
|
else
|
|
{
|
|
// If mesh has no faces then vertices can be just points set.
|
|
indcnt_p = mesh_cur.mNumVertices;
|
|
// Create helper
|
|
mHelper_Mesh[idx_mesh] = new SHelper_Mesh(indcnt_p, 0, 0, mesh_bbox);
|
|
// Fill indices arrays
|
|
for(size_t idx = 0; idx < indcnt_p; idx++) mHelper_Mesh[idx_mesh]->Index_Point[idx] = idx;
|
|
|
|
}// if(mesh_cur.HasFaces()) else
|
|
}// for(size_t idx_mesh = 0; idx_mesh < mScene->mNumMeshes; idx_mesh++)
|
|
}// if(mScene->HasMeshes())
|
|
|
|
//
|
|
// Scene BBox
|
|
//
|
|
// For calculating right BBox we must walk through all nodes and apply transformation to meshes BBoxes
|
|
if(mHelper_Mesh_Quantity > 0)
|
|
{
|
|
bool first_assign = true;
|
|
aiMatrix4x4 mat_root;
|
|
|
|
BBox_GetForNode(*mScene->mRootNode, mat_root, mScene_BBox, first_assign);
|
|
mScene_Center = mScene_BBox.Maximum + mScene_BBox.Minimum;
|
|
mScene_Center /= 2;
|
|
}
|
|
else
|
|
{
|
|
mScene_BBox = {{0, 0, 0}, {0, 0, 0}};
|
|
mScene_Center = {0, 0, 0};
|
|
}// if(mHelper_Mesh_Count > 0) else
|
|
|
|
//
|
|
// Textures
|
|
//
|
|
ImportTextures(pScenePath);
|
|
|
|
//
|
|
// Light sources
|
|
//
|
|
Lighting_Enable();
|
|
// If scene has no lights then enable default
|
|
if(!mScene->HasLights())
|
|
{
|
|
const GLfloat col_amb[4] = { 0.2, 0.2, 0.2, 1.0 };
|
|
SLightParameters lp;
|
|
|
|
lp.Type = aiLightSource_POINT;
|
|
lp.Ambient.r = col_amb[0], lp.Ambient.g = col_amb[1], lp.Ambient.b = col_amb[2], lp.Ambient.a = col_amb[3];
|
|
lp.Diffuse = { 1.0, 1.0, 1.0, 1.0 };
|
|
lp.Specular = lp.Diffuse;
|
|
lp.For.Point.Position = mScene_Center;
|
|
lp.For.Point.Attenuation_Constant = 1;
|
|
lp.For.Point.Attenuation_Linear = 0;
|
|
lp.For.Point.Attenuation_Quadratic = 0;
|
|
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, col_amb);
|
|
Lighting_EditSource(0, lp);
|
|
emit SceneObject_LightSource("_default");// Light source will be enabled in signal handler.
|
|
}
|
|
else
|
|
{
|
|
for(size_t idx_light = 0; idx_light < mScene->mNumLights; idx_light++)
|
|
{
|
|
SLightParameters lp;
|
|
QString name;
|
|
const aiLight& light_cur = *mScene->mLights[idx_light];
|
|
|
|
auto col3_to_col4 = [](const aiColor3D& pCol3) -> aiColor4D { return aiColor4D(pCol3.r, pCol3.g, pCol3.b, 1.0); };
|
|
|
|
///TODO: find light source node and apply all transformations
|
|
// General properties
|
|
name = light_cur.mName.C_Str();
|
|
lp.Ambient = col3_to_col4(light_cur.mColorAmbient);
|
|
lp.Diffuse = col3_to_col4(light_cur.mColorDiffuse);
|
|
lp.Specular = col3_to_col4(light_cur.mColorSpecular);
|
|
lp.Type = light_cur.mType;
|
|
// Depend on type properties
|
|
switch(light_cur.mType)
|
|
{
|
|
case aiLightSource_DIRECTIONAL:
|
|
lp.For.Directional.Direction = light_cur.mDirection;
|
|
break;
|
|
case aiLightSource_POINT:
|
|
lp.For.Point.Position = light_cur.mPosition;
|
|
lp.For.Point.Attenuation_Constant = light_cur.mAttenuationConstant;
|
|
lp.For.Point.Attenuation_Linear = light_cur.mAttenuationLinear;
|
|
lp.For.Point.Attenuation_Quadratic = light_cur.mAttenuationQuadratic;
|
|
break;
|
|
case aiLightSource_SPOT:
|
|
lp.For.Spot.Position = light_cur.mPosition;
|
|
lp.For.Spot.Direction = light_cur.mDirection;
|
|
lp.For.Spot.Attenuation_Constant = light_cur.mAttenuationConstant;
|
|
lp.For.Spot.Attenuation_Linear = light_cur.mAttenuationLinear;
|
|
lp.For.Spot.Attenuation_Quadratic = light_cur.mAttenuationQuadratic;
|
|
lp.For.Spot.CutOff = light_cur.mAngleOuterCone;
|
|
break;
|
|
case aiLightSource_AMBIENT:
|
|
lp.For.Point.Position = light_cur.mPosition, lp.For.Point.Attenuation_Constant = 1, lp.For.Point.Attenuation_Linear = 0, lp.For.Point.Attenuation_Quadratic = 0;
|
|
name.append("_unsup_ambient");
|
|
break;
|
|
case aiLightSource_AREA:
|
|
lp.For.Point.Position = light_cur.mPosition, lp.For.Point.Attenuation_Constant = 1, lp.For.Point.Attenuation_Linear = 0, lp.For.Point.Attenuation_Quadratic = 0;
|
|
name.append("_unsup_area");
|
|
break;
|
|
case aiLightSource_UNDEFINED:
|
|
lp.For.Point.Position = light_cur.mPosition, lp.For.Point.Attenuation_Constant = 1, lp.For.Point.Attenuation_Linear = 0, lp.For.Point.Attenuation_Quadratic = 0;
|
|
name.append("_unsup_undefined");
|
|
break;
|
|
default:
|
|
lp.For.Point.Position = light_cur.mPosition, lp.For.Point.Attenuation_Constant = 1, lp.For.Point.Attenuation_Linear = 0, lp.For.Point.Attenuation_Quadratic = 0;
|
|
name.append("_unsupported_invalid");
|
|
break;
|
|
}// switch(light_cur.mType)
|
|
|
|
// Add light source
|
|
// Use index if name is empty.
|
|
if (name.isEmpty()) {
|
|
name += QString( "%1" ).arg( idx_light );
|
|
}
|
|
|
|
Lighting_EditSource(idx_light, lp);
|
|
emit SceneObject_LightSource(name);// Light source will be enabled in signal handler.
|
|
}// for(size_t idx_light = 0; idx_light < mScene->mNumLights; idx_light++)
|
|
}// if(!mScene->HasLights()) else
|
|
|
|
//
|
|
// Cameras
|
|
//
|
|
if(!mScene->HasCameras())
|
|
{
|
|
mCamera_DefaultAdded = true;
|
|
mHelper_CameraDefault.SetDefault();
|
|
// Calculate distance from camera to scene. Distance must be enoguh for that viewport contain whole scene.
|
|
const GLfloat tg_angle = tan(mCamera_FOVY / 2);
|
|
|
|
GLfloat val_x = ((mScene_BBox.Maximum.x - mScene_BBox.Minimum.x) / 2) / (mCamera_Viewport_AspectRatio * tg_angle);
|
|
GLfloat val_y = ((mScene_BBox.Maximum.y - mScene_BBox.Minimum.y) / 2) / tg_angle;
|
|
GLfloat val_step = val_x;
|
|
|
|
AssignIfGreater(val_step, val_y);
|
|
mHelper_CameraDefault.Translation_ToScene.Set(mScene_Center.x, mScene_Center.y, val_step + mScene_BBox.Maximum.z);
|
|
emit SceneObject_Camera("_default");
|
|
}
|
|
else
|
|
{
|
|
mCamera_DefaultAdded = false;
|
|
for(size_t idx_cam = 0; idx_cam < mScene->mNumCameras; idx_cam++)
|
|
{
|
|
emit SceneObject_Camera(mScene->mCameras[idx_cam]->mName.C_Str());
|
|
}
|
|
}// if(!mScene->HasCameras()) else
|
|
}
|
|
|
|
void CGLView::Lighting_Enable() {
|
|
mLightingEnabled = true;
|
|
glEnable(GL_LIGHTING);
|
|
}
|
|
|
|
void CGLView::Lighting_Disable() {
|
|
glDisable( GL_LIGHTING );
|
|
mLightingEnabled = false;
|
|
}
|
|
|
|
void CGLView::Lighting_EditSource(const size_t pLightNumber, const SLightParameters& pLightParameters)
|
|
{
|
|
const size_t light_num = GL_LIGHT0 + pLightNumber;
|
|
|
|
GLfloat farr[4];
|
|
|
|
if(pLightNumber >= GL_MAX_LIGHTS) return;///TODO: return value;
|
|
|
|
// Ambient color
|
|
farr[0] = pLightParameters.Ambient.r;
|
|
farr[1] = pLightParameters.Ambient.g;
|
|
farr[2] = pLightParameters.Ambient.b;
|
|
farr[3] = pLightParameters.Ambient.a;
|
|
glLightfv(light_num, GL_AMBIENT, farr);
|
|
|
|
// Diffuse color
|
|
farr[0] = pLightParameters.Diffuse.r;
|
|
farr[1] = pLightParameters.Diffuse.g;
|
|
farr[2] = pLightParameters.Diffuse.b;
|
|
farr[3] = pLightParameters.Diffuse.a;
|
|
glLightfv(light_num, GL_DIFFUSE, farr);
|
|
|
|
// Specular color
|
|
farr[0] = pLightParameters.Specular.r;
|
|
farr[1] = pLightParameters.Specular.g;
|
|
farr[2] = pLightParameters.Specular.b;
|
|
farr[3] = pLightParameters.Specular.a;
|
|
glLightfv(light_num, GL_SPECULAR, farr);
|
|
|
|
// Other parameters
|
|
switch(pLightParameters.Type)
|
|
{
|
|
case aiLightSource_DIRECTIONAL:
|
|
// Direction
|
|
farr[0] = pLightParameters.For.Directional.Direction.x, farr[1] = pLightParameters.For.Directional.Direction.y;
|
|
farr[2] = pLightParameters.For.Directional.Direction.z; farr[3] = 0;
|
|
glLightfv(light_num, GL_POSITION, farr);
|
|
break;
|
|
case aiLightSource_POINT:
|
|
// Position
|
|
farr[0] = pLightParameters.For.Point.Position.x, farr[1] = pLightParameters.For.Point.Position.y;
|
|
farr[2] = pLightParameters.For.Point.Position.z; farr[3] = 1;
|
|
glLightfv(light_num, GL_POSITION, farr);
|
|
// Attenuation
|
|
glLightf(light_num, GL_CONSTANT_ATTENUATION, pLightParameters.For.Point.Attenuation_Constant);
|
|
glLightf(light_num, GL_LINEAR_ATTENUATION, pLightParameters.For.Point.Attenuation_Linear);
|
|
glLightf(light_num, GL_QUADRATIC_ATTENUATION, pLightParameters.For.Point.Attenuation_Quadratic);
|
|
glLightf(light_num, GL_SPOT_CUTOFF, 180.0);
|
|
break;
|
|
case aiLightSource_SPOT:
|
|
// Position
|
|
farr[0] = pLightParameters.For.Spot.Position.x, farr[1] = pLightParameters.For.Spot.Position.y, farr[2] = pLightParameters.For.Spot.Position.z; farr[3] = 1;
|
|
glLightfv(light_num, GL_POSITION, farr);
|
|
// Attenuation
|
|
glLightf(light_num, GL_CONSTANT_ATTENUATION, pLightParameters.For.Spot.Attenuation_Constant);
|
|
glLightf(light_num, GL_LINEAR_ATTENUATION, pLightParameters.For.Spot.Attenuation_Linear);
|
|
glLightf(light_num, GL_QUADRATIC_ATTENUATION, pLightParameters.For.Spot.Attenuation_Quadratic);
|
|
// Spot specific
|
|
farr[0] = pLightParameters.For.Spot.Direction.x, farr[1] = pLightParameters.For.Spot.Direction.y, farr[2] = pLightParameters.For.Spot.Direction.z; farr[3] = 0;
|
|
glLightfv(light_num, GL_SPOT_DIRECTION, farr);
|
|
glLightf(light_num, GL_SPOT_CUTOFF, pLightParameters.For.Spot.CutOff);
|
|
break;
|
|
default:// For unknown light source types use point source.
|
|
// Position
|
|
farr[0] = pLightParameters.For.Point.Position.x, farr[1] = pLightParameters.For.Point.Position.y;
|
|
farr[2] = pLightParameters.For.Point.Position.z; farr[3] = 1;
|
|
glLightfv(light_num, GL_POSITION, farr);
|
|
// Attenuation
|
|
glLightf(light_num, GL_CONSTANT_ATTENUATION, 1);
|
|
glLightf(light_num, GL_LINEAR_ATTENUATION, 0);
|
|
glLightf(light_num, GL_QUADRATIC_ATTENUATION, 0);
|
|
glLightf(light_num, GL_SPOT_CUTOFF, 180.0);
|
|
break;
|
|
}// switch(pLightParameters.Type)
|
|
}
|
|
|
|
void CGLView::Lighting_EnableSource(const size_t pLightNumber) {
|
|
if(pLightNumber >= GL_MAX_LIGHTS) return;///TODO: return value;
|
|
|
|
glEnable(GL_LIGHT0 + pLightNumber);
|
|
}
|
|
|
|
void CGLView::Lighting_DisableSource(const size_t pLightNumber)
|
|
{
|
|
if(pLightNumber >= GL_MAX_LIGHTS) return;///TODO: return value;
|
|
|
|
glDisable(GL_LIGHT0 + pLightNumber);
|
|
}
|
|
|
|
void CGLView::Camera_Set(const size_t pCameraNumber)
|
|
{
|
|
SHelper_Camera& hcam = mHelper_Camera;// reference with short name for conveniance.
|
|
aiVector3D up;
|
|
|
|
if(mCamera_DefaultAdded || (pCameraNumber >= mScene->mNumCameras))// If default camera used then 'pCameraNumber' doesn't matter.
|
|
{
|
|
// Transformation parameters
|
|
hcam = mHelper_CameraDefault;
|
|
up.Set(0, 1, 0);
|
|
}
|
|
else
|
|
{
|
|
const aiCamera& camera_cur = *mScene->mCameras[pCameraNumber];
|
|
const aiNode* camera_node;
|
|
|
|
aiMatrix4x4 camera_mat;
|
|
aiQuaternion camera_quat_rot;
|
|
aiVector3D camera_tr;
|
|
|
|
up = camera_cur.mUp;
|
|
//
|
|
// Try to get real coordinates of the camera.
|
|
//
|
|
// Find node
|
|
camera_node = mScene->mRootNode->FindNode(camera_cur.mName);
|
|
if(camera_node != nullptr) Matrix_NodeToRoot(camera_node, camera_mat);
|
|
|
|
hcam.Position = camera_cur.mLookAt;
|
|
hcam.Target = camera_cur.mPosition;
|
|
hcam.Rotation_AroundCamera = aiMatrix4x4(camera_quat_rot.GetMatrix());
|
|
hcam.Rotation_AroundCamera.Transpose();
|
|
// get components of transformation matrix.
|
|
camera_mat.DecomposeNoScaling(camera_quat_rot, camera_tr);
|
|
hcam.Rotation_Scene = aiMatrix4x4();
|
|
hcam.Translation_ToScene = camera_tr;
|
|
}
|
|
|
|
// Load identity matrix - travel to world begin.
|
|
glMatrixMode(GL_MODELVIEW);
|
|
glLoadIdentity();
|
|
// Set camera and update picture
|
|
gluLookAt(hcam.Position.x, hcam.Position.y, hcam.Position.z, hcam.Target.x, hcam.Target.y, hcam.Target.z, up.x, up.y, up.z);
|
|
}
|
|
|
|
void CGLView::Camera_RotateScene(const GLfloat pAngle_X, const GLfloat pAngle_Y, const GLfloat pAngle_Z, const aiMatrix4x4* pMatrix_Rotation_Initial) {
|
|
auto deg2rad = [](const GLfloat pDegree) -> GLfloat {
|
|
return pDegree * AI_MATH_PI / 180.0f;
|
|
};
|
|
|
|
aiMatrix4x4 mat_rot;
|
|
|
|
mat_rot.FromEulerAnglesXYZ(deg2rad(pAngle_X), deg2rad(pAngle_Y), deg2rad(pAngle_Z));
|
|
if(pMatrix_Rotation_Initial != nullptr)
|
|
mHelper_Camera.Rotation_Scene = *pMatrix_Rotation_Initial * mat_rot;
|
|
else
|
|
mHelper_Camera.Rotation_Scene *= mat_rot;
|
|
}
|
|
|
|
void CGLView::Camera_Rotate(const GLfloat pAngle_X, const GLfloat pAngle_Y, const GLfloat pAngle_Z, const aiMatrix4x4* pMatrix_Rotation_Initial)
|
|
{
|
|
auto deg2rad = [](const GLfloat pDegree) -> GLfloat { return pDegree * AI_MATH_PI / 180.0; };
|
|
|
|
aiMatrix4x4 mat_rot;
|
|
|
|
mat_rot.FromEulerAnglesXYZ(deg2rad(pAngle_X), deg2rad(pAngle_Y), deg2rad(pAngle_Z));
|
|
if(pMatrix_Rotation_Initial != nullptr)
|
|
mHelper_Camera.Rotation_AroundCamera = *pMatrix_Rotation_Initial * mat_rot;
|
|
else
|
|
mHelper_Camera.Rotation_AroundCamera *= mat_rot;
|
|
}
|
|
|
|
void CGLView::Camera_Translate(const GLfloat pTranslate_X, const GLfloat pTranslate_Y, const GLfloat pTranslate_Z)
|
|
{
|
|
aiVector3D vect_tr(pTranslate_X, pTranslate_Y, pTranslate_Z);
|
|
|
|
vect_tr *= mHelper_Camera.Rotation_AroundCamera;
|
|
mHelper_Camera.Translation_ToScene += vect_tr;
|
|
}
|
|
|
|
void CGLView::Camera_Matrix(aiMatrix4x4& pRotation_Camera, aiMatrix4x4& pRotation_Scene, aiVector3D& pTranslation_Camera)
|
|
{
|
|
pRotation_Camera = mHelper_Camera.Rotation_AroundCamera;
|
|
pRotation_Scene = mHelper_Camera.Rotation_Scene;
|
|
pTranslation_Camera = mHelper_Camera.Translation_ToScene;
|
|
}
|