assimp/code/AssetLib/IQM/IQMImporter.cpp

323 lines
12 KiB
C++

/*
Open Asset Import Library (assimp)
----------------------------------------------------------------------
Copyright (c) 2006-2021, assimp team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the
following conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the assimp team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the assimp team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------
*/
#ifndef ASSIMP_BUILD_NO_IQM_IMPORTER
#include <assimp/DefaultIOSystem.h>
#include <assimp/IOStreamBuffer.h>
#include <assimp/ai_assert.h>
#include <assimp/importerdesc.h>
#include <assimp/scene.h>
#include <assimp/DefaultLogger.hpp>
#include <assimp/Importer.hpp>
#include <assimp/ByteSwapper.h>
#include <memory>
#include <numeric>
#include "IQMImporter.h"
#include "iqm.h"
// RESOURCES:
// http://sauerbraten.org/iqm/
// https://github.com/lsalzman/iqm
inline void swap_block( uint32_t *block, size_t size ){
(void)block; // suppress 'unreferenced formal parameter' MSVC warning
size >>= 2;
for ( size_t i = 0; i < size; ++i )
AI_SWAP4( block[ i ] );
}
static const aiImporterDesc desc = {
"Inter-Quake Model Importer",
"",
"",
"",
aiImporterFlags_SupportBinaryFlavour,
0,
0,
0,
0,
"iqm"
};
namespace Assimp {
// ------------------------------------------------------------------------------------------------
// Default constructor
IQMImporter::IQMImporter() :
mScene(nullptr) {
// empty
}
// ------------------------------------------------------------------------------------------------
// Returns true, if file is a binary Inter-Quake Model file.
bool IQMImporter::CanRead(const std::string &pFile, IOSystem *pIOHandler, bool checkSig) const {
const std::string extension = GetExtension(pFile);
if (extension == "iqm")
return true;
else if (!extension.length() || checkSig) {
if (!pIOHandler) {
return true;
}
/*
* don't use CheckMagicToken because that checks with swapped bytes too, leading to false
* positives. This magic is not uint32_t, but char[4], so memcmp is the best way
const char* tokens[] = {"3DMO", "3dmo"};
return CheckMagicToken(pIOHandler,pFile,tokens,2,0,4);
*/
std::unique_ptr<IOStream> pStream(pIOHandler->Open(pFile, "rb"));
unsigned char data[15];
if (!pStream || 15 != pStream->Read(data, 1, 15)) {
return false;
}
return !memcmp(data, "INTERQUAKEMODEL", 15);
}
return false;
}
// ------------------------------------------------------------------------------------------------
const aiImporterDesc *IQMImporter::GetInfo() const {
return &desc;
}
// ------------------------------------------------------------------------------------------------
// Model 3D import implementation
void IQMImporter::InternReadFile(const std::string &file, aiScene *pScene, IOSystem *pIOHandler) {
// Read file into memory
std::unique_ptr<IOStream> pStream(pIOHandler->Open(file, "rb"));
if (!pStream) {
throw DeadlyImportError("Failed to open file ", file, ".");
}
// Get the file-size and validate it, throwing an exception when fails
const size_t fileSize = pStream->FileSize();
if (fileSize < sizeof( iqmheader )) {
throw DeadlyImportError("IQM-file ", file, " is too small.");
}
std::vector<unsigned char> buffer(fileSize);
unsigned char *data = buffer.data();
if (fileSize != pStream->Read(data, 1, fileSize)) {
throw DeadlyImportError("Failed to read the file ", file, ".");
}
// get header
iqmheader &hdr = reinterpret_cast<iqmheader&>( *data );
swap_block( &hdr.version, sizeof( iqmheader ) - sizeof( iqmheader::magic ) );
// extra check for header
if (memcmp(data, IQM_MAGIC, sizeof( IQM_MAGIC ) )
|| hdr.version != IQM_VERSION
|| hdr.filesize != fileSize) {
throw DeadlyImportError("Bad binary header in file ", file, ".");
}
ASSIMP_LOG_DEBUG("IQM: loading ", file);
// create the root node
pScene->mRootNode = new aiNode( "<IQMRoot>" );
// Now rotate the whole scene 90 degrees around the x axis to convert to internal coordinate system
pScene->mRootNode->mTransformation = aiMatrix4x4(
1.f, 0.f, 0.f, 0.f,
0.f, 0.f, 1.f, 0.f,
0.f, -1.f, 0.f, 0.f,
0.f, 0.f, 0.f, 1.f);
pScene->mRootNode->mNumMeshes = hdr.num_meshes;
pScene->mRootNode->mMeshes = new unsigned int[hdr.num_meshes];
std::iota( pScene->mRootNode->mMeshes, pScene->mRootNode->mMeshes + pScene->mRootNode->mNumMeshes, 0 );
mScene = pScene;
// Allocate output storage
pScene->mNumMeshes = 0;
pScene->mMeshes = new aiMesh *[hdr.num_meshes](); // Set arrays to zero to ensue proper destruction if an exception is raised
pScene->mNumMaterials = 0;
pScene->mMaterials = new aiMaterial *[hdr.num_meshes]();
// swap vertex arrays beforehand...
for( auto array = reinterpret_cast<iqmvertexarray*>( data + hdr.ofs_vertexarrays ), end = array + hdr.num_vertexarrays; array != end; ++array )
{
swap_block( &array->type, sizeof( iqmvertexarray ) );
}
// Read all surfaces from the file
for( auto imesh = reinterpret_cast<iqmmesh*>( data + hdr.ofs_meshes ), end_ = imesh + hdr.num_meshes; imesh != end_; ++imesh )
{
swap_block( &imesh->name, sizeof( iqmmesh ) );
// Allocate output mesh & material
auto mesh = pScene->mMeshes[pScene->mNumMeshes++] = new aiMesh();
mesh->mMaterialIndex = pScene->mNumMaterials;
auto mat = pScene->mMaterials[pScene->mNumMaterials++] = new aiMaterial();
{
auto text = reinterpret_cast<char*>( data + hdr.ofs_text );
aiString name( text + imesh->material );
mat->AddProperty( &name, AI_MATKEY_NAME );
mat->AddProperty( &name, AI_MATKEY_TEXTURE_DIFFUSE(0) );
}
// Fill mesh information
mesh->mPrimitiveTypes = aiPrimitiveType_TRIANGLE;
mesh->mNumFaces = 0;
mesh->mFaces = new aiFace[imesh->num_triangles];
// Fill in all triangles
for( auto tri = reinterpret_cast<iqmtriangle*>( data + hdr.ofs_triangles ) + imesh->first_triangle, end = tri + imesh->num_triangles; tri != end; ++tri )
{
swap_block( tri->vertex, sizeof( tri->vertex ) );
auto& face = mesh->mFaces[mesh->mNumFaces++];
face.mNumIndices = 3;
face.mIndices = new unsigned int[3]{ tri->vertex[0] - imesh->first_vertex,
tri->vertex[2] - imesh->first_vertex,
tri->vertex[1] - imesh->first_vertex };
}
// Fill in all vertices
for( auto array = reinterpret_cast<const iqmvertexarray*>( data + hdr.ofs_vertexarrays ), end__ = array + hdr.num_vertexarrays; array != end__; ++array )
{
const unsigned int nVerts = imesh->num_vertexes;
const unsigned int step = array->size;
switch ( array->type )
{
case IQM_POSITION:
if( array->format == IQM_FLOAT && step >= 3 ){
mesh->mNumVertices = nVerts;
auto v = mesh->mVertices = new aiVector3D[nVerts];
for( auto f = reinterpret_cast<const float*>( data + array->offset ) + imesh->first_vertex * step,
end = f + nVerts * step; f != end; f += step, ++v )
{
*v = { AI_BE( f[0] ),
AI_BE( f[1] ),
AI_BE( f[2] ) };
}
}
break;
case IQM_TEXCOORD:
if( array->format == IQM_FLOAT && step >= 2)
{
auto v = mesh->mTextureCoords[0] = new aiVector3D[nVerts];
mesh->mNumUVComponents[0] = 2;
for( auto f = reinterpret_cast<const float*>( data + array->offset ) + imesh->first_vertex * step,
end = f + nVerts * step; f != end; f += step, ++v )
{
*v = { AI_BE( f[0] ),
1 - AI_BE( f[1] ), 0 };
}
}
break;
case IQM_NORMAL:
if (array->format == IQM_FLOAT && step >= 3)
{
auto v = mesh->mNormals = new aiVector3D[nVerts];
for( auto f = reinterpret_cast<const float*>( data + array->offset ) + imesh->first_vertex * step,
end = f + nVerts * step; f != end; f += step, ++v )
{
*v = { AI_BE( f[0] ),
AI_BE( f[1] ),
AI_BE( f[2] ) };
}
}
break;
case IQM_COLOR:
if (array->format == IQM_UBYTE && step >= 3)
{
auto v = mesh->mColors[0] = new aiColor4D[nVerts];
for( auto f = ( data + array->offset ) + imesh->first_vertex * step,
end = f + nVerts * step; f != end; f += step, ++v )
{
*v = { ( f[0] ) / 255.f,
( f[1] ) / 255.f,
( f[2] ) / 255.f,
step == 3? 1 : ( f[3] ) / 255.f };
}
}
else if (array->format == IQM_FLOAT && step >= 3)
{
auto v = mesh->mColors[0] = new aiColor4D[nVerts];
for( auto f = reinterpret_cast<const float*>( data + array->offset ) + imesh->first_vertex * step,
end = f + nVerts * step; f != end; f += step, ++v )
{
*v = { AI_BE( f[0] ),
AI_BE( f[1] ),
AI_BE( f[2] ),
step == 3? 1 : AI_BE( f[3] ) };
}
}
break;
case IQM_TANGENT:
#if 0
if (array->format == IQM_FLOAT && step >= 3)
{
auto v = mesh->mTangents = new aiVector3D[nVerts];
for( auto f = reinterpret_cast<const float*>( data + array->offset ) + imesh->first_vertex * step,
end = f + nVerts * step; f != end; f += step, ++v )
{
*v = { AI_BE( f[0] ),
AI_BE( f[1] ),
AI_BE( f[2] ) };
}
}
#endif
break;
case IQM_BLENDINDEXES:
case IQM_BLENDWEIGHTS:
case IQM_CUSTOM:
break; // these attributes are not relevant.
default:
break;
}
}
}
}
// ------------------------------------------------------------------------------------------------
} // Namespace Assimp
#endif // !! ASSIMP_BUILD_NO_IQM_IMPORTER