405 lines
15 KiB
C++
405 lines
15 KiB
C++
/*
|
|
Open Asset Import Library (assimp)
|
|
----------------------------------------------------------------------
|
|
|
|
Copyright (c) 2006-2012, assimp team
|
|
All rights reserved.
|
|
|
|
Redistribution and use of this software in source and binary forms,
|
|
with or without modification, are permitted provided that the
|
|
following conditions are met:
|
|
|
|
* Redistributions of source code must retain the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer in the documentation and/or other
|
|
materials provided with the distribution.
|
|
|
|
* Neither the name of the assimp team, nor the names of its
|
|
contributors may be used to endorse or promote products
|
|
derived from this software without specific prior
|
|
written permission of the assimp team.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
----------------------------------------------------------------------
|
|
*/
|
|
|
|
|
|
/// @file SplitByBoneCountProcess.cpp
|
|
/// Implementation of the SplitByBoneCount postprocessing step
|
|
|
|
// internal headers of the post-processing framework
|
|
#include "SplitByBoneCountProcess.h"
|
|
#include "../include/assimp/postprocess.h"
|
|
#include "../include/assimp/DefaultLogger.hpp"
|
|
|
|
#include <limits>
|
|
#include <boost/format.hpp>
|
|
|
|
using namespace Assimp;
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Constructor
|
|
SplitByBoneCountProcess::SplitByBoneCountProcess()
|
|
{
|
|
// set default, might be overriden by importer config
|
|
mMaxBoneCount = AI_SBBC_DEFAULT_MAX_BONES;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Destructor
|
|
SplitByBoneCountProcess::~SplitByBoneCountProcess()
|
|
{
|
|
// nothing to do here
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Returns whether the processing step is present in the given flag.
|
|
bool SplitByBoneCountProcess::IsActive( unsigned int pFlags) const
|
|
{
|
|
return !!(pFlags & aiProcess_SplitByBoneCount);
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Updates internal properties
|
|
void SplitByBoneCountProcess::SetupProperties(const Importer* pImp)
|
|
{
|
|
mMaxBoneCount = pImp->GetPropertyInteger(AI_CONFIG_PP_SBBC_MAX_BONES,AI_SBBC_DEFAULT_MAX_BONES);
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Executes the post processing step on the given imported data.
|
|
void SplitByBoneCountProcess::Execute( aiScene* pScene)
|
|
{
|
|
DefaultLogger::get()->debug("SplitByBoneCountProcess begin");
|
|
|
|
// early out
|
|
bool isNecessary = false;
|
|
for( size_t a = 0; a < pScene->mNumMeshes; ++a)
|
|
if( pScene->mMeshes[a]->mNumBones > mMaxBoneCount )
|
|
isNecessary = true;
|
|
|
|
if( !isNecessary )
|
|
{
|
|
DefaultLogger::get()->debug( boost::str( boost::format( "SplitByBoneCountProcess early-out: no meshes with more than %d bones.") % mMaxBoneCount));
|
|
return;
|
|
}
|
|
|
|
// we need to do something. Let's go.
|
|
mSubMeshIndices.clear();
|
|
mSubMeshIndices.resize( pScene->mNumMeshes);
|
|
|
|
// build a new array of meshes for the scene
|
|
std::vector<aiMesh*> meshes;
|
|
|
|
for( size_t a = 0; a < pScene->mNumMeshes; ++a)
|
|
{
|
|
aiMesh* srcMesh = pScene->mMeshes[a];
|
|
|
|
std::vector<aiMesh*> newMeshes;
|
|
SplitMesh( pScene->mMeshes[a], newMeshes);
|
|
|
|
// mesh was split
|
|
if( !newMeshes.empty() )
|
|
{
|
|
// store new meshes and indices of the new meshes
|
|
for( size_t b = 0; b < newMeshes.size(); ++b)
|
|
{
|
|
mSubMeshIndices[a].push_back( meshes.size());
|
|
meshes.push_back( newMeshes[b]);
|
|
}
|
|
|
|
// and destroy the source mesh. It should be completely contained inside the new submeshes
|
|
delete srcMesh;
|
|
}
|
|
else
|
|
{
|
|
// Mesh is kept unchanged - store it's new place in the mesh array
|
|
mSubMeshIndices[a].push_back( meshes.size());
|
|
meshes.push_back( srcMesh);
|
|
}
|
|
}
|
|
|
|
// rebuild the scene's mesh array
|
|
pScene->mNumMeshes = meshes.size();
|
|
delete [] pScene->mMeshes;
|
|
pScene->mMeshes = new aiMesh*[pScene->mNumMeshes];
|
|
std::copy( meshes.begin(), meshes.end(), pScene->mMeshes);
|
|
|
|
// recurse through all nodes and translate the node's mesh indices to fit the new mesh array
|
|
UpdateNode( pScene->mRootNode);
|
|
|
|
DefaultLogger::get()->debug( boost::str( boost::format( "SplitByBoneCountProcess end: split %d meshes into %d submeshes.") % mSubMeshIndices.size() % meshes.size()));
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Splits the given mesh by bone count.
|
|
void SplitByBoneCountProcess::SplitMesh( const aiMesh* pMesh, std::vector<aiMesh*>& poNewMeshes) const
|
|
{
|
|
// skip if not necessary
|
|
if( pMesh->mNumBones <= mMaxBoneCount )
|
|
return;
|
|
|
|
// necessary optimisation: build a list of all affecting bones for each vertex
|
|
// TODO: (thom) maybe add a custom allocator here to avoid allocating tens of thousands of small arrays
|
|
typedef std::pair<size_t, float> BoneWeight;
|
|
std::vector< std::vector<BoneWeight> > vertexBones( pMesh->mNumVertices);
|
|
for( size_t a = 0; a < pMesh->mNumBones; ++a)
|
|
{
|
|
const aiBone* bone = pMesh->mBones[a];
|
|
for( size_t b = 0; b < bone->mNumWeights; ++b)
|
|
vertexBones[ bone->mWeights[b].mVertexId ].push_back( BoneWeight( a, bone->mWeights[b].mWeight));
|
|
}
|
|
|
|
size_t numFacesHandled = 0;
|
|
std::vector<bool> isFaceHandled( pMesh->mNumFaces, false);
|
|
while( numFacesHandled < pMesh->mNumFaces )
|
|
{
|
|
// which bones are used in the current submesh
|
|
size_t numBones = 0;
|
|
std::vector<bool> isBoneUsed( pMesh->mNumBones, false);
|
|
// indices of the faces which are going to go into this submesh
|
|
std::vector<size_t> subMeshFaces;
|
|
subMeshFaces.reserve( pMesh->mNumFaces);
|
|
// accumulated vertex count of all the faces in this submesh
|
|
size_t numSubMeshVertices = 0;
|
|
// a small local array of new bones for the current face. State of all used bones for that face
|
|
// can only be updated AFTER the face is completely analysed. Thanks to imre for the fix.
|
|
std::vector<size_t> newBonesAtCurrentFace;
|
|
|
|
// add faces to the new submesh as long as all bones affecting the faces' vertices fit in the limit
|
|
for( size_t a = 0; a < pMesh->mNumFaces; ++a)
|
|
{
|
|
// skip if the face is already stored in a submesh
|
|
if( isFaceHandled[a] )
|
|
continue;
|
|
|
|
const aiFace& face = pMesh->mFaces[a];
|
|
// check every vertex if its bones would still fit into the current submesh
|
|
for( size_t b = 0; b < face.mNumIndices; ++b )
|
|
{
|
|
const std::vector<BoneWeight>& vb = vertexBones[face.mIndices[b]];
|
|
for( size_t c = 0; c < vb.size(); ++c)
|
|
{
|
|
size_t boneIndex = vb[c].first;
|
|
// if the bone is already used in this submesh, it's ok
|
|
if( isBoneUsed[boneIndex] )
|
|
continue;
|
|
|
|
// if it's not used, yet, we would need to add it. Store its bone index
|
|
if( std::find( newBonesAtCurrentFace.begin(), newBonesAtCurrentFace.end(), boneIndex) == newBonesAtCurrentFace.end() )
|
|
newBonesAtCurrentFace.push_back( boneIndex);
|
|
}
|
|
}
|
|
|
|
// leave out the face if the new bones required for this face don't fit the bone count limit anymore
|
|
if( numBones + newBonesAtCurrentFace.size() > mMaxBoneCount )
|
|
continue;
|
|
|
|
// mark all new bones as necessary
|
|
while( !newBonesAtCurrentFace.empty() )
|
|
{
|
|
size_t newIndex = newBonesAtCurrentFace.back();
|
|
newBonesAtCurrentFace.pop_back(); // this also avoids the deallocation which comes with a clear()
|
|
if( isBoneUsed[newIndex] )
|
|
continue;
|
|
|
|
isBoneUsed[newIndex] = true;
|
|
numBones++;
|
|
}
|
|
|
|
// store the face index and the vertex count
|
|
subMeshFaces.push_back( a);
|
|
numSubMeshVertices += face.mNumIndices;
|
|
|
|
// remember that this face is handled
|
|
isFaceHandled[a] = true;
|
|
numFacesHandled++;
|
|
}
|
|
|
|
// create a new mesh to hold this subset of the source mesh
|
|
aiMesh* newMesh = new aiMesh;
|
|
if( pMesh->mName.length > 0 )
|
|
newMesh->mName.Set( boost::str( boost::format( "%s_sub%d") % pMesh->mName.data % poNewMeshes.size()));
|
|
newMesh->mMaterialIndex = pMesh->mMaterialIndex;
|
|
newMesh->mPrimitiveTypes = pMesh->mPrimitiveTypes;
|
|
poNewMeshes.push_back( newMesh);
|
|
|
|
// create all the arrays for this mesh if the old mesh contained them
|
|
newMesh->mNumVertices = numSubMeshVertices;
|
|
newMesh->mNumFaces = subMeshFaces.size();
|
|
newMesh->mVertices = new aiVector3D[newMesh->mNumVertices];
|
|
if( pMesh->HasNormals() )
|
|
newMesh->mNormals = new aiVector3D[newMesh->mNumVertices];
|
|
if( pMesh->HasTangentsAndBitangents() )
|
|
{
|
|
newMesh->mTangents = new aiVector3D[newMesh->mNumVertices];
|
|
newMesh->mBitangents = new aiVector3D[newMesh->mNumVertices];
|
|
}
|
|
for( size_t a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a )
|
|
{
|
|
if( pMesh->HasTextureCoords( a) )
|
|
newMesh->mTextureCoords[a] = new aiVector3D[newMesh->mNumVertices];
|
|
newMesh->mNumUVComponents[a] = pMesh->mNumUVComponents[a];
|
|
}
|
|
for( size_t a = 0; a < AI_MAX_NUMBER_OF_COLOR_SETS; ++a )
|
|
{
|
|
if( pMesh->HasVertexColors( a) )
|
|
newMesh->mColors[a] = new aiColor4D[newMesh->mNumVertices];
|
|
}
|
|
|
|
// and copy over the data, generating faces with linear indices along the way
|
|
newMesh->mFaces = new aiFace[subMeshFaces.size()];
|
|
size_t nvi = 0; // next vertex index
|
|
std::vector<size_t> previousVertexIndices( numSubMeshVertices, std::numeric_limits<size_t>::max()); // per new vertex: its index in the source mesh
|
|
for( size_t a = 0; a < subMeshFaces.size(); ++a )
|
|
{
|
|
const aiFace& srcFace = pMesh->mFaces[subMeshFaces[a]];
|
|
aiFace& dstFace = newMesh->mFaces[a];
|
|
dstFace.mNumIndices = srcFace.mNumIndices;
|
|
dstFace.mIndices = new unsigned int[dstFace.mNumIndices];
|
|
|
|
// accumulate linearly all the vertices of the source face
|
|
for( size_t b = 0; b < dstFace.mNumIndices; ++b )
|
|
{
|
|
size_t srcIndex = srcFace.mIndices[b];
|
|
dstFace.mIndices[b] = nvi;
|
|
previousVertexIndices[nvi] = srcIndex;
|
|
|
|
newMesh->mVertices[nvi] = pMesh->mVertices[srcIndex];
|
|
if( pMesh->HasNormals() )
|
|
newMesh->mNormals[nvi] = pMesh->mNormals[srcIndex];
|
|
if( pMesh->HasTangentsAndBitangents() )
|
|
{
|
|
newMesh->mTangents[nvi] = pMesh->mTangents[srcIndex];
|
|
newMesh->mBitangents[nvi] = pMesh->mBitangents[srcIndex];
|
|
}
|
|
for( size_t c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++c )
|
|
{
|
|
if( pMesh->HasTextureCoords( c) )
|
|
newMesh->mTextureCoords[c][nvi] = pMesh->mTextureCoords[c][srcIndex];
|
|
}
|
|
for( size_t c = 0; c < AI_MAX_NUMBER_OF_COLOR_SETS; ++c )
|
|
{
|
|
if( pMesh->HasVertexColors( c) )
|
|
newMesh->mColors[c][nvi] = pMesh->mColors[c][srcIndex];
|
|
}
|
|
|
|
nvi++;
|
|
}
|
|
}
|
|
|
|
ai_assert( nvi == numSubMeshVertices );
|
|
|
|
// Create the bones for the new submesh: first create the bone array
|
|
newMesh->mNumBones = 0;
|
|
newMesh->mBones = new aiBone*[numBones];
|
|
|
|
std::vector<size_t> mappedBoneIndex( pMesh->mNumBones, std::numeric_limits<size_t>::max());
|
|
for( size_t a = 0; a < pMesh->mNumBones; ++a )
|
|
{
|
|
if( !isBoneUsed[a] )
|
|
continue;
|
|
|
|
// create the new bone
|
|
const aiBone* srcBone = pMesh->mBones[a];
|
|
aiBone* dstBone = new aiBone;
|
|
mappedBoneIndex[a] = newMesh->mNumBones;
|
|
newMesh->mBones[newMesh->mNumBones++] = dstBone;
|
|
dstBone->mName = srcBone->mName;
|
|
dstBone->mOffsetMatrix = srcBone->mOffsetMatrix;
|
|
dstBone->mNumWeights = 0;
|
|
}
|
|
|
|
ai_assert( newMesh->mNumBones == numBones );
|
|
|
|
// iterate over all new vertices and count which bones affected its old vertex in the source mesh
|
|
for( size_t a = 0; a < numSubMeshVertices; ++a )
|
|
{
|
|
size_t oldIndex = previousVertexIndices[a];
|
|
const std::vector<BoneWeight>& bonesOnThisVertex = vertexBones[oldIndex];
|
|
|
|
for( size_t b = 0; b < bonesOnThisVertex.size(); ++b )
|
|
{
|
|
size_t newBoneIndex = mappedBoneIndex[ bonesOnThisVertex[b].first ];
|
|
if( newBoneIndex != std::numeric_limits<size_t>::max() )
|
|
newMesh->mBones[newBoneIndex]->mNumWeights++;
|
|
}
|
|
}
|
|
|
|
// allocate all bone weight arrays accordingly
|
|
for( size_t a = 0; a < newMesh->mNumBones; ++a )
|
|
{
|
|
aiBone* bone = newMesh->mBones[a];
|
|
ai_assert( bone->mNumWeights > 0 );
|
|
bone->mWeights = new aiVertexWeight[bone->mNumWeights];
|
|
bone->mNumWeights = 0; // for counting up in the next step
|
|
}
|
|
|
|
// now copy all the bone vertex weights for all the vertices which made it into the new submesh
|
|
for( size_t a = 0; a < numSubMeshVertices; ++a)
|
|
{
|
|
// find the source vertex for it in the source mesh
|
|
size_t previousIndex = previousVertexIndices[a];
|
|
// these bones were affecting it
|
|
const std::vector<BoneWeight>& bonesOnThisVertex = vertexBones[previousIndex];
|
|
// all of the bones affecting it should be present in the new submesh, or else
|
|
// the face it comprises shouldn't be present
|
|
for( size_t b = 0; b < bonesOnThisVertex.size(); ++b)
|
|
{
|
|
size_t newBoneIndex = mappedBoneIndex[ bonesOnThisVertex[b].first ];
|
|
ai_assert( newBoneIndex != std::numeric_limits<size_t>::max() );
|
|
aiVertexWeight* dstWeight = newMesh->mBones[newBoneIndex]->mWeights + newMesh->mBones[newBoneIndex]->mNumWeights;
|
|
newMesh->mBones[newBoneIndex]->mNumWeights++;
|
|
|
|
dstWeight->mVertexId = a;
|
|
dstWeight->mWeight = bonesOnThisVertex[b].second;
|
|
}
|
|
}
|
|
|
|
// I have the strange feeling that this will break apart at some point in time...
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Recursively updates the node's mesh list to account for the changed mesh list
|
|
void SplitByBoneCountProcess::UpdateNode( aiNode* pNode) const
|
|
{
|
|
// rebuild the node's mesh index list
|
|
if( pNode->mNumMeshes > 0 )
|
|
{
|
|
std::vector<size_t> newMeshList;
|
|
for( size_t a = 0; a < pNode->mNumMeshes; ++a)
|
|
{
|
|
size_t srcIndex = pNode->mMeshes[a];
|
|
const std::vector<size_t>& replaceMeshes = mSubMeshIndices[srcIndex];
|
|
newMeshList.insert( newMeshList.end(), replaceMeshes.begin(), replaceMeshes.end());
|
|
}
|
|
|
|
delete pNode->mMeshes;
|
|
pNode->mNumMeshes = newMeshList.size();
|
|
pNode->mMeshes = new unsigned int[pNode->mNumMeshes];
|
|
std::copy( newMeshList.begin(), newMeshList.end(), pNode->mMeshes);
|
|
}
|
|
|
|
// do that also recursively for all children
|
|
for( size_t a = 0; a < pNode->mNumChildren; ++a )
|
|
{
|
|
UpdateNode( pNode->mChildren[a]);
|
|
}
|
|
}
|