assimp/code/XFileImporter.cpp

704 lines
24 KiB
C++

/** @file Implementation of the XFile importer class */
#include "XFileImporter.h"
#include "XFileParser.h"
#include "MaterialSystem.h"
#include "ConvertToLHProcess.h"
#include "../include/IOStream.h"
#include "../include/IOSystem.h"
#include "../include/aiMesh.h"
#include "../include/aiScene.h"
#include <boost/scoped_ptr.hpp>
#include <boost/format.hpp>
using namespace Assimp;
// ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer
XFileImporter::XFileImporter()
{
}
// ------------------------------------------------------------------------------------------------
// Destructor, private as well
XFileImporter::~XFileImporter()
{
}
// ------------------------------------------------------------------------------------------------
// Returns whether the class can handle the format of the given file.
bool XFileImporter::CanRead( const std::string& pFile, IOSystem* pIOHandler) const
{
// simple check of file extension is enough for the moment
std::string::size_type pos = pFile.find_last_of( '.');
// no file extension - can't read
if( pos == std::string::npos)
return false;
std::string extension = pFile.substr( pos);
if( extension == ".x" || extension == ".X")
return true;
return false;
}
// ------------------------------------------------------------------------------------------------
// Imports the given file into the given scene structure.
void XFileImporter::InternReadFile( const std::string& pFile, aiScene* pScene, IOSystem* pIOHandler)
{
// read file into memory
boost::scoped_ptr<IOStream> file( pIOHandler->Open( pFile));
if( file.get() == NULL)
throw new ImportErrorException( "Failed to open file " + pFile + ".");
size_t fileSize = file->FileSize();
if( fileSize < 16)
throw new ImportErrorException( "XFile is too small.");
mBuffer.resize( fileSize);
file->Read( &mBuffer.front(), 1, fileSize);
// parse the file into a temporary representation
XFileParser parser( mBuffer);
// and create the proper return structures out of it
CreateDataRepresentationFromImport( pScene, parser.GetImportedData());
}
// ------------------------------------------------------------------------------------------------
// Constructs the return data structure out of the imported data.
void XFileImporter::CreateDataRepresentationFromImport( aiScene* pScene, const XFile::Scene* pData)
{
// Read the global materials first so that meshes referring to them can find them later
ConvertMaterials( pScene, pData->mGlobalMaterials);
// copy nodes, extracting meshes and materials on the way
pScene->mRootNode = CreateNodes( pScene, NULL, pData->mRootNode);
// extract animations
CreateAnimations( pScene, pData);
// read the global meshes that were stored outside of any node
if( pData->mGlobalMeshes.size() > 0)
{
// create a root node to hold them if there isn't any, yet
if( pScene->mRootNode == NULL)
{
pScene->mRootNode = new aiNode;
pScene->mRootNode->mName.Set( "$dummy_node");
}
// convert all global meshes and store them in the root node.
// If there was one before, the global meshes now suddenly have its transformation matrix...
// Don't know what to do there, I don't want to insert another node under the present root node
// just to avoid this.
CreateMeshes( pScene, pScene->mRootNode, pData->mGlobalMeshes);
}
// convert the root node's transformation to OGL coords
ConvertToLHProcess::ConvertToOGL( pScene->mRootNode->mTransformation);
// finally: create a dummy material if not material was imported
if( pScene->mNumMaterials == 0)
{
pScene->mNumMaterials = 1;
// create the Material
Assimp::MaterialHelper* mat = new Assimp::MaterialHelper;
int shadeMode = (int) aiShadingMode_Gouraud;
mat->AddProperty<int>( &shadeMode, 1, AI_MATKEY_SHADING_MODEL);
// material colours
int specExp = 1;
mat->AddProperty( &aiColor3D( 0, 0, 0), 1, AI_MATKEY_COLOR_EMISSIVE);
mat->AddProperty( &aiColor3D( 0.5f, 0.5f, 0.5f), 1, AI_MATKEY_COLOR_DIFFUSE);
mat->AddProperty( &aiColor3D( 0, 0, 0), 1, AI_MATKEY_COLOR_SPECULAR);
mat->AddProperty( &specExp, 1, AI_MATKEY_SHININESS);
pScene->mMaterials = new aiMaterial*[1];
pScene->mMaterials[0] = mat;
}
}
// ------------------------------------------------------------------------------------------------
// Recursively creates scene nodes from the imported hierarchy.
aiNode* XFileImporter::CreateNodes( aiScene* pScene, aiNode* pParent, const XFile::Node* pNode)
{
if( !pNode)
return NULL;
// create node
aiNode* node = new aiNode;
node->mName.length = pNode->mName.length();
node->mParent = pParent;
memcpy( node->mName.data, pNode->mName.c_str(), pNode->mName.length());
node->mName.data[node->mName.length] = 0;
node->mTransformation = pNode->mTrafoMatrix;
// convert meshes from the source node
CreateMeshes( pScene, node, pNode->mMeshes);
// handle childs
if( pNode->mChildren.size() > 0)
{
node->mNumChildren = pNode->mChildren.size();
node->mChildren = new aiNode* [node->mNumChildren];
for( unsigned int a = 0; a < pNode->mChildren.size(); a++)
node->mChildren[a] = CreateNodes( pScene, node, pNode->mChildren[a]);
}
return node;
}
// ------------------------------------------------------------------------------------------------
// Creates the meshes for the given node.
void XFileImporter::CreateMeshes( aiScene* pScene, aiNode* pNode, const std::vector<XFile::Mesh*>& pMeshes)
{
if( pMeshes.size() == 0)
return;
// create a mesh for each mesh-material combination in the source node
std::vector<aiMesh*> meshes;
for( unsigned int a = 0; a < pMeshes.size(); a++)
{
const XFile::Mesh* sourceMesh = pMeshes[a];
// first convert its materials so that we can find them when searching by name afterwards
ConvertMaterials( pScene, sourceMesh->mMaterials);
unsigned int numMaterials = std::max( sourceMesh->mMaterials.size(), 1u);
for( unsigned int b = 0; b < numMaterials; b++)
{
// collect the faces belonging to this material
std::vector<unsigned int> faces;
unsigned int numVertices = 0;
if( sourceMesh->mFaceMaterials.size() > 0)
{
// if there is a per-face material defined, select the faces with the corresponding material
for( unsigned int c = 0; c < sourceMesh->mFaceMaterials.size(); c++)
{
if( sourceMesh->mFaceMaterials[c] == b)
{
faces.push_back( c);
numVertices += sourceMesh->mPosFaces[c].mIndices.size();
}
}
} else
{
// if there is no per-face material, place everything into one mesh
for( unsigned int c = 0; c < sourceMesh->mPosFaces.size(); c++)
{
faces.push_back( c);
numVertices += sourceMesh->mPosFaces[c].mIndices.size();
}
}
// no faces/vertices using this material? strange...
if( numVertices == 0)
continue;
// create a submesh using this material
aiMesh* mesh = new aiMesh;
meshes.push_back( mesh);
// find the material by name in the scene's material list. Either own material
// or referenced material, it should already be found there
if( sourceMesh->mFaceMaterials.size() > 0)
{
std::map<std::string, unsigned int>::const_iterator matIt = mImportedMats.find( sourceMesh->mMaterials[b].mName);
if( matIt == mImportedMats.end())
mesh->mMaterialIndex = 0;
else
mesh->mMaterialIndex = matIt->second;
} else
{
mesh->mMaterialIndex = 0;
}
// Create properly sized data arrays in the mesh. We store unique vertices per face,
// as specified
mesh->mNumVertices = numVertices;
mesh->mVertices = new aiVector3D[numVertices];
mesh->mNumFaces = faces.size();
mesh->mFaces = new aiFace[mesh->mNumFaces];
// normals?
if( sourceMesh->mNormals.size() > 0)
mesh->mNormals = new aiVector3D[numVertices];
// texture coords
for( unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS; c++)
{
if( sourceMesh->mTexCoords[c].size() > 0)
mesh->mTextureCoords[c] = new aiVector3D[numVertices];
}
// vertex colors
for( unsigned int c = 0; c < AI_MAX_NUMBER_OF_COLOR_SETS; c++)
{
if( sourceMesh->mColors[c].size() > 0)
mesh->mColors[c] = new aiColor4D[numVertices];
}
// now collect the vertex data of all data streams present in the imported mesh
unsigned int newIndex = 0;
std::vector<unsigned int> orgPoints; // from which original point each new vertex stems
orgPoints.resize( numVertices, 0);
for( unsigned int c = 0; c < faces.size(); c++)
{
unsigned int f = faces[c]; // index of the source face
const XFile::Face& pf = sourceMesh->mPosFaces[f]; // position source face
// create face. either triangle or triangle fan depending on the index count
aiFace& df = mesh->mFaces[c]; // destination face
df.mNumIndices = pf.mIndices.size();
df.mIndices = new unsigned int[ df.mNumIndices];
// collect vertex data for indices of this face
for( unsigned int d = 0; d < df.mNumIndices; d++)
{
df.mIndices[df.mNumIndices - 1 - d] = newIndex; // inverted face orientation for OGL
orgPoints[newIndex] = pf.mIndices[d];
// Position
mesh->mVertices[newIndex] = sourceMesh->mPositions[pf.mIndices[d]];
// Normal, if present
if( mesh->HasNormals())
mesh->mNormals[newIndex] = sourceMesh->mNormals[sourceMesh->mNormFaces[f].mIndices[d]];
// texture coord sets
for( unsigned int e = 0; e < AI_MAX_NUMBER_OF_TEXTURECOORDS; e++)
{
if( mesh->HasTextureCoords( e))
{
aiVector2D tex = sourceMesh->mTexCoords[e][pf.mIndices[d]];
mesh->mTextureCoords[e][newIndex] = aiVector3D( tex.x, 1.0f - tex.y, 0.0f);
}
}
// vertex color sets
for( unsigned int e = 0; e < AI_MAX_NUMBER_OF_COLOR_SETS; e++)
if( mesh->HasVertexColors( e))
mesh->mColors[e][newIndex] = sourceMesh->mColors[e][pf.mIndices[d]];
newIndex++;
}
}
// there should be as much new vertices as we calculated before
assert( newIndex == numVertices);
// convert all bones of the source mesh which influence vertices in this newly created mesh
const std::vector<XFile::Bone>& bones = sourceMesh->mBones;
std::vector<aiBone*> newBones;
for( unsigned int c = 0; c < bones.size(); c++)
{
const XFile::Bone& obone = bones[c];
// set up a vertex-linear array of the weights for quick searching if a bone influences a vertex
std::vector<float> oldWeights( sourceMesh->mPositions.size(), 0.0f);
for( unsigned int d = 0; d < obone.mWeights.size(); d++)
oldWeights[obone.mWeights[d].mVertex] = obone.mWeights[d].mWeight;
// collect all vertex weights that influence a vertex in the new mesh
std::vector<aiVertexWeight> newWeights;
newWeights.reserve( numVertices);
for( unsigned int d = 0; d < orgPoints.size(); d++)
{
// does the new vertex stem from an old vertex which was influenced by this bone?
float w = oldWeights[orgPoints[d]];
if( w > 0.0f)
newWeights.push_back( aiVertexWeight( d, w));
}
// if the bone has no weights in the newly created mesh, ignore it
if( newWeights.size() == 0)
continue;
// create
aiBone* nbone = new aiBone;
newBones.push_back( nbone);
// copy name and matrix
nbone->mName.Set( obone.mName);
nbone->mOffsetMatrix = obone.mOffsetMatrix;
nbone->mNumWeights = newWeights.size();
nbone->mWeights = new aiVertexWeight[nbone->mNumWeights];
for( unsigned int d = 0; d < newWeights.size(); d++)
nbone->mWeights[d] = newWeights[d];
}
// store the bones in the mesh
mesh->mNumBones = newBones.size();
mesh->mBones = new aiBone*[mesh->mNumBones];
for( unsigned int c = 0; c < newBones.size(); c++)
mesh->mBones[c] = newBones[c];
}
}
// reallocate scene mesh array to be large enough
aiMesh** prevArray = pScene->mMeshes;
pScene->mMeshes = new aiMesh*[pScene->mNumMeshes + meshes.size()];
if( prevArray)
{
memcpy( pScene->mMeshes, prevArray, pScene->mNumMeshes * sizeof( aiMesh*));
delete [] prevArray;
}
// allocate mesh index array in the node
pNode->mNumMeshes = meshes.size();
pNode->mMeshes = new unsigned int[pNode->mNumMeshes];
// store all meshes in the mesh library of the scene and store their indices in the node
for( unsigned int a = 0; a < meshes.size(); a++)
{
pScene->mMeshes[pScene->mNumMeshes] = meshes[a];
pNode->mMeshes[a] = pScene->mNumMeshes;
pScene->mNumMeshes++;
}
}
// ------------------------------------------------------------------------------------------------
// Converts the animations from the given imported data and creates them in the scene.
void XFileImporter::CreateAnimations( aiScene* pScene, const XFile::Scene* pData)
{
std::vector<aiAnimation*> newAnims;
for( unsigned int a = 0; a < pData->mAnims.size(); a++)
{
const XFile::Animation* anim = pData->mAnims[a];
// create a new animation to hold the data
aiAnimation* nanim = new aiAnimation;
newAnims.push_back( nanim);
nanim->mName.Set( anim->mName);
// duration will be determined by the maximum length
nanim->mDuration = 0;
nanim->mTicksPerSecond = pData->mAnimTicksPerSecond;
nanim->mNumBones = anim->mAnims.size();
nanim->mBones = new aiBoneAnim*[nanim->mNumBones];
for( unsigned int b = 0; b < anim->mAnims.size(); b++)
{
const XFile::AnimBone* bone = anim->mAnims[b];
aiBoneAnim* nbone = new aiBoneAnim;
nbone->mBoneName.Set( bone->mBoneName);
nanim->mBones[b] = nbone;
// apply the LH->RH conversion if the animation affects the root bone
bool isRootAnim = (bone->mBoneName == pScene->mRootNode->mName.data);
// keyframes are given as combined transformation matrix keys
if( bone->mTrafoKeys.size() > 0)
{
nbone->mNumPositionKeys = bone->mTrafoKeys.size();
nbone->mPositionKeys = new aiVectorKey[nbone->mNumPositionKeys];
nbone->mNumRotationKeys = bone->mTrafoKeys.size();
nbone->mRotationKeys = new aiQuatKey[nbone->mNumRotationKeys];
nbone->mNumScalingKeys = bone->mTrafoKeys.size();
nbone->mScalingKeys = new aiVectorKey[nbone->mNumScalingKeys];
for( unsigned int c = 0; c < bone->mTrafoKeys.size(); c++)
{
// deconstruct each matrix into separate position, rotation and scaling
double time = bone->mTrafoKeys[c].mTime;
aiMatrix4x4 trafo = bone->mTrafoKeys[c].mMatrix;
// extract position
aiVector3D pos( trafo.a4, trafo.b4, trafo.c4);
if( isRootAnim)
ConvertToLHProcess::ConvertToOGL( pos);
nbone->mPositionKeys[c].mTime = time;
nbone->mPositionKeys[c].mValue = pos;
// extract scaling
aiVector3D scale;
scale.x = aiVector3D( trafo.a1, trafo.b1, trafo.c1).Length();
scale.y = aiVector3D( trafo.a2, trafo.b2, trafo.c2).Length();
scale.z = aiVector3D( trafo.a3, trafo.b3, trafo.c3).Length();
nbone->mScalingKeys[c].mTime = time;
nbone->mScalingKeys[c].mValue = scale;
// reconstruct rotation matrix without scaling
aiMatrix3x3 rotmat(
trafo.a1 / scale.x, trafo.a2 / scale.y, trafo.a3 / scale.z,
trafo.b1 / scale.x, trafo.b2 / scale.y, trafo.b3 / scale.z,
trafo.c1 / scale.x, trafo.c2 / scale.y, trafo.c3 / scale.z);
if( isRootAnim)
ConvertToLHProcess::ConvertToOGL( rotmat);
// and convert it into a quaternion
nbone->mRotationKeys[c].mTime = time;
nbone->mRotationKeys[c].mValue = aiQuaternion( rotmat);
}
// longest lasting key sequence determines duration
nanim->mDuration = std::max( nanim->mDuration, bone->mTrafoKeys.back().mTime);
} else
{
// separate key sequences for position, rotation, scaling
nbone->mNumPositionKeys = bone->mPosKeys.size();
nbone->mPositionKeys = new aiVectorKey[nbone->mNumPositionKeys];
for( unsigned int c = 0; c < nbone->mNumPositionKeys; c++)
{
aiVector3D pos = bone->mPosKeys[c].mValue;
if( isRootAnim)
ConvertToLHProcess::ConvertToOGL( pos);
nbone->mPositionKeys[c].mTime = bone->mPosKeys[c].mTime;
nbone->mPositionKeys[c].mValue = pos;
}
// rotation
nbone->mNumRotationKeys = bone->mRotKeys.size();
nbone->mRotationKeys = new aiQuatKey[nbone->mNumRotationKeys];
for( unsigned int c = 0; c < nbone->mNumRotationKeys; c++)
{
aiMatrix3x3 rotmat = bone->mRotKeys[c].mValue.GetMatrix();
if( isRootAnim)
ConvertToLHProcess::ConvertToOGL( rotmat);
nbone->mRotationKeys[c].mTime = bone->mRotKeys[c].mTime;
nbone->mRotationKeys[c].mValue = aiQuaternion( rotmat);
}
// scaling
nbone->mNumScalingKeys = bone->mScaleKeys.size();
nbone->mScalingKeys = new aiVectorKey[nbone->mNumScalingKeys];
for( unsigned int c = 0; c < nbone->mNumScalingKeys; c++)
nbone->mScalingKeys[c] = bone->mScaleKeys[c];
// longest lasting key sequence determines duration
if( bone->mPosKeys.size() > 0)
nanim->mDuration = std::max( nanim->mDuration, bone->mPosKeys.back().mTime);
if( bone->mRotKeys.size() > 0)
nanim->mDuration = std::max( nanim->mDuration, bone->mRotKeys.back().mTime);
if( bone->mScaleKeys.size() > 0)
nanim->mDuration = std::max( nanim->mDuration, bone->mScaleKeys.back().mTime);
}
}
}
// store all converted animations in the scene
if( newAnims.size() > 0)
{
pScene->mNumAnimations = newAnims.size();
pScene->mAnimations = new aiAnimation* [pScene->mNumAnimations];
for( unsigned int a = 0; a < newAnims.size(); a++)
pScene->mAnimations[a] = newAnims[a];
}
}
// ------------------------------------------------------------------------------------------------
// Converts all materials in the given array and stores them in the scene's material list.
void XFileImporter::ConvertMaterials( aiScene* pScene, const std::vector<XFile::Material>& pMaterials)
{
// count the non-referrer materials in the array
unsigned int numMaterials = 0;
for( unsigned int a = 0; a < pMaterials.size(); a++)
if( !pMaterials[a].mIsReference)
numMaterials++;
if( numMaterials == 0)
return;
// resize the scene's material list to offer enough space for the new materials
aiMaterial** prevMats = pScene->mMaterials;
pScene->mMaterials = new aiMaterial*[pScene->mNumMaterials + numMaterials];
if( prevMats)
{
memcpy( pScene->mMaterials, prevMats, pScene->mNumMaterials * sizeof( aiMaterial*));
delete [] prevMats;
}
// convert all the materials given in the array
for( unsigned int a = 0; a < pMaterials.size(); a++)
{
const XFile::Material& oldMat = pMaterials[a];
if( oldMat.mIsReference)
continue;
Assimp::MaterialHelper* mat = new Assimp::MaterialHelper;
aiString name;
name.Set( oldMat.mName);
mat->AddProperty( &name, AI_MATKEY_NAME);
// Shading model: hardcoded to PHONG, there is no such information in an XFile
int shadeMode = (int) aiShadingMode_Phong;
mat->AddProperty<int>( &shadeMode, 1, AI_MATKEY_SHADING_MODEL);
// material colours
mat->AddProperty( &oldMat.mEmissive, 1, AI_MATKEY_COLOR_EMISSIVE);
mat->AddProperty( &oldMat.mDiffuse, 1, AI_MATKEY_COLOR_DIFFUSE);
mat->AddProperty( &oldMat.mSpecular, 1, AI_MATKEY_COLOR_SPECULAR);
mat->AddProperty( &oldMat.mSpecularExponent, 1, AI_MATKEY_SHININESS);
// texture, if there is one
if (1 == oldMat.mTextures.size())
{
// if there is only one texture, assume it contains the
// diffuse color
aiString tex;
tex.Set( oldMat.mTextures[0]);
mat->AddProperty( &tex, AI_MATKEY_TEXTURE_DIFFUSE(0));
}
else
{
// Otherwise ... try to search for typical strings in the
// texture's file name like 'bump' or 'diffuse'
unsigned int iHM = 0,iNM = 0,iDM = 0,iSM = 0,iAM = 0,iEM = 0;
for( unsigned int b = 0; b < oldMat.mTextures.size(); b++)
{
std::string sz = oldMat.mTextures[b];
char key[256];
// find the file name
const size_t iLen = sz.length();
std::string::size_type s = sz.rfind('\\',iLen-1);
if (std::string::npos == s)
{
s = sz.rfind('/',iLen-1);
if (std::string::npos == s)s = 0;
}
// cut off the file extension
std::string::size_type sExt = sz.rfind('.',iLen-1);
if (std::string::npos != sExt)
{
sz[sExt] = '\0';
}
// bump map
std::string::size_type s2 = sz.find("bump",s);
if (std::string::npos == s2)
{
s2 = sz.find("BUMP",s);
if (std::string::npos == s2)
{
s2 = sz.find("Bump",s);
if (std::string::npos == s2)
{
s2 = sz.find("height",s);
if (std::string::npos == s2)
{
s2 = sz.find("HEIGHT",s);
if (std::string::npos == s2)
{
s2 = sz.find("Height",s);
}
}
}
}
}
if (std::string::npos != s2)
{
sprintf(key,AI_MATKEY_TEXTURE_BUMP_ "[%i]",iHM++);
}
else
{
// Normal map
std::string::size_type s2 = sz.find("normal",s);
if (std::string::npos == s2)
{
s2 = sz.find("NORMAL",s);
if (std::string::npos == s2)
{
s2 = sz.find("nm",s); // not really unique
if (std::string::npos == s2)
{
s2 = sz.find("Normal",s);
if (std::string::npos == s2)
{
s2 = sz.find("NM",s);
}
}
}
}
if (std::string::npos != s2)
{
sprintf(key,AI_MATKEY_TEXTURE_NORMALS_ "[%i]",iNM++);
}
else
{
// specular color texture (not unique, too. Could
// also be the material's shininess)
std::string::size_type s2 = sz.find("spec",s);
if (std::string::npos == s2)
{
s2 = sz.find("Spec",s);
if (std::string::npos == s2)
{
s2 = sz.find("SPEC",s);
if (std::string::npos == s2)
{
s2 = sz.find("Glanz",s);
if (std::string::npos == s2)
{
s2 = sz.find("glanz",s);
}
}
}
}
if (std::string::npos != s2)
{
sprintf(key,AI_MATKEY_TEXTURE_SPECULAR_ "[%i]",iSM++);
}
else
{
// ambient color texture
std::string::size_type s2 = sz.find("ambi",s);
if (std::string::npos == s2)
{
s2 = sz.find("AMBI",s);
if (std::string::npos == s2)
{
s2 = sz.find("umgebungsfarbe",s);
if (std::string::npos == s2)
{
s2 = sz.find("Ambi",s);
}
}
}
if (std::string::npos != s2)
{
sprintf(key,AI_MATKEY_TEXTURE_AMBIENT_ "[%i]",iAM++);
}
else
{
// emissive color texture
std::string::size_type s2 = sz.find("emissive",s);
if (std::string::npos == s2)
{
s2 = sz.find("EMISSIVE",s);
if (std::string::npos == s2)
{
// self illumination
s2 = sz.find("self",s);
if (std::string::npos == s2)
{
s2 = sz.find("Emissive",s);
}
}
}
if (std::string::npos != s2)
{
sprintf(key,AI_MATKEY_TEXTURE_EMISSIVE_ "[%i]",iEM++);
}
else
{
// assume it is a diffuse texture
sprintf(key,AI_MATKEY_TEXTURE_DIFFUSE_ "[%i]",iDM++);
}
}
}
}
}
aiString tex;
tex.Set( oldMat.mTextures[b] );
mat->AddProperty( &tex, key);
}
}
pScene->mMaterials[pScene->mNumMaterials] = mat;
mImportedMats[oldMat.mName] = pScene->mNumMaterials;
pScene->mNumMaterials++;
}
}