703 lines
30 KiB
C++
703 lines
30 KiB
C++
/*
|
|
---------------------------------------------------------------------------
|
|
Open Asset Import Library (assimp)
|
|
---------------------------------------------------------------------------
|
|
|
|
Copyright (c) 2006-2020, assimp team
|
|
|
|
All rights reserved.
|
|
|
|
Redistribution and use of this software in source and binary forms,
|
|
with or without modification, are permitted provided that the following
|
|
conditions are met:
|
|
|
|
* Redistributions of source code must retain the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer in the documentation and/or other
|
|
materials provided with the distribution.
|
|
|
|
* Neither the name of the assimp team, nor the names of its
|
|
contributors may be used to endorse or promote products
|
|
derived from this software without specific prior
|
|
written permission of the assimp team.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
---------------------------------------------------------------------------
|
|
*/
|
|
/** @file XFileImporter.cpp
|
|
* @brief Implementation of the XFile importer class
|
|
*/
|
|
|
|
#ifndef ASSIMP_BUILD_NO_X_IMPORTER
|
|
|
|
#include "AssetLib/X/XFileImporter.h"
|
|
#include "AssetLib/X/XFileParser.h"
|
|
#include "PostProcessing/ConvertToLHProcess.h"
|
|
|
|
#include <assimp/TinyFormatter.h>
|
|
#include <assimp/Defines.h>
|
|
#include <assimp/IOSystem.hpp>
|
|
#include <assimp/scene.h>
|
|
#include <assimp/DefaultLogger.hpp>
|
|
#include <assimp/importerdesc.h>
|
|
|
|
#include <cctype>
|
|
#include <memory>
|
|
|
|
using namespace Assimp;
|
|
using namespace Assimp::Formatter;
|
|
|
|
static const aiImporterDesc desc = {
|
|
"Direct3D XFile Importer",
|
|
"",
|
|
"",
|
|
"",
|
|
aiImporterFlags_SupportTextFlavour | aiImporterFlags_SupportBinaryFlavour | aiImporterFlags_SupportCompressedFlavour,
|
|
1,
|
|
3,
|
|
1,
|
|
5,
|
|
"x"
|
|
};
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Constructor to be privately used by Importer
|
|
XFileImporter::XFileImporter()
|
|
: mBuffer() {
|
|
// empty
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Destructor, private as well
|
|
XFileImporter::~XFileImporter() {
|
|
// empty
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Returns whether the class can handle the format of the given file.
|
|
bool XFileImporter::CanRead( const std::string& pFile, IOSystem* pIOHandler, bool checkSig) const {
|
|
std::string extension = GetExtension(pFile);
|
|
if(extension == "x") {
|
|
return true;
|
|
}
|
|
if (!extension.length() || checkSig) {
|
|
uint32_t token[1];
|
|
token[0] = AI_MAKE_MAGIC("xof ");
|
|
return CheckMagicToken(pIOHandler,pFile,token,1,0);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Get file extension list
|
|
const aiImporterDesc* XFileImporter::GetInfo () const {
|
|
return &desc;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Imports the given file into the given scene structure.
|
|
void XFileImporter::InternReadFile( const std::string& pFile, aiScene* pScene, IOSystem* pIOHandler) {
|
|
// read file into memory
|
|
std::unique_ptr<IOStream> file( pIOHandler->Open( pFile));
|
|
if ( file.get() == NULL ) {
|
|
throw DeadlyImportError( "Failed to open file " + pFile + "." );
|
|
}
|
|
|
|
static const size_t MinSize = 16;
|
|
size_t fileSize = file->FileSize();
|
|
if ( fileSize < MinSize ) {
|
|
throw DeadlyImportError( "XFile is too small." );
|
|
}
|
|
|
|
// in the hope that binary files will never start with a BOM ...
|
|
mBuffer.resize( fileSize + 1);
|
|
file->Read( &mBuffer.front(), 1, fileSize);
|
|
ConvertToUTF8(mBuffer);
|
|
|
|
// parse the file into a temporary representation
|
|
XFileParser parser( mBuffer);
|
|
|
|
// and create the proper return structures out of it
|
|
CreateDataRepresentationFromImport( pScene, parser.GetImportedData());
|
|
|
|
// if nothing came from it, report it as error
|
|
if ( !pScene->mRootNode ) {
|
|
throw DeadlyImportError( "XFile is ill-formatted - no content imported." );
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Constructs the return data structure out of the imported data.
|
|
void XFileImporter::CreateDataRepresentationFromImport( aiScene* pScene, XFile::Scene* pData)
|
|
{
|
|
// Read the global materials first so that meshes referring to them can find them later
|
|
ConvertMaterials( pScene, pData->mGlobalMaterials);
|
|
|
|
// copy nodes, extracting meshes and materials on the way
|
|
pScene->mRootNode = CreateNodes( pScene, nullptr, pData->mRootNode);
|
|
|
|
// extract animations
|
|
CreateAnimations( pScene, pData);
|
|
|
|
// read the global meshes that were stored outside of any node
|
|
if( !pData->mGlobalMeshes.empty() ) {
|
|
// create a root node to hold them if there isn't any, yet
|
|
if( pScene->mRootNode == nullptr ) {
|
|
pScene->mRootNode = new aiNode;
|
|
pScene->mRootNode->mName.Set( "$dummy_node");
|
|
}
|
|
|
|
// convert all global meshes and store them in the root node.
|
|
// If there was one before, the global meshes now suddenly have its transformation matrix...
|
|
// Don't know what to do there, I don't want to insert another node under the present root node
|
|
// just to avoid this.
|
|
CreateMeshes( pScene, pScene->mRootNode, pData->mGlobalMeshes);
|
|
}
|
|
|
|
if (!pScene->mRootNode) {
|
|
throw DeadlyImportError( "No root node" );
|
|
}
|
|
|
|
// Convert everything to OpenGL space... it's the same operation as the conversion back, so we can reuse the step directly
|
|
MakeLeftHandedProcess convertProcess;
|
|
convertProcess.Execute( pScene);
|
|
|
|
FlipWindingOrderProcess flipper;
|
|
flipper.Execute(pScene);
|
|
|
|
// finally: create a dummy material if not material was imported
|
|
if( pScene->mNumMaterials == 0) {
|
|
pScene->mNumMaterials = 1;
|
|
// create the Material
|
|
aiMaterial* mat = new aiMaterial;
|
|
int shadeMode = (int) aiShadingMode_Gouraud;
|
|
mat->AddProperty<int>( &shadeMode, 1, AI_MATKEY_SHADING_MODEL);
|
|
// material colours
|
|
int specExp = 1;
|
|
|
|
aiColor3D clr = aiColor3D( 0, 0, 0);
|
|
mat->AddProperty( &clr, 1, AI_MATKEY_COLOR_EMISSIVE);
|
|
mat->AddProperty( &clr, 1, AI_MATKEY_COLOR_SPECULAR);
|
|
|
|
clr = aiColor3D( 0.5f, 0.5f, 0.5f);
|
|
mat->AddProperty( &clr, 1, AI_MATKEY_COLOR_DIFFUSE);
|
|
mat->AddProperty( &specExp, 1, AI_MATKEY_SHININESS);
|
|
|
|
pScene->mMaterials = new aiMaterial*[1];
|
|
pScene->mMaterials[0] = mat;
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Recursively creates scene nodes from the imported hierarchy.
|
|
aiNode* XFileImporter::CreateNodes( aiScene* pScene, aiNode* pParent, const XFile::Node* pNode) {
|
|
if ( !pNode ) {
|
|
return nullptr;
|
|
}
|
|
|
|
// create node
|
|
aiNode* node = new aiNode;
|
|
node->mName.length = (ai_uint32)pNode->mName.length();
|
|
node->mParent = pParent;
|
|
memcpy( node->mName.data, pNode->mName.c_str(), pNode->mName.length());
|
|
node->mName.data[node->mName.length] = 0;
|
|
node->mTransformation = pNode->mTrafoMatrix;
|
|
|
|
// convert meshes from the source node
|
|
CreateMeshes( pScene, node, pNode->mMeshes);
|
|
|
|
// handle childs
|
|
if( !pNode->mChildren.empty() ) {
|
|
node->mNumChildren = (unsigned int)pNode->mChildren.size();
|
|
node->mChildren = new aiNode* [node->mNumChildren];
|
|
|
|
for ( unsigned int a = 0; a < pNode->mChildren.size(); ++a ) {
|
|
node->mChildren[ a ] = CreateNodes( pScene, node, pNode->mChildren[ a ] );
|
|
}
|
|
}
|
|
|
|
return node;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Creates the meshes for the given node.
|
|
void XFileImporter::CreateMeshes( aiScene* pScene, aiNode* pNode, const std::vector<XFile::Mesh*>& pMeshes) {
|
|
if (pMeshes.empty()) {
|
|
return;
|
|
}
|
|
|
|
// create a mesh for each mesh-material combination in the source node
|
|
std::vector<aiMesh*> meshes;
|
|
for( unsigned int a = 0; a < pMeshes.size(); ++a ) {
|
|
XFile::Mesh* sourceMesh = pMeshes[a];
|
|
if ( nullptr == sourceMesh ) {
|
|
continue;
|
|
}
|
|
|
|
// first convert its materials so that we can find them with their index afterwards
|
|
ConvertMaterials( pScene, sourceMesh->mMaterials);
|
|
|
|
unsigned int numMaterials = std::max( (unsigned int)sourceMesh->mMaterials.size(), 1u);
|
|
for( unsigned int b = 0; b < numMaterials; ++b ) {
|
|
// collect the faces belonging to this material
|
|
std::vector<unsigned int> faces;
|
|
unsigned int numVertices = 0;
|
|
if( !sourceMesh->mFaceMaterials.empty() ) {
|
|
// if there is a per-face material defined, select the faces with the corresponding material
|
|
for( unsigned int c = 0; c < sourceMesh->mFaceMaterials.size(); ++c ) {
|
|
if( sourceMesh->mFaceMaterials[c] == b) {
|
|
faces.push_back( c);
|
|
numVertices += (unsigned int)sourceMesh->mPosFaces[c].mIndices.size();
|
|
}
|
|
}
|
|
} else {
|
|
// if there is no per-face material, place everything into one mesh
|
|
for( unsigned int c = 0; c < sourceMesh->mPosFaces.size(); ++c ) {
|
|
faces.push_back( c);
|
|
numVertices += (unsigned int)sourceMesh->mPosFaces[c].mIndices.size();
|
|
}
|
|
}
|
|
|
|
// no faces/vertices using this material? strange...
|
|
if ( numVertices == 0 ) {
|
|
continue;
|
|
}
|
|
|
|
// create a submesh using this material
|
|
aiMesh* mesh = new aiMesh;
|
|
meshes.push_back( mesh);
|
|
|
|
// find the material in the scene's material list. Either own material
|
|
// or referenced material, it should already have a valid index
|
|
if( !sourceMesh->mFaceMaterials.empty() ) {
|
|
mesh->mMaterialIndex = static_cast<unsigned int>(sourceMesh->mMaterials[b].sceneIndex);
|
|
} else {
|
|
mesh->mMaterialIndex = 0;
|
|
}
|
|
|
|
// Create properly sized data arrays in the mesh. We store unique vertices per face,
|
|
// as specified
|
|
mesh->mNumVertices = numVertices;
|
|
mesh->mVertices = new aiVector3D[numVertices];
|
|
mesh->mNumFaces = (unsigned int)faces.size();
|
|
mesh->mFaces = new aiFace[mesh->mNumFaces];
|
|
|
|
// name
|
|
mesh->mName.Set(sourceMesh->mName);
|
|
|
|
// normals?
|
|
if ( sourceMesh->mNormals.size() > 0 ) {
|
|
mesh->mNormals = new aiVector3D[ numVertices ];
|
|
}
|
|
// texture coords
|
|
for( unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++c ) {
|
|
if ( !sourceMesh->mTexCoords[ c ].empty() ) {
|
|
mesh->mTextureCoords[ c ] = new aiVector3D[ numVertices ];
|
|
}
|
|
}
|
|
// vertex colors
|
|
for( unsigned int c = 0; c < AI_MAX_NUMBER_OF_COLOR_SETS; ++c ) {
|
|
if ( !sourceMesh->mColors[ c ].empty() ) {
|
|
mesh->mColors[ c ] = new aiColor4D[ numVertices ];
|
|
}
|
|
}
|
|
|
|
// now collect the vertex data of all data streams present in the imported mesh
|
|
unsigned int newIndex( 0 );
|
|
std::vector<unsigned int> orgPoints; // from which original point each new vertex stems
|
|
orgPoints.resize( numVertices, 0);
|
|
|
|
for( unsigned int c = 0; c < faces.size(); ++c ) {
|
|
unsigned int f = faces[c]; // index of the source face
|
|
const XFile::Face& pf = sourceMesh->mPosFaces[f]; // position source face
|
|
|
|
// create face. either triangle or triangle fan depending on the index count
|
|
aiFace& df = mesh->mFaces[c]; // destination face
|
|
df.mNumIndices = (unsigned int)pf.mIndices.size();
|
|
df.mIndices = new unsigned int[ df.mNumIndices];
|
|
|
|
// collect vertex data for indices of this face
|
|
for( unsigned int d = 0; d < df.mNumIndices; ++d ) {
|
|
df.mIndices[ d ] = newIndex;
|
|
const unsigned int newIdx( pf.mIndices[ d ] );
|
|
if ( newIdx > sourceMesh->mPositions.size() ) {
|
|
continue;
|
|
}
|
|
|
|
orgPoints[newIndex] = pf.mIndices[d];
|
|
|
|
// Position
|
|
mesh->mVertices[newIndex] = sourceMesh->mPositions[pf.mIndices[d]];
|
|
// Normal, if present
|
|
if ( mesh->HasNormals() ) {
|
|
if ( sourceMesh->mNormFaces[ f ].mIndices.size() > d ) {
|
|
const size_t idx( sourceMesh->mNormFaces[ f ].mIndices[ d ] );
|
|
mesh->mNormals[ newIndex ] = sourceMesh->mNormals[ idx ];
|
|
}
|
|
}
|
|
|
|
// texture coord sets
|
|
for( unsigned int e = 0; e < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++e ) {
|
|
if( mesh->HasTextureCoords( e)) {
|
|
aiVector2D tex = sourceMesh->mTexCoords[e][pf.mIndices[d]];
|
|
mesh->mTextureCoords[e][newIndex] = aiVector3D( tex.x, 1.0f - tex.y, 0.0f);
|
|
}
|
|
}
|
|
// vertex color sets
|
|
for ( unsigned int e = 0; e < AI_MAX_NUMBER_OF_COLOR_SETS; ++e ) {
|
|
if ( mesh->HasVertexColors( e ) ) {
|
|
mesh->mColors[ e ][ newIndex ] = sourceMesh->mColors[ e ][ pf.mIndices[ d ] ];
|
|
}
|
|
}
|
|
|
|
newIndex++;
|
|
}
|
|
}
|
|
|
|
// there should be as much new vertices as we calculated before
|
|
ai_assert( newIndex == numVertices);
|
|
|
|
// convert all bones of the source mesh which influence vertices in this newly created mesh
|
|
const std::vector<XFile::Bone>& bones = sourceMesh->mBones;
|
|
std::vector<aiBone*> newBones;
|
|
for( unsigned int c = 0; c < bones.size(); ++c ) {
|
|
const XFile::Bone& obone = bones[c];
|
|
// set up a vertex-linear array of the weights for quick searching if a bone influences a vertex
|
|
std::vector<ai_real> oldWeights( sourceMesh->mPositions.size(), 0.0);
|
|
for ( unsigned int d = 0; d < obone.mWeights.size(); ++d ) {
|
|
oldWeights[ obone.mWeights[ d ].mVertex ] = obone.mWeights[ d ].mWeight;
|
|
}
|
|
|
|
// collect all vertex weights that influence a vertex in the new mesh
|
|
std::vector<aiVertexWeight> newWeights;
|
|
newWeights.reserve( numVertices);
|
|
for( unsigned int d = 0; d < orgPoints.size(); ++d ) {
|
|
// does the new vertex stem from an old vertex which was influenced by this bone?
|
|
ai_real w = oldWeights[orgPoints[d]];
|
|
if ( w > 0.0 ) {
|
|
newWeights.push_back( aiVertexWeight( d, w ) );
|
|
}
|
|
}
|
|
|
|
// if the bone has no weights in the newly created mesh, ignore it
|
|
if ( newWeights.empty() ) {
|
|
continue;
|
|
}
|
|
|
|
// create
|
|
aiBone* nbone = new aiBone;
|
|
newBones.push_back( nbone);
|
|
// copy name and matrix
|
|
nbone->mName.Set( obone.mName);
|
|
nbone->mOffsetMatrix = obone.mOffsetMatrix;
|
|
nbone->mNumWeights = (unsigned int)newWeights.size();
|
|
nbone->mWeights = new aiVertexWeight[nbone->mNumWeights];
|
|
for ( unsigned int d = 0; d < newWeights.size(); ++d ) {
|
|
nbone->mWeights[ d ] = newWeights[ d ];
|
|
}
|
|
}
|
|
|
|
// store the bones in the mesh
|
|
mesh->mNumBones = (unsigned int)newBones.size();
|
|
if( !newBones.empty()) {
|
|
mesh->mBones = new aiBone*[mesh->mNumBones];
|
|
std::copy( newBones.begin(), newBones.end(), mesh->mBones);
|
|
}
|
|
}
|
|
}
|
|
|
|
// reallocate scene mesh array to be large enough
|
|
aiMesh** prevArray = pScene->mMeshes;
|
|
pScene->mMeshes = new aiMesh*[pScene->mNumMeshes + meshes.size()];
|
|
if( prevArray) {
|
|
memcpy( pScene->mMeshes, prevArray, pScene->mNumMeshes * sizeof( aiMesh*));
|
|
delete [] prevArray;
|
|
}
|
|
|
|
// allocate mesh index array in the node
|
|
pNode->mNumMeshes = (unsigned int)meshes.size();
|
|
pNode->mMeshes = new unsigned int[pNode->mNumMeshes];
|
|
|
|
// store all meshes in the mesh library of the scene and store their indices in the node
|
|
for( unsigned int a = 0; a < meshes.size(); a++) {
|
|
pScene->mMeshes[pScene->mNumMeshes] = meshes[a];
|
|
pNode->mMeshes[a] = pScene->mNumMeshes;
|
|
pScene->mNumMeshes++;
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Converts the animations from the given imported data and creates them in the scene.
|
|
void XFileImporter::CreateAnimations( aiScene* pScene, const XFile::Scene* pData) {
|
|
std::vector<aiAnimation*> newAnims;
|
|
|
|
for( unsigned int a = 0; a < pData->mAnims.size(); ++a ) {
|
|
const XFile::Animation* anim = pData->mAnims[a];
|
|
// some exporters mock me with empty animation tags.
|
|
if ( anim->mAnims.empty() ) {
|
|
continue;
|
|
}
|
|
|
|
// create a new animation to hold the data
|
|
aiAnimation* nanim = new aiAnimation;
|
|
newAnims.push_back( nanim);
|
|
nanim->mName.Set( anim->mName);
|
|
// duration will be determined by the maximum length
|
|
nanim->mDuration = 0;
|
|
nanim->mTicksPerSecond = pData->mAnimTicksPerSecond;
|
|
nanim->mNumChannels = (unsigned int)anim->mAnims.size();
|
|
nanim->mChannels = new aiNodeAnim*[nanim->mNumChannels];
|
|
|
|
for( unsigned int b = 0; b < anim->mAnims.size(); ++b ) {
|
|
const XFile::AnimBone* bone = anim->mAnims[b];
|
|
aiNodeAnim* nbone = new aiNodeAnim;
|
|
nbone->mNodeName.Set( bone->mBoneName);
|
|
nanim->mChannels[b] = nbone;
|
|
|
|
// key-frames are given as combined transformation matrix keys
|
|
if( !bone->mTrafoKeys.empty() )
|
|
{
|
|
nbone->mNumPositionKeys = (unsigned int)bone->mTrafoKeys.size();
|
|
nbone->mPositionKeys = new aiVectorKey[nbone->mNumPositionKeys];
|
|
nbone->mNumRotationKeys = (unsigned int)bone->mTrafoKeys.size();
|
|
nbone->mRotationKeys = new aiQuatKey[nbone->mNumRotationKeys];
|
|
nbone->mNumScalingKeys = (unsigned int)bone->mTrafoKeys.size();
|
|
nbone->mScalingKeys = new aiVectorKey[nbone->mNumScalingKeys];
|
|
|
|
for( unsigned int c = 0; c < bone->mTrafoKeys.size(); ++c) {
|
|
// deconstruct each matrix into separate position, rotation and scaling
|
|
double time = bone->mTrafoKeys[c].mTime;
|
|
aiMatrix4x4 trafo = bone->mTrafoKeys[c].mMatrix;
|
|
|
|
// extract position
|
|
aiVector3D pos( trafo.a4, trafo.b4, trafo.c4);
|
|
|
|
nbone->mPositionKeys[c].mTime = time;
|
|
nbone->mPositionKeys[c].mValue = pos;
|
|
|
|
// extract scaling
|
|
aiVector3D scale;
|
|
scale.x = aiVector3D( trafo.a1, trafo.b1, trafo.c1).Length();
|
|
scale.y = aiVector3D( trafo.a2, trafo.b2, trafo.c2).Length();
|
|
scale.z = aiVector3D( trafo.a3, trafo.b3, trafo.c3).Length();
|
|
nbone->mScalingKeys[c].mTime = time;
|
|
nbone->mScalingKeys[c].mValue = scale;
|
|
|
|
// reconstruct rotation matrix without scaling
|
|
aiMatrix3x3 rotmat(
|
|
trafo.a1 / scale.x, trafo.a2 / scale.y, trafo.a3 / scale.z,
|
|
trafo.b1 / scale.x, trafo.b2 / scale.y, trafo.b3 / scale.z,
|
|
trafo.c1 / scale.x, trafo.c2 / scale.y, trafo.c3 / scale.z);
|
|
|
|
// and convert it into a quaternion
|
|
nbone->mRotationKeys[c].mTime = time;
|
|
nbone->mRotationKeys[c].mValue = aiQuaternion( rotmat);
|
|
}
|
|
|
|
// longest lasting key sequence determines duration
|
|
nanim->mDuration = std::max( nanim->mDuration, bone->mTrafoKeys.back().mTime);
|
|
} else {
|
|
// separate key sequences for position, rotation, scaling
|
|
nbone->mNumPositionKeys = (unsigned int)bone->mPosKeys.size();
|
|
if (nbone->mNumPositionKeys != 0) {
|
|
nbone->mPositionKeys = new aiVectorKey[nbone->mNumPositionKeys];
|
|
for( unsigned int c = 0; c < nbone->mNumPositionKeys; ++c ) {
|
|
aiVector3D pos = bone->mPosKeys[c].mValue;
|
|
|
|
nbone->mPositionKeys[c].mTime = bone->mPosKeys[c].mTime;
|
|
nbone->mPositionKeys[c].mValue = pos;
|
|
}
|
|
}
|
|
|
|
// rotation
|
|
nbone->mNumRotationKeys = (unsigned int)bone->mRotKeys.size();
|
|
if (nbone->mNumRotationKeys != 0) {
|
|
nbone->mRotationKeys = new aiQuatKey[nbone->mNumRotationKeys];
|
|
for( unsigned int c = 0; c < nbone->mNumRotationKeys; ++c ) {
|
|
aiMatrix3x3 rotmat = bone->mRotKeys[c].mValue.GetMatrix();
|
|
|
|
nbone->mRotationKeys[c].mTime = bone->mRotKeys[c].mTime;
|
|
nbone->mRotationKeys[c].mValue = aiQuaternion( rotmat);
|
|
nbone->mRotationKeys[c].mValue.w *= -1.0f; // needs quat inversion
|
|
}
|
|
}
|
|
|
|
// scaling
|
|
nbone->mNumScalingKeys = (unsigned int)bone->mScaleKeys.size();
|
|
if (nbone->mNumScalingKeys != 0) {
|
|
nbone->mScalingKeys = new aiVectorKey[nbone->mNumScalingKeys];
|
|
for( unsigned int c = 0; c < nbone->mNumScalingKeys; c++)
|
|
nbone->mScalingKeys[c] = bone->mScaleKeys[c];
|
|
}
|
|
|
|
// longest lasting key sequence determines duration
|
|
if( bone->mPosKeys.size() > 0)
|
|
nanim->mDuration = std::max( nanim->mDuration, bone->mPosKeys.back().mTime);
|
|
if( bone->mRotKeys.size() > 0)
|
|
nanim->mDuration = std::max( nanim->mDuration, bone->mRotKeys.back().mTime);
|
|
if( bone->mScaleKeys.size() > 0)
|
|
nanim->mDuration = std::max( nanim->mDuration, bone->mScaleKeys.back().mTime);
|
|
}
|
|
}
|
|
}
|
|
|
|
// store all converted animations in the scene
|
|
if( newAnims.size() > 0)
|
|
{
|
|
pScene->mNumAnimations = (unsigned int)newAnims.size();
|
|
pScene->mAnimations = new aiAnimation* [pScene->mNumAnimations];
|
|
for( unsigned int a = 0; a < newAnims.size(); a++)
|
|
pScene->mAnimations[a] = newAnims[a];
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Converts all materials in the given array and stores them in the scene's material list.
|
|
void XFileImporter::ConvertMaterials( aiScene* pScene, std::vector<XFile::Material>& pMaterials)
|
|
{
|
|
// count the non-referrer materials in the array
|
|
unsigned int numNewMaterials( 0 );
|
|
for ( unsigned int a = 0; a < pMaterials.size(); ++a ) {
|
|
if ( !pMaterials[ a ].mIsReference ) {
|
|
++numNewMaterials;
|
|
}
|
|
}
|
|
|
|
// resize the scene's material list to offer enough space for the new materials
|
|
if( numNewMaterials > 0 ) {
|
|
aiMaterial** prevMats = pScene->mMaterials;
|
|
pScene->mMaterials = new aiMaterial*[pScene->mNumMaterials + numNewMaterials];
|
|
if( nullptr != prevMats) {
|
|
::memcpy( pScene->mMaterials, prevMats, pScene->mNumMaterials * sizeof( aiMaterial*));
|
|
delete [] prevMats;
|
|
}
|
|
}
|
|
|
|
// convert all the materials given in the array
|
|
for( unsigned int a = 0; a < pMaterials.size(); ++a ) {
|
|
XFile::Material& oldMat = pMaterials[a];
|
|
if( oldMat.mIsReference) {
|
|
// find the material it refers to by name, and store its index
|
|
for( size_t b = 0; b < pScene->mNumMaterials; ++b ) {
|
|
aiString name;
|
|
pScene->mMaterials[b]->Get( AI_MATKEY_NAME, name);
|
|
if( strcmp( name.C_Str(), oldMat.mName.data()) == 0 ) {
|
|
oldMat.sceneIndex = a;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if( oldMat.sceneIndex == SIZE_MAX ) {
|
|
ASSIMP_LOG_WARN_F( "Could not resolve global material reference \"", oldMat.mName, "\"" );
|
|
oldMat.sceneIndex = 0;
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
aiMaterial* mat = new aiMaterial;
|
|
aiString name;
|
|
name.Set( oldMat.mName);
|
|
mat->AddProperty( &name, AI_MATKEY_NAME);
|
|
|
|
// Shading model: hard-coded to PHONG, there is no such information in an XFile
|
|
// FIX (aramis): If the specular exponent is 0, use gouraud shading. This is a bugfix
|
|
// for some models in the SDK (e.g. good old tiny.x)
|
|
int shadeMode = (int)oldMat.mSpecularExponent == 0.0f
|
|
? aiShadingMode_Gouraud : aiShadingMode_Phong;
|
|
|
|
mat->AddProperty<int>( &shadeMode, 1, AI_MATKEY_SHADING_MODEL);
|
|
// material colours
|
|
// Unclear: there's no ambient colour, but emissive. What to put for ambient?
|
|
// Probably nothing at all, let the user select a suitable default.
|
|
mat->AddProperty( &oldMat.mEmissive, 1, AI_MATKEY_COLOR_EMISSIVE);
|
|
mat->AddProperty( &oldMat.mDiffuse, 1, AI_MATKEY_COLOR_DIFFUSE);
|
|
mat->AddProperty( &oldMat.mSpecular, 1, AI_MATKEY_COLOR_SPECULAR);
|
|
mat->AddProperty( &oldMat.mSpecularExponent, 1, AI_MATKEY_SHININESS);
|
|
|
|
|
|
// texture, if there is one
|
|
if (1 == oldMat.mTextures.size() ) {
|
|
const XFile::TexEntry& otex = oldMat.mTextures.back();
|
|
if (otex.mName.length()) {
|
|
// if there is only one texture assume it contains the diffuse color
|
|
aiString tex( otex.mName);
|
|
if ( otex.mIsNormalMap ) {
|
|
mat->AddProperty( &tex, AI_MATKEY_TEXTURE_NORMALS( 0 ) );
|
|
} else {
|
|
mat->AddProperty( &tex, AI_MATKEY_TEXTURE_DIFFUSE( 0 ) );
|
|
}
|
|
}
|
|
} else {
|
|
// Otherwise ... try to search for typical strings in the
|
|
// texture's file name like 'bump' or 'diffuse'
|
|
unsigned int iHM = 0,iNM = 0,iDM = 0,iSM = 0,iAM = 0,iEM = 0;
|
|
for( unsigned int b = 0; b < oldMat.mTextures.size(); ++b ) {
|
|
const XFile::TexEntry& otex = oldMat.mTextures[b];
|
|
std::string sz = otex.mName;
|
|
if ( !sz.length() ) {
|
|
continue;
|
|
}
|
|
|
|
// find the file name
|
|
std::string::size_type s = sz.find_last_of("\\/");
|
|
if ( std::string::npos == s ) {
|
|
s = 0;
|
|
}
|
|
|
|
// cut off the file extension
|
|
std::string::size_type sExt = sz.find_last_of('.');
|
|
if (std::string::npos != sExt){
|
|
sz[sExt] = '\0';
|
|
}
|
|
|
|
// convert to lower case for easier comparison
|
|
for ( unsigned int c = 0; c < sz.length(); ++c ) {
|
|
if ( isalpha( sz[ c ] ) ) {
|
|
sz[ c ] = (char) tolower( sz[ c ] );
|
|
}
|
|
}
|
|
|
|
// Place texture filename property under the corresponding name
|
|
aiString tex( oldMat.mTextures[b].mName);
|
|
|
|
// bump map
|
|
if (std::string::npos != sz.find("bump", s) || std::string::npos != sz.find("height", s)) {
|
|
mat->AddProperty( &tex, AI_MATKEY_TEXTURE_HEIGHT(iHM++));
|
|
} else if (otex.mIsNormalMap || std::string::npos != sz.find( "normal", s) || std::string::npos != sz.find("nm", s)) {
|
|
mat->AddProperty( &tex, AI_MATKEY_TEXTURE_NORMALS(iNM++));
|
|
} else if (std::string::npos != sz.find( "spec", s) || std::string::npos != sz.find( "glanz", s)) {
|
|
mat->AddProperty( &tex, AI_MATKEY_TEXTURE_SPECULAR(iSM++));
|
|
} else if (std::string::npos != sz.find( "ambi", s) || std::string::npos != sz.find( "env", s)) {
|
|
mat->AddProperty( &tex, AI_MATKEY_TEXTURE_AMBIENT(iAM++));
|
|
} else if (std::string::npos != sz.find( "emissive", s) || std::string::npos != sz.find( "self", s)) {
|
|
mat->AddProperty( &tex, AI_MATKEY_TEXTURE_EMISSIVE(iEM++));
|
|
} else {
|
|
// Assume it is a diffuse texture
|
|
mat->AddProperty( &tex, AI_MATKEY_TEXTURE_DIFFUSE(iDM++));
|
|
}
|
|
}
|
|
}
|
|
|
|
pScene->mMaterials[pScene->mNumMaterials] = mat;
|
|
oldMat.sceneIndex = pScene->mNumMaterials;
|
|
pScene->mNumMaterials++;
|
|
}
|
|
}
|
|
|
|
#endif // !! ASSIMP_BUILD_NO_X_IMPORTER
|