687 lines
23 KiB
C++
687 lines
23 KiB
C++
/*
|
|
---------------------------------------------------------------------------
|
|
Open Asset Import Library (assimp)
|
|
---------------------------------------------------------------------------
|
|
|
|
Copyright (c) 2006-2018, assimp team
|
|
|
|
|
|
|
|
All rights reserved.
|
|
|
|
Redistribution and use of this software in source and binary forms,
|
|
with or without modification, are permitted provided that the following
|
|
conditions are met:
|
|
|
|
* Redistributions of source code must retain the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer in the documentation and/or other
|
|
materials provided with the distribution.
|
|
|
|
* Neither the name of the assimp team, nor the names of its
|
|
contributors may be used to endorse or promote products
|
|
derived from this software without specific prior
|
|
written permission of the assimp team.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
---------------------------------------------------------------------------
|
|
*/
|
|
|
|
/** @file matrix4x4.inl
|
|
* @brief Inline implementation of the 4x4 matrix operators
|
|
*/
|
|
#pragma once
|
|
#ifndef AI_MATRIX4X4_INL_INC
|
|
#define AI_MATRIX4X4_INL_INC
|
|
|
|
#ifdef __cplusplus
|
|
|
|
#include "matrix4x4.h"
|
|
#include "matrix3x3.h"
|
|
#include "quaternion.h"
|
|
|
|
#include <algorithm>
|
|
#include <limits>
|
|
#include <cmath>
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
template <typename TReal>
|
|
aiMatrix4x4t<TReal>::aiMatrix4x4t() AI_NO_EXCEPT :
|
|
a1(1.0f), a2(), a3(), a4(),
|
|
b1(), b2(1.0f), b3(), b4(),
|
|
c1(), c2(), c3(1.0f), c4(),
|
|
d1(), d2(), d3(), d4(1.0f)
|
|
{
|
|
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
template <typename TReal>
|
|
aiMatrix4x4t<TReal>::aiMatrix4x4t (TReal _a1, TReal _a2, TReal _a3, TReal _a4,
|
|
TReal _b1, TReal _b2, TReal _b3, TReal _b4,
|
|
TReal _c1, TReal _c2, TReal _c3, TReal _c4,
|
|
TReal _d1, TReal _d2, TReal _d3, TReal _d4) :
|
|
a1(_a1), a2(_a2), a3(_a3), a4(_a4),
|
|
b1(_b1), b2(_b2), b3(_b3), b4(_b4),
|
|
c1(_c1), c2(_c2), c3(_c3), c4(_c4),
|
|
d1(_d1), d2(_d2), d3(_d3), d4(_d4)
|
|
{
|
|
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
template <typename TReal>
|
|
template <typename TOther>
|
|
aiMatrix4x4t<TReal>::operator aiMatrix4x4t<TOther> () const
|
|
{
|
|
return aiMatrix4x4t<TOther>(static_cast<TOther>(a1),static_cast<TOther>(a2),static_cast<TOther>(a3),static_cast<TOther>(a4),
|
|
static_cast<TOther>(b1),static_cast<TOther>(b2),static_cast<TOther>(b3),static_cast<TOther>(b4),
|
|
static_cast<TOther>(c1),static_cast<TOther>(c2),static_cast<TOther>(c3),static_cast<TOther>(c4),
|
|
static_cast<TOther>(d1),static_cast<TOther>(d2),static_cast<TOther>(d3),static_cast<TOther>(d4));
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
template <typename TReal>
|
|
inline aiMatrix4x4t<TReal>::aiMatrix4x4t (const aiMatrix3x3t<TReal>& m)
|
|
{
|
|
a1 = m.a1; a2 = m.a2; a3 = m.a3; a4 = static_cast<TReal>(0.0);
|
|
b1 = m.b1; b2 = m.b2; b3 = m.b3; b4 = static_cast<TReal>(0.0);
|
|
c1 = m.c1; c2 = m.c2; c3 = m.c3; c4 = static_cast<TReal>(0.0);
|
|
d1 = static_cast<TReal>(0.0); d2 = static_cast<TReal>(0.0); d3 = static_cast<TReal>(0.0); d4 = static_cast<TReal>(1.0);
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
template <typename TReal>
|
|
inline aiMatrix4x4t<TReal>::aiMatrix4x4t (const aiVector3t<TReal>& scaling, const aiQuaterniont<TReal>& rotation, const aiVector3t<TReal>& position)
|
|
{
|
|
// build a 3x3 rotation matrix
|
|
aiMatrix3x3t<TReal> m = rotation.GetMatrix();
|
|
|
|
a1 = m.a1 * scaling.x;
|
|
a2 = m.a2 * scaling.x;
|
|
a3 = m.a3 * scaling.x;
|
|
a4 = position.x;
|
|
|
|
b1 = m.b1 * scaling.y;
|
|
b2 = m.b2 * scaling.y;
|
|
b3 = m.b3 * scaling.y;
|
|
b4 = position.y;
|
|
|
|
c1 = m.c1 * scaling.z;
|
|
c2 = m.c2 * scaling.z;
|
|
c3 = m.c3 * scaling.z;
|
|
c4= position.z;
|
|
|
|
d1 = static_cast<TReal>(0.0);
|
|
d2 = static_cast<TReal>(0.0);
|
|
d3 = static_cast<TReal>(0.0);
|
|
d4 = static_cast<TReal>(1.0);
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
template <typename TReal>
|
|
inline aiMatrix4x4t<TReal>& aiMatrix4x4t<TReal>::operator *= (const aiMatrix4x4t<TReal>& m)
|
|
{
|
|
*this = aiMatrix4x4t<TReal>(
|
|
m.a1 * a1 + m.b1 * a2 + m.c1 * a3 + m.d1 * a4,
|
|
m.a2 * a1 + m.b2 * a2 + m.c2 * a3 + m.d2 * a4,
|
|
m.a3 * a1 + m.b3 * a2 + m.c3 * a3 + m.d3 * a4,
|
|
m.a4 * a1 + m.b4 * a2 + m.c4 * a3 + m.d4 * a4,
|
|
m.a1 * b1 + m.b1 * b2 + m.c1 * b3 + m.d1 * b4,
|
|
m.a2 * b1 + m.b2 * b2 + m.c2 * b3 + m.d2 * b4,
|
|
m.a3 * b1 + m.b3 * b2 + m.c3 * b3 + m.d3 * b4,
|
|
m.a4 * b1 + m.b4 * b2 + m.c4 * b3 + m.d4 * b4,
|
|
m.a1 * c1 + m.b1 * c2 + m.c1 * c3 + m.d1 * c4,
|
|
m.a2 * c1 + m.b2 * c2 + m.c2 * c3 + m.d2 * c4,
|
|
m.a3 * c1 + m.b3 * c2 + m.c3 * c3 + m.d3 * c4,
|
|
m.a4 * c1 + m.b4 * c2 + m.c4 * c3 + m.d4 * c4,
|
|
m.a1 * d1 + m.b1 * d2 + m.c1 * d3 + m.d1 * d4,
|
|
m.a2 * d1 + m.b2 * d2 + m.c2 * d3 + m.d2 * d4,
|
|
m.a3 * d1 + m.b3 * d2 + m.c3 * d3 + m.d3 * d4,
|
|
m.a4 * d1 + m.b4 * d2 + m.c4 * d3 + m.d4 * d4);
|
|
return *this;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
template <typename TReal>
|
|
inline aiMatrix4x4t<TReal> aiMatrix4x4t<TReal>::operator* (const TReal& aFloat) const
|
|
{
|
|
aiMatrix4x4t<TReal> temp(
|
|
a1 * aFloat,
|
|
a2 * aFloat,
|
|
a3 * aFloat,
|
|
a4 * aFloat,
|
|
b1 * aFloat,
|
|
b2 * aFloat,
|
|
b3 * aFloat,
|
|
b4 * aFloat,
|
|
c1 * aFloat,
|
|
c2 * aFloat,
|
|
c3 * aFloat,
|
|
c4 * aFloat,
|
|
d1 * aFloat,
|
|
d2 * aFloat,
|
|
d3 * aFloat,
|
|
d4 * aFloat);
|
|
return temp;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
template <typename TReal>
|
|
inline aiMatrix4x4t<TReal> aiMatrix4x4t<TReal>::operator+ (const aiMatrix4x4t<TReal>& m) const
|
|
{
|
|
aiMatrix4x4t<TReal> temp(
|
|
m.a1 + a1,
|
|
m.a2 + a2,
|
|
m.a3 + a3,
|
|
m.a4 + a4,
|
|
m.b1 + b1,
|
|
m.b2 + b2,
|
|
m.b3 + b3,
|
|
m.b4 + b4,
|
|
m.c1 + c1,
|
|
m.c2 + c2,
|
|
m.c3 + c3,
|
|
m.c4 + c4,
|
|
m.d1 + d1,
|
|
m.d2 + d2,
|
|
m.d3 + d3,
|
|
m.d4 + d4);
|
|
return temp;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
template <typename TReal>
|
|
inline aiMatrix4x4t<TReal> aiMatrix4x4t<TReal>::operator* (const aiMatrix4x4t<TReal>& m) const
|
|
{
|
|
aiMatrix4x4t<TReal> temp( *this);
|
|
temp *= m;
|
|
return temp;
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
template <typename TReal>
|
|
inline aiMatrix4x4t<TReal>& aiMatrix4x4t<TReal>::Transpose()
|
|
{
|
|
// (TReal&) don't remove, GCC complains cause of packed fields
|
|
std::swap( (TReal&)b1, (TReal&)a2);
|
|
std::swap( (TReal&)c1, (TReal&)a3);
|
|
std::swap( (TReal&)c2, (TReal&)b3);
|
|
std::swap( (TReal&)d1, (TReal&)a4);
|
|
std::swap( (TReal&)d2, (TReal&)b4);
|
|
std::swap( (TReal&)d3, (TReal&)c4);
|
|
return *this;
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
template <typename TReal>
|
|
inline TReal aiMatrix4x4t<TReal>::Determinant() const
|
|
{
|
|
return a1*b2*c3*d4 - a1*b2*c4*d3 + a1*b3*c4*d2 - a1*b3*c2*d4
|
|
+ a1*b4*c2*d3 - a1*b4*c3*d2 - a2*b3*c4*d1 + a2*b3*c1*d4
|
|
- a2*b4*c1*d3 + a2*b4*c3*d1 - a2*b1*c3*d4 + a2*b1*c4*d3
|
|
+ a3*b4*c1*d2 - a3*b4*c2*d1 + a3*b1*c2*d4 - a3*b1*c4*d2
|
|
+ a3*b2*c4*d1 - a3*b2*c1*d4 - a4*b1*c2*d3 + a4*b1*c3*d2
|
|
- a4*b2*c3*d1 + a4*b2*c1*d3 - a4*b3*c1*d2 + a4*b3*c2*d1;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
template <typename TReal>
|
|
inline aiMatrix4x4t<TReal>& aiMatrix4x4t<TReal>::Inverse()
|
|
{
|
|
// Compute the reciprocal determinant
|
|
const TReal det = Determinant();
|
|
if(det == static_cast<TReal>(0.0))
|
|
{
|
|
// Matrix not invertible. Setting all elements to nan is not really
|
|
// correct in a mathematical sense but it is easy to debug for the
|
|
// programmer.
|
|
const TReal nan = std::numeric_limits<TReal>::quiet_NaN();
|
|
*this = aiMatrix4x4t<TReal>(
|
|
nan,nan,nan,nan,
|
|
nan,nan,nan,nan,
|
|
nan,nan,nan,nan,
|
|
nan,nan,nan,nan);
|
|
|
|
return *this;
|
|
}
|
|
|
|
const TReal invdet = static_cast<TReal>(1.0) / det;
|
|
|
|
aiMatrix4x4t<TReal> res;
|
|
res.a1 = invdet * (b2 * (c3 * d4 - c4 * d3) + b3 * (c4 * d2 - c2 * d4) + b4 * (c2 * d3 - c3 * d2));
|
|
res.a2 = -invdet * (a2 * (c3 * d4 - c4 * d3) + a3 * (c4 * d2 - c2 * d4) + a4 * (c2 * d3 - c3 * d2));
|
|
res.a3 = invdet * (a2 * (b3 * d4 - b4 * d3) + a3 * (b4 * d2 - b2 * d4) + a4 * (b2 * d3 - b3 * d2));
|
|
res.a4 = -invdet * (a2 * (b3 * c4 - b4 * c3) + a3 * (b4 * c2 - b2 * c4) + a4 * (b2 * c3 - b3 * c2));
|
|
res.b1 = -invdet * (b1 * (c3 * d4 - c4 * d3) + b3 * (c4 * d1 - c1 * d4) + b4 * (c1 * d3 - c3 * d1));
|
|
res.b2 = invdet * (a1 * (c3 * d4 - c4 * d3) + a3 * (c4 * d1 - c1 * d4) + a4 * (c1 * d3 - c3 * d1));
|
|
res.b3 = -invdet * (a1 * (b3 * d4 - b4 * d3) + a3 * (b4 * d1 - b1 * d4) + a4 * (b1 * d3 - b3 * d1));
|
|
res.b4 = invdet * (a1 * (b3 * c4 - b4 * c3) + a3 * (b4 * c1 - b1 * c4) + a4 * (b1 * c3 - b3 * c1));
|
|
res.c1 = invdet * (b1 * (c2 * d4 - c4 * d2) + b2 * (c4 * d1 - c1 * d4) + b4 * (c1 * d2 - c2 * d1));
|
|
res.c2 = -invdet * (a1 * (c2 * d4 - c4 * d2) + a2 * (c4 * d1 - c1 * d4) + a4 * (c1 * d2 - c2 * d1));
|
|
res.c3 = invdet * (a1 * (b2 * d4 - b4 * d2) + a2 * (b4 * d1 - b1 * d4) + a4 * (b1 * d2 - b2 * d1));
|
|
res.c4 = -invdet * (a1 * (b2 * c4 - b4 * c2) + a2 * (b4 * c1 - b1 * c4) + a4 * (b1 * c2 - b2 * c1));
|
|
res.d1 = -invdet * (b1 * (c2 * d3 - c3 * d2) + b2 * (c3 * d1 - c1 * d3) + b3 * (c1 * d2 - c2 * d1));
|
|
res.d2 = invdet * (a1 * (c2 * d3 - c3 * d2) + a2 * (c3 * d1 - c1 * d3) + a3 * (c1 * d2 - c2 * d1));
|
|
res.d3 = -invdet * (a1 * (b2 * d3 - b3 * d2) + a2 * (b3 * d1 - b1 * d3) + a3 * (b1 * d2 - b2 * d1));
|
|
res.d4 = invdet * (a1 * (b2 * c3 - b3 * c2) + a2 * (b3 * c1 - b1 * c3) + a3 * (b1 * c2 - b2 * c1));
|
|
*this = res;
|
|
|
|
return *this;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
template <typename TReal>
|
|
inline TReal* aiMatrix4x4t<TReal>::operator[](unsigned int p_iIndex) {
|
|
if (p_iIndex > 3) {
|
|
return NULL;
|
|
}
|
|
switch ( p_iIndex ) {
|
|
case 0:
|
|
return &a1;
|
|
case 1:
|
|
return &b1;
|
|
case 2:
|
|
return &c1;
|
|
case 3:
|
|
return &d1;
|
|
default:
|
|
break;
|
|
}
|
|
return &a1;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
template <typename TReal>
|
|
inline const TReal* aiMatrix4x4t<TReal>::operator[](unsigned int p_iIndex) const {
|
|
if (p_iIndex > 3) {
|
|
return NULL;
|
|
}
|
|
|
|
switch ( p_iIndex ) {
|
|
case 0:
|
|
return &a1;
|
|
case 1:
|
|
return &b1;
|
|
case 2:
|
|
return &c1;
|
|
case 3:
|
|
return &d1;
|
|
default:
|
|
break;
|
|
}
|
|
return &a1;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
template <typename TReal>
|
|
inline bool aiMatrix4x4t<TReal>::operator== (const aiMatrix4x4t<TReal>& m) const
|
|
{
|
|
return (a1 == m.a1 && a2 == m.a2 && a3 == m.a3 && a4 == m.a4 &&
|
|
b1 == m.b1 && b2 == m.b2 && b3 == m.b3 && b4 == m.b4 &&
|
|
c1 == m.c1 && c2 == m.c2 && c3 == m.c3 && c4 == m.c4 &&
|
|
d1 == m.d1 && d2 == m.d2 && d3 == m.d3 && d4 == m.d4);
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
template <typename TReal>
|
|
inline bool aiMatrix4x4t<TReal>::operator!= (const aiMatrix4x4t<TReal>& m) const
|
|
{
|
|
return !(*this == m);
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
template<typename TReal>
|
|
inline bool aiMatrix4x4t<TReal>::Equal(const aiMatrix4x4t<TReal>& m, TReal epsilon) const {
|
|
return
|
|
std::abs(a1 - m.a1) <= epsilon &&
|
|
std::abs(a2 - m.a2) <= epsilon &&
|
|
std::abs(a3 - m.a3) <= epsilon &&
|
|
std::abs(a4 - m.a4) <= epsilon &&
|
|
std::abs(b1 - m.b1) <= epsilon &&
|
|
std::abs(b2 - m.b2) <= epsilon &&
|
|
std::abs(b3 - m.b3) <= epsilon &&
|
|
std::abs(b4 - m.b4) <= epsilon &&
|
|
std::abs(c1 - m.c1) <= epsilon &&
|
|
std::abs(c2 - m.c2) <= epsilon &&
|
|
std::abs(c3 - m.c3) <= epsilon &&
|
|
std::abs(c4 - m.c4) <= epsilon &&
|
|
std::abs(d1 - m.d1) <= epsilon &&
|
|
std::abs(d2 - m.d2) <= epsilon &&
|
|
std::abs(d3 - m.d3) <= epsilon &&
|
|
std::abs(d4 - m.d4) <= epsilon;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
#define ASSIMP_MATRIX4_4_DECOMPOSE_PART \
|
|
const aiMatrix4x4t<TReal>& _this = *this;/* Create alias for conveniance. */ \
|
|
\
|
|
/* extract translation */ \
|
|
pPosition.x = _this[0][3]; \
|
|
pPosition.y = _this[1][3]; \
|
|
pPosition.z = _this[2][3]; \
|
|
\
|
|
/* extract the columns of the matrix. */ \
|
|
aiVector3t<TReal> vCols[3] = { \
|
|
aiVector3t<TReal>(_this[0][0],_this[1][0],_this[2][0]), \
|
|
aiVector3t<TReal>(_this[0][1],_this[1][1],_this[2][1]), \
|
|
aiVector3t<TReal>(_this[0][2],_this[1][2],_this[2][2]) \
|
|
}; \
|
|
\
|
|
/* extract the scaling factors */ \
|
|
pScaling.x = vCols[0].Length(); \
|
|
pScaling.y = vCols[1].Length(); \
|
|
pScaling.z = vCols[2].Length(); \
|
|
\
|
|
/* and the sign of the scaling */ \
|
|
if (Determinant() < 0) pScaling = -pScaling; \
|
|
\
|
|
/* and remove all scaling from the matrix */ \
|
|
if(pScaling.x) vCols[0] /= pScaling.x; \
|
|
if(pScaling.y) vCols[1] /= pScaling.y; \
|
|
if(pScaling.z) vCols[2] /= pScaling.z; \
|
|
\
|
|
do {} while(false)
|
|
|
|
|
|
|
|
|
|
template <typename TReal>
|
|
inline void aiMatrix4x4t<TReal>::Decompose (aiVector3t<TReal>& pScaling, aiQuaterniont<TReal>& pRotation,
|
|
aiVector3t<TReal>& pPosition) const
|
|
{
|
|
ASSIMP_MATRIX4_4_DECOMPOSE_PART;
|
|
|
|
// build a 3x3 rotation matrix
|
|
aiMatrix3x3t<TReal> m(vCols[0].x,vCols[1].x,vCols[2].x,
|
|
vCols[0].y,vCols[1].y,vCols[2].y,
|
|
vCols[0].z,vCols[1].z,vCols[2].z);
|
|
|
|
// and generate the rotation quaternion from it
|
|
pRotation = aiQuaterniont<TReal>(m);
|
|
}
|
|
|
|
template <typename TReal>
|
|
inline void aiMatrix4x4t<TReal>::Decompose(aiVector3t<TReal>& pScaling, aiVector3t<TReal>& pRotation, aiVector3t<TReal>& pPosition) const
|
|
{
|
|
ASSIMP_MATRIX4_4_DECOMPOSE_PART;
|
|
|
|
/*
|
|
assuming a right-handed coordinate system
|
|
and post-multiplication of column vectors,
|
|
the rotation matrix for an euler XYZ rotation is M = Rz * Ry * Rx.
|
|
combining gives:
|
|
|
|
| CE BDE-AF ADE+BF 0 |
|
|
M = | CF BDF+AE ADF-BE 0 |
|
|
| -D CB AC 0 |
|
|
| 0 0 0 1 |
|
|
|
|
where
|
|
A = cos(angle_x), B = sin(angle_x);
|
|
C = cos(angle_y), D = sin(angle_y);
|
|
E = cos(angle_z), F = sin(angle_z);
|
|
*/
|
|
|
|
// Use a small epsilon to solve floating-point inaccuracies
|
|
const TReal epsilon = 10e-3f;
|
|
|
|
pRotation.y = std::asin(-vCols[0].z);// D. Angle around oY.
|
|
|
|
TReal C = std::cos(pRotation.y);
|
|
|
|
if(std::fabs(C) > epsilon)
|
|
{
|
|
// Finding angle around oX.
|
|
TReal tan_x = vCols[2].z / C;// A
|
|
TReal tan_y = vCols[1].z / C;// B
|
|
|
|
pRotation.x = std::atan2(tan_y, tan_x);
|
|
// Finding angle around oZ.
|
|
tan_x = vCols[0].x / C;// E
|
|
tan_y = vCols[0].y / C;// F
|
|
pRotation.z = std::atan2(tan_y, tan_x);
|
|
}
|
|
else
|
|
{// oY is fixed.
|
|
pRotation.x = 0;// Set angle around oX to 0. => A == 1, B == 0, C == 0, D == 1.
|
|
|
|
// And finding angle around oZ.
|
|
TReal tan_x = vCols[1].y;// BDF+AE => E
|
|
TReal tan_y = -vCols[1].x;// BDE-AF => F
|
|
|
|
pRotation.z = std::atan2(tan_y, tan_x);
|
|
}
|
|
}
|
|
|
|
#undef ASSIMP_MATRIX4_4_DECOMPOSE_PART
|
|
|
|
template <typename TReal>
|
|
inline void aiMatrix4x4t<TReal>::Decompose(aiVector3t<TReal>& pScaling, aiVector3t<TReal>& pRotationAxis, TReal& pRotationAngle,
|
|
aiVector3t<TReal>& pPosition) const
|
|
{
|
|
aiQuaterniont<TReal> pRotation;
|
|
|
|
Decompose(pScaling, pRotation, pPosition);
|
|
pRotation.Normalize();
|
|
|
|
TReal angle_cos = pRotation.w;
|
|
TReal angle_sin = std::sqrt(1.0f - angle_cos * angle_cos);
|
|
|
|
pRotationAngle = std::acos(angle_cos) * 2;
|
|
|
|
// Use a small epsilon to solve floating-point inaccuracies
|
|
const TReal epsilon = 10e-3f;
|
|
|
|
if(std::fabs(angle_sin) < epsilon) angle_sin = 1;
|
|
|
|
pRotationAxis.x = pRotation.x / angle_sin;
|
|
pRotationAxis.y = pRotation.y / angle_sin;
|
|
pRotationAxis.z = pRotation.z / angle_sin;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
template <typename TReal>
|
|
inline void aiMatrix4x4t<TReal>::DecomposeNoScaling (aiQuaterniont<TReal>& rotation,
|
|
aiVector3t<TReal>& position) const
|
|
{
|
|
const aiMatrix4x4t<TReal>& _this = *this;
|
|
|
|
// extract translation
|
|
position.x = _this[0][3];
|
|
position.y = _this[1][3];
|
|
position.z = _this[2][3];
|
|
|
|
// extract rotation
|
|
rotation = aiQuaterniont<TReal>((aiMatrix3x3t<TReal>)_this);
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
template <typename TReal>
|
|
inline aiMatrix4x4t<TReal>& aiMatrix4x4t<TReal>::FromEulerAnglesXYZ(const aiVector3t<TReal>& blubb)
|
|
{
|
|
return FromEulerAnglesXYZ(blubb.x,blubb.y,blubb.z);
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
template <typename TReal>
|
|
inline aiMatrix4x4t<TReal>& aiMatrix4x4t<TReal>::FromEulerAnglesXYZ(TReal x, TReal y, TReal z)
|
|
{
|
|
aiMatrix4x4t<TReal>& _this = *this;
|
|
|
|
TReal cx = std::cos(x);
|
|
TReal sx = std::sin(x);
|
|
TReal cy = std::cos(y);
|
|
TReal sy = std::sin(y);
|
|
TReal cz = std::cos(z);
|
|
TReal sz = std::sin(z);
|
|
|
|
// mz*my*mx
|
|
_this.a1 = cz * cy;
|
|
_this.a2 = cz * sy * sx - sz * cx;
|
|
_this.a3 = sz * sx + cz * sy * cx;
|
|
|
|
_this.b1 = sz * cy;
|
|
_this.b2 = cz * cx + sz * sy * sx;
|
|
_this.b3 = sz * sy * cx - cz * sx;
|
|
|
|
_this.c1 = -sy;
|
|
_this.c2 = cy * sx;
|
|
_this.c3 = cy * cx;
|
|
|
|
return *this;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
template <typename TReal>
|
|
inline bool aiMatrix4x4t<TReal>::IsIdentity() const
|
|
{
|
|
// Use a small epsilon to solve floating-point inaccuracies
|
|
const static TReal epsilon = 10e-3f;
|
|
|
|
return (a2 <= epsilon && a2 >= -epsilon &&
|
|
a3 <= epsilon && a3 >= -epsilon &&
|
|
a4 <= epsilon && a4 >= -epsilon &&
|
|
b1 <= epsilon && b1 >= -epsilon &&
|
|
b3 <= epsilon && b3 >= -epsilon &&
|
|
b4 <= epsilon && b4 >= -epsilon &&
|
|
c1 <= epsilon && c1 >= -epsilon &&
|
|
c2 <= epsilon && c2 >= -epsilon &&
|
|
c4 <= epsilon && c4 >= -epsilon &&
|
|
d1 <= epsilon && d1 >= -epsilon &&
|
|
d2 <= epsilon && d2 >= -epsilon &&
|
|
d3 <= epsilon && d3 >= -epsilon &&
|
|
a1 <= 1.f+epsilon && a1 >= 1.f-epsilon &&
|
|
b2 <= 1.f+epsilon && b2 >= 1.f-epsilon &&
|
|
c3 <= 1.f+epsilon && c3 >= 1.f-epsilon &&
|
|
d4 <= 1.f+epsilon && d4 >= 1.f-epsilon);
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
template <typename TReal>
|
|
inline aiMatrix4x4t<TReal>& aiMatrix4x4t<TReal>::RotationX(TReal a, aiMatrix4x4t<TReal>& out)
|
|
{
|
|
/*
|
|
| 1 0 0 0 |
|
|
M = | 0 cos(A) -sin(A) 0 |
|
|
| 0 sin(A) cos(A) 0 |
|
|
| 0 0 0 1 | */
|
|
out = aiMatrix4x4t<TReal>();
|
|
out.b2 = out.c3 = std::cos(a);
|
|
out.b3 = -(out.c2 = std::sin(a));
|
|
return out;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
template <typename TReal>
|
|
inline aiMatrix4x4t<TReal>& aiMatrix4x4t<TReal>::RotationY(TReal a, aiMatrix4x4t<TReal>& out)
|
|
{
|
|
/*
|
|
| cos(A) 0 sin(A) 0 |
|
|
M = | 0 1 0 0 |
|
|
| -sin(A) 0 cos(A) 0 |
|
|
| 0 0 0 1 |
|
|
*/
|
|
out = aiMatrix4x4t<TReal>();
|
|
out.a1 = out.c3 = std::cos(a);
|
|
out.c1 = -(out.a3 = std::sin(a));
|
|
return out;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
template <typename TReal>
|
|
inline aiMatrix4x4t<TReal>& aiMatrix4x4t<TReal>::RotationZ(TReal a, aiMatrix4x4t<TReal>& out)
|
|
{
|
|
/*
|
|
| cos(A) -sin(A) 0 0 |
|
|
M = | sin(A) cos(A) 0 0 |
|
|
| 0 0 1 0 |
|
|
| 0 0 0 1 | */
|
|
out = aiMatrix4x4t<TReal>();
|
|
out.a1 = out.b2 = std::cos(a);
|
|
out.a2 = -(out.b1 = std::sin(a));
|
|
return out;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
// Returns a rotation matrix for a rotation around an arbitrary axis.
|
|
template <typename TReal>
|
|
inline aiMatrix4x4t<TReal>& aiMatrix4x4t<TReal>::Rotation( TReal a, const aiVector3t<TReal>& axis, aiMatrix4x4t<TReal>& out)
|
|
{
|
|
TReal c = std::cos( a), s = std::sin( a), t = 1 - c;
|
|
TReal x = axis.x, y = axis.y, z = axis.z;
|
|
|
|
// Many thanks to MathWorld and Wikipedia
|
|
out.a1 = t*x*x + c; out.a2 = t*x*y - s*z; out.a3 = t*x*z + s*y;
|
|
out.b1 = t*x*y + s*z; out.b2 = t*y*y + c; out.b3 = t*y*z - s*x;
|
|
out.c1 = t*x*z - s*y; out.c2 = t*y*z + s*x; out.c3 = t*z*z + c;
|
|
out.a4 = out.b4 = out.c4 = static_cast<TReal>(0.0);
|
|
out.d1 = out.d2 = out.d3 = static_cast<TReal>(0.0);
|
|
out.d4 = static_cast<TReal>(1.0);
|
|
|
|
return out;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
template <typename TReal>
|
|
inline aiMatrix4x4t<TReal>& aiMatrix4x4t<TReal>::Translation( const aiVector3t<TReal>& v, aiMatrix4x4t<TReal>& out)
|
|
{
|
|
out = aiMatrix4x4t<TReal>();
|
|
out.a4 = v.x;
|
|
out.b4 = v.y;
|
|
out.c4 = v.z;
|
|
return out;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
template <typename TReal>
|
|
inline aiMatrix4x4t<TReal>& aiMatrix4x4t<TReal>::Scaling( const aiVector3t<TReal>& v, aiMatrix4x4t<TReal>& out)
|
|
{
|
|
out = aiMatrix4x4t<TReal>();
|
|
out.a1 = v.x;
|
|
out.b2 = v.y;
|
|
out.c3 = v.z;
|
|
return out;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
/** A function for creating a rotation matrix that rotates a vector called
|
|
* "from" into another vector called "to".
|
|
* Input : from[3], to[3] which both must be *normalized* non-zero vectors
|
|
* Output: mtx[3][3] -- a 3x3 matrix in colum-major form
|
|
* Authors: Tomas Möller, John Hughes
|
|
* "Efficiently Building a Matrix to Rotate One Vector to Another"
|
|
* Journal of Graphics Tools, 4(4):1-4, 1999
|
|
*/
|
|
// ----------------------------------------------------------------------------------------
|
|
template <typename TReal>
|
|
inline aiMatrix4x4t<TReal>& aiMatrix4x4t<TReal>::FromToMatrix(const aiVector3t<TReal>& from,
|
|
const aiVector3t<TReal>& to, aiMatrix4x4t<TReal>& mtx)
|
|
{
|
|
aiMatrix3x3t<TReal> m3;
|
|
aiMatrix3x3t<TReal>::FromToMatrix(from,to,m3);
|
|
mtx = aiMatrix4x4t<TReal>(m3);
|
|
return mtx;
|
|
}
|
|
|
|
#endif // __cplusplus
|
|
#endif // AI_MATRIX4X4_INL_INC
|