assimp/contrib/tinyusdz/tinyusdz_repo/examples/common/viewport_camera.hh

269 lines
6.0 KiB
C++

// Based on Sascha WIllems' Vulkan example.
#pragma once
// Use <tinyudsz>/src/external/linalg.h instead of glm
#include "external/linalg.h"
//#define GLM_FORCE_RADIANS
//#define GLM_FORCE_DEPTH_ZERO_TO_ONE
//#include <glm/glm.hpp>
//#include <glm/gtc/quaternion.hpp>
//#include <glm/gtc/matrix_transform.hpp>
namespace example {
using vec2 = linalg::vec<float, 2>;
using vec3 = linalg::vec<float, 3>;
using vec4 = linalg::vec<float, 4>;
using mat4 = linalg::mat<float, 4, 4>;
constexpr float pi = 3.141592f;
inline float radians(float deg) {
return pi * deg / 180.0f;
}
/*
* Basic camera class
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
class Camera
{
private:
float fov{45.0f}; // in degree
float znear{0.01f}, zfar{1000.0f};
void updateViewMatrix()
{
mat4 rotM = linalg::identity;
mat4 transM;
rotM = linalg::mul(rotM, linalg::rotation_matrix(linalg::rotation_quat(vec3(1.0f, 0.0f, 0.0f), radians(rotation.x * (flipY ? -1.0f : 1.0f)))));
rotM = linalg::mul(rotM, linalg::rotation_matrix(linalg::rotation_quat(vec3(0.0f, 1.0f, 0.0f), radians(rotation.y))));
rotM = linalg::mul(rotM, linalg::rotation_matrix(linalg::rotation_quat(vec3(0.0f, 0.0f, 1.0f), radians(rotation.z))));
vec3 translation = position;
if (flipY) {
translation.y *= -1.0f;
}
transM = linalg::translation_matrix(translation);
if (type == CameraType::firstperson)
{
matrices.view = linalg::mul(rotM, transM);
}
else
{
matrices.view = linalg::mul(transM, rotM);
}
viewPos = vec4(position, 0.0f) * vec4(-1.0f, 1.0f, -1.0f, 1.0f);
updated = true;
};
public:
enum CameraType { lookat, firstperson };
CameraType type = CameraType::lookat;
vec3 rotation = vec3(); // in degree
vec3 position = vec3();
vec4 viewPos = vec4();
float rotationSpeed = 1.0f;
float movementSpeed = 1.0f;
bool updated = false;
bool flipY = false;
struct
{
mat4 perspective{linalg::identity};
mat4 view{linalg::identity};
} matrices;
struct
{
bool left = false;
bool right = false;
bool up = false;
bool down = false;
} keys;
bool moving()
{
return keys.left || keys.right || keys.up || keys.down;
}
float getNearClip() {
return znear;
}
float getFarClip() {
return zfar;
}
void setPerspective(float fov, float aspect, float znear, float zfar)
{
this->fov = fov;
this->znear = znear;
this->zfar = zfar;
matrices.perspective = linalg::perspective_matrix(radians(fov), aspect, znear, zfar);
if (flipY) {
matrices.perspective[1][1] *= -1.0f;
}
};
void updateAspectRatio(float aspect)
{
matrices.perspective = linalg::perspective_matrix(radians(fov), aspect, znear, zfar);
if (flipY) {
matrices.perspective[1][1] *= -1.0f;
}
}
void setPosition(vec3 position)
{
this->position = position;
updateViewMatrix();
}
void setRotation(vec3 rotation)
{
this->rotation = rotation;
updateViewMatrix();
}
void rotate(vec3 delta)
{
this->rotation += delta;
updateViewMatrix();
}
void setTranslation(vec3 translation)
{
this->position = translation;
updateViewMatrix();
};
void translate(vec3 delta)
{
this->position += delta;
updateViewMatrix();
}
void setRotationSpeed(float rotationSpeed)
{
this->rotationSpeed = rotationSpeed;
}
void setMovementSpeed(float movementSpeed)
{
this->movementSpeed = movementSpeed;
}
void update(float deltaTime)
{
updated = false;
if (type == CameraType::firstperson)
{
if (moving())
{
vec3 camFront;
camFront.x = -cos(radians(rotation.x)) * sin(radians(rotation.y));
camFront.y = sin(radians(rotation.x));
camFront.z = cos(radians(rotation.x)) * cos(radians(rotation.y));
camFront = linalg::normalize(camFront);
float moveSpeed = deltaTime * movementSpeed;
if (keys.up)
position += camFront * moveSpeed;
if (keys.down)
position -= camFront * moveSpeed;
if (keys.left)
position -= linalg::normalize(linalg::cross(camFront, vec3(0.0f, 1.0f, 0.0f))) * moveSpeed;
if (keys.right)
position += linalg::normalize(linalg::cross(camFront, vec3(0.0f, 1.0f, 0.0f))) * moveSpeed;
updateViewMatrix();
}
}
};
// Update camera passing separate axis data (gamepad)
// Returns true if view or position has been changed
bool updatePad(vec2 axisLeft, vec2 axisRight, float deltaTime)
{
bool retVal = false;
if (type == CameraType::firstperson)
{
// Use the common console thumbstick layout
// Left = view, right = move
const float deadZone = 0.0015f;
const float range = 1.0f - deadZone;
vec3 camFront;
camFront.x = -cos(radians(rotation.x)) * sin(radians(rotation.y));
camFront.y = sin(radians(rotation.x));
camFront.z = cos(radians(rotation.x)) * cos(radians(rotation.y));
camFront = linalg::normalize(camFront);
float moveSpeed = deltaTime * movementSpeed * 2.0f;
float rotSpeed = deltaTime * rotationSpeed * 50.0f;
// Move
if (std::fabs(axisLeft.y) > deadZone)
{
float pos = (std::fabs(axisLeft.y) - deadZone) / range;
position -= camFront * pos * ((axisLeft.y < 0.0f) ? -1.0f : 1.0f) * moveSpeed;
retVal = true;
}
if (std::fabs(axisLeft.x) > deadZone)
{
float pos = (std::fabs(axisLeft.x) - deadZone) / range;
position += linalg::normalize(linalg::cross(camFront, vec3(0.0f, 1.0f, 0.0f))) * pos * ((axisLeft.x < 0.0f) ? -1.0f : 1.0f) * moveSpeed;
retVal = true;
}
// Rotate
if (std::fabs(axisRight.x) > deadZone)
{
float pos = (std::fabs(axisRight.x) - deadZone) / range;
rotation.y += pos * ((axisRight.x < 0.0f) ? -1.0f : 1.0f) * rotSpeed;
retVal = true;
}
if (std::fabs(axisRight.y) > deadZone)
{
float pos = (std::fabs(axisRight.y) - deadZone) / range;
rotation.x -= pos * ((axisRight.y < 0.0f) ? -1.0f : 1.0f) * rotSpeed;
retVal = true;
}
}
else
{
// todo: move code from example base class for look-at
}
if (retVal)
{
updateViewMatrix();
}
return retVal;
}
};
} // example