assimp/code/LWOMaterial.cpp

812 lines
24 KiB
C++

/*
---------------------------------------------------------------------------
Open Asset Import Library (ASSIMP)
---------------------------------------------------------------------------
Copyright (c) 2006-2008, ASSIMP Development Team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the following
conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the ASSIMP team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the ASSIMP Development Team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------
*/
/** @file Implementation of the material oart of the LWO importer class */
#include "AssimpPCH.h"
// internal headers
#include "LWOLoader.h"
#include "MaterialSystem.h"
#include "ByteSwap.h"
using namespace Assimp;
// ------------------------------------------------------------------------------------------------
template <class T>
T lerp(const T& one, const T& two, float val)
{
return one + (two-one)*val;
}
// ------------------------------------------------------------------------------------------------
// Convert a lightwave mapping mode to our's
inline aiTextureMapMode GetMapMode(LWO::Texture::Wrap in)
{
switch (in)
{
case LWO::Texture::REPEAT:
return aiTextureMapMode_Wrap;
case LWO::Texture::MIRROR:
return aiTextureMapMode_Mirror;
case LWO::Texture::RESET:
DefaultLogger::get()->warn("LWO2: Unsupported texture map mode: RESET");
// fall though here
case LWO::Texture::EDGE:
return aiTextureMapMode_Clamp;
}
return (aiTextureMapMode)0;
}
// ------------------------------------------------------------------------------------------------
bool LWOImporter::HandleTextures(MaterialHelper* pcMat, const TextureList& in, aiTextureType type)
{
ai_assert(NULL != pcMat);
unsigned int cur = 0, temp = 0;
aiString s;
bool ret = false;
for (TextureList::const_iterator it = in.begin(), end = in.end();
it != end;++it)
{
if (!(*it).enabled || !(*it).bCanUse)continue;
ret = true;
// Convert lightwave's mapping modes to ours. We let them
// as they are, the GenUVcoords step will compute UV
// channels if they're not there.
aiTextureMapping mapping;
switch ((*it).mapMode)
{
case LWO::Texture::Planar:
mapping = aiTextureMapping_PLANE;
break;
case LWO::Texture::Cylindrical:
mapping = aiTextureMapping_CYLINDER;
break;
case LWO::Texture::Spherical:
mapping = aiTextureMapping_SPHERE;
break;
case LWO::Texture::Cubic:
mapping = aiTextureMapping_BOX;
break;
case LWO::Texture::FrontProjection:
DefaultLogger::get()->error("LWO2: Unsupported texture mapping: FrontProjection");
mapping = aiTextureMapping_OTHER;
break;
case LWO::Texture::UV:
{
if( 0xffffffff == (*it).mRealUVIndex )
{
// We have no UV index for this texture, so we can't display it
continue;
}
// add the UV source index
temp = (*it).mRealUVIndex;
pcMat->AddProperty<int>((int*)&temp,1,AI_MATKEY_UVWSRC(type,cur));
mapping = aiTextureMapping_UV;
}
break;
};
if (mapping != aiTextureMapping_UV)
{
// Setup the main axis (the enum values map one to one)
pcMat->AddProperty<int>((int*)&(*it).majorAxis,1,AI_MATKEY_TEXMAP_AXIS(type,cur));
DefaultLogger::get()->debug("LWO2: Setting up non-UV mapping");
}
// The older LWOB format does not use indirect references to clips.
// The file name of a texture is directly specified in the tex chunk.
if (mIsLWO2)
{
// find the corresponding clip
ClipList::iterator clip = mClips.begin();
temp = (*it).mClipIdx;
for (ClipList::iterator end = mClips.end(); clip != end; ++clip)
{
if ((*clip).idx == temp)
{
break;
}
}
if (mClips.end() == clip)
{
DefaultLogger::get()->error("LWO2: Clip index is out of bounds");
temp = 0;
}
if (Clip::UNSUPPORTED == (*clip).type)
{
DefaultLogger::get()->error("LWO2: Clip type is not supported");
continue;
}
AdjustTexturePath((*clip).path);
s.Set((*clip).path);
}
else
{
std::string ss = (*it).mFileName;
if (!ss.length())
{
DefaultLogger::get()->error("LWOB: Empty file name");
continue;
}
AdjustTexturePath(ss);
s.Set(ss);
}
pcMat->AddProperty(&s,AI_MATKEY_TEXTURE(type,cur));
// add the blend factor
pcMat->AddProperty<float>(&(*it).mStrength,1,AI_MATKEY_TEXBLEND(type,cur));
// add the blend operation
switch ((*it).blendType)
{
case LWO::Texture::Normal:
case LWO::Texture::Multiply:
temp = (unsigned int)aiTextureOp_Multiply;
break;
case LWO::Texture::Subtractive:
case LWO::Texture::Difference:
temp = (unsigned int)aiTextureOp_Subtract;
break;
case LWO::Texture::Divide:
temp = (unsigned int)aiTextureOp_Divide;
break;
case LWO::Texture::Additive:
temp = (unsigned int)aiTextureOp_Add;
break;
default:
temp = (unsigned int)aiTextureOp_Multiply;
DefaultLogger::get()->warn("LWO2: Unsupported texture blend mode: alpha or displacement");
}
pcMat->AddProperty<int>((int*)&temp,1,AI_MATKEY_TEXOP(type,cur));
// setup the mapping mode
pcMat->AddProperty<int>((int*)&mapping,1,AI_MATKEY_MAPPING(type,cur));
// add the u-wrapping
temp = (unsigned int)GetMapMode((*it).wrapModeWidth);
pcMat->AddProperty<int>((int*)&temp,1,AI_MATKEY_MAPPINGMODE_U(type,cur));
// add the v-wrapping
temp = (unsigned int)GetMapMode((*it).wrapModeHeight);
pcMat->AddProperty<int>((int*)&temp,1,AI_MATKEY_MAPPINGMODE_V(type,cur));
++cur;
}
return ret;
}
// ------------------------------------------------------------------------------------------------
void LWOImporter::ConvertMaterial(const LWO::Surface& surf,MaterialHelper* pcMat)
{
// copy the name of the surface
aiString st;
st.Set(surf.mName);
pcMat->AddProperty(&st,AI_MATKEY_NAME);
int i = surf.bDoubleSided ? 1 : 0;
pcMat->AddProperty<int>(&i,1,AI_MATKEY_TWOSIDED);
// add the refraction index and the bump intensity
pcMat->AddProperty<float>(&surf.mIOR,1,AI_MATKEY_REFRACTI);
pcMat->AddProperty<float>(&surf.mBumpIntensity,1,AI_MATKEY_BUMPSCALING);
aiShadingMode m;
if (surf.mSpecularValue && surf.mGlossiness)
{
float fGloss;
if (mIsLWO2)
{
fGloss = pow( surf.mGlossiness*10.0f+2.0f, 2.0f);
}
else
{
if (16.0f >= surf.mGlossiness)fGloss = 6.0f;
else if (64.0f >= surf.mGlossiness)fGloss = 20.0f;
else if (256.0f >= surf.mGlossiness)fGloss = 50.0f;
else fGloss = 80.0f;
}
pcMat->AddProperty<float>(&surf.mSpecularValue,1,AI_MATKEY_SHININESS_STRENGTH);
pcMat->AddProperty<float>(&fGloss,1,AI_MATKEY_SHININESS);
m = aiShadingMode_Phong;
}
else m = aiShadingMode_Gouraud;
// specular color
aiColor3D clr = lerp( aiColor3D(1.f,1.f,1.f), surf.mColor, surf.mColorHighlights );
pcMat->AddProperty<aiColor3D>(&clr,1,AI_MATKEY_COLOR_SPECULAR);
pcMat->AddProperty<float>(&surf.mSpecularValue,1,AI_MATKEY_SHININESS_STRENGTH);
// emissive color
// (luminosity is not really the same but it affects the surface in
// a similar way. However, some scalings seems to be necessary)
clr.g = clr.b = clr.r = surf.mLuminosity*0.8f;
pcMat->AddProperty<aiColor3D>(&clr,1,AI_MATKEY_COLOR_EMISSIVE);
// opacity
if (10e10f != surf.mTransparency)
{
float f = 1.0f-surf.mTransparency;
pcMat->AddProperty<float>(&f,1,AI_MATKEY_OPACITY);
}
// ADD TEXTURES to the material
// TODO: find out how we can handle COLOR textures correctly...
bool b = HandleTextures(pcMat,surf.mColorTextures,aiTextureType_DIFFUSE);
b = (b || HandleTextures(pcMat,surf.mDiffuseTextures,aiTextureType_DIFFUSE));
HandleTextures(pcMat,surf.mSpecularTextures,aiTextureType_SPECULAR);
HandleTextures(pcMat,surf.mGlossinessTextures,aiTextureType_SHININESS);
HandleTextures(pcMat,surf.mBumpTextures,aiTextureType_HEIGHT);
HandleTextures(pcMat,surf.mOpacityTextures,aiTextureType_OPACITY);
// now we need to know which shader we must use
// iterate through the shader list of the surface and
// search for a name we know
for (ShaderList::const_iterator it = surf.mShaders.begin(), end = surf.mShaders.end();
it != end;++it)
{
//if (!(*it).enabled)continue;
if ((*it).functionName == "LW_SuperCelShader" ||
(*it).functionName == "AH_CelShader")
{
DefaultLogger::get()->info("Mapping LW_SuperCelShader/AH_CelShader "
"to aiShadingMode_Toon");
m = aiShadingMode_Toon;
break;
}
else if ((*it).functionName == "LW_RealFresnel" ||
(*it).functionName == "LW_FastFresnel")
{
DefaultLogger::get()->info("Mapping LW_RealFresnel/LW_FastFresnel "
"to aiShadingMode_Fresnel");
m = aiShadingMode_Fresnel;
break;
}
else
{
DefaultLogger::get()->warn("LWO2: Unknown surface shader: " + (*it).functionName);
}
}
if (surf.mMaximumSmoothAngle <= 0.0f)m = aiShadingMode_Flat;
pcMat->AddProperty((int*)&m,1,AI_MATKEY_SHADING_MODEL);
// (the diffuse value is just a scaling factor)
// If a diffuse texture is set, we set this value to 1.0
clr = (b ? aiColor3D(1.f,1.f,1.f) : surf.mColor);
clr.r *= surf.mDiffuseValue;
clr.g *= surf.mDiffuseValue;
clr.b *= surf.mDiffuseValue;
pcMat->AddProperty<aiColor3D>(&clr,1,AI_MATKEY_COLOR_DIFFUSE);
}
// ------------------------------------------------------------------------------------------------
void LWOImporter::FindUVChannels(LWO::TextureList& list, LWO::Layer& layer,
unsigned int out[AI_MAX_NUMBER_OF_TEXTURECOORDS], unsigned int& next)
{
for (TextureList::iterator it = list.begin(), end = list.end();
it != end;++it)
{
// Ignore textures with non-UV mappings for the moment.
if (!(*it).enabled || !(*it).bCanUse || 0xffffffff != (*it).mRealUVIndex ||
(*it).mapMode != LWO::Texture::UV)
{
continue;
}
for (unsigned int i = 0; i < layer.mUVChannels.size();++i)
{
if ((*it).mUVChannelIndex == layer.mUVChannels[i].name)
{
// check whether we have this channel already
for (unsigned int m = 0; m < next;++m)
{
if (i == out[m])
{
(*it).mRealUVIndex = m;
}
}
if (0xffffffff == (*it).mRealUVIndex)
{
(*it).mRealUVIndex = next;
out[next++] = i;
if (AI_MAX_NUMBER_OF_TEXTURECOORDS != next)
out[next] = 0xffffffff;
break;
}
}
}
if (0xffffffff == (*it).mRealUVIndex)
DefaultLogger::get()->error("LWO2: Unable to find matching UV channel for a texture");
}
}
// ------------------------------------------------------------------------------------------------
void LWOImporter::FindUVChannels(LWO::Surface& surf, LWO::Layer& layer,
unsigned int out[AI_MAX_NUMBER_OF_TEXTURECOORDS])
{
out[0] = 0xffffffff;
unsigned int next = 0;
FindUVChannels(surf.mColorTextures,layer,out,next);
FindUVChannels(surf.mDiffuseTextures,layer,out,next);
FindUVChannels(surf.mSpecularTextures,layer,out,next);
FindUVChannels(surf.mGlossinessTextures,layer,out,next);
FindUVChannels(surf.mOpacityTextures,layer,out,next);
FindUVChannels(surf.mBumpTextures,layer,out,next);
}
// ------------------------------------------------------------------------------------------------
void LWOImporter::FindVCChannels(const LWO::Surface& surf, const LWO::Layer& layer,
unsigned int out[AI_MAX_NUMBER_OF_COLOR_SETS])
{
out[0] = 0xffffffff;
if (surf.mVCMap.length())
{
for (unsigned int i = 0; i < layer.mVColorChannels.size();++i)
{
if (surf.mVCMap == layer.mVColorChannels[i].name)
{
out[0] = i;
out[1] = 0xffffffff;
return;
}
}
DefaultLogger::get()->warn("LWO2: Unable to find vertex color channel: " + surf.mVCMap);
}
}
// ------------------------------------------------------------------------------------------------
void LWOImporter::LoadLWO2ImageMap(unsigned int size, LWO::Texture& tex )
{
LE_NCONST uint8_t* const end = mFileBuffer + size;
while (true)
{
if (mFileBuffer + 6 >= end)break;
LE_NCONST IFF::SubChunkHeader* const head = IFF::LoadSubChunk(mFileBuffer);
if (mFileBuffer + head->length > end)
throw new ImportErrorException("LWO2: Invalid SURF.BLOCK chunk length");
uint8_t* const next = mFileBuffer+head->length;
switch (head->type)
{
case AI_LWO_PROJ:
tex.mapMode = (Texture::MappingMode)GetU2();
break;
case AI_LWO_WRAP:
tex.wrapModeWidth = (Texture::Wrap)GetU2();
tex.wrapModeHeight = (Texture::Wrap)GetU2();
break;
case AI_LWO_AXIS:
tex.majorAxis = (Texture::Axes)GetU2();
break;
case AI_LWO_IMAG:
tex.mClipIdx = GetU2();
break;
case AI_LWO_VMAP:
GetS0(tex.mUVChannelIndex,head->length);
break;
case AI_LWO_WRPH:
tex.wrapAmountH = GetF4();
break;
case AI_LWO_WRPW:
tex.wrapAmountW = GetF4();
break;
}
mFileBuffer = next;
}
}
// ------------------------------------------------------------------------------------------------
void LWOImporter::LoadLWO2Procedural(unsigned int size, LWO::Texture& tex )
{
// --- not supported at the moment
DefaultLogger::get()->error("LWO2: Found procedural texture, this is not supported");
tex.bCanUse = false;
}
// ------------------------------------------------------------------------------------------------
void LWOImporter::LoadLWO2Gradient(unsigned int size, LWO::Texture& tex )
{
// --- not supported at the moment
DefaultLogger::get()->error("LWO2: Found gradient texture, this is not supported");
tex.bCanUse = false;
}
// ------------------------------------------------------------------------------------------------
void LWOImporter::LoadLWO2TextureHeader(unsigned int size, LWO::Texture& tex )
{
LE_NCONST uint8_t* const end = mFileBuffer + size;
// get the ordinal string
GetS0( tex.ordinal, size);
// we could crash later if this is an empty string ...
if (!tex.ordinal.length())
{
DefaultLogger::get()->error("LWO2: Ill-formed SURF.BLOK ordinal string");
tex.ordinal = "\x00";
}
while (true)
{
if (mFileBuffer + 6 >= end)break;
LE_NCONST IFF::SubChunkHeader* const head = IFF::LoadSubChunk(mFileBuffer);
if (mFileBuffer + head->length > end)
throw new ImportErrorException("LWO2: Invalid texture header chunk length");
uint8_t* const next = mFileBuffer+head->length;
switch (head->type)
{
case AI_LWO_CHAN:
tex.type = GetU4();
break;
case AI_LWO_ENAB:
tex.enabled = GetU2() ? true : false;
break;
case AI_LWO_OPAC:
tex.blendType = (Texture::BlendType)GetU2();
tex.mStrength = GetF4();
break;
}
mFileBuffer = next;
}
}
// ------------------------------------------------------------------------------------------------
void LWOImporter::LoadLWO2TextureBlock(LE_NCONST IFF::SubChunkHeader* head, unsigned int size )
{
ai_assert(!mSurfaces->empty());
LWO::Surface& surf = mSurfaces->back();
LWO::Texture tex;
// load the texture header
LoadLWO2TextureHeader(head->length,tex);
size -= head->length + 6;
// now get the exact type of the texture
switch (head->type)
{
case AI_LWO_PROC:
LoadLWO2Procedural(size,tex);
break;
case AI_LWO_GRAD:
LoadLWO2Gradient(size,tex);
break;
case AI_LWO_IMAP:
LoadLWO2ImageMap(size,tex);
}
// get the destination channel
TextureList* listRef = NULL;
switch (tex.type)
{
case AI_LWO_COLR:
listRef = &surf.mColorTextures;break;
case AI_LWO_DIFF:
listRef = &surf.mDiffuseTextures;break;
case AI_LWO_SPEC:
listRef = &surf.mSpecularTextures;break;
case AI_LWO_GLOS:
listRef = &surf.mGlossinessTextures;break;
case AI_LWO_BUMP:
listRef = &surf.mBumpTextures;break;
case AI_LWO_TRAN:
listRef = &surf.mOpacityTextures;break;
default:
DefaultLogger::get()->warn("LWO2: Encountered unknown texture type");
return;
}
// now attach the texture to the parent surface - sort by ordinal string
for (TextureList::iterator it = listRef->begin();
it != listRef->end(); ++it)
{
if (::strcmp(tex.ordinal.c_str(),(*it).ordinal.c_str()) < 0)
{
listRef->insert(it,tex);
return;
}
}
listRef->push_back(tex);
}
// ------------------------------------------------------------------------------------------------
void LWOImporter::LoadLWO2ShaderBlock(LE_NCONST IFF::SubChunkHeader* head, unsigned int size )
{
LE_NCONST uint8_t* const end = mFileBuffer + size;
ai_assert(!mSurfaces->empty());
LWO::Surface& surf = mSurfaces->back();
LWO::Shader shader;
// get the ordinal string
GetS0( shader.ordinal, size);
// we could crash later if this is an empty string ...
if (!shader.ordinal.length())
{
DefaultLogger::get()->error("LWO2: Ill-formed SURF.BLOK ordinal string");
shader.ordinal = "\x00";
}
// read the header
while (true)
{
if (mFileBuffer + 6 >= end)break;
LE_NCONST IFF::SubChunkHeader* const head = IFF::LoadSubChunk(mFileBuffer);
if (mFileBuffer + head->length > end)
throw new ImportErrorException("LWO2: Invalid shader header chunk length");
uint8_t* const next = mFileBuffer+head->length;
switch (head->type)
{
case AI_LWO_ENAB:
shader.enabled = GetU2() ? true : false;
break;
case AI_LWO_FUNC:
GetS0( shader.functionName, head->length );
}
mFileBuffer = next;
}
// now attach the shader to the parent surface - sort by ordinal string
for (ShaderList::iterator it = surf.mShaders.begin();
it != surf.mShaders.end(); ++it)
{
if (::strcmp(shader.ordinal.c_str(),(*it).ordinal.c_str()) < 0)
{
surf.mShaders.insert(it,shader);
return;
}
}
surf.mShaders.push_back(shader);
}
// ------------------------------------------------------------------------------------------------
void LWOImporter::LoadLWO2Surface(unsigned int size)
{
LE_NCONST uint8_t* const end = mFileBuffer + size;
mSurfaces->push_back( LWO::Surface () );
LWO::Surface& surf = mSurfaces->back();
GetS0(surf.mName,size);
// check whether this surface was derived from any other surface
std::string derived;
GetS0(derived,(unsigned int)(end - mFileBuffer));
if (derived.length())
{
// yes, find this surface
for (SurfaceList::iterator it = mSurfaces->begin(), end = mSurfaces->end()-1;
it != end; ++it)
{
if ((*it).mName == derived)
{
// we have it ...
surf = *it;
derived.clear();
}
}
if (!derived.size())
DefaultLogger::get()->warn("LWO2: Unable to find source surface: " + derived);
}
while (true)
{
if (mFileBuffer + 6 >= end)break;
LE_NCONST IFF::SubChunkHeader* const head = IFF::LoadSubChunk(mFileBuffer);
if (mFileBuffer + head->length > end)
throw new ImportErrorException("LWO2: Invalid surface chunk length");
uint8_t* const next = mFileBuffer+head->length;
switch (head->type)
{
// diffuse color
case AI_LWO_COLR:
{
AI_LWO_VALIDATE_CHUNK_LENGTH(head->length,COLR,12);
surf.mColor.r = GetF4();
surf.mColor.g = GetF4();
surf.mColor.b = GetF4();
break;
}
// diffuse strength ... hopefully
case AI_LWO_DIFF:
{
AI_LWO_VALIDATE_CHUNK_LENGTH(head->length,DIFF,4);
surf.mDiffuseValue = GetF4();
break;
}
// specular strength ... hopefully
case AI_LWO_SPEC:
{
AI_LWO_VALIDATE_CHUNK_LENGTH(head->length,SPEC,4);
surf.mSpecularValue = GetF4();
break;
}
// transparency
case AI_LWO_TRAN:
{
if (surf.mTransparency == 10e10f)break;
AI_LWO_VALIDATE_CHUNK_LENGTH(head->length,TRAN,4);
surf.mTransparency = GetF4();
break;
}
// transparency mode
case AI_LWO_ALPH:
{
AI_LWO_VALIDATE_CHUNK_LENGTH(head->length,ALPH,6);
uint16_t mode = GetU2();
switch (mode)
{
// The surface has no effect on the alpha channel when rendered
case 0:
surf.mTransparency = 10e10f;
break;
// The alpha channel will be written with the constant value
// following the mode in the subchunk.
case 1:
surf.mTransparency = GetF4();
break;
// The alpha value comes from the shadow density
case 3:
DefaultLogger::get()->error("LWO2: Unsupported alpha mode: shadow_density");
surf.mTransparency = 10e10f;
}
break;
}
// wireframe mode
case AI_LWO_LINE:
{
AI_LWO_VALIDATE_CHUNK_LENGTH(head->length,LINE,2);
if (GetU2() & 0x1)
surf.mWireframe = true;
break;
}
// glossiness
case AI_LWO_GLOS:
{
AI_LWO_VALIDATE_CHUNK_LENGTH(head->length,GLOS,4);
surf.mGlossiness = GetF4();
break;
}
// bump intensity
case AI_LWO_BUMP:
{
AI_LWO_VALIDATE_CHUNK_LENGTH(head->length,BUMP,4);
surf.mBumpIntensity = GetF4();
break;
}
// color highlights
case AI_LWO_CLRH:
{
AI_LWO_VALIDATE_CHUNK_LENGTH(head->length,CLRH,4);
surf.mColorHighlights = GetF4();
break;
}
// index of refraction
case AI_LWO_RIND:
{
AI_LWO_VALIDATE_CHUNK_LENGTH(head->length,RIND,4);
surf.mIOR = GetF4();
break;
}
// polygon sidedness
case AI_LWO_SIDE:
{
AI_LWO_VALIDATE_CHUNK_LENGTH(head->length,SIDE,2);
surf.bDoubleSided = (3 == GetU2());
break;
}
// maximum smoothing angle
case AI_LWO_SMAN:
{
AI_LWO_VALIDATE_CHUNK_LENGTH(head->length,SMAN,4);
surf.mMaximumSmoothAngle = GetF4();
break;
}
// vertex color channel to be applied to the surface
case AI_LWO_VCOL:
{
AI_LWO_VALIDATE_CHUNK_LENGTH(head->length,VCOL,12);
surf.mDiffuseValue *= GetF4(); // strength
ReadVSizedIntLWO2(mFileBuffer); // skip envelope
surf.mVCMapType = GetU4(); // type of the channel
// name of the channel
GetS0(surf.mVCMap, (unsigned int) (next - mFileBuffer ));
break;
}
// surface bock entry
case AI_LWO_BLOK:
{
AI_LWO_VALIDATE_CHUNK_LENGTH(head->length,BLOK,4);
LE_NCONST IFF::SubChunkHeader* head2 = IFF::LoadSubChunk(mFileBuffer);
switch (head2->type)
{
case AI_LWO_PROC:
case AI_LWO_GRAD:
case AI_LWO_IMAP:
LoadLWO2TextureBlock(head2, head->length);
break;
case AI_LWO_SHDR:
LoadLWO2ShaderBlock(head2, head->length);
break;
default:
DefaultLogger::get()->warn("LWO2: Found an unsupported surface BLOK");
};
break;
}
}
mFileBuffer = next;
}
}