608 lines
18 KiB
C++
608 lines
18 KiB
C++
/*
|
|
Open Asset Import Library (assimp)
|
|
----------------------------------------------------------------------
|
|
|
|
Copyright (c) 2006-2015, assimp team
|
|
All rights reserved.
|
|
|
|
Redistribution and use of this software in source and binary forms,
|
|
with or without modification, are permitted provided that the
|
|
following conditions are met:
|
|
|
|
* Redistributions of source code must retain the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer in the documentation and/or other
|
|
materials provided with the distribution.
|
|
|
|
* Neither the name of the assimp team, nor the names of its
|
|
contributors may be used to endorse or promote products
|
|
derived from this software without specific prior
|
|
written permission of the assimp team.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
----------------------------------------------------------------------
|
|
*/
|
|
|
|
/** @file MaterialSystem.cpp
|
|
* @brief Implementation of the material system of the library
|
|
*/
|
|
|
|
|
|
|
|
#include "Hash.h"
|
|
#include "fast_atof.h"
|
|
#include "ParsingUtils.h"
|
|
#include "MaterialSystem.h"
|
|
#include "../include/assimp/types.h"
|
|
#include "../include/assimp/material.h"
|
|
#include "../include/assimp/DefaultLogger.hpp"
|
|
#include "Macros.h"
|
|
|
|
|
|
using namespace Assimp;
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Get a specific property from a material
|
|
aiReturn aiGetMaterialProperty(const aiMaterial* pMat,
|
|
const char* pKey,
|
|
unsigned int type,
|
|
unsigned int index,
|
|
const aiMaterialProperty** pPropOut)
|
|
{
|
|
ai_assert (pMat != NULL);
|
|
ai_assert (pKey != NULL);
|
|
ai_assert (pPropOut != NULL);
|
|
|
|
/* Just search for a property with exactly this name ..
|
|
* could be improved by hashing, but it's possibly
|
|
* no worth the effort (we're bound to C structures,
|
|
* thus std::map or derivates are not applicable. */
|
|
for (unsigned int i = 0; i < pMat->mNumProperties;++i) {
|
|
aiMaterialProperty* prop = pMat->mProperties[i];
|
|
|
|
if (prop /* just for safety ... */
|
|
&& 0 == strcmp( prop->mKey.data, pKey )
|
|
&& (UINT_MAX == type || prop->mSemantic == type) /* UINT_MAX is a wildcard, but this is undocumented :-) */
|
|
&& (UINT_MAX == index || prop->mIndex == index))
|
|
{
|
|
*pPropOut = pMat->mProperties[i];
|
|
return AI_SUCCESS;
|
|
}
|
|
}
|
|
*pPropOut = NULL;
|
|
return AI_FAILURE;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Get an array of floating-point values from the material.
|
|
aiReturn aiGetMaterialFloatArray(const aiMaterial* pMat,
|
|
const char* pKey,
|
|
unsigned int type,
|
|
unsigned int index,
|
|
float* pOut,
|
|
unsigned int* pMax)
|
|
{
|
|
ai_assert (pOut != NULL);
|
|
ai_assert (pMat != NULL);
|
|
|
|
const aiMaterialProperty* prop;
|
|
aiGetMaterialProperty(pMat,pKey,type,index, (const aiMaterialProperty**) &prop);
|
|
if (!prop) {
|
|
return AI_FAILURE;
|
|
}
|
|
|
|
// data is given in floats, simply copy it
|
|
unsigned int iWrite = 0;
|
|
if( aiPTI_Float == prop->mType || aiPTI_Buffer == prop->mType) {
|
|
iWrite = prop->mDataLength / sizeof(float);
|
|
if (pMax) {
|
|
iWrite = std::min(*pMax,iWrite); ;
|
|
}
|
|
for (unsigned int a = 0; a < iWrite;++a) {
|
|
pOut[a] = static_cast<float> ( reinterpret_cast<float*>(prop->mData)[a] );
|
|
}
|
|
if (pMax) {
|
|
*pMax = iWrite;
|
|
}
|
|
}
|
|
// data is given in ints, convert to float
|
|
else if( aiPTI_Integer == prop->mType) {
|
|
iWrite = prop->mDataLength / sizeof(int32_t);
|
|
if (pMax) {
|
|
iWrite = std::min(*pMax,iWrite); ;
|
|
}
|
|
for (unsigned int a = 0; a < iWrite;++a) {
|
|
pOut[a] = static_cast<float> ( reinterpret_cast<int32_t*>(prop->mData)[a] );
|
|
}
|
|
if (pMax) {
|
|
*pMax = iWrite;
|
|
}
|
|
}
|
|
// a string ... read floats separated by spaces
|
|
else {
|
|
if (pMax) {
|
|
iWrite = *pMax;
|
|
}
|
|
// strings are zero-terminated with a 32 bit length prefix, so this is safe
|
|
const char* cur = prop->mData+4;
|
|
ai_assert(prop->mDataLength>=5 && !prop->mData[prop->mDataLength-1]);
|
|
for (unsigned int a = 0; ;++a) {
|
|
cur = fast_atoreal_move<float>(cur,pOut[a]);
|
|
if(a==iWrite-1) {
|
|
break;
|
|
}
|
|
if(!IsSpace(*cur)) {
|
|
DefaultLogger::get()->error("Material property" + std::string(pKey) +
|
|
" is a string; failed to parse a float array out of it.");
|
|
return AI_FAILURE;
|
|
}
|
|
}
|
|
|
|
if (pMax) {
|
|
*pMax = iWrite;
|
|
}
|
|
}
|
|
return AI_SUCCESS;
|
|
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Get an array if integers from the material
|
|
aiReturn aiGetMaterialIntegerArray(const aiMaterial* pMat,
|
|
const char* pKey,
|
|
unsigned int type,
|
|
unsigned int index,
|
|
int* pOut,
|
|
unsigned int* pMax)
|
|
{
|
|
ai_assert (pOut != NULL);
|
|
ai_assert (pMat != NULL);
|
|
|
|
const aiMaterialProperty* prop;
|
|
aiGetMaterialProperty(pMat,pKey,type,index,(const aiMaterialProperty**) &prop);
|
|
if (!prop) {
|
|
return AI_FAILURE;
|
|
}
|
|
|
|
// data is given in ints, simply copy it
|
|
unsigned int iWrite = 0;
|
|
if( aiPTI_Integer == prop->mType || aiPTI_Buffer == prop->mType) {
|
|
iWrite = prop->mDataLength / sizeof(int32_t);
|
|
if (pMax) {
|
|
iWrite = std::min(*pMax,iWrite); ;
|
|
}
|
|
for (unsigned int a = 0; a < iWrite;++a) {
|
|
pOut[a] = static_cast<int>(reinterpret_cast<int32_t*>(prop->mData)[a]);
|
|
}
|
|
if (pMax) {
|
|
*pMax = iWrite;
|
|
}
|
|
}
|
|
// data is given in floats convert to int
|
|
else if( aiPTI_Float == prop->mType) {
|
|
iWrite = prop->mDataLength / sizeof(float);
|
|
if (pMax) {
|
|
iWrite = std::min(*pMax,iWrite); ;
|
|
}
|
|
for (unsigned int a = 0; a < iWrite;++a) {
|
|
pOut[a] = static_cast<int>(reinterpret_cast<float*>(prop->mData)[a]);
|
|
}
|
|
if (pMax) {
|
|
*pMax = iWrite;
|
|
}
|
|
}
|
|
// it is a string ... no way to read something out of this
|
|
else {
|
|
if (pMax) {
|
|
iWrite = *pMax;
|
|
}
|
|
// strings are zero-terminated with a 32 bit length prefix, so this is safe
|
|
const char* cur = prop->mData+4;
|
|
ai_assert(prop->mDataLength>=5 && !prop->mData[prop->mDataLength-1]);
|
|
for (unsigned int a = 0; ;++a) {
|
|
pOut[a] = strtol10(cur,&cur);
|
|
if(a==iWrite-1) {
|
|
break;
|
|
}
|
|
if(!IsSpace(*cur)) {
|
|
DefaultLogger::get()->error("Material property" + std::string(pKey) +
|
|
" is a string; failed to parse an integer array out of it.");
|
|
return AI_FAILURE;
|
|
}
|
|
}
|
|
|
|
if (pMax) {
|
|
*pMax = iWrite;
|
|
}
|
|
}
|
|
return AI_SUCCESS;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Get a color (3 or 4 floats) from the material
|
|
aiReturn aiGetMaterialColor(const aiMaterial* pMat,
|
|
const char* pKey,
|
|
unsigned int type,
|
|
unsigned int index,
|
|
aiColor4D* pOut)
|
|
{
|
|
unsigned int iMax = 4;
|
|
const aiReturn eRet = aiGetMaterialFloatArray(pMat,pKey,type,index,(float*)pOut,&iMax);
|
|
|
|
// if no alpha channel is defined: set it to 1.0
|
|
if (3 == iMax) {
|
|
pOut->a = 1.0f;
|
|
}
|
|
|
|
return eRet;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Get a aiUVTransform (4 floats) from the material
|
|
aiReturn aiGetMaterialUVTransform(const aiMaterial* pMat,
|
|
const char* pKey,
|
|
unsigned int type,
|
|
unsigned int index,
|
|
aiUVTransform* pOut)
|
|
{
|
|
unsigned int iMax = 4;
|
|
return aiGetMaterialFloatArray(pMat,pKey,type,index,(float*)pOut,&iMax);
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Get a string from the material
|
|
aiReturn aiGetMaterialString(const aiMaterial* pMat,
|
|
const char* pKey,
|
|
unsigned int type,
|
|
unsigned int index,
|
|
aiString* pOut)
|
|
{
|
|
ai_assert (pOut != NULL);
|
|
|
|
const aiMaterialProperty* prop;
|
|
aiGetMaterialProperty(pMat,pKey,type,index,(const aiMaterialProperty**)&prop);
|
|
if (!prop) {
|
|
return AI_FAILURE;
|
|
}
|
|
|
|
if( aiPTI_String == prop->mType) {
|
|
ai_assert(prop->mDataLength>=5);
|
|
|
|
// The string is stored as 32 but length prefix followed by zero-terminated UTF8 data
|
|
pOut->length = static_cast<unsigned int>(*reinterpret_cast<uint32_t*>(prop->mData));
|
|
|
|
ai_assert(pOut->length+1+4==prop->mDataLength && !prop->mData[prop->mDataLength-1]);
|
|
memcpy(pOut->data,prop->mData+4,pOut->length+1);
|
|
}
|
|
else {
|
|
// TODO - implement lexical cast as well
|
|
DefaultLogger::get()->error("Material property" + std::string(pKey) +
|
|
" was found, but is no string" );
|
|
return AI_FAILURE;
|
|
}
|
|
return AI_SUCCESS;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Get the number of textures on a particular texture stack
|
|
ASSIMP_API unsigned int aiGetMaterialTextureCount(const C_STRUCT aiMaterial* pMat,
|
|
C_ENUM aiTextureType type)
|
|
{
|
|
ai_assert (pMat != NULL);
|
|
|
|
/* Textures are always stored with ascending indices (ValidateDS provides a check, so we don't need to do it again) */
|
|
unsigned int max = 0;
|
|
for (unsigned int i = 0; i < pMat->mNumProperties;++i) {
|
|
aiMaterialProperty* prop = pMat->mProperties[i];
|
|
|
|
if (prop /* just a sanity check ... */
|
|
&& 0 == strcmp( prop->mKey.data, _AI_MATKEY_TEXTURE_BASE )
|
|
&& prop->mSemantic == type) {
|
|
|
|
max = std::max(max,prop->mIndex+1);
|
|
}
|
|
}
|
|
return max;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
aiReturn aiGetMaterialTexture(const C_STRUCT aiMaterial* mat,
|
|
aiTextureType type,
|
|
unsigned int index,
|
|
C_STRUCT aiString* path,
|
|
aiTextureMapping* _mapping /*= NULL*/,
|
|
unsigned int* uvindex /*= NULL*/,
|
|
float* blend /*= NULL*/,
|
|
aiTextureOp* op /*= NULL*/,
|
|
aiTextureMapMode* mapmode /*= NULL*/,
|
|
unsigned int* flags /*= NULL*/
|
|
)
|
|
{
|
|
ai_assert(NULL != mat && NULL != path);
|
|
|
|
// Get the path to the texture
|
|
if (AI_SUCCESS != aiGetMaterialString(mat,AI_MATKEY_TEXTURE(type,index),path)) {
|
|
return AI_FAILURE;
|
|
}
|
|
// Determine mapping type
|
|
aiTextureMapping mapping = aiTextureMapping_UV;
|
|
aiGetMaterialInteger(mat,AI_MATKEY_MAPPING(type,index),(int*)&mapping);
|
|
if (_mapping)
|
|
*_mapping = mapping;
|
|
|
|
// Get UV index
|
|
if (aiTextureMapping_UV == mapping && uvindex) {
|
|
aiGetMaterialInteger(mat,AI_MATKEY_UVWSRC(type,index),(int*)uvindex);
|
|
}
|
|
// Get blend factor
|
|
if (blend) {
|
|
aiGetMaterialFloat(mat,AI_MATKEY_TEXBLEND(type,index),blend);
|
|
}
|
|
// Get texture operation
|
|
if (op){
|
|
aiGetMaterialInteger(mat,AI_MATKEY_TEXOP(type,index),(int*)op);
|
|
}
|
|
// Get texture mapping modes
|
|
if (mapmode) {
|
|
aiGetMaterialInteger(mat,AI_MATKEY_MAPPINGMODE_U(type,index),(int*)&mapmode[0]);
|
|
aiGetMaterialInteger(mat,AI_MATKEY_MAPPINGMODE_V(type,index),(int*)&mapmode[1]);
|
|
}
|
|
// Get texture flags
|
|
if (flags){
|
|
aiGetMaterialInteger(mat,AI_MATKEY_TEXFLAGS(type,index),(int*)flags);
|
|
}
|
|
return AI_SUCCESS;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Construction. Actually the one and only way to get an aiMaterial instance
|
|
aiMaterial::aiMaterial()
|
|
{
|
|
// Allocate 5 entries by default
|
|
mNumProperties = 0;
|
|
mNumAllocated = 5;
|
|
mProperties = new aiMaterialProperty*[5];
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
aiMaterial::~aiMaterial()
|
|
{
|
|
Clear();
|
|
|
|
delete[] mProperties;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void aiMaterial::Clear()
|
|
{
|
|
for (unsigned int i = 0; i < mNumProperties;++i) {
|
|
// delete this entry
|
|
delete mProperties[i];
|
|
AI_DEBUG_INVALIDATE_PTR(mProperties[i]);
|
|
}
|
|
mNumProperties = 0;
|
|
|
|
// The array remains allocated, we just invalidated its contents
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
aiReturn aiMaterial::RemoveProperty (const char* pKey,unsigned int type,
|
|
unsigned int index
|
|
)
|
|
{
|
|
ai_assert(NULL != pKey);
|
|
|
|
for (unsigned int i = 0; i < mNumProperties;++i) {
|
|
aiMaterialProperty* prop = mProperties[i];
|
|
|
|
if (prop && !strcmp( prop->mKey.data, pKey ) &&
|
|
prop->mSemantic == type && prop->mIndex == index)
|
|
{
|
|
// Delete this entry
|
|
delete mProperties[i];
|
|
|
|
// collapse the array behind --.
|
|
--mNumProperties;
|
|
for (unsigned int a = i; a < mNumProperties;++a) {
|
|
mProperties[a] = mProperties[a+1];
|
|
}
|
|
return AI_SUCCESS;
|
|
}
|
|
}
|
|
|
|
return AI_FAILURE;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
aiReturn aiMaterial::AddBinaryProperty (const void* pInput,
|
|
unsigned int pSizeInBytes,
|
|
const char* pKey,
|
|
unsigned int type,
|
|
unsigned int index,
|
|
aiPropertyTypeInfo pType
|
|
)
|
|
{
|
|
ai_assert (pInput != NULL);
|
|
ai_assert (pKey != NULL);
|
|
ai_assert (0 != pSizeInBytes);
|
|
|
|
// first search the list whether there is already an entry with this key
|
|
unsigned int iOutIndex = UINT_MAX;
|
|
for (unsigned int i = 0; i < mNumProperties;++i) {
|
|
aiMaterialProperty* prop = mProperties[i];
|
|
|
|
if (prop /* just for safety */ && !strcmp( prop->mKey.data, pKey ) &&
|
|
prop->mSemantic == type && prop->mIndex == index){
|
|
|
|
delete mProperties[i];
|
|
iOutIndex = i;
|
|
}
|
|
}
|
|
|
|
// Allocate a new material property
|
|
aiMaterialProperty* pcNew = new aiMaterialProperty();
|
|
|
|
// .. and fill it
|
|
pcNew->mType = pType;
|
|
pcNew->mSemantic = type;
|
|
pcNew->mIndex = index;
|
|
|
|
pcNew->mDataLength = pSizeInBytes;
|
|
pcNew->mData = new char[pSizeInBytes];
|
|
memcpy (pcNew->mData,pInput,pSizeInBytes);
|
|
|
|
pcNew->mKey.length = ::strlen(pKey);
|
|
ai_assert ( MAXLEN > pcNew->mKey.length);
|
|
strcpy( pcNew->mKey.data, pKey );
|
|
|
|
if (UINT_MAX != iOutIndex) {
|
|
mProperties[iOutIndex] = pcNew;
|
|
return AI_SUCCESS;
|
|
}
|
|
|
|
// resize the array ... double the storage allocated
|
|
if (mNumProperties == mNumAllocated) {
|
|
const unsigned int iOld = mNumAllocated;
|
|
mNumAllocated *= 2;
|
|
|
|
aiMaterialProperty** ppTemp;
|
|
try {
|
|
ppTemp = new aiMaterialProperty*[mNumAllocated];
|
|
} catch (std::bad_alloc&) {
|
|
return AI_OUTOFMEMORY;
|
|
}
|
|
|
|
// just copy all items over; then replace the old array
|
|
memcpy (ppTemp,mProperties,iOld * sizeof(void*));
|
|
|
|
delete[] mProperties;
|
|
mProperties = ppTemp;
|
|
}
|
|
// push back ...
|
|
mProperties[mNumProperties++] = pcNew;
|
|
return AI_SUCCESS;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
aiReturn aiMaterial::AddProperty (const aiString* pInput,
|
|
const char* pKey,
|
|
unsigned int type,
|
|
unsigned int index)
|
|
{
|
|
// We don't want to add the whole buffer .. write a 32 bit length
|
|
// prefix followed by the zero-terminated UTF8 string.
|
|
// (HACK) I don't want to break the ABI now, but we definitely
|
|
// ought to change aiString::mLength to uint32_t one day.
|
|
if (sizeof(size_t) == 8) {
|
|
aiString copy = *pInput;
|
|
uint32_t* s = reinterpret_cast<uint32_t*>(©.length);
|
|
s[1] = static_cast<uint32_t>(pInput->length);
|
|
|
|
return AddBinaryProperty(s+1,
|
|
pInput->length+1+4,
|
|
pKey,
|
|
type,
|
|
index,
|
|
aiPTI_String);
|
|
}
|
|
ai_assert(sizeof(size_t)==4);
|
|
return AddBinaryProperty(pInput,
|
|
pInput->length+1+4,
|
|
pKey,
|
|
type,
|
|
index,
|
|
aiPTI_String);
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
uint32_t Assimp :: ComputeMaterialHash(const aiMaterial* mat, bool includeMatName /*= false*/)
|
|
{
|
|
uint32_t hash = 1503; // magic start value, chosen to be my birthday :-)
|
|
for (unsigned int i = 0; i < mat->mNumProperties;++i) {
|
|
aiMaterialProperty* prop;
|
|
|
|
// Exclude all properties whose first character is '?' from the hash
|
|
// See doc for aiMaterialProperty.
|
|
if ((prop = mat->mProperties[i]) && (includeMatName || prop->mKey.data[0] != '?')) {
|
|
|
|
hash = SuperFastHash(prop->mKey.data,(unsigned int)prop->mKey.length,hash);
|
|
hash = SuperFastHash(prop->mData,prop->mDataLength,hash);
|
|
|
|
// Combine the semantic and the index with the hash
|
|
hash = SuperFastHash((const char*)&prop->mSemantic,sizeof(unsigned int),hash);
|
|
hash = SuperFastHash((const char*)&prop->mIndex,sizeof(unsigned int),hash);
|
|
}
|
|
}
|
|
return hash;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void aiMaterial::CopyPropertyList(aiMaterial* pcDest,
|
|
const aiMaterial* pcSrc
|
|
)
|
|
{
|
|
ai_assert(NULL != pcDest);
|
|
ai_assert(NULL != pcSrc);
|
|
|
|
unsigned int iOldNum = pcDest->mNumProperties;
|
|
pcDest->mNumAllocated += pcSrc->mNumAllocated;
|
|
pcDest->mNumProperties += pcSrc->mNumProperties;
|
|
|
|
aiMaterialProperty** pcOld = pcDest->mProperties;
|
|
pcDest->mProperties = new aiMaterialProperty*[pcDest->mNumAllocated];
|
|
|
|
if (iOldNum && pcOld) {
|
|
for (unsigned int i = 0; i < iOldNum;++i) {
|
|
pcDest->mProperties[i] = pcOld[i];
|
|
}
|
|
|
|
delete[] pcOld;
|
|
}
|
|
for (unsigned int i = iOldNum; i< pcDest->mNumProperties;++i) {
|
|
aiMaterialProperty* propSrc = pcSrc->mProperties[i];
|
|
|
|
// search whether we have already a property with this name -> if yes, overwrite it
|
|
aiMaterialProperty* prop;
|
|
for (unsigned int q = 0; q < iOldNum;++q) {
|
|
prop = pcDest->mProperties[q];
|
|
if (prop /* just for safety */ && prop->mKey == propSrc->mKey && prop->mSemantic == propSrc->mSemantic
|
|
&& prop->mIndex == propSrc->mIndex) {
|
|
delete prop;
|
|
|
|
// collapse the whole array ...
|
|
memmove(&pcDest->mProperties[q],&pcDest->mProperties[q+1],i-q);
|
|
i--;
|
|
pcDest->mNumProperties--;
|
|
}
|
|
}
|
|
|
|
// Allocate the output property and copy the source property
|
|
prop = pcDest->mProperties[i] = new aiMaterialProperty();
|
|
prop->mKey = propSrc->mKey;
|
|
prop->mDataLength = propSrc->mDataLength;
|
|
prop->mType = propSrc->mType;
|
|
prop->mSemantic = propSrc->mSemantic;
|
|
prop->mIndex = propSrc->mIndex;
|
|
|
|
prop->mData = new char[propSrc->mDataLength];
|
|
memcpy(prop->mData,propSrc->mData,prop->mDataLength);
|
|
}
|
|
return;
|
|
}
|
|
|