223 lines
7.6 KiB
C++
223 lines
7.6 KiB
C++
/*
|
|
Open Asset Import Library (assimp)
|
|
----------------------------------------------------------------------
|
|
|
|
Copyright (c) 2006-2012, assimp team
|
|
All rights reserved.
|
|
|
|
Redistribution and use of this software in source and binary forms,
|
|
with or without modification, are permitted provided that the
|
|
following conditions are met:
|
|
|
|
* Redistributions of source code must retain the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer in the documentation and/or other
|
|
materials provided with the distribution.
|
|
|
|
* Neither the name of the assimp team, nor the names of its
|
|
contributors may be used to endorse or promote products
|
|
derived from this software without specific prior
|
|
written permission of the assimp team.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
----------------------------------------------------------------------
|
|
*/
|
|
|
|
/** @file PolyTools.h, various utilities for our dealings with arbitrary polygons */
|
|
|
|
#ifndef AI_POLYTOOLS_H_INCLUDED
|
|
#define AI_POLYTOOLS_H_INCLUDED
|
|
|
|
namespace Assimp {
|
|
|
|
// -------------------------------------------------------------------------------
|
|
/** Compute the signed area of a triangle.
|
|
* The function accepts an unconstrained template parameter for use with
|
|
* both aiVector3D and aiVector2D, but generally ignores the third coordinate.*/
|
|
template <typename T>
|
|
inline double GetArea2D(const T& v1, const T& v2, const T& v3)
|
|
{
|
|
return 0.5 * (v1.x * ((double)v3.y - v2.y) + v2.x * ((double)v1.y - v3.y) + v3.x * ((double)v2.y - v1.y));
|
|
}
|
|
|
|
// -------------------------------------------------------------------------------
|
|
/** Test if a given point p2 is on the left side of the line formed by p0-p1.
|
|
* The function accepts an unconstrained template parameter for use with
|
|
* both aiVector3D and aiVector2D, but generally ignores the third coordinate.*/
|
|
template <typename T>
|
|
inline bool OnLeftSideOfLine2D(const T& p0, const T& p1,const T& p2)
|
|
{
|
|
return GetArea2D(p0,p2,p1) > 0;
|
|
}
|
|
|
|
// -------------------------------------------------------------------------------
|
|
/** Test if a given point is inside a given triangle in R2.
|
|
* The function accepts an unconstrained template parameter for use with
|
|
* both aiVector3D and aiVector2D, but generally ignores the third coordinate.*/
|
|
template <typename T>
|
|
inline bool PointInTriangle2D(const T& p0, const T& p1,const T& p2, const T& pp)
|
|
{
|
|
// Point in triangle test using baryzentric coordinates
|
|
const aiVector2D v0 = p1 - p0;
|
|
const aiVector2D v1 = p2 - p0;
|
|
const aiVector2D v2 = pp - p0;
|
|
|
|
double dot00 = v0 * v0;
|
|
double dot01 = v0 * v1;
|
|
double dot02 = v0 * v2;
|
|
double dot11 = v1 * v1;
|
|
double dot12 = v1 * v2;
|
|
|
|
const double invDenom = 1 / (dot00 * dot11 - dot01 * dot01);
|
|
dot11 = (dot11 * dot02 - dot01 * dot12) * invDenom;
|
|
dot00 = (dot00 * dot12 - dot01 * dot02) * invDenom;
|
|
|
|
return (dot11 > 0) && (dot00 > 0) && (dot11 + dot00 < 1);
|
|
}
|
|
|
|
|
|
// -------------------------------------------------------------------------------
|
|
/** Check whether the winding order of a given polygon is counter-clockwise.
|
|
* The function accepts an unconstrained template parameter, but is intended
|
|
* to be used only with aiVector2D and aiVector3D (z axis is ignored, only
|
|
* x and y are taken into account).
|
|
* @note Code taken from http://cgm.cs.mcgill.ca/~godfried/teaching/cg-projects/97/Ian/applet1.html and translated to C++
|
|
*/
|
|
template <typename T>
|
|
inline bool IsCCW(T* in, size_t npoints) {
|
|
double aa, bb, cc, b, c, theta;
|
|
double convex_turn;
|
|
double convex_sum = 0;
|
|
|
|
for (int i = 0; i < npoints - 2; i++) {
|
|
aa = ((in[i+2].x - in[i].x) * (in[i+2].x - in[i].x)) +
|
|
((-in[i+2].y + in[i].y) * (-in[i+2].y + in[i].y));
|
|
|
|
bb = ((in[i+1].x - in[i].x) * (in[i+1].x - in[i].x)) +
|
|
((-in[i+1].y + in[i].y) * (-in[i+1].y + in[i].y));
|
|
|
|
cc = ((in[i+2].x - in[i+1].x) *
|
|
(in[i+2].x - in[i+1].x)) +
|
|
((-in[i+2].y + in[i+1].y) *
|
|
(-in[i+2].y + in[i+1].y));
|
|
|
|
b = sqrt(bb);
|
|
c = sqrt(cc);
|
|
theta = acos((bb + cc - aa) / (2 * b * c));
|
|
|
|
if (OnLeftSideOfLine2D(in[i],in[i+2],in[i+1])) {
|
|
// if (convex(in[i].x, in[i].y,
|
|
// in[i+1].x, in[i+1].y,
|
|
// in[i+2].x, in[i+2].y)) {
|
|
convex_turn = AI_MATH_PI_F - theta;
|
|
convex_sum += convex_turn;
|
|
}
|
|
else {
|
|
convex_sum -= AI_MATH_PI_F - theta;
|
|
}
|
|
}
|
|
aa = ((in[1].x - in[npoints-2].x) *
|
|
(in[1].x - in[npoints-2].x)) +
|
|
((-in[1].y + in[npoints-2].y) *
|
|
(-in[1].y + in[npoints-2].y));
|
|
|
|
bb = ((in[0].x - in[npoints-2].x) *
|
|
(in[0].x - in[npoints-2].x)) +
|
|
((-in[0].y + in[npoints-2].y) *
|
|
(-in[0].y + in[npoints-2].y));
|
|
|
|
cc = ((in[1].x - in[0].x) * (in[1].x - in[0].x)) +
|
|
((-in[1].y + in[0].y) * (-in[1].y + in[0].y));
|
|
|
|
b = sqrt(bb);
|
|
c = sqrt(cc);
|
|
theta = acos((bb + cc - aa) / (2 * b * c));
|
|
|
|
//if (convex(in[npoints-2].x, in[npoints-2].y,
|
|
// in[0].x, in[0].y,
|
|
// in[1].x, in[1].y)) {
|
|
if (OnLeftSideOfLine2D(in[npoints-2],in[1],in[0])) {
|
|
convex_turn = AI_MATH_PI_F - theta;
|
|
convex_sum += convex_turn;
|
|
}
|
|
else {
|
|
convex_sum -= AI_MATH_PI_F - theta;
|
|
}
|
|
|
|
return convex_sum >= (2 * AI_MATH_PI_F);
|
|
}
|
|
|
|
|
|
// -------------------------------------------------------------------------------
|
|
/** Compute the normal of an arbitrary polygon in R3.
|
|
*
|
|
* The code is based on Newell's formula, that is a polygons normal is the ratio
|
|
* of its area when projected onto the three coordinate axes.
|
|
*
|
|
* @param out Receives the output normal
|
|
* @param num Number of input vertices
|
|
* @param x X data source. x[ofs_x*n] is the n'th element.
|
|
* @param y Y data source. y[ofs_y*n] is the y'th element
|
|
* @param z Z data source. z[ofs_z*n] is the z'th element
|
|
*
|
|
* @note The data arrays must have storage for at least num+2 elements. Using
|
|
* this method is much faster than the 'other' NewellNormal()
|
|
*/
|
|
template <int ofs_x, int ofs_y, int ofs_z, typename TReal>
|
|
inline void NewellNormal (aiVector3t<TReal>& out, int num, TReal* x, TReal* y, TReal* z)
|
|
{
|
|
// Duplicate the first two vertices at the end
|
|
x[(num+0)*ofs_x] = x[0];
|
|
x[(num+1)*ofs_x] = x[ofs_x];
|
|
|
|
y[(num+0)*ofs_y] = y[0];
|
|
y[(num+1)*ofs_y] = y[ofs_y];
|
|
|
|
z[(num+0)*ofs_z] = z[0];
|
|
z[(num+1)*ofs_z] = z[ofs_z];
|
|
|
|
TReal sum_xy = 0.0, sum_yz = 0.0, sum_zx = 0.0;
|
|
|
|
TReal *xptr = x +ofs_x, *xlow = x, *xhigh = x + ofs_x*2;
|
|
TReal *yptr = y +ofs_y, *ylow = y, *yhigh = y + ofs_y*2;
|
|
TReal *zptr = z +ofs_z, *zlow = z, *zhigh = z + ofs_z*2;
|
|
|
|
for (int tmp=0; tmp < num; tmp++) {
|
|
sum_xy += (*xptr) * ( (*yhigh) - (*ylow) );
|
|
sum_yz += (*yptr) * ( (*zhigh) - (*zlow) );
|
|
sum_zx += (*zptr) * ( (*xhigh) - (*xlow) );
|
|
|
|
xptr += ofs_x;
|
|
xlow += ofs_x;
|
|
xhigh += ofs_x;
|
|
|
|
yptr += ofs_y;
|
|
ylow += ofs_y;
|
|
yhigh += ofs_y;
|
|
|
|
zptr += ofs_z;
|
|
zlow += ofs_z;
|
|
zhigh += ofs_z;
|
|
}
|
|
out = aiVector3t<TReal>(sum_yz,sum_zx,sum_xy);
|
|
}
|
|
|
|
} // ! Assimp
|
|
|
|
#endif
|