1266 lines
47 KiB
C++
1266 lines
47 KiB
C++
/*
|
|
Open Asset Import Library (assimp)
|
|
----------------------------------------------------------------------
|
|
|
|
Copyright (c) 2006-2019, assimp team
|
|
|
|
|
|
All rights reserved.
|
|
|
|
Redistribution and use of this software in source and binary forms,
|
|
with or without modification, are permitted provided that the
|
|
following conditions are met:
|
|
|
|
* Redistributions of source code must retain the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer in the documentation and/or other
|
|
materials provided with the distribution.
|
|
|
|
* Neither the name of the assimp team, nor the names of its
|
|
contributors may be used to endorse or promote products
|
|
derived from this software without specific prior
|
|
written permission of the assimp team.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
----------------------------------------------------------------------
|
|
*/
|
|
|
|
#ifndef ASSIMP_BUILD_NO_GLTF_IMPORTER
|
|
|
|
#include "glTF2/glTF2Importer.h"
|
|
#include "glTF2/glTF2Asset.h"
|
|
#include "glTF2/glTF2AssetWriter.h"
|
|
#include "PostProcessing/MakeVerboseFormat.h"
|
|
|
|
#include <assimp/StringComparison.h>
|
|
#include <assimp/StringUtils.h>
|
|
#include <assimp/Importer.hpp>
|
|
#include <assimp/scene.h>
|
|
#include <assimp/ai_assert.h>
|
|
#include <assimp/DefaultLogger.hpp>
|
|
#include <assimp/importerdesc.h>
|
|
#include <assimp/CreateAnimMesh.h>
|
|
|
|
#include <memory>
|
|
#include <unordered_map>
|
|
|
|
#include <rapidjson/document.h>
|
|
#include <rapidjson/rapidjson.h>
|
|
|
|
using namespace Assimp;
|
|
using namespace glTF2;
|
|
using namespace glTFCommon;
|
|
|
|
namespace {
|
|
// generate bi-tangents from normals and tangents according to spec
|
|
struct Tangent {
|
|
aiVector3D xyz;
|
|
ai_real w;
|
|
};
|
|
} // namespace
|
|
|
|
//
|
|
// glTF2Importer
|
|
//
|
|
|
|
static const aiImporterDesc desc = {
|
|
"glTF2 Importer",
|
|
"",
|
|
"",
|
|
"",
|
|
aiImporterFlags_SupportTextFlavour | aiImporterFlags_SupportBinaryFlavour | aiImporterFlags_LimitedSupport | aiImporterFlags_Experimental,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
"gltf glb"
|
|
};
|
|
|
|
glTF2Importer::glTF2Importer()
|
|
: BaseImporter()
|
|
, meshOffsets()
|
|
, embeddedTexIdxs()
|
|
, mScene( NULL ) {
|
|
// empty
|
|
}
|
|
|
|
glTF2Importer::~glTF2Importer() {
|
|
// empty
|
|
}
|
|
|
|
const aiImporterDesc* glTF2Importer::GetInfo() const
|
|
{
|
|
return &desc;
|
|
}
|
|
|
|
bool glTF2Importer::CanRead(const std::string& pFile, IOSystem* pIOHandler, bool /* checkSig */) const
|
|
{
|
|
const std::string &extension = GetExtension(pFile);
|
|
|
|
if (extension != "gltf" && extension != "glb")
|
|
return false;
|
|
|
|
if (pIOHandler) {
|
|
glTF2::Asset asset(pIOHandler);
|
|
asset.Load(pFile, extension == "glb");
|
|
std::string version = asset.asset.version;
|
|
return !version.empty() && version[0] == '2';
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static aiTextureMapMode ConvertWrappingMode(SamplerWrap gltfWrapMode)
|
|
{
|
|
switch (gltfWrapMode) {
|
|
case SamplerWrap::Mirrored_Repeat:
|
|
return aiTextureMapMode_Mirror;
|
|
|
|
case SamplerWrap::Clamp_To_Edge:
|
|
return aiTextureMapMode_Clamp;
|
|
|
|
case SamplerWrap::UNSET:
|
|
case SamplerWrap::Repeat:
|
|
default:
|
|
return aiTextureMapMode_Wrap;
|
|
}
|
|
}
|
|
|
|
/*static void CopyValue(const glTF2::vec3& v, aiColor3D& out)
|
|
{
|
|
out.r = v[0]; out.g = v[1]; out.b = v[2];
|
|
}
|
|
|
|
|
|
static void CopyValue(const glTF2::vec4& v, aiColor4D& out)
|
|
{
|
|
out.r = v[0]; out.g = v[1]; out.b = v[2]; out.a = v[3];
|
|
}*/
|
|
|
|
/*static void CopyValue(const glTF2::vec4& v, aiColor3D& out)
|
|
{
|
|
out.r = v[0]; out.g = v[1]; out.b = v[2];
|
|
}*/
|
|
|
|
/*static void CopyValue(const glTF2::vec3& v, aiColor4D& out)
|
|
{
|
|
out.r = v[0]; out.g = v[1]; out.b = v[2]; out.a = 1.0;
|
|
}
|
|
|
|
static void CopyValue(const glTF2::vec3& v, aiVector3D& out)
|
|
{
|
|
out.x = v[0]; out.y = v[1]; out.z = v[2];
|
|
}
|
|
|
|
static void CopyValue(const glTF2::vec4& v, aiQuaternion& out)
|
|
{
|
|
out.x = v[0]; out.y = v[1]; out.z = v[2]; out.w = v[3];
|
|
}*/
|
|
|
|
/*static void CopyValue(const glTF2::mat4& v, aiMatrix4x4& o)
|
|
{
|
|
o.a1 = v[ 0]; o.b1 = v[ 1]; o.c1 = v[ 2]; o.d1 = v[ 3];
|
|
o.a2 = v[ 4]; o.b2 = v[ 5]; o.c2 = v[ 6]; o.d2 = v[ 7];
|
|
o.a3 = v[ 8]; o.b3 = v[ 9]; o.c3 = v[10]; o.d3 = v[11];
|
|
o.a4 = v[12]; o.b4 = v[13]; o.c4 = v[14]; o.d4 = v[15];
|
|
}*/
|
|
|
|
inline void SetMaterialColorProperty(Asset& /*r*/, vec4& prop, aiMaterial* mat, const char* pKey, unsigned int type, unsigned int idx)
|
|
{
|
|
aiColor4D col;
|
|
CopyValue(prop, col);
|
|
mat->AddProperty(&col, 1, pKey, type, idx);
|
|
}
|
|
|
|
inline void SetMaterialColorProperty(Asset& /*r*/, vec3& prop, aiMaterial* mat, const char* pKey, unsigned int type, unsigned int idx)
|
|
{
|
|
aiColor4D col;
|
|
glTFCommon::CopyValue(prop, col);
|
|
mat->AddProperty(&col, 1, pKey, type, idx);
|
|
}
|
|
|
|
inline void SetMaterialTextureProperty(std::vector<int>& embeddedTexIdxs, Asset& /*r*/, glTF2::TextureInfo prop, aiMaterial* mat, aiTextureType texType, unsigned int texSlot = 0)
|
|
{
|
|
if (prop.texture && prop.texture->source) {
|
|
aiString uri(prop.texture->source->uri);
|
|
|
|
int texIdx = embeddedTexIdxs[prop.texture->source.GetIndex()];
|
|
if (texIdx != -1) { // embedded
|
|
// setup texture reference string (copied from ColladaLoader::FindFilenameForEffectTexture)
|
|
uri.data[0] = '*';
|
|
uri.length = 1 + ASSIMP_itoa10(uri.data + 1, MAXLEN - 1, texIdx);
|
|
}
|
|
|
|
mat->AddProperty(&uri, AI_MATKEY_TEXTURE(texType, texSlot));
|
|
mat->AddProperty(&prop.texCoord, 1, _AI_MATKEY_GLTF_TEXTURE_TEXCOORD_BASE, texType, texSlot);
|
|
|
|
if (prop.texture->sampler) {
|
|
Ref<Sampler> sampler = prop.texture->sampler;
|
|
|
|
aiString name(sampler->name);
|
|
aiString id(sampler->id);
|
|
|
|
mat->AddProperty(&name, AI_MATKEY_GLTF_MAPPINGNAME(texType, texSlot));
|
|
mat->AddProperty(&id, AI_MATKEY_GLTF_MAPPINGID(texType, texSlot));
|
|
|
|
aiTextureMapMode wrapS = ConvertWrappingMode(sampler->wrapS);
|
|
aiTextureMapMode wrapT = ConvertWrappingMode(sampler->wrapT);
|
|
mat->AddProperty(&wrapS, 1, AI_MATKEY_MAPPINGMODE_U(texType, texSlot));
|
|
mat->AddProperty(&wrapT, 1, AI_MATKEY_MAPPINGMODE_V(texType, texSlot));
|
|
|
|
if (sampler->magFilter != SamplerMagFilter::UNSET) {
|
|
mat->AddProperty(&sampler->magFilter, 1, AI_MATKEY_GLTF_MAPPINGFILTER_MAG(texType, texSlot));
|
|
}
|
|
|
|
if (sampler->minFilter != SamplerMinFilter::UNSET) {
|
|
mat->AddProperty(&sampler->minFilter, 1, AI_MATKEY_GLTF_MAPPINGFILTER_MIN(texType, texSlot));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
inline void SetMaterialTextureProperty(std::vector<int>& embeddedTexIdxs, Asset& r, glTF2::NormalTextureInfo& prop, aiMaterial* mat, aiTextureType texType, unsigned int texSlot = 0)
|
|
{
|
|
SetMaterialTextureProperty( embeddedTexIdxs, r, (glTF2::TextureInfo) prop, mat, texType, texSlot );
|
|
|
|
if (prop.texture && prop.texture->source) {
|
|
mat->AddProperty(&prop.scale, 1, AI_MATKEY_GLTF_TEXTURE_SCALE(texType, texSlot));
|
|
}
|
|
}
|
|
|
|
inline void SetMaterialTextureProperty(std::vector<int>& embeddedTexIdxs, Asset& r, glTF2::OcclusionTextureInfo& prop, aiMaterial* mat, aiTextureType texType, unsigned int texSlot = 0)
|
|
{
|
|
SetMaterialTextureProperty( embeddedTexIdxs, r, (glTF2::TextureInfo) prop, mat, texType, texSlot );
|
|
|
|
if (prop.texture && prop.texture->source) {
|
|
mat->AddProperty(&prop.strength, 1, AI_MATKEY_GLTF_TEXTURE_STRENGTH(texType, texSlot));
|
|
}
|
|
}
|
|
|
|
static aiMaterial* ImportMaterial(std::vector<int>& embeddedTexIdxs, Asset& r, Material& mat)
|
|
{
|
|
aiMaterial* aimat = new aiMaterial();
|
|
|
|
if (!mat.name.empty()) {
|
|
aiString str(mat.name);
|
|
|
|
aimat->AddProperty(&str, AI_MATKEY_NAME);
|
|
}
|
|
|
|
SetMaterialColorProperty(r, mat.pbrMetallicRoughness.baseColorFactor, aimat, AI_MATKEY_COLOR_DIFFUSE);
|
|
SetMaterialColorProperty(r, mat.pbrMetallicRoughness.baseColorFactor, aimat, AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_BASE_COLOR_FACTOR);
|
|
|
|
SetMaterialTextureProperty(embeddedTexIdxs, r, mat.pbrMetallicRoughness.baseColorTexture, aimat, aiTextureType_DIFFUSE);
|
|
SetMaterialTextureProperty(embeddedTexIdxs, r, mat.pbrMetallicRoughness.baseColorTexture, aimat, AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_BASE_COLOR_TEXTURE);
|
|
|
|
SetMaterialTextureProperty(embeddedTexIdxs, r, mat.pbrMetallicRoughness.metallicRoughnessTexture, aimat, AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_METALLICROUGHNESS_TEXTURE);
|
|
|
|
aimat->AddProperty(&mat.pbrMetallicRoughness.metallicFactor, 1, AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_METALLIC_FACTOR);
|
|
aimat->AddProperty(&mat.pbrMetallicRoughness.roughnessFactor, 1, AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_ROUGHNESS_FACTOR);
|
|
|
|
float roughnessAsShininess = 1 - mat.pbrMetallicRoughness.roughnessFactor;
|
|
roughnessAsShininess *= roughnessAsShininess * 1000;
|
|
aimat->AddProperty(&roughnessAsShininess, 1, AI_MATKEY_SHININESS);
|
|
|
|
SetMaterialTextureProperty(embeddedTexIdxs, r, mat.normalTexture, aimat, aiTextureType_NORMALS);
|
|
SetMaterialTextureProperty(embeddedTexIdxs, r, mat.occlusionTexture, aimat, aiTextureType_LIGHTMAP);
|
|
SetMaterialTextureProperty(embeddedTexIdxs, r, mat.emissiveTexture, aimat, aiTextureType_EMISSIVE);
|
|
SetMaterialColorProperty(r, mat.emissiveFactor, aimat, AI_MATKEY_COLOR_EMISSIVE);
|
|
|
|
aimat->AddProperty(&mat.doubleSided, 1, AI_MATKEY_TWOSIDED);
|
|
|
|
aiString alphaMode(mat.alphaMode);
|
|
aimat->AddProperty(&alphaMode, AI_MATKEY_GLTF_ALPHAMODE);
|
|
aimat->AddProperty(&mat.alphaCutoff, 1, AI_MATKEY_GLTF_ALPHACUTOFF);
|
|
|
|
//pbrSpecularGlossiness
|
|
if (mat.pbrSpecularGlossiness.isPresent) {
|
|
PbrSpecularGlossiness &pbrSG = mat.pbrSpecularGlossiness.value;
|
|
|
|
aimat->AddProperty(&mat.pbrSpecularGlossiness.isPresent, 1, AI_MATKEY_GLTF_PBRSPECULARGLOSSINESS);
|
|
SetMaterialColorProperty(r, pbrSG.diffuseFactor, aimat, AI_MATKEY_COLOR_DIFFUSE);
|
|
SetMaterialColorProperty(r, pbrSG.specularFactor, aimat, AI_MATKEY_COLOR_SPECULAR);
|
|
|
|
float glossinessAsShininess = pbrSG.glossinessFactor * 1000.0f;
|
|
aimat->AddProperty(&glossinessAsShininess, 1, AI_MATKEY_SHININESS);
|
|
aimat->AddProperty(&pbrSG.glossinessFactor, 1, AI_MATKEY_GLTF_PBRSPECULARGLOSSINESS_GLOSSINESS_FACTOR);
|
|
|
|
SetMaterialTextureProperty(embeddedTexIdxs, r, pbrSG.diffuseTexture, aimat, aiTextureType_DIFFUSE);
|
|
|
|
SetMaterialTextureProperty(embeddedTexIdxs, r, pbrSG.specularGlossinessTexture, aimat, aiTextureType_SPECULAR);
|
|
}
|
|
if (mat.unlit) {
|
|
aimat->AddProperty(&mat.unlit, 1, AI_MATKEY_GLTF_UNLIT);
|
|
}
|
|
|
|
return aimat;
|
|
}
|
|
|
|
void glTF2Importer::ImportMaterials(glTF2::Asset& r)
|
|
{
|
|
const unsigned int numImportedMaterials = unsigned(r.materials.Size());
|
|
Material defaultMaterial;
|
|
|
|
mScene->mNumMaterials = numImportedMaterials + 1;
|
|
mScene->mMaterials = new aiMaterial*[mScene->mNumMaterials];
|
|
mScene->mMaterials[numImportedMaterials] = ImportMaterial(embeddedTexIdxs, r, defaultMaterial);
|
|
|
|
for (unsigned int i = 0; i < numImportedMaterials; ++i) {
|
|
mScene->mMaterials[i] = ImportMaterial(embeddedTexIdxs, r, r.materials[i]);
|
|
}
|
|
}
|
|
|
|
|
|
static inline void SetFace(aiFace& face, int a)
|
|
{
|
|
face.mNumIndices = 1;
|
|
face.mIndices = new unsigned int[1];
|
|
face.mIndices[0] = a;
|
|
}
|
|
|
|
static inline void SetFace(aiFace& face, int a, int b)
|
|
{
|
|
face.mNumIndices = 2;
|
|
face.mIndices = new unsigned int[2];
|
|
face.mIndices[0] = a;
|
|
face.mIndices[1] = b;
|
|
}
|
|
|
|
static inline void SetFace(aiFace& face, int a, int b, int c)
|
|
{
|
|
face.mNumIndices = 3;
|
|
face.mIndices = new unsigned int[3];
|
|
face.mIndices[0] = a;
|
|
face.mIndices[1] = b;
|
|
face.mIndices[2] = c;
|
|
}
|
|
|
|
#ifdef ASSIMP_BUILD_DEBUG
|
|
static inline bool CheckValidFacesIndices(aiFace* faces, unsigned nFaces, unsigned nVerts)
|
|
{
|
|
for (unsigned i = 0; i < nFaces; ++i) {
|
|
for (unsigned j = 0; j < faces[i].mNumIndices; ++j) {
|
|
unsigned idx = faces[i].mIndices[j];
|
|
if (idx >= nVerts)
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
#endif // ASSIMP_BUILD_DEBUG
|
|
|
|
void glTF2Importer::ImportMeshes(glTF2::Asset& r)
|
|
{
|
|
std::vector<aiMesh*> meshes;
|
|
|
|
unsigned int k = 0;
|
|
|
|
for (unsigned int m = 0; m < r.meshes.Size(); ++m) {
|
|
Mesh& mesh = r.meshes[m];
|
|
|
|
meshOffsets.push_back(k);
|
|
k += unsigned(mesh.primitives.size());
|
|
|
|
for (unsigned int p = 0; p < mesh.primitives.size(); ++p) {
|
|
Mesh::Primitive& prim = mesh.primitives[p];
|
|
|
|
aiMesh* aim = new aiMesh();
|
|
meshes.push_back(aim);
|
|
|
|
aim->mName = mesh.name.empty() ? mesh.id : mesh.name;
|
|
|
|
if (mesh.primitives.size() > 1) {
|
|
ai_uint32& len = aim->mName.length;
|
|
aim->mName.data[len] = '-';
|
|
len += 1 + ASSIMP_itoa10(aim->mName.data + len + 1, unsigned(MAXLEN - len - 1), p);
|
|
}
|
|
|
|
switch (prim.mode) {
|
|
case PrimitiveMode_POINTS:
|
|
aim->mPrimitiveTypes |= aiPrimitiveType_POINT;
|
|
break;
|
|
|
|
case PrimitiveMode_LINES:
|
|
case PrimitiveMode_LINE_LOOP:
|
|
case PrimitiveMode_LINE_STRIP:
|
|
aim->mPrimitiveTypes |= aiPrimitiveType_LINE;
|
|
break;
|
|
|
|
case PrimitiveMode_TRIANGLES:
|
|
case PrimitiveMode_TRIANGLE_STRIP:
|
|
case PrimitiveMode_TRIANGLE_FAN:
|
|
aim->mPrimitiveTypes |= aiPrimitiveType_TRIANGLE;
|
|
break;
|
|
|
|
}
|
|
|
|
Mesh::Primitive::Attributes& attr = prim.attributes;
|
|
|
|
if (attr.position.size() > 0 && attr.position[0]) {
|
|
aim->mNumVertices = static_cast<unsigned int>(attr.position[0]->count);
|
|
attr.position[0]->ExtractData(aim->mVertices);
|
|
}
|
|
|
|
if (attr.normal.size() > 0 && attr.normal[0]) {
|
|
attr.normal[0]->ExtractData(aim->mNormals);
|
|
|
|
// only extract tangents if normals are present
|
|
if (attr.tangent.size() > 0 && attr.tangent[0]) {
|
|
// generate bitangents from normals and tangents according to spec
|
|
Tangent *tangents = nullptr;
|
|
|
|
attr.tangent[0]->ExtractData(tangents);
|
|
|
|
aim->mTangents = new aiVector3D[aim->mNumVertices];
|
|
aim->mBitangents = new aiVector3D[aim->mNumVertices];
|
|
|
|
for (unsigned int i = 0; i < aim->mNumVertices; ++i) {
|
|
aim->mTangents[i] = tangents[i].xyz;
|
|
aim->mBitangents[i] = (aim->mNormals[i] ^ tangents[i].xyz) * tangents[i].w;
|
|
}
|
|
|
|
delete [] tangents;
|
|
}
|
|
}
|
|
|
|
for (size_t c = 0; c < attr.color.size() && c < AI_MAX_NUMBER_OF_COLOR_SETS; ++c) {
|
|
if (attr.color[c]->count != aim->mNumVertices) {
|
|
DefaultLogger::get()->warn("Color stream size in mesh \"" + mesh.name +
|
|
"\" does not match the vertex count");
|
|
continue;
|
|
}
|
|
attr.color[c]->ExtractData(aim->mColors[c]);
|
|
}
|
|
for (size_t tc = 0; tc < attr.texcoord.size() && tc < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++tc) {
|
|
if (attr.texcoord[tc]->count != aim->mNumVertices) {
|
|
DefaultLogger::get()->warn("Texcoord stream size in mesh \"" + mesh.name +
|
|
"\" does not match the vertex count");
|
|
continue;
|
|
}
|
|
|
|
attr.texcoord[tc]->ExtractData(aim->mTextureCoords[tc]);
|
|
aim->mNumUVComponents[tc] = attr.texcoord[tc]->GetNumComponents();
|
|
|
|
aiVector3D* values = aim->mTextureCoords[tc];
|
|
for (unsigned int i = 0; i < aim->mNumVertices; ++i) {
|
|
values[i].y = 1 - values[i].y; // Flip Y coords
|
|
}
|
|
}
|
|
|
|
std::vector<Mesh::Primitive::Target>& targets = prim.targets;
|
|
if (targets.size() > 0) {
|
|
aim->mNumAnimMeshes = (unsigned int)targets.size();
|
|
aim->mAnimMeshes = new aiAnimMesh*[aim->mNumAnimMeshes];
|
|
for (size_t i = 0; i < targets.size(); i++) {
|
|
aim->mAnimMeshes[i] = aiCreateAnimMesh(aim);
|
|
aiAnimMesh& aiAnimMesh = *(aim->mAnimMeshes[i]);
|
|
Mesh::Primitive::Target& target = targets[i];
|
|
|
|
if (target.position.size() > 0) {
|
|
aiVector3D *positionDiff = nullptr;
|
|
target.position[0]->ExtractData(positionDiff);
|
|
for(unsigned int vertexId = 0; vertexId < aim->mNumVertices; vertexId++) {
|
|
aiAnimMesh.mVertices[vertexId] += positionDiff[vertexId];
|
|
}
|
|
delete [] positionDiff;
|
|
}
|
|
if (target.normal.size() > 0) {
|
|
aiVector3D *normalDiff = nullptr;
|
|
target.normal[0]->ExtractData(normalDiff);
|
|
for(unsigned int vertexId = 0; vertexId < aim->mNumVertices; vertexId++) {
|
|
aiAnimMesh.mNormals[vertexId] += normalDiff[vertexId];
|
|
}
|
|
delete [] normalDiff;
|
|
}
|
|
if (target.tangent.size() > 0) {
|
|
Tangent *tangent = nullptr;
|
|
attr.tangent[0]->ExtractData(tangent);
|
|
|
|
aiVector3D *tangentDiff = nullptr;
|
|
target.tangent[0]->ExtractData(tangentDiff);
|
|
|
|
for (unsigned int vertexId = 0; vertexId < aim->mNumVertices; ++vertexId) {
|
|
tangent[vertexId].xyz += tangentDiff[vertexId];
|
|
aiAnimMesh.mTangents[vertexId] = tangent[vertexId].xyz;
|
|
aiAnimMesh.mBitangents[vertexId] = (aiAnimMesh.mNormals[vertexId] ^ tangent[vertexId].xyz) * tangent[vertexId].w;
|
|
}
|
|
delete [] tangent;
|
|
delete [] tangentDiff;
|
|
}
|
|
if (mesh.weights.size() > i) {
|
|
aiAnimMesh.mWeight = mesh.weights[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
aiFace* faces = 0;
|
|
size_t nFaces = 0;
|
|
|
|
if (prim.indices) {
|
|
size_t count = prim.indices->count;
|
|
|
|
Accessor::Indexer data = prim.indices->GetIndexer();
|
|
ai_assert(data.IsValid());
|
|
|
|
switch (prim.mode) {
|
|
case PrimitiveMode_POINTS: {
|
|
nFaces = count;
|
|
faces = new aiFace[nFaces];
|
|
for (unsigned int i = 0; i < count; ++i) {
|
|
SetFace(faces[i], data.GetUInt(i));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case PrimitiveMode_LINES: {
|
|
nFaces = count / 2;
|
|
faces = new aiFace[nFaces];
|
|
for (unsigned int i = 0; i < count; i += 2) {
|
|
SetFace(faces[i / 2], data.GetUInt(i), data.GetUInt(i + 1));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case PrimitiveMode_LINE_LOOP:
|
|
case PrimitiveMode_LINE_STRIP: {
|
|
nFaces = count - ((prim.mode == PrimitiveMode_LINE_STRIP) ? 1 : 0);
|
|
faces = new aiFace[nFaces];
|
|
SetFace(faces[0], data.GetUInt(0), data.GetUInt(1));
|
|
for (unsigned int i = 2; i < count; ++i) {
|
|
SetFace(faces[i - 1], faces[i - 2].mIndices[1], data.GetUInt(i));
|
|
}
|
|
if (prim.mode == PrimitiveMode_LINE_LOOP) { // close the loop
|
|
SetFace(faces[count - 1], faces[count - 2].mIndices[1], faces[0].mIndices[0]);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case PrimitiveMode_TRIANGLES: {
|
|
nFaces = count / 3;
|
|
faces = new aiFace[nFaces];
|
|
for (unsigned int i = 0; i < count; i += 3) {
|
|
SetFace(faces[i / 3], data.GetUInt(i), data.GetUInt(i + 1), data.GetUInt(i + 2));
|
|
}
|
|
break;
|
|
}
|
|
case PrimitiveMode_TRIANGLE_STRIP: {
|
|
nFaces = count - 2;
|
|
faces = new aiFace[nFaces];
|
|
for (unsigned int i = 0; i < nFaces; ++i) {
|
|
//The ordering is to ensure that the triangles are all drawn with the same orientation
|
|
if ((i + 1) % 2 == 0)
|
|
{
|
|
//For even n, vertices n + 1, n, and n + 2 define triangle n
|
|
SetFace(faces[i], data.GetUInt(i + 1), data.GetUInt(i), data.GetUInt(i + 2));
|
|
}
|
|
else
|
|
{
|
|
//For odd n, vertices n, n+1, and n+2 define triangle n
|
|
SetFace(faces[i], data.GetUInt(i), data.GetUInt(i + 1), data.GetUInt(i + 2));
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case PrimitiveMode_TRIANGLE_FAN:
|
|
nFaces = count - 2;
|
|
faces = new aiFace[nFaces];
|
|
SetFace(faces[0], data.GetUInt(0), data.GetUInt(1), data.GetUInt(2));
|
|
for (unsigned int i = 1; i < nFaces; ++i) {
|
|
SetFace(faces[i], faces[0].mIndices[0], faces[i - 1].mIndices[2], data.GetUInt(i + 2));
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
else { // no indices provided so directly generate from counts
|
|
|
|
// use the already determined count as it includes checks
|
|
unsigned int count = aim->mNumVertices;
|
|
|
|
switch (prim.mode) {
|
|
case PrimitiveMode_POINTS: {
|
|
nFaces = count;
|
|
faces = new aiFace[nFaces];
|
|
for (unsigned int i = 0; i < count; ++i) {
|
|
SetFace(faces[i], i);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case PrimitiveMode_LINES: {
|
|
nFaces = count / 2;
|
|
faces = new aiFace[nFaces];
|
|
for (unsigned int i = 0; i < count; i += 2) {
|
|
SetFace(faces[i / 2], i, i + 1);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case PrimitiveMode_LINE_LOOP:
|
|
case PrimitiveMode_LINE_STRIP: {
|
|
nFaces = count - ((prim.mode == PrimitiveMode_LINE_STRIP) ? 1 : 0);
|
|
faces = new aiFace[nFaces];
|
|
SetFace(faces[0], 0, 1);
|
|
for (unsigned int i = 2; i < count; ++i) {
|
|
SetFace(faces[i - 1], faces[i - 2].mIndices[1], i);
|
|
}
|
|
if (prim.mode == PrimitiveMode_LINE_LOOP) { // close the loop
|
|
SetFace(faces[count - 1], faces[count - 2].mIndices[1], faces[0].mIndices[0]);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case PrimitiveMode_TRIANGLES: {
|
|
nFaces = count / 3;
|
|
faces = new aiFace[nFaces];
|
|
for (unsigned int i = 0; i < count; i += 3) {
|
|
SetFace(faces[i / 3], i, i + 1, i + 2);
|
|
}
|
|
break;
|
|
}
|
|
case PrimitiveMode_TRIANGLE_STRIP: {
|
|
nFaces = count - 2;
|
|
faces = new aiFace[nFaces];
|
|
for (unsigned int i = 0; i < nFaces; ++i) {
|
|
//The ordering is to ensure that the triangles are all drawn with the same orientation
|
|
if ((i+1) % 2 == 0)
|
|
{
|
|
//For even n, vertices n + 1, n, and n + 2 define triangle n
|
|
SetFace(faces[i], i+1, i, i+2);
|
|
}
|
|
else
|
|
{
|
|
//For odd n, vertices n, n+1, and n+2 define triangle n
|
|
SetFace(faces[i], i, i+1, i+2);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case PrimitiveMode_TRIANGLE_FAN:
|
|
nFaces = count - 2;
|
|
faces = new aiFace[nFaces];
|
|
SetFace(faces[0], 0, 1, 2);
|
|
for (unsigned int i = 1; i < nFaces; ++i) {
|
|
SetFace(faces[i], faces[0].mIndices[0], faces[i - 1].mIndices[2], i + 2);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (faces) {
|
|
aim->mFaces = faces;
|
|
aim->mNumFaces = static_cast<unsigned int>(nFaces);
|
|
ai_assert(CheckValidFacesIndices(faces, static_cast<unsigned>(nFaces), aim->mNumVertices));
|
|
}
|
|
|
|
if (prim.material) {
|
|
aim->mMaterialIndex = prim.material.GetIndex();
|
|
}
|
|
else {
|
|
aim->mMaterialIndex = mScene->mNumMaterials - 1;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
meshOffsets.push_back(k);
|
|
|
|
CopyVector(meshes, mScene->mMeshes, mScene->mNumMeshes);
|
|
}
|
|
|
|
void glTF2Importer::ImportCameras(glTF2::Asset& r)
|
|
{
|
|
if (!r.cameras.Size()) return;
|
|
|
|
mScene->mNumCameras = r.cameras.Size();
|
|
mScene->mCameras = new aiCamera*[r.cameras.Size()];
|
|
|
|
for (size_t i = 0; i < r.cameras.Size(); ++i) {
|
|
Camera& cam = r.cameras[i];
|
|
|
|
aiCamera* aicam = mScene->mCameras[i] = new aiCamera();
|
|
|
|
// cameras point in -Z by default, rest is specified in node transform
|
|
aicam->mLookAt = aiVector3D(0.f,0.f,-1.f);
|
|
|
|
if (cam.type == Camera::Perspective) {
|
|
|
|
aicam->mAspect = cam.cameraProperties.perspective.aspectRatio;
|
|
aicam->mHorizontalFOV = cam.cameraProperties.perspective.yfov * ((aicam->mAspect == 0.f) ? 1.f : aicam->mAspect);
|
|
aicam->mClipPlaneFar = cam.cameraProperties.perspective.zfar;
|
|
aicam->mClipPlaneNear = cam.cameraProperties.perspective.znear;
|
|
} else {
|
|
aicam->mClipPlaneFar = cam.cameraProperties.ortographic.zfar;
|
|
aicam->mClipPlaneNear = cam.cameraProperties.ortographic.znear;
|
|
aicam->mHorizontalFOV = 0.0;
|
|
aicam->mAspect = 1.0f;
|
|
if (0.f != cam.cameraProperties.ortographic.ymag ) {
|
|
aicam->mAspect = cam.cameraProperties.ortographic.xmag / cam.cameraProperties.ortographic.ymag;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void glTF2Importer::ImportLights(glTF2::Asset& r)
|
|
{
|
|
if (!r.lights.Size())
|
|
return;
|
|
|
|
mScene->mNumLights = r.lights.Size();
|
|
mScene->mLights = new aiLight*[r.lights.Size()];
|
|
|
|
for (size_t i = 0; i < r.lights.Size(); ++i) {
|
|
Light& light = r.lights[i];
|
|
|
|
aiLight* ail = mScene->mLights[i] = new aiLight();
|
|
|
|
switch (light.type)
|
|
{
|
|
case Light::Directional:
|
|
ail->mType = aiLightSource_DIRECTIONAL; break;
|
|
case Light::Point:
|
|
ail->mType = aiLightSource_POINT; break;
|
|
case Light::Spot:
|
|
ail->mType = aiLightSource_SPOT; break;
|
|
}
|
|
|
|
if (ail->mType != aiLightSource_POINT)
|
|
{
|
|
ail->mDirection = aiVector3D(0.0f, 0.0f, -1.0f);
|
|
ail->mUp = aiVector3D(0.0f, 1.0f, 0.0f);
|
|
}
|
|
|
|
vec3 colorWithIntensity = { light.color[0] * light.intensity, light.color[1] * light.intensity, light.color[2] * light.intensity };
|
|
CopyValue(colorWithIntensity, ail->mColorAmbient);
|
|
CopyValue(colorWithIntensity, ail->mColorDiffuse);
|
|
CopyValue(colorWithIntensity, ail->mColorSpecular);
|
|
|
|
if (ail->mType == aiLightSource_DIRECTIONAL)
|
|
{
|
|
ail->mAttenuationConstant = 1.0;
|
|
ail->mAttenuationLinear = 0.0;
|
|
ail->mAttenuationQuadratic = 0.0;
|
|
}
|
|
else
|
|
{
|
|
//in PBR attenuation is calculated using inverse square law which can be expressed
|
|
//using assimps equation: 1/(att0 + att1 * d + att2 * d*d) with the following parameters
|
|
//this is correct equation for the case when range (see
|
|
//https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_lights_punctual)
|
|
//is not present. When range is not present it is assumed that it is infinite and so numerator is 1.
|
|
//When range is present then numerator might be any value in range [0,1] and then assimps equation
|
|
//will not suffice. In this case range is added into metadata in ImportNode function
|
|
//and its up to implementation to read it when it wants to
|
|
ail->mAttenuationConstant = 0.0;
|
|
ail->mAttenuationLinear = 0.0;
|
|
ail->mAttenuationQuadratic = 1.0;
|
|
}
|
|
|
|
if (ail->mType == aiLightSource_SPOT)
|
|
{
|
|
ail->mAngleInnerCone = light.innerConeAngle;
|
|
ail->mAngleOuterCone = light.outerConeAngle;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void GetNodeTransform(aiMatrix4x4& matrix, const glTF2::Node& node) {
|
|
if (node.matrix.isPresent) {
|
|
CopyValue(node.matrix.value, matrix);
|
|
}
|
|
else {
|
|
if (node.translation.isPresent) {
|
|
aiVector3D trans;
|
|
CopyValue(node.translation.value, trans);
|
|
aiMatrix4x4 t;
|
|
aiMatrix4x4::Translation(trans, t);
|
|
matrix = matrix * t;
|
|
}
|
|
|
|
if (node.rotation.isPresent) {
|
|
aiQuaternion rot;
|
|
CopyValue(node.rotation.value, rot);
|
|
matrix = matrix * aiMatrix4x4(rot.GetMatrix());
|
|
}
|
|
|
|
if (node.scale.isPresent) {
|
|
aiVector3D scal(1.f);
|
|
CopyValue(node.scale.value, scal);
|
|
aiMatrix4x4 s;
|
|
aiMatrix4x4::Scaling(scal, s);
|
|
matrix = matrix * s;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void BuildVertexWeightMapping(Mesh::Primitive& primitive, std::vector<std::vector<aiVertexWeight>>& map)
|
|
{
|
|
Mesh::Primitive::Attributes& attr = primitive.attributes;
|
|
if (attr.weight.empty() || attr.joint.empty()) {
|
|
return;
|
|
}
|
|
if (attr.weight[0]->count != attr.joint[0]->count) {
|
|
return;
|
|
}
|
|
|
|
size_t num_vertices = attr.weight[0]->count;
|
|
|
|
struct Weights { float values[4]; };
|
|
Weights* weights = nullptr;
|
|
attr.weight[0]->ExtractData(weights);
|
|
|
|
struct Indices8 { uint8_t values[4]; };
|
|
struct Indices16 { uint16_t values[4]; };
|
|
Indices8* indices8 = nullptr;
|
|
Indices16* indices16 = nullptr;
|
|
if (attr.joint[0]->GetElementSize() == 4) {
|
|
attr.joint[0]->ExtractData(indices8);
|
|
}else {
|
|
attr.joint[0]->ExtractData(indices16);
|
|
}
|
|
//
|
|
if (nullptr == indices8 && nullptr == indices16) {
|
|
// Something went completely wrong!
|
|
ai_assert(false);
|
|
return;
|
|
}
|
|
|
|
for (size_t i = 0; i < num_vertices; ++i) {
|
|
for (int j = 0; j < 4; ++j) {
|
|
const unsigned int bone = (indices8!=nullptr) ? indices8[i].values[j] : indices16[i].values[j];
|
|
const float weight = weights[i].values[j];
|
|
if (weight > 0 && bone < map.size()) {
|
|
map[bone].reserve(8);
|
|
map[bone].emplace_back(static_cast<unsigned int>(i), weight);
|
|
}
|
|
}
|
|
}
|
|
|
|
delete[] weights;
|
|
delete[] indices8;
|
|
delete[] indices16;
|
|
}
|
|
|
|
static std::string GetNodeName(const Node& node)
|
|
{
|
|
return node.name.empty() ? node.id : node.name;
|
|
}
|
|
|
|
aiNode* ImportNode(aiScene* pScene, glTF2::Asset& r, std::vector<unsigned int>& meshOffsets, glTF2::Ref<glTF2::Node>& ptr)
|
|
{
|
|
Node& node = *ptr;
|
|
|
|
aiNode* ainode = new aiNode(GetNodeName(node));
|
|
|
|
if (!node.children.empty()) {
|
|
ainode->mNumChildren = unsigned(node.children.size());
|
|
ainode->mChildren = new aiNode*[ainode->mNumChildren];
|
|
|
|
for (unsigned int i = 0; i < ainode->mNumChildren; ++i) {
|
|
aiNode* child = ImportNode(pScene, r, meshOffsets, node.children[i]);
|
|
child->mParent = ainode;
|
|
ainode->mChildren[i] = child;
|
|
}
|
|
}
|
|
|
|
GetNodeTransform(ainode->mTransformation, node);
|
|
|
|
if (!node.meshes.empty()) {
|
|
// GLTF files contain at most 1 mesh per node.
|
|
assert(node.meshes.size() == 1);
|
|
int mesh_idx = node.meshes[0].GetIndex();
|
|
int count = meshOffsets[mesh_idx + 1] - meshOffsets[mesh_idx];
|
|
|
|
ainode->mNumMeshes = count;
|
|
ainode->mMeshes = new unsigned int[count];
|
|
|
|
if (node.skin) {
|
|
for (int primitiveNo = 0; primitiveNo < count; ++primitiveNo) {
|
|
aiMesh* mesh = pScene->mMeshes[meshOffsets[mesh_idx]+primitiveNo];
|
|
mesh->mNumBones = static_cast<unsigned int>(node.skin->jointNames.size());
|
|
mesh->mBones = new aiBone*[mesh->mNumBones];
|
|
|
|
// GLTF and Assimp choose to store bone weights differently.
|
|
// GLTF has each vertex specify which bones influence the vertex.
|
|
// Assimp has each bone specify which vertices it has influence over.
|
|
// To convert this data, we first read over the vertex data and pull
|
|
// out the bone-to-vertex mapping. Then, when creating the aiBones,
|
|
// we copy the bone-to-vertex mapping into the bone. This is unfortunate
|
|
// both because it's somewhat slow and because, for many applications,
|
|
// we then need to reconvert the data back into the vertex-to-bone
|
|
// mapping which makes things doubly-slow.
|
|
std::vector<std::vector<aiVertexWeight>> weighting(mesh->mNumBones);
|
|
BuildVertexWeightMapping(node.meshes[0]->primitives[primitiveNo], weighting);
|
|
|
|
mat4* pbindMatrices = nullptr;
|
|
node.skin->inverseBindMatrices->ExtractData(pbindMatrices);
|
|
|
|
for (uint32_t i = 0; i < mesh->mNumBones; ++i) {
|
|
aiBone* bone = new aiBone();
|
|
|
|
Ref<Node> joint = node.skin->jointNames[i];
|
|
if (!joint->name.empty()) {
|
|
bone->mName = joint->name;
|
|
} else {
|
|
// Assimp expects each bone to have a unique name.
|
|
static const std::string kDefaultName = "bone_";
|
|
char postfix[10] = {0};
|
|
ASSIMP_itoa10(postfix, i);
|
|
bone->mName = (kDefaultName + postfix);
|
|
}
|
|
GetNodeTransform(bone->mOffsetMatrix, *joint);
|
|
|
|
CopyValue(pbindMatrices[i], bone->mOffsetMatrix);
|
|
|
|
std::vector<aiVertexWeight>& weights = weighting[i];
|
|
|
|
bone->mNumWeights = static_cast<uint32_t>(weights.size());
|
|
if (bone->mNumWeights > 0) {
|
|
bone->mWeights = new aiVertexWeight[bone->mNumWeights];
|
|
memcpy(bone->mWeights, weights.data(), bone->mNumWeights * sizeof(aiVertexWeight));
|
|
} else {
|
|
// Assimp expects all bones to have at least 1 weight.
|
|
bone->mWeights = new aiVertexWeight[1];
|
|
bone->mNumWeights = 1;
|
|
bone->mWeights->mVertexId = 0;
|
|
bone->mWeights->mWeight = 0.f;
|
|
}
|
|
mesh->mBones[i] = bone;
|
|
}
|
|
|
|
if (pbindMatrices) {
|
|
delete[] pbindMatrices;
|
|
}
|
|
}
|
|
}
|
|
|
|
int k = 0;
|
|
for (unsigned int j = meshOffsets[mesh_idx]; j < meshOffsets[mesh_idx + 1]; ++j, ++k) {
|
|
ainode->mMeshes[k] = j;
|
|
}
|
|
}
|
|
|
|
if (node.camera) {
|
|
pScene->mCameras[node.camera.GetIndex()]->mName = ainode->mName;
|
|
}
|
|
|
|
if (node.light) {
|
|
pScene->mLights[node.light.GetIndex()]->mName = ainode->mName;
|
|
|
|
//range is optional - see https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_lights_punctual
|
|
//it is added to meta data of parent node, because there is no other place to put it
|
|
if (node.light->range.isPresent)
|
|
{
|
|
ainode->mMetaData = aiMetadata::Alloc(1);
|
|
ainode->mMetaData->Set(0, "PBR_LightRange", node.light->range.value);
|
|
}
|
|
}
|
|
|
|
return ainode;
|
|
}
|
|
|
|
void glTF2Importer::ImportNodes(glTF2::Asset& r)
|
|
{
|
|
if (!r.scene) return;
|
|
|
|
std::vector< Ref<Node> > rootNodes = r.scene->nodes;
|
|
|
|
// The root nodes
|
|
unsigned int numRootNodes = unsigned(rootNodes.size());
|
|
if (numRootNodes == 1) { // a single root node: use it
|
|
mScene->mRootNode = ImportNode(mScene, r, meshOffsets, rootNodes[0]);
|
|
}
|
|
else if (numRootNodes > 1) { // more than one root node: create a fake root
|
|
aiNode* root = new aiNode("ROOT");
|
|
root->mChildren = new aiNode*[numRootNodes];
|
|
for (unsigned int i = 0; i < numRootNodes; ++i) {
|
|
aiNode* node = ImportNode(mScene, r, meshOffsets, rootNodes[i]);
|
|
node->mParent = root;
|
|
root->mChildren[root->mNumChildren++] = node;
|
|
}
|
|
mScene->mRootNode = root;
|
|
}
|
|
|
|
//if (!mScene->mRootNode) {
|
|
// mScene->mRootNode = new aiNode("EMPTY");
|
|
//}
|
|
}
|
|
|
|
struct AnimationSamplers {
|
|
AnimationSamplers()
|
|
: translation(nullptr)
|
|
, rotation(nullptr)
|
|
, scale(nullptr) {
|
|
// empty
|
|
}
|
|
|
|
Animation::Sampler* translation;
|
|
Animation::Sampler* rotation;
|
|
Animation::Sampler* scale;
|
|
};
|
|
|
|
aiNodeAnim* CreateNodeAnim(glTF2::Asset& r, Node& node, AnimationSamplers& samplers)
|
|
{
|
|
aiNodeAnim* anim = new aiNodeAnim();
|
|
anim->mNodeName = GetNodeName(node);
|
|
|
|
static const float kMillisecondsFromSeconds = 1000.f;
|
|
|
|
if (samplers.translation) {
|
|
float* times = nullptr;
|
|
samplers.translation->input->ExtractData(times);
|
|
aiVector3D* values = nullptr;
|
|
samplers.translation->output->ExtractData(values);
|
|
anim->mNumPositionKeys = static_cast<uint32_t>(samplers.translation->input->count);
|
|
anim->mPositionKeys = new aiVectorKey[anim->mNumPositionKeys];
|
|
for (unsigned int i = 0; i < anim->mNumPositionKeys; ++i) {
|
|
anim->mPositionKeys[i].mTime = times[i] * kMillisecondsFromSeconds;
|
|
anim->mPositionKeys[i].mValue = values[i];
|
|
}
|
|
delete[] times;
|
|
delete[] values;
|
|
} else if (node.translation.isPresent) {
|
|
anim->mNumPositionKeys = 1;
|
|
anim->mPositionKeys = new aiVectorKey[anim->mNumPositionKeys];
|
|
anim->mPositionKeys->mTime = 0.f;
|
|
anim->mPositionKeys->mValue.x = node.translation.value[0];
|
|
anim->mPositionKeys->mValue.y = node.translation.value[1];
|
|
anim->mPositionKeys->mValue.z = node.translation.value[2];
|
|
}
|
|
|
|
if (samplers.rotation) {
|
|
float* times = nullptr;
|
|
samplers.rotation->input->ExtractData(times);
|
|
aiQuaternion* values = nullptr;
|
|
samplers.rotation->output->ExtractData(values);
|
|
anim->mNumRotationKeys = static_cast<uint32_t>(samplers.rotation->input->count);
|
|
anim->mRotationKeys = new aiQuatKey[anim->mNumRotationKeys];
|
|
for (unsigned int i = 0; i < anim->mNumRotationKeys; ++i) {
|
|
anim->mRotationKeys[i].mTime = times[i] * kMillisecondsFromSeconds;
|
|
anim->mRotationKeys[i].mValue.x = values[i].w;
|
|
anim->mRotationKeys[i].mValue.y = values[i].x;
|
|
anim->mRotationKeys[i].mValue.z = values[i].y;
|
|
anim->mRotationKeys[i].mValue.w = values[i].z;
|
|
}
|
|
delete[] times;
|
|
delete[] values;
|
|
} else if (node.rotation.isPresent) {
|
|
anim->mNumRotationKeys = 1;
|
|
anim->mRotationKeys = new aiQuatKey[anim->mNumRotationKeys];
|
|
anim->mRotationKeys->mTime = 0.f;
|
|
anim->mRotationKeys->mValue.x = node.rotation.value[0];
|
|
anim->mRotationKeys->mValue.y = node.rotation.value[1];
|
|
anim->mRotationKeys->mValue.z = node.rotation.value[2];
|
|
anim->mRotationKeys->mValue.w = node.rotation.value[3];
|
|
}
|
|
|
|
if (samplers.scale) {
|
|
float* times = nullptr;
|
|
samplers.scale->input->ExtractData(times);
|
|
aiVector3D* values = nullptr;
|
|
samplers.scale->output->ExtractData(values);
|
|
anim->mNumScalingKeys = static_cast<uint32_t>(samplers.scale->input->count);
|
|
anim->mScalingKeys = new aiVectorKey[anim->mNumScalingKeys];
|
|
for (unsigned int i = 0; i < anim->mNumScalingKeys; ++i) {
|
|
anim->mScalingKeys[i].mTime = times[i] * kMillisecondsFromSeconds;
|
|
anim->mScalingKeys[i].mValue = values[i];
|
|
}
|
|
delete[] times;
|
|
delete[] values;
|
|
} else if (node.scale.isPresent) {
|
|
anim->mNumScalingKeys = 1;
|
|
anim->mScalingKeys = new aiVectorKey[anim->mNumScalingKeys];
|
|
anim->mScalingKeys->mTime = 0.f;
|
|
anim->mScalingKeys->mValue.x = node.scale.value[0];
|
|
anim->mScalingKeys->mValue.y = node.scale.value[1];
|
|
anim->mScalingKeys->mValue.z = node.scale.value[2];
|
|
}
|
|
|
|
return anim;
|
|
}
|
|
|
|
std::unordered_map<unsigned int, AnimationSamplers> GatherSamplers(Animation& anim)
|
|
{
|
|
std::unordered_map<unsigned int, AnimationSamplers> samplers;
|
|
for (unsigned int c = 0; c < anim.channels.size(); ++c) {
|
|
Animation::Channel& channel = anim.channels[c];
|
|
if (channel.sampler >= static_cast<int>(anim.samplers.size())) {
|
|
continue;
|
|
}
|
|
|
|
const unsigned int node_index = channel.target.node.GetIndex();
|
|
|
|
AnimationSamplers& sampler = samplers[node_index];
|
|
if (channel.target.path == AnimationPath_TRANSLATION) {
|
|
sampler.translation = &anim.samplers[channel.sampler];
|
|
} else if (channel.target.path == AnimationPath_ROTATION) {
|
|
sampler.rotation = &anim.samplers[channel.sampler];
|
|
} else if (channel.target.path == AnimationPath_SCALE) {
|
|
sampler.scale = &anim.samplers[channel.sampler];
|
|
}
|
|
}
|
|
|
|
return samplers;
|
|
}
|
|
|
|
void glTF2Importer::ImportAnimations(glTF2::Asset& r)
|
|
{
|
|
if (!r.scene) return;
|
|
|
|
mScene->mNumAnimations = r.animations.Size();
|
|
if (mScene->mNumAnimations == 0) {
|
|
return;
|
|
}
|
|
|
|
mScene->mAnimations = new aiAnimation*[mScene->mNumAnimations];
|
|
for (unsigned int i = 0; i < r.animations.Size(); ++i) {
|
|
Animation& anim = r.animations[i];
|
|
|
|
aiAnimation* ai_anim = new aiAnimation();
|
|
ai_anim->mName = anim.name;
|
|
ai_anim->mDuration = 0;
|
|
ai_anim->mTicksPerSecond = 0;
|
|
|
|
std::unordered_map<unsigned int, AnimationSamplers> samplers = GatherSamplers(anim);
|
|
|
|
ai_anim->mNumChannels = static_cast<uint32_t>(samplers.size());
|
|
if (ai_anim->mNumChannels > 0) {
|
|
ai_anim->mChannels = new aiNodeAnim*[ai_anim->mNumChannels];
|
|
int j = 0;
|
|
for (auto& iter : samplers) {
|
|
ai_anim->mChannels[j] = CreateNodeAnim(r, r.nodes[iter.first], iter.second);
|
|
++j;
|
|
}
|
|
}
|
|
|
|
// Use the latest keyframe for the duration of the animation
|
|
double maxDuration = 0;
|
|
unsigned int maxNumberOfKeys = 0;
|
|
for (unsigned int j = 0; j < ai_anim->mNumChannels; ++j) {
|
|
auto chan = ai_anim->mChannels[j];
|
|
if (chan->mNumPositionKeys) {
|
|
auto lastPosKey = chan->mPositionKeys[chan->mNumPositionKeys - 1];
|
|
if (lastPosKey.mTime > maxDuration) {
|
|
maxDuration = lastPosKey.mTime;
|
|
}
|
|
maxNumberOfKeys = std::max(maxNumberOfKeys, chan->mNumPositionKeys);
|
|
}
|
|
if (chan->mNumRotationKeys) {
|
|
auto lastRotKey = chan->mRotationKeys[chan->mNumRotationKeys - 1];
|
|
if (lastRotKey.mTime > maxDuration) {
|
|
maxDuration = lastRotKey.mTime;
|
|
}
|
|
maxNumberOfKeys = std::max(maxNumberOfKeys, chan->mNumRotationKeys);
|
|
}
|
|
if (chan->mNumScalingKeys) {
|
|
auto lastScaleKey = chan->mScalingKeys[chan->mNumScalingKeys - 1];
|
|
if (lastScaleKey.mTime > maxDuration) {
|
|
maxDuration = lastScaleKey.mTime;
|
|
}
|
|
maxNumberOfKeys = std::max(maxNumberOfKeys, chan->mNumScalingKeys);
|
|
}
|
|
}
|
|
ai_anim->mDuration = maxDuration;
|
|
ai_anim->mTicksPerSecond = (maxNumberOfKeys > 0 && maxDuration > 0) ? (maxNumberOfKeys / (maxDuration/1000)) : 30;
|
|
|
|
mScene->mAnimations[i] = ai_anim;
|
|
}
|
|
}
|
|
|
|
void glTF2Importer::ImportEmbeddedTextures(glTF2::Asset& r)
|
|
{
|
|
embeddedTexIdxs.resize(r.images.Size(), -1);
|
|
|
|
int numEmbeddedTexs = 0;
|
|
for (size_t i = 0; i < r.images.Size(); ++i) {
|
|
if (r.images[i].HasData())
|
|
numEmbeddedTexs += 1;
|
|
}
|
|
|
|
if (numEmbeddedTexs == 0)
|
|
return;
|
|
|
|
mScene->mTextures = new aiTexture*[numEmbeddedTexs];
|
|
|
|
// Add the embedded textures
|
|
for (size_t i = 0; i < r.images.Size(); ++i) {
|
|
Image &img = r.images[i];
|
|
if (!img.HasData()) continue;
|
|
|
|
int idx = mScene->mNumTextures++;
|
|
embeddedTexIdxs[i] = idx;
|
|
|
|
aiTexture* tex = mScene->mTextures[idx] = new aiTexture();
|
|
|
|
size_t length = img.GetDataLength();
|
|
void* data = img.StealData();
|
|
|
|
tex->mWidth = static_cast<unsigned int>(length);
|
|
tex->mHeight = 0;
|
|
tex->pcData = reinterpret_cast<aiTexel*>(data);
|
|
|
|
if (!img.mimeType.empty()) {
|
|
const char* ext = strchr(img.mimeType.c_str(), '/') + 1;
|
|
if (ext) {
|
|
if (strcmp(ext, "jpeg") == 0) ext = "jpg";
|
|
|
|
size_t len = strlen(ext);
|
|
if (len <= 3) {
|
|
strcpy(tex->achFormatHint, ext);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void glTF2Importer::InternReadFile(const std::string& pFile, aiScene* pScene, IOSystem* pIOHandler)
|
|
{
|
|
// clean all member arrays
|
|
meshOffsets.clear();
|
|
embeddedTexIdxs.clear();
|
|
|
|
this->mScene = pScene;
|
|
|
|
// read the asset file
|
|
glTF2::Asset asset(pIOHandler);
|
|
asset.Load(pFile, GetExtension(pFile) == "glb");
|
|
|
|
//
|
|
// Copy the data out
|
|
//
|
|
|
|
ImportEmbeddedTextures(asset);
|
|
ImportMaterials(asset);
|
|
|
|
ImportMeshes(asset);
|
|
|
|
ImportCameras(asset);
|
|
ImportLights(asset);
|
|
|
|
ImportNodes(asset);
|
|
|
|
ImportAnimations(asset);
|
|
|
|
if (pScene->mNumMeshes == 0) {
|
|
pScene->mFlags |= AI_SCENE_FLAGS_INCOMPLETE;
|
|
}
|
|
}
|
|
|
|
#endif // ASSIMP_BUILD_NO_GLTF_IMPORTER
|
|
|