assimp/code/FBXConverter.cpp

2244 lines
68 KiB
C++

/*
Open Asset Import Library (assimp)
----------------------------------------------------------------------
Copyright (c) 2006-2012, assimp team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the
following conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the assimp team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the assimp team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------
*/
/** @file FBXConverter.cpp
* @brief Implementation of the FBX DOM -> aiScene converter
*/
#include "AssimpPCH.h"
#ifndef ASSIMP_BUILD_NO_FBX_IMPORTER
#include <boost/tuple/tuple.hpp>
#include "FBXParser.h"
#include "FBXConverter.h"
#include "FBXDocument.h"
#include "FBXUtil.h"
#include "FBXProperties.h"
#include "FBXImporter.h"
namespace Assimp {
namespace FBX {
using namespace Util;
#define MAGIC_NODE_TAG "_$AssimpFbx$"
// XXX vc9's debugger won't step into anonymous namespaces
//namespace {
/** Dummy class to encapsulate the conversion process */
class Converter
{
public:
/** the different parts that make up the final local transformation of a fbx node */
enum TransformationComp
{
TransformationComp_Translation = 0,
TransformationComp_RotationOffset,
TransformationComp_RotationPivot,
TransformationComp_PreRotation,
TransformationComp_Rotation,
TransformationComp_PostRotation,
TransformationComp_RotationPivotInverse,
TransformationComp_ScalingOffset,
TransformationComp_ScalingPivot,
TransformationComp_Scaling,
TransformationComp_ScalingPivotInverse,
TransformationComp_MAXIMUM
};
/** supported rotation modes */
enum RotationMode
{
RotationMode_Euler_XYZ
};
public:
Converter(aiScene* out, const Document& doc)
: out(out)
, doc(doc)
{
// animations need to be converted first since this will
// populate the node_anim_chain_bits map, which is needed
// to determine which nodes need to be generated.
ConvertAnimations();
ConvertRootNode();
if(doc.Settings().readAllMaterials) {
// unfortunately this means we have to evaluate all objects
BOOST_FOREACH(const ObjectMap::value_type& v,doc.Objects()) {
const Object* ob = v.second->Get();
if(!ob) {
continue;
}
const Material* mat = dynamic_cast<const Material*>(ob);
if(mat) {
if (materials_converted.find(mat) == materials_converted.end()) {
ConvertMaterial(*mat);
}
}
}
}
TransferDataToScene();
}
~Converter()
{
std::for_each(meshes.begin(),meshes.end(),Util::delete_fun<aiMesh>());
std::for_each(materials.begin(),materials.end(),Util::delete_fun<aiMaterial>());
std::for_each(animations.begin(),animations.end(),Util::delete_fun<aiAnimation>());
}
private:
// ------------------------------------------------------------------------------------------------
// find scene root and trigger recursive scene conversion
void ConvertRootNode()
{
out->mRootNode = new aiNode();
out->mRootNode->mName.Set("RootNode");
// root has ID 0
ConvertNodes(0L, *out->mRootNode);
}
// ------------------------------------------------------------------------------------------------
// collect and assign child nodes
void ConvertNodes(uint64_t id, aiNode& parent, const aiMatrix4x4& parent_transform = aiMatrix4x4())
{
const std::vector<const Connection*>& conns = doc.GetConnectionsByDestinationSequenced(id, "Model");
std::vector<aiNode*> nodes;
nodes.reserve(conns.size());
std::vector<aiNode*> nodes_chain;
try {
BOOST_FOREACH(const Connection* con, conns) {
// ignore object-property links
if(con->PropertyName().length()) {
continue;
}
const Object* const object = con->SourceObject();
if(!object) {
FBXImporter::LogWarn("failed to convert source object for Model link");
continue;
}
const Model* const model = dynamic_cast<const Model*>(object);
if(model) {
nodes_chain.clear();
aiMatrix4x4 new_abs_transform = parent_transform;
// even though there is only a single input node, the design of
// assimp (or rather: the complicated transformation chain that
// is employed by fbx) means that we may need multiple aiNode's
// to represent a fbx node's transformation.
GenerateTransformationNodeChain(*model,nodes_chain);
ai_assert(nodes_chain.size());
const std::string& original_name = FixNodeName(model->Name());
// check if any of the nodes in the chain has the name the fbx node
// is supposed to have. If there is none, add another node to
// preserve the name - people might have scripts etc. that rely
// on specific node names.
bool has_name = false;
BOOST_FOREACH(aiNode* prenode, nodes_chain) {
if ( !strcmp(prenode->mName.C_Str(), original_name.c_str()) ) {
has_name = true;
break;
}
}
if(!has_name) {
nodes_chain.push_back(new aiNode(original_name));
}
// link all nodes in a row
aiNode* last_parent = &parent;
BOOST_FOREACH(aiNode* prenode, nodes_chain) {
ai_assert(prenode);
if(last_parent != &parent) {
last_parent->mNumChildren = 1;
last_parent->mChildren = new aiNode*[1];
last_parent->mChildren[0] = prenode;
}
prenode->mParent = last_parent;
last_parent = prenode;
new_abs_transform *= prenode->mTransformation;
}
// attach geometry
ConvertModel(*model, *nodes_chain.back(), new_abs_transform);
// attach sub-nodes
ConvertNodes(model->ID(), *nodes_chain.back(), new_abs_transform);
nodes.push_back(nodes_chain.front());
nodes_chain.clear();
}
}
if(nodes.size()) {
parent.mChildren = new aiNode*[nodes.size()]();
parent.mNumChildren = static_cast<unsigned int>(nodes.size());
std::swap_ranges(nodes.begin(),nodes.end(),parent.mChildren);
}
}
catch(std::exception&) {
Util::delete_fun<aiNode> deleter;
std::for_each(nodes.begin(),nodes.end(),deleter);
std::for_each(nodes_chain.begin(),nodes_chain.end(),deleter);
}
}
// ------------------------------------------------------------------------------------------------
// this returns unified names usable within assimp identifiers (i.e. no space characters -
// while these would be allowed, they are a potential trouble spot so better not use them).
const char* NameTransformationComp(TransformationComp comp)
{
switch(comp)
{
case TransformationComp_Translation:
return "Translation";
case TransformationComp_RotationOffset:
return "RotationOffset";
case TransformationComp_RotationPivot:
return "RotationPivot";
case TransformationComp_PreRotation:
return "PreRotation";
case TransformationComp_Rotation:
return "Rotation";
case TransformationComp_PostRotation:
return "PostRotation";
case TransformationComp_RotationPivotInverse:
return "RotationPivotInverse";
case TransformationComp_ScalingOffset:
return "ScalingOffset";
case TransformationComp_ScalingPivot:
return "ScalingPivot";
case TransformationComp_Scaling:
return "Scaling";
case TransformationComp_ScalingPivotInverse:
return "ScalingPivotInverse";
}
ai_assert(false);
return NULL;
}
// ------------------------------------------------------------------------------------------------
// note: this returns the REAL fbx property names
const char* NameTransformationCompProperty(TransformationComp comp)
{
switch(comp)
{
case TransformationComp_Translation:
return "Lcl Translation";
case TransformationComp_RotationOffset:
return "RotationOffset";
case TransformationComp_RotationPivot:
return "RotationPivot";
case TransformationComp_PreRotation:
return "PreRotation";
case TransformationComp_Rotation:
return "Lcl Rotation";
case TransformationComp_PostRotation:
return "PostRotation";
case TransformationComp_RotationPivotInverse:
return "RotationPivotInverse";
case TransformationComp_ScalingOffset:
return "ScalingOffset";
case TransformationComp_ScalingPivot:
return "ScalingPivot";
case TransformationComp_Scaling:
return "Lcl Scaling";
case TransformationComp_ScalingPivotInverse:
return "ScalingPivotInverse";
}
ai_assert(false);
return NULL;
}
// ------------------------------------------------------------------------------------------------
aiVector3D TransformationCompDefaultValue(TransformationComp comp)
{
// XXX a neat way to solve the never-ending special cases for scaling
// would be to do everything in log space!
return comp == TransformationComp_Scaling ? aiVector3D(1.f,1.f,1.f) : aiVector3D();
}
// ------------------------------------------------------------------------------------------------
void GetRotationMatrix(RotationMode mode, const aiVector3D& rotation, aiMatrix4x4& out)
{
const float angle_epsilon = 1e-6f;
aiMatrix4x4 temp;
out = aiMatrix4x4();
switch(mode)
{
case RotationMode_Euler_XYZ:
if(fabs(rotation.z) > angle_epsilon) {
out = aiMatrix4x4::RotationZ(AI_DEG_TO_RAD(rotation.z),temp);
}
if(fabs(rotation.y) > angle_epsilon) {
out = out * aiMatrix4x4::RotationY(AI_DEG_TO_RAD(rotation.y),temp);
}
if(fabs(rotation.x) > angle_epsilon) {
out = out * aiMatrix4x4::RotationX(AI_DEG_TO_RAD(rotation.x),temp);
}
return;
}
ai_assert(false);
}
// ------------------------------------------------------------------------------------------------
/** checks if a node has more than just scaling, rotation and translation components */
bool NeedsComplexTransformationChain(const Model& model)
{
// XXX TEMPORARY
return true;
const PropertyTable& props = model.Props();
bool ok;
const float zero_epsilon = 1e-6f;
for (size_t i = 0; i < TransformationComp_MAXIMUM; ++i) {
const TransformationComp comp = static_cast<TransformationComp>(i);
if(comp == TransformationComp_Rotation || comp == TransformationComp_Scaling || comp == TransformationComp_Translation) {
continue;
}
const aiVector3D& v = PropertyGet<aiVector3D>(props,NameTransformationCompProperty(comp),ok);
if(ok && v.SquareLength() > zero_epsilon) {
return true;
}
}
return false;
}
// ------------------------------------------------------------------------------------------------
// note: name must be a FixNodeName() result
std::string NameTransformationChainNode(const std::string& name, TransformationComp comp)
{
return name + std::string(MAGIC_NODE_TAG) + "_" + NameTransformationComp(comp);
}
// ------------------------------------------------------------------------------------------------
/** note: memory for output_nodes will be managed by the caller */
void GenerateTransformationNodeChain(const Model& model,
std::vector<aiNode*>& output_nodes)
{
const PropertyTable& props = model.Props();
// XXX handle different rotation modes
const RotationMode rot = RotationMode_Euler_XYZ;
bool ok;
aiMatrix4x4 chain[TransformationComp_MAXIMUM];
std::fill_n(chain, static_cast<unsigned int>(TransformationComp_MAXIMUM), aiMatrix4x4());
// generate transformation matrices for all the different transformation components
const float zero_epsilon = 1e-6f;
bool is_complex = false;
const aiVector3D& PreRotation = PropertyGet<aiVector3D>(props,"PreRotation",ok);
if(ok && PreRotation.SquareLength() > zero_epsilon) {
is_complex = true;
GetRotationMatrix(rot, PreRotation, chain[TransformationComp_PreRotation]);
}
const aiVector3D& PostRotation = PropertyGet<aiVector3D>(props,"PostRotation",ok);
if(ok && PostRotation.SquareLength() > zero_epsilon) {
is_complex = true;
GetRotationMatrix(rot, PostRotation, chain[TransformationComp_PostRotation]);
}
const aiVector3D& RotationPivot = PropertyGet<aiVector3D>(props,"RotationPivot",ok);
if(ok && RotationPivot.SquareLength() > zero_epsilon) {
is_complex = true;
aiMatrix4x4::Translation(RotationPivot,chain[TransformationComp_RotationPivot]);
aiMatrix4x4::Translation(-RotationPivot,chain[TransformationComp_RotationPivotInverse]);
}
const aiVector3D& RotationOffset = PropertyGet<aiVector3D>(props,"RotationOffset",ok);
if(ok && RotationOffset.SquareLength() > zero_epsilon) {
is_complex = true;
aiMatrix4x4::Translation(RotationOffset,chain[TransformationComp_RotationOffset]);
}
const aiVector3D& ScalingOffset = PropertyGet<aiVector3D>(props,"ScalingOffset",ok);
if(ok && ScalingOffset.SquareLength() > zero_epsilon) {
is_complex = true;
aiMatrix4x4::Translation(ScalingOffset,chain[TransformationComp_ScalingOffset]);
}
const aiVector3D& ScalingPivot = PropertyGet<aiVector3D>(props,"ScalingPivot",ok);
if(ok && ScalingPivot.SquareLength() > zero_epsilon) {
is_complex = true;
aiMatrix4x4::Translation(ScalingPivot,chain[TransformationComp_ScalingPivot]);
aiMatrix4x4::Translation(-ScalingPivot,chain[TransformationComp_ScalingPivotInverse]);
}
const aiVector3D& Translation = PropertyGet<aiVector3D>(props,"Lcl Translation",ok);
if(ok && Translation.SquareLength() > zero_epsilon) {
aiMatrix4x4::Translation(Translation,chain[TransformationComp_Translation]);
}
const aiVector3D& Scaling = PropertyGet<aiVector3D>(props,"Lcl Scaling",ok);
if(ok && fabs(Scaling.SquareLength()-1.0f) > zero_epsilon) {
aiMatrix4x4::Scaling(Scaling,chain[TransformationComp_Scaling]);
}
const aiVector3D& Rotation = PropertyGet<aiVector3D>(props,"Lcl Rotation",ok);
if(ok && Rotation.SquareLength() > zero_epsilon) {
GetRotationMatrix(rot, Rotation, chain[TransformationComp_Rotation]);
}
// XXX TEMPORARY
is_complex = true;
// is_complex needs to be consistent with NeedsComplexTransformationChain()
// or the interplay between this code and the animation converter would
// not be guaranteed.
ai_assert(NeedsComplexTransformationChain(model) == is_complex);
const std::string& name = FixNodeName(model.Name());
// now, if we have more than just Translation, Scaling and Rotation,
// we need to generate a full node chain to accommodate for assimp's
// lack to express pivots and offsets.
if(is_complex && doc.Settings().preservePivots) {
FBXImporter::LogInfo("generating full transformation chain for node: " + name);
// query the anim_chain_bits dictionary to find out which chain elements
// have associated node animation channels. These can not be dropped
// even if they have identity transform in bind pose.
NodeAnimBitMap::const_iterator it = node_anim_chain_bits.find(name);
const unsigned int anim_chain_bitmask = (it == node_anim_chain_bits.end() ? 0 : (*it).second);
unsigned int bit = 0x1;
for (size_t i = 0; i < TransformationComp_MAXIMUM; ++i, bit <<= 1) {
const TransformationComp comp = static_cast<TransformationComp>(i);
if (chain[i].IsIdentity() && (anim_chain_bitmask & bit) == 0) {
// XXX TEMPORARY
//continue;
}
aiNode* nd = new aiNode();
output_nodes.push_back(nd);
nd->mName.Set(NameTransformationChainNode(name, comp));
nd->mTransformation = chain[i];
}
ai_assert(output_nodes.size());
return;
}
// else, we can just multiply the matrices together
aiNode* nd = new aiNode();
output_nodes.push_back(nd);
nd->mName.Set(name);
for (size_t i = 0; i < TransformationComp_MAXIMUM; ++i) {
nd->mTransformation = nd->mTransformation * chain[i];
}
}
// ------------------------------------------------------------------------------------------------
void ConvertModel(const Model& model, aiNode& nd, const aiMatrix4x4& node_global_transform)
{
const std::vector<const Geometry*>& geos = model.GetGeometry();
std::vector<unsigned int> meshes;
meshes.reserve(geos.size());
BOOST_FOREACH(const Geometry* geo, geos) {
const MeshGeometry* const mesh = dynamic_cast<const MeshGeometry*>(geo);
if(mesh) {
const std::vector<unsigned int>& indices = ConvertMesh(*mesh, model, node_global_transform);
std::copy(indices.begin(),indices.end(),std::back_inserter(meshes) );
}
else {
FBXImporter::LogWarn("ignoring unrecognized geometry: " + geo->Name());
}
}
if(meshes.size()) {
nd.mMeshes = new unsigned int[meshes.size()]();
nd.mNumMeshes = static_cast<unsigned int>(meshes.size());
std::swap_ranges(meshes.begin(),meshes.end(),nd.mMeshes);
}
}
// ------------------------------------------------------------------------------------------------
// MeshGeometry -> aiMesh, return mesh index + 1 or 0 if the conversion failed
std::vector<unsigned int> ConvertMesh(const MeshGeometry& mesh,const Model& model, const aiMatrix4x4& node_global_transform)
{
std::vector<unsigned int> temp;
MeshMap::const_iterator it = meshes_converted.find(&mesh);
if (it != meshes_converted.end()) {
std::copy((*it).second.begin(),(*it).second.end(),std::back_inserter(temp));
return temp;
}
const std::vector<aiVector3D>& vertices = mesh.GetVertices();
const std::vector<unsigned int>& faces = mesh.GetFaceIndexCounts();
if(vertices.empty() || faces.empty()) {
FBXImporter::LogWarn("ignoring empty geometry: " + mesh.Name());
return temp;
}
// one material per mesh maps easily to aiMesh. Multiple material
// meshes need to be split.
const std::vector<unsigned int>& mindices = mesh.GetMaterialIndices();
if (doc.Settings().readMaterials && !mindices.empty()) {
const unsigned int base = mindices[0];
BOOST_FOREACH(unsigned int index, mindices) {
if(index != base) {
return ConvertMeshMultiMaterial(mesh, model, node_global_transform);
}
}
}
// faster codepath, just copy the data
temp.push_back(ConvertMeshSingleMaterial(mesh, model, node_global_transform));
return temp;
}
// ------------------------------------------------------------------------------------------------
aiMesh* SetupEmptyMesh(const MeshGeometry& mesh, unsigned int material_index)
{
aiMesh* const out_mesh = new aiMesh();
meshes.push_back(out_mesh);
meshes_converted[&mesh].push_back(static_cast<unsigned int>(meshes.size()-1));
// set name
std::string name = mesh.Name();
if (name.substr(0,10) == "Geometry::") {
name = name.substr(10);
}
if(name.length()) {
out_mesh->mName.Set(name);
}
return out_mesh;
}
// ------------------------------------------------------------------------------------------------
unsigned int ConvertMeshSingleMaterial(const MeshGeometry& mesh, const Model& model, const aiMatrix4x4& node_global_transform)
{
const std::vector<unsigned int>& mindices = mesh.GetMaterialIndices();
aiMesh* const out_mesh = SetupEmptyMesh(mesh,mindices.size() ? mindices[0] : static_cast<unsigned int>(-1));
const std::vector<aiVector3D>& vertices = mesh.GetVertices();
const std::vector<unsigned int>& faces = mesh.GetFaceIndexCounts();
// copy vertices
out_mesh->mNumVertices = static_cast<unsigned int>(vertices.size());
out_mesh->mVertices = new aiVector3D[vertices.size()];
std::copy(vertices.begin(),vertices.end(),out_mesh->mVertices);
// generate dummy faces
out_mesh->mNumFaces = static_cast<unsigned int>(faces.size());
aiFace* fac = out_mesh->mFaces = new aiFace[faces.size()]();
unsigned int cursor = 0;
BOOST_FOREACH(unsigned int pcount, faces) {
aiFace& f = *fac++;
f.mNumIndices = pcount;
f.mIndices = new unsigned int[pcount];
switch(pcount)
{
case 1:
out_mesh->mPrimitiveTypes |= aiPrimitiveType_POINT;
break;
case 2:
out_mesh->mPrimitiveTypes |= aiPrimitiveType_LINE;
break;
case 3:
out_mesh->mPrimitiveTypes |= aiPrimitiveType_TRIANGLE;
break;
default:
out_mesh->mPrimitiveTypes |= aiPrimitiveType_POLYGON;
break;
}
for (unsigned int i = 0; i < pcount; ++i) {
f.mIndices[i] = cursor++;
}
}
// copy normals
const std::vector<aiVector3D>& normals = mesh.GetNormals();
if(normals.size()) {
ai_assert(normals.size() == vertices.size());
out_mesh->mNormals = new aiVector3D[vertices.size()];
std::copy(normals.begin(),normals.end(),out_mesh->mNormals);
}
// copy tangents - assimp requires both tangents and bitangents (binormals)
// to be present, or neither of them. Compute binormals from normals
// and tangents if needed.
const std::vector<aiVector3D>& tangents = mesh.GetTangents();
const std::vector<aiVector3D>* binormals = &mesh.GetBinormals();
if(tangents.size()) {
std::vector<aiVector3D> tempBinormals;
if (!binormals->size()) {
if (normals.size()) {
tempBinormals.resize(normals.size());
for (unsigned int i = 0; i < tangents.size(); ++i) {
tempBinormals[i] = normals[i] ^ tangents[i];
}
binormals = &tempBinormals;
}
else {
binormals = NULL;
}
}
if(binormals) {
ai_assert(tangents.size() == vertices.size() && binormals->size() == vertices.size());
out_mesh->mTangents = new aiVector3D[vertices.size()];
std::copy(tangents.begin(),tangents.end(),out_mesh->mTangents);
out_mesh->mBitangents = new aiVector3D[vertices.size()];
std::copy(binormals->begin(),binormals->end(),out_mesh->mBitangents);
}
}
// copy texture coords
for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) {
const std::vector<aiVector2D>& uvs = mesh.GetTextureCoords(i);
if(uvs.empty()) {
break;
}
aiVector3D* out_uv = out_mesh->mTextureCoords[i] = new aiVector3D[vertices.size()];
BOOST_FOREACH(const aiVector2D& v, uvs) {
*out_uv++ = aiVector3D(v.x,v.y,0.0f);
}
out_mesh->mNumUVComponents[i] = 2;
}
// copy vertex colors
for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_COLOR_SETS; ++i) {
const std::vector<aiColor4D>& colors = mesh.GetVertexColors(i);
if(colors.empty()) {
break;
}
out_mesh->mColors[i] = new aiColor4D[vertices.size()];
std::copy(colors.begin(),colors.end(),out_mesh->mColors[i]);
}
if(!doc.Settings().readMaterials || mindices.empty()) {
FBXImporter::LogError("no material assigned to mesh, setting default material");
out_mesh->mMaterialIndex = GetDefaultMaterial();
}
else {
ConvertMaterialForMesh(out_mesh,model,mesh,mindices[0]);
}
if(doc.Settings().readWeights && mesh.DeformerSkin() != NULL) {
ConvertWeights(out_mesh, model, mesh, node_global_transform, NO_MATERIAL_SEPARATION);
}
return static_cast<unsigned int>(meshes.size() - 1);
}
// ------------------------------------------------------------------------------------------------
std::vector<unsigned int> ConvertMeshMultiMaterial(const MeshGeometry& mesh, const Model& model, const aiMatrix4x4& node_global_transform)
{
const std::vector<unsigned int>& mindices = mesh.GetMaterialIndices();
ai_assert(mindices.size());
std::set<unsigned int> had;
std::vector<unsigned int> indices;
BOOST_FOREACH(unsigned int index, mindices) {
if(had.find(index) == had.end()) {
indices.push_back(ConvertMeshMultiMaterial(mesh, model, index, node_global_transform));
had.insert(index);
}
}
return indices;
}
// ------------------------------------------------------------------------------------------------
unsigned int ConvertMeshMultiMaterial(const MeshGeometry& mesh, const Model& model, unsigned int index, const aiMatrix4x4& node_global_transform)
{
aiMesh* const out_mesh = SetupEmptyMesh(mesh, index);
const std::vector<unsigned int>& mindices = mesh.GetMaterialIndices();
const std::vector<aiVector3D>& vertices = mesh.GetVertices();
const std::vector<unsigned int>& faces = mesh.GetFaceIndexCounts();
const bool process_weights = doc.Settings().readWeights && mesh.DeformerSkin() != NULL;
unsigned int count_faces = 0;
unsigned int count_vertices = 0;
// count faces
for(std::vector<unsigned int>::const_iterator it = mindices.begin(),
end = mindices.end(), itf = faces.begin(); it != end; ++it, ++itf)
{
if ((*it) != index) {
continue;
}
++count_faces;
count_vertices += *itf;
}
ai_assert(count_faces);
ai_assert(count_vertices);
// mapping from output indices to DOM indexing, needed to resolve weights
std::vector<unsigned int> reverseMapping;
if (process_weights) {
reverseMapping.resize(count_vertices);
}
// allocate output data arrays, but don't fill them yet
out_mesh->mNumVertices = count_vertices;
out_mesh->mVertices = new aiVector3D[count_vertices];
out_mesh->mNumFaces = count_faces;
aiFace* fac = out_mesh->mFaces = new aiFace[count_faces]();
// allocate normals
const std::vector<aiVector3D>& normals = mesh.GetNormals();
if(normals.size()) {
ai_assert(normals.size() == vertices.size());
out_mesh->mNormals = new aiVector3D[vertices.size()];
}
// allocate tangents, binormals.
const std::vector<aiVector3D>& tangents = mesh.GetTangents();
const std::vector<aiVector3D>* binormals = &mesh.GetBinormals();
if(tangents.size()) {
std::vector<aiVector3D> tempBinormals;
if (!binormals->size()) {
if (normals.size()) {
// XXX this computes the binormals for the entire mesh, not only
// the part for which we need them.
tempBinormals.resize(normals.size());
for (unsigned int i = 0; i < tangents.size(); ++i) {
tempBinormals[i] = normals[i] ^ tangents[i];
}
binormals = &tempBinormals;
}
else {
binormals = NULL;
}
}
if(binormals) {
ai_assert(tangents.size() == vertices.size() && binormals->size() == vertices.size());
out_mesh->mTangents = new aiVector3D[vertices.size()];
out_mesh->mBitangents = new aiVector3D[vertices.size()];
}
}
// allocate texture coords
unsigned int num_uvs = 0;
for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i, ++num_uvs) {
const std::vector<aiVector2D>& uvs = mesh.GetTextureCoords(i);
if(uvs.empty()) {
break;
}
out_mesh->mTextureCoords[i] = new aiVector3D[vertices.size()];
out_mesh->mNumUVComponents[i] = 2;
}
// allocate vertex colors
unsigned int num_vcs = 0;
for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_COLOR_SETS; ++i, ++num_vcs) {
const std::vector<aiColor4D>& colors = mesh.GetVertexColors(i);
if(colors.empty()) {
break;
}
out_mesh->mColors[i] = new aiColor4D[vertices.size()];
}
unsigned int cursor = 0, in_cursor = 0;
for(std::vector<unsigned int>::const_iterator it = mindices.begin(),
end = mindices.end(), itf = faces.begin(); it != end; ++it, ++itf)
{
const unsigned int pcount = *itf;
if ((*it) != index) {
in_cursor += pcount;
continue;
}
aiFace& f = *fac++;
f.mNumIndices = pcount;
f.mIndices = new unsigned int[pcount];
switch(pcount)
{
case 1:
out_mesh->mPrimitiveTypes |= aiPrimitiveType_POINT;
break;
case 2:
out_mesh->mPrimitiveTypes |= aiPrimitiveType_LINE;
break;
case 3:
out_mesh->mPrimitiveTypes |= aiPrimitiveType_TRIANGLE;
break;
default:
out_mesh->mPrimitiveTypes |= aiPrimitiveType_POLYGON;
break;
}
for (unsigned int i = 0; i < pcount; ++i, ++cursor, ++in_cursor) {
f.mIndices[i] = cursor;
if(reverseMapping.size()) {
reverseMapping[cursor] = in_cursor;
}
out_mesh->mVertices[cursor] = vertices[in_cursor];
if(out_mesh->mNormals) {
out_mesh->mNormals[cursor] = normals[in_cursor];
}
if(out_mesh->mTangents) {
out_mesh->mTangents[cursor] = tangents[in_cursor];
out_mesh->mBitangents[cursor] = (*binormals)[in_cursor];
}
for (unsigned int i = 0; i < num_uvs; ++i) {
const std::vector<aiVector2D>& uvs = mesh.GetTextureCoords(i);
out_mesh->mTextureCoords[i][cursor] = aiVector3D(uvs[in_cursor].x,uvs[in_cursor].y, 0.0f);
}
for (unsigned int i = 0; i < num_vcs; ++i) {
const std::vector<aiColor4D>& cols = mesh.GetVertexColors(i);
out_mesh->mColors[i][cursor] = cols[in_cursor];
}
}
}
ConvertMaterialForMesh(out_mesh,model,mesh,index);
if(process_weights) {
ConvertWeights(out_mesh, model, mesh, node_global_transform, index, &reverseMapping);
}
return static_cast<unsigned int>(meshes.size() - 1);
}
static const unsigned int NO_MATERIAL_SEPARATION = /* std::numeric_limits<unsigned int>::max() */
static_cast<unsigned int>(-1);
// ------------------------------------------------------------------------------------------------
/** - if materialIndex == NO_MATERIAL_SEPARATION, materials are not taken into
* account when determining which weights to include.
* - outputVertStartIndices is only used when a material index is specified, it gives for
* each output vertex the DOM index it maps to. */
void ConvertWeights(aiMesh* out, const Model& model, const MeshGeometry& geo,
const aiMatrix4x4& node_global_transform = aiMatrix4x4(),
unsigned int materialIndex = NO_MATERIAL_SEPARATION,
std::vector<unsigned int>* outputVertStartIndices = NULL)
{
ai_assert(geo.DeformerSkin());
std::vector<size_t> out_indices;
std::vector<size_t> index_out_indices;
std::vector<size_t> count_out_indices;
const Skin& sk = *geo.DeformerSkin();
std::vector<aiBone*> bones;
bones.reserve(sk.Clusters().size());
const bool no_mat_check = materialIndex == NO_MATERIAL_SEPARATION;
ai_assert(no_mat_check || outputVertStartIndices);
try {
BOOST_FOREACH(const Cluster* cluster, sk.Clusters()) {
ai_assert(cluster);
const WeightIndexArray& indices = cluster->GetIndices();
const WeightArray& weights = cluster->GetWeights();
if(indices.empty()) {
continue;
}
const MatIndexArray& mats = geo.GetMaterialIndices();
bool ok = false;
const size_t no_index_sentinel = std::numeric_limits<size_t>::max();
count_out_indices.clear();
index_out_indices.clear();
out_indices.clear();
// now check if *any* of these weights is contained in the output mesh,
// taking notes so we don't need to do it twice.
BOOST_FOREACH(WeightIndexArray::value_type index, indices) {
unsigned int count;
const unsigned int* const out_idx = geo.ToOutputVertexIndex(index, count);
index_out_indices.push_back(no_index_sentinel);
count_out_indices.push_back(0);
for(unsigned int i = 0; i < count; ++i) {
if (no_mat_check || mats[geo.FaceForVertexIndex(out_idx[i])] == materialIndex) {
if (index_out_indices.back() == no_index_sentinel) {
index_out_indices.back() = out_indices.size();
}
if (no_mat_check) {
out_indices.push_back(out_idx[i]);
}
else {
// this extra lookup is in O(logn), so the entire algorithm becomes O(nlogn)
const std::vector<unsigned int>::iterator it = std::lower_bound(
outputVertStartIndices->begin(),
outputVertStartIndices->end(),
out_idx[i]
);
out_indices.push_back(std::distance(outputVertStartIndices->begin(), it));
}
++count_out_indices.back();
ok = true;
}
}
}
// if we found at least one, generate the output bones
// XXX this could be heavily simplified by collecting the bone
// data in a single step.
if (ok) {
ConvertCluster(bones, model, *cluster, out_indices, index_out_indices,
count_out_indices, node_global_transform);
}
}
}
catch (std::exception&) {
std::for_each(bones.begin(),bones.end(),Util::delete_fun<aiBone>());
throw;
}
if(bones.empty()) {
return;
}
out->mBones = new aiBone*[bones.size()]();
out->mNumBones = static_cast<unsigned int>(bones.size());
std::swap_ranges(bones.begin(),bones.end(),out->mBones);
}
// ------------------------------------------------------------------------------------------------
void ConvertCluster(std::vector<aiBone*>& bones, const Model& model, const Cluster& cl,
std::vector<size_t>& out_indices,
std::vector<size_t>& index_out_indices,
std::vector<size_t>& count_out_indices,
const aiMatrix4x4& node_global_transform)
{
aiBone* const bone = new aiBone();
bones.push_back(bone);
bone->mName = FixNodeName(cl.TargetNode()->Name());
bone->mOffsetMatrix = cl.TransformLink();
bone->mOffsetMatrix.Inverse();
bone->mOffsetMatrix = bone->mOffsetMatrix * node_global_transform;
bone->mNumWeights = static_cast<unsigned int>(out_indices.size());
aiVertexWeight* cursor = bone->mWeights = new aiVertexWeight[out_indices.size()];
const size_t no_index_sentinel = std::numeric_limits<size_t>::max();
const WeightArray& weights = cl.GetWeights();
const size_t c = index_out_indices.size();
for (size_t i = 0; i < c; ++i) {
const size_t index_index = index_out_indices[i];
if (index_index == no_index_sentinel) {
continue;
}
const size_t cc = count_out_indices[i];
for (size_t j = 0; j < cc; ++j) {
aiVertexWeight& out_weight = *cursor++;
out_weight.mVertexId = static_cast<unsigned int>(out_indices[index_index + j]);
out_weight.mWeight = weights[i];
}
}
}
// ------------------------------------------------------------------------------------------------
void ConvertMaterialForMesh(aiMesh* out, const Model& model, const MeshGeometry& geo, unsigned int materialIndex)
{
// locate source materials for this mesh
const std::vector<const Material*>& mats = model.GetMaterials();
if (materialIndex >= mats.size()) {
FBXImporter::LogError("material index out of bounds, setting default material");
out->mMaterialIndex = GetDefaultMaterial();
return;
}
const Material* const mat = mats[materialIndex];
MaterialMap::const_iterator it = materials_converted.find(mat);
if (it != materials_converted.end()) {
out->mMaterialIndex = (*it).second;
return;
}
out->mMaterialIndex = ConvertMaterial(*mat);
materials_converted[mat] = out->mMaterialIndex;
}
// ------------------------------------------------------------------------------------------------
unsigned int GetDefaultMaterial()
{
if (defaultMaterialIndex) {
return defaultMaterialIndex - 1;
}
aiMaterial* out_mat = new aiMaterial();
materials.push_back(out_mat);
const aiColor3D diffuse = aiColor3D(0.8f,0.8f,0.8f);
out_mat->AddProperty(&diffuse,1,AI_MATKEY_COLOR_DIFFUSE);
aiString s;
s.Set(AI_DEFAULT_MATERIAL_NAME);
out_mat->AddProperty(&s,AI_MATKEY_NAME);
defaultMaterialIndex = static_cast<unsigned int>(materials.size());
return defaultMaterialIndex - 1;
}
// ------------------------------------------------------------------------------------------------
// Material -> aiMaterial
unsigned int ConvertMaterial(const Material& material)
{
const PropertyTable& props = material.Props();
// generate empty output material
aiMaterial* out_mat = new aiMaterial();
materials_converted[&material] = static_cast<unsigned int>(materials.size());
materials.push_back(out_mat);
aiString str;
// stip Material:: prefix
std::string name = material.Name();
if(name.substr(0,10) == "Material::") {
name = name.substr(10);
}
// set material name if not empty - this could happen
// and there should be no key for it in this case.
if(name.length()) {
str.Set(name);
out_mat->AddProperty(&str,AI_MATKEY_NAME);
}
// shading stuff and colors
SetShadingPropertiesCommon(out_mat,props);
// texture assignments
SetTextureProperties(out_mat,material.Textures());
return static_cast<unsigned int>(materials.size() - 1);
}
// ------------------------------------------------------------------------------------------------
void TrySetTextureProperties(aiMaterial* out_mat, const TextureMap& textures, const std::string& propName, aiTextureType target)
{
TextureMap::const_iterator it = textures.find(propName);
if(it == textures.end()) {
return;
}
const Texture* const tex = (*it).second;
aiString path;
path.Set(tex->RelativeFilename());
out_mat->AddProperty(&path,_AI_MATKEY_TEXTURE_BASE,target,0);
aiUVTransform uvTrafo;
// XXX handle all kinds of UV transformations
uvTrafo.mScaling = tex->UVScaling();
uvTrafo.mTranslation = tex->UVTranslation();
out_mat->AddProperty(&uvTrafo,1,_AI_MATKEY_UVTRANSFORM_BASE,target,0);
const PropertyTable& props = tex->Props();
int uvIndex = 0;
bool ok;
const std::string& uvSet = PropertyGet<std::string>(props,"UVSet",ok);
if(ok) {
// "default" is the name which usually appears in the FbxFileTexture template
if(uvSet != "default" && uvSet.length()) {
// this is a bit awkward - we need to find a mesh that uses this
// material and scan its UV channels for the given UV name because
// assimp references UV channels by index, not by name.
// XXX: the case that UV channels may appear in different orders
// in meshes is unhandled. A possible solution would be to sort
// the UV channels alphabetically, but this would have the side
// effect that the primary (first) UV channel would sometimes
// be moved, causing trouble when users read only the first
// UV channel and ignore UV channel assignments altogether.
const unsigned int matIndex = static_cast<unsigned int>(std::distance(materials.begin(),
std::find(materials.begin(),materials.end(),out_mat)
));
uvIndex = -1;
BOOST_FOREACH(const MeshMap::value_type& v,meshes_converted) {
const MeshGeometry* const mesh = dynamic_cast<const MeshGeometry*> (v.first);
if(!mesh) {
continue;
}
const std::vector<unsigned int>& mats = mesh->GetMaterialIndices();
if(std::find(mats.begin(),mats.end(),matIndex) == mats.end()) {
continue;
}
int index = -1;
for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) {
if(mesh->GetTextureCoords(i).empty()) {
break;
}
const std::string& name = mesh->GetTextureCoordChannelName(i);
if(name == uvSet) {
index = static_cast<int>(i);
break;
}
}
if(index == -1) {
FBXImporter::LogWarn("did not find UV channel named " + uvSet + " in a mesh using this material");
continue;
}
if(uvIndex == -1) {
uvIndex = index;
}
else {
FBXImporter::LogWarn("the UV channel named " + uvSet +
" appears at different positions in meshes, results will be wrong");
}
}
if(uvIndex == -1) {
FBXImporter::LogWarn("failed to resolve UV channel " + uvSet + ", using first UV channel");
uvIndex = 0;
}
}
}
out_mat->AddProperty(&uvIndex,1,_AI_MATKEY_UVWSRC_BASE,target,0);
}
// ------------------------------------------------------------------------------------------------
void SetTextureProperties(aiMaterial* out_mat, const TextureMap& textures)
{
TrySetTextureProperties(out_mat, textures, "DiffuseColor", aiTextureType_DIFFUSE);
TrySetTextureProperties(out_mat, textures, "AmbientColor", aiTextureType_AMBIENT);
TrySetTextureProperties(out_mat, textures, "EmissiveColor", aiTextureType_EMISSIVE);
TrySetTextureProperties(out_mat, textures, "SpecularColor", aiTextureType_SPECULAR);
TrySetTextureProperties(out_mat, textures, "TransparentColor", aiTextureType_OPACITY);
TrySetTextureProperties(out_mat, textures, "ReflectionColor", aiTextureType_REFLECTION);
TrySetTextureProperties(out_mat, textures, "DisplacementColor", aiTextureType_DISPLACEMENT);
TrySetTextureProperties(out_mat, textures, "NormalMap", aiTextureType_NORMALS);
TrySetTextureProperties(out_mat, textures, "Bump", aiTextureType_HEIGHT);
}
// ------------------------------------------------------------------------------------------------
aiColor3D GetColorPropertyFromMaterial(const PropertyTable& props,const std::string& baseName, bool& result)
{
result = true;
bool ok;
const aiVector3D& Diffuse = PropertyGet<aiVector3D>(props,baseName,ok);
if(ok) {
return aiColor3D(Diffuse.x,Diffuse.y,Diffuse.z);
}
else {
aiVector3D DiffuseColor = PropertyGet<aiVector3D>(props,baseName + "Color",ok);
if(ok) {
float DiffuseFactor = PropertyGet<float>(props,baseName + "Factor",ok);
if(ok) {
DiffuseColor *= DiffuseFactor;
}
return aiColor3D(DiffuseColor.x,DiffuseColor.y,DiffuseColor.z);
}
}
result = false;
return aiColor3D(0.0f,0.0f,0.0f);
}
// ------------------------------------------------------------------------------------------------
void SetShadingPropertiesCommon(aiMaterial* out_mat, const PropertyTable& props)
{
// set shading properties. There are various, redundant ways in which FBX materials
// specify their shading settings (depending on shading models, prop
// template etc.). No idea which one is right in a particular context.
// Just try to make sense of it - there's no spec to verify this against,
// so why should we.
bool ok;
const aiColor3D& Diffuse = GetColorPropertyFromMaterial(props,"Diffuse",ok);
if(ok) {
out_mat->AddProperty(&Diffuse,1,AI_MATKEY_COLOR_DIFFUSE);
}
const aiColor3D& Emissive = GetColorPropertyFromMaterial(props,"Emissive",ok);
if(ok) {
out_mat->AddProperty(&Emissive,1,AI_MATKEY_COLOR_EMISSIVE);
}
const aiColor3D& Ambient = GetColorPropertyFromMaterial(props,"Ambient",ok);
if(ok) {
out_mat->AddProperty(&Ambient,1,AI_MATKEY_COLOR_AMBIENT);
}
const aiColor3D& Specular = GetColorPropertyFromMaterial(props,"Specular",ok);
if(ok) {
out_mat->AddProperty(&Specular,1,AI_MATKEY_COLOR_SPECULAR);
}
const float Opacity = PropertyGet<float>(props,"Opacity",ok);
if(ok) {
out_mat->AddProperty(&Opacity,1,AI_MATKEY_OPACITY);
}
const float Reflectivity = PropertyGet<float>(props,"Reflectivity",ok);
if(ok) {
out_mat->AddProperty(&Reflectivity,1,AI_MATKEY_REFLECTIVITY);
}
const float Shininess = PropertyGet<float>(props,"Shininess",ok);
if(ok) {
out_mat->AddProperty(&Shininess,1,AI_MATKEY_SHININESS_STRENGTH);
}
const float ShininessExponent = PropertyGet<float>(props,"ShininessExponent",ok);
if(ok) {
out_mat->AddProperty(&ShininessExponent,1,AI_MATKEY_SHININESS);
}
}
// ------------------------------------------------------------------------------------------------
// convert animation data to aiAnimation et al
void ConvertAnimations()
{
const std::vector<const AnimationStack*>& animations = doc.AnimationStacks();
BOOST_FOREACH(const AnimationStack* stack, animations) {
ConvertAnimationStack(*stack);
}
}
// ------------------------------------------------------------------------------------------------
std::string FixNodeName(const std::string& name)
{
// strip Model:: prefix, avoiding ambiguities (i.e. don't strip if
// this causes ambiguities, well possible between empty identifiers,
// such as "Model::" and ""). Make sure the behaviour is consistent
// across multiple calls to FixNodeName().
if(name.substr(0,7) == "Model::") {
std::string temp = name.substr(7);
const NodeNameMap::const_iterator it = node_names.find(temp);
if (it != node_names.end()) {
if (!(*it).second) {
return FixNodeName(name + "_");
}
}
node_names[temp] = true;
return temp;
}
const NodeNameMap::const_iterator it = node_names.find(name);
if (it != node_names.end()) {
if ((*it).second) {
return FixNodeName(name + "_");
}
}
node_names[name] = false;
return name;
}
typedef std::map<const AnimationCurveNode*, const AnimationLayer*> LayerMap;
// XXX: better use multi_map ..
typedef std::map<std::string, std::vector<const AnimationCurveNode*> > NodeMap;
// ------------------------------------------------------------------------------------------------
void ConvertAnimationStack(const AnimationStack& st)
{
const AnimationLayerList& layers = st.Layers();
if(layers.empty()) {
return;
}
aiAnimation* const anim = new aiAnimation();
animations.push_back(anim);
// strip AnimationStack:: prefix
std::string name = st.Name();
if(name.substr(0,16) == "AnimationStack::") {
name = name.substr(16);
}
anim->mName.Set(name);
// need to find all nodes for which we need to generate node animations -
// it may happen that we need to merge multiple layers, though.
NodeMap node_map;
// reverse mapping from curves to layers, much faster than querying
// the FBX DOM for it.
LayerMap layer_map;
BOOST_FOREACH(const AnimationLayer* layer, layers) {
ai_assert(layer);
const AnimationCurveNodeList& nodes = layer->Nodes();
BOOST_FOREACH(const AnimationCurveNode* node, nodes) {
ai_assert(node);
const Model* const model = dynamic_cast<const Model*>(node->Target());
// this can happen - it could also be a NodeAttribute (i.e. for camera animations)
if(!model) {
continue;
}
const std::string& name = FixNodeName(model->Name());
node_map[name].push_back(node);
layer_map[node] = layer;
}
}
// generate node animations
std::vector<aiNodeAnim*> node_anims;
double min_time = 1e10;
double max_time = -1e10;
try {
BOOST_FOREACH(const NodeMap::value_type& kv, node_map) {
GenerateNodeAnimations(node_anims,
kv.first,
kv.second,
layer_map,
max_time,
min_time);
}
}
catch(std::exception&) {
std::for_each(node_anims.begin(), node_anims.end(), Util::delete_fun<aiNodeAnim>());
throw;
}
if(node_anims.size()) {
anim->mChannels = new aiNodeAnim*[node_anims.size()]();
anim->mNumChannels = static_cast<unsigned int>(node_anims.size());
std::swap_ranges(node_anims.begin(),node_anims.end(),anim->mChannels);
}
else {
// empty animations would fail validation, so drop them
delete anim;
animations.pop_back();
FBXImporter::LogInfo("ignoring empty AnimationStack: " + name);
return;
}
// for some mysterious reason, mDuration is simply the maximum key -- the
// validator always assumes animations to start at zero.
anim->mDuration = max_time /*- min_time */;
anim->mTicksPerSecond = 1000.0;
}
// ------------------------------------------------------------------------------------------------
void GenerateNodeAnimations(std::vector<aiNodeAnim*>& node_anims,
const std::string& fixed_name,
const std::vector<const AnimationCurveNode*>& curves,
const LayerMap& layer_map,
double& max_time,
double& min_time)
{
NodeMap node_property_map;
ai_assert(curves.size());
// sanity check whether the input is ok
#ifdef _DEBUG
{ const Object* target = NULL;
BOOST_FOREACH(const AnimationCurveNode* node, curves) {
if(!target) {
target = node->Target();
}
ai_assert(node->Target() == target);
}}
#endif
const AnimationCurveNode* curve_node;
BOOST_FOREACH(const AnimationCurveNode* node, curves) {
ai_assert(node);
if (node->TargetProperty().empty()) {
FBXImporter::LogWarn("target property for animation curve not set: " + node->Name());
continue;
}
curve_node = node;
if (node->Curves().empty()) {
FBXImporter::LogWarn("no animation curves assigned to AnimationCurveNode: " + node->Name());
continue;
}
node_property_map[node->TargetProperty()].push_back(node);
}
ai_assert(curve_node);
ai_assert(curve_node->TargetAsModel());
const Model& target = *curve_node->TargetAsModel();
// check for all possible transformation components
NodeMap::const_iterator chain[TransformationComp_MAXIMUM];
bool has_any = false;
bool has_complex = false;
for (size_t i = 0; i < TransformationComp_MAXIMUM; ++i) {
const TransformationComp comp = static_cast<TransformationComp>(i);
// inverse pivots don't exist in the input, we just generate them
if (comp == TransformationComp_RotationPivotInverse || comp == TransformationComp_ScalingPivotInverse) {
chain[i] = node_property_map.end();
continue;
}
chain[i] = node_property_map.find(NameTransformationCompProperty(comp));
if (chain[i] != node_property_map.end()) {
// check if this curves contains redundant information by looking
// up the corresponding node's transformation chain.
if (doc.Settings().optimizeEmptyAnimationCurves && IsRedundantAnimationData(target, comp, (*chain[i]).second)) {
FBXImporter::LogDebug("dropping redundant animation channel for node " + target.Name());
continue;
}
has_any = true;
if (comp != TransformationComp_Rotation && comp != TransformationComp_Scaling &&
comp != TransformationComp_Translation) {
has_complex = true;
}
}
}
if (!has_any) {
FBXImporter::LogWarn("ignoring node animation, did not find any transformation key frames");
return;
}
// this needs to play nicely with GenerateTransformationNodeChain() which will
// be invoked _later_ (animations come first). If this node has only rotation,
// scaling and translation _and_ there are no animated other components either,
// we can use a single node and also a single node animation channel.
if (!has_complex && !NeedsComplexTransformationChain(target)) {
aiNodeAnim* const nd = GenerateSimpleNodeAnim(fixed_name, target, chain,
node_property_map.end(),
layer_map,
max_time,
min_time
);
ai_assert(nd);
node_anims.push_back(nd);
return;
}
// otherwise, things get gruesome and we need separate animation channels
// for each part of the transformation chain. Remember which channels
// we generated and pass this information to the node conversion
// code to avoid nodes that have identity transform, but non-identity
// animations, being dropped.
unsigned int flags = 0, bit = 0x1;
for (size_t i = 0; i < TransformationComp_MAXIMUM; ++i, bit <<= 1) {
const TransformationComp comp = static_cast<TransformationComp>(i);
if (chain[i] != node_property_map.end()) {
flags |= bit;
ai_assert(comp != TransformationComp_RotationPivotInverse);
ai_assert(comp != TransformationComp_ScalingPivotInverse);
const std::string& chain_name = NameTransformationChainNode(fixed_name, comp);
aiNodeAnim* na;
switch(comp)
{
case TransformationComp_Rotation:
case TransformationComp_PreRotation:
case TransformationComp_PostRotation:
na = GenerateRotationNodeAnim(chain_name,
target,
(*chain[i]).second,
layer_map,
max_time,
min_time);
break;
case TransformationComp_RotationOffset:
case TransformationComp_RotationPivot:
case TransformationComp_ScalingOffset:
case TransformationComp_ScalingPivot:
case TransformationComp_Translation:
na = GenerateTranslationNodeAnim(chain_name,
target,
(*chain[i]).second,
layer_map,
max_time,
min_time);
// pivoting requires us to generate an implicit inverse channel to undo the pivot translation
if (comp == TransformationComp_RotationPivot) {
const std::string& invName = NameTransformationChainNode(fixed_name, TransformationComp_RotationPivotInverse);
aiNodeAnim* const inv = GenerateTranslationNodeAnim(invName,
target,
(*chain[i]).second,
layer_map,
max_time,
min_time,
true);
ai_assert(inv);
node_anims.push_back(inv);
ai_assert(TransformationComp_RotationPivotInverse > i);
flags |= bit << (TransformationComp_RotationPivotInverse - i);
}
else if (comp == TransformationComp_ScalingPivot) {
const std::string& invName = NameTransformationChainNode(fixed_name, TransformationComp_ScalingPivotInverse);
aiNodeAnim* const inv = GenerateTranslationNodeAnim(invName,
target,
(*chain[i]).second,
layer_map,
max_time,
min_time,
true);
ai_assert(inv);
node_anims.push_back(inv);
ai_assert(TransformationComp_RotationPivotInverse > i);
flags |= bit << (TransformationComp_RotationPivotInverse - i);
}
break;
case TransformationComp_Scaling:
na = GenerateScalingNodeAnim(chain_name,
target,
(*chain[i]).second,
layer_map,
max_time,
min_time);
break;
default:
ai_assert(false);
}
ai_assert(na);
node_anims.push_back(na);
continue;
}
}
node_anim_chain_bits[fixed_name] = flags;
}
// ------------------------------------------------------------------------------------------------
bool IsRedundantAnimationData(const Model& target,
TransformationComp comp,
const std::vector<const AnimationCurveNode*>& curves)
{
ai_assert(curves.size());
// look for animation nodes with
// * sub channels for all relevant components set
// * one key/value pair per component
// * combined values match up the corresponding value in the bind pose node transformation
// only such nodes are 'redundant' for this function.
if (curves.size() > 1) {
return false;
}
const AnimationCurveNode& nd = *curves.front();
const AnimationCurveMap& sub_curves = nd.Curves();
const AnimationCurveMap::const_iterator dx = sub_curves.find("d|X");
const AnimationCurveMap::const_iterator dy = sub_curves.find("d|Y");
const AnimationCurveMap::const_iterator dz = sub_curves.find("d|Z");
if (dx == sub_curves.end() || dy == sub_curves.end() || dz == sub_curves.end()) {
return false;
}
const KeyValueList& vx = (*dx).second->GetValues();
const KeyValueList& vy = (*dy).second->GetValues();
const KeyValueList& vz = (*dz).second->GetValues();
if(vx.size() != 1 || vy.size() != 1 || vz.size() != 1) {
return false;
}
const aiVector3D dyn_val = aiVector3D(vx[0], vy[0], vz[0]);
const aiVector3D& static_val = PropertyGet<aiVector3D>(target.Props(),
NameTransformationCompProperty(comp),
TransformationCompDefaultValue(comp)
);
const float epsilon = 1e-6f;
return (dyn_val - static_val).SquareLength() < epsilon;
}
// ------------------------------------------------------------------------------------------------
aiNodeAnim* GenerateRotationNodeAnim(const std::string& name,
const Model& target,
const std::vector<const AnimationCurveNode*>& curves,
const LayerMap& layer_map,
double& max_time,
double& min_time)
{
ScopeGuard<aiNodeAnim> na(new aiNodeAnim());
na->mNodeName.Set(name);
ConvertRotationKeys(na, curves, layer_map, max_time,min_time);
// dummy scaling key
na->mScalingKeys = new aiVectorKey[1];
na->mNumScalingKeys = 1;
na->mScalingKeys[0].mTime = 0.;
na->mScalingKeys[0].mValue = aiVector3D(1.0f,1.0f,1.0f);
// dummy position key
na->mPositionKeys = new aiVectorKey[1];
na->mNumPositionKeys = 1;
na->mPositionKeys[0].mTime = 0.;
na->mPositionKeys[0].mValue = aiVector3D();
return na.dismiss();
}
// ------------------------------------------------------------------------------------------------
aiNodeAnim* GenerateScalingNodeAnim(const std::string& name,
const Model& target,
const std::vector<const AnimationCurveNode*>& curves,
const LayerMap& layer_map,
double& max_time,
double& min_time)
{
ScopeGuard<aiNodeAnim> na(new aiNodeAnim());
na->mNodeName.Set(name);
ConvertScaleKeys(na, curves, layer_map, max_time,min_time);
// dummy rotation key
na->mRotationKeys = new aiQuatKey[1];
na->mNumRotationKeys = 1;
na->mRotationKeys[0].mTime = 0.;
na->mRotationKeys[0].mValue = aiQuaternion();
// dummy position key
na->mPositionKeys = new aiVectorKey[1];
na->mNumPositionKeys = 1;
na->mPositionKeys[0].mTime = 0.;
na->mPositionKeys[0].mValue = aiVector3D();
return na.dismiss();
}
// ------------------------------------------------------------------------------------------------
aiNodeAnim* GenerateTranslationNodeAnim(const std::string& name,
const Model& target,
const std::vector<const AnimationCurveNode*>& curves,
const LayerMap& layer_map,
double& max_time,
double& min_time,
bool inverse = false)
{
ScopeGuard<aiNodeAnim> na(new aiNodeAnim());
na->mNodeName.Set(name);
ConvertTranslationKeys(na, curves, layer_map, max_time,min_time);
if (inverse) {
for (unsigned int i = 0; i < na->mNumPositionKeys; ++i) {
na->mPositionKeys[i].mValue *= -1.0f;
}
}
// dummy scaling key
na->mScalingKeys = new aiVectorKey[1];
na->mNumScalingKeys = 1;
na->mScalingKeys[0].mTime = 0.;
na->mScalingKeys[0].mValue = aiVector3D(1.0f,1.0f,1.0f);
// dummy rotation key
na->mRotationKeys = new aiQuatKey[1];
na->mNumRotationKeys = 1;
na->mRotationKeys[0].mTime = 0.;
na->mRotationKeys[0].mValue = aiQuaternion();
return na.dismiss();
}
// ------------------------------------------------------------------------------------------------
// generate node anim, extracting only Rotation, Scaling and Translation from the given chain
aiNodeAnim* GenerateSimpleNodeAnim(const std::string& name,
const Model& target,
NodeMap::const_iterator chain[TransformationComp_MAXIMUM],
NodeMap::const_iterator iter_end,
const LayerMap& layer_map,
double& max_time,
double& min_time)
{
ScopeGuard<aiNodeAnim> na(new aiNodeAnim());
na->mNodeName.Set(name);
const PropertyTable& props = target.Props();
// if a particular transformation is not given, grab it from
// the corresponding node to meet the semantics of aiNodeAnim,
// which requires all of rotation, scaling and translation
// to be set.
if(chain[TransformationComp_Scaling] != iter_end) {
ConvertScaleKeys(na, (*chain[TransformationComp_Scaling]).second,
layer_map,
max_time,
min_time);
}
else {
na->mScalingKeys = new aiVectorKey[1];
na->mNumScalingKeys = 1;
na->mScalingKeys[0].mTime = 0.;
na->mScalingKeys[0].mValue = PropertyGet(props,"Lcl Scaling",
aiVector3D(1.f,1.f,1.f));
}
if(chain[TransformationComp_Rotation] != iter_end) {
ConvertRotationKeys(na, (*chain[TransformationComp_Rotation]).second,
layer_map,
max_time,
min_time);
}
else {
na->mRotationKeys = new aiQuatKey[1];
na->mNumRotationKeys = 1;
na->mRotationKeys[0].mTime = 0.;
na->mRotationKeys[0].mValue = EulerToQuaternion(
PropertyGet(props,"Lcl Rotation",aiVector3D(0.f,0.f,0.f))
);
}
if(chain[TransformationComp_Translation] != iter_end) {
ConvertTranslationKeys(na, (*chain[TransformationComp_Translation]).second,
layer_map,
max_time,
min_time);
}
else {
na->mPositionKeys = new aiVectorKey[1];
na->mNumPositionKeys = 1;
na->mPositionKeys[0].mTime = 0.;
na->mPositionKeys[0].mValue = PropertyGet(props,"Lcl Translation",
aiVector3D(0.f,0.f,0.f));
}
return na.dismiss();
}
// key (time), value, mapto (component index)
typedef boost::tuple< const KeyTimeList*, const KeyValueList*, unsigned int > KeyFrameList;
typedef std::vector<KeyFrameList> KeyFrameListList;
// ------------------------------------------------------------------------------------------------
KeyFrameListList GetKeyframeList(const std::vector<const AnimationCurveNode*>& nodes)
{
KeyFrameListList inputs;
inputs.reserve(nodes.size()*3);
BOOST_FOREACH(const AnimationCurveNode* node, nodes) {
ai_assert(node);
const AnimationCurveMap& curves = node->Curves();
BOOST_FOREACH(const AnimationCurveMap::value_type& kv, curves) {
unsigned int mapto;
if (kv.first == "d|X") {
mapto = 0;
}
else if (kv.first == "d|Y") {
mapto = 1;
}
else if (kv.first == "d|Z") {
mapto = 2;
}
else {
FBXImporter::LogWarn("ignoring scale animation curve, did not recognize target component");
continue;
}
const AnimationCurve* const curve = kv.second;
ai_assert(curve->GetKeys().size() == curve->GetValues().size() && curve->GetKeys().size());
inputs.push_back(boost::make_tuple(&curve->GetKeys(), &curve->GetValues(), mapto));
}
}
return inputs; // pray for NRVO :-)
}
// ------------------------------------------------------------------------------------------------
KeyTimeList GetKeyTimeList(const KeyFrameListList& inputs)
{
ai_assert(inputs.size());
// reserve some space upfront - it is likely that the keyframe lists
// have matching time values, so max(of all keyframe lists) should
// be a good estimate.
KeyTimeList keys;
size_t estimate = 0;
BOOST_FOREACH(const KeyFrameList& kfl, inputs) {
estimate = std::max(estimate, kfl.get<0>()->size());
}
keys.reserve(estimate);
std::vector<unsigned int> next_pos;
next_pos.resize(inputs.size(),0);
const size_t count = inputs.size();
while(true) {
uint64_t min_tick = std::numeric_limits<uint64_t>::max();
for (size_t i = 0; i < count; ++i) {
const KeyFrameList& kfl = inputs[i];
if (kfl.get<0>()->size() > next_pos[i] && kfl.get<0>()->at(next_pos[i]) < min_tick) {
min_tick = kfl.get<0>()->at(next_pos[i]);
}
}
if (min_tick == std::numeric_limits<uint64_t>::max()) {
break;
}
keys.push_back(min_tick);
for (size_t i = 0; i < count; ++i) {
const KeyFrameList& kfl = inputs[i];
while(kfl.get<0>()->size() > next_pos[i] && kfl.get<0>()->at(next_pos[i]) == min_tick) {
++next_pos[i];
}
}
}
return keys;
}
// ------------------------------------------------------------------------------------------------
void InterpolateKeys(aiVectorKey* valOut,const KeyTimeList& keys, const KeyFrameListList& inputs, const bool geom,
double& maxTime,
double& minTime)
{
ai_assert(keys.size());
ai_assert(valOut);
std::vector<unsigned int> next_pos;
const size_t count = inputs.size();
next_pos.resize(inputs.size(),0);
BOOST_FOREACH(KeyTimeList::value_type time, keys) {
float result[3] = {0.0f, 0.0f, 0.0f};
if(geom) {
result[0] = result[1] = result[2] = 1.0f;
}
for (size_t i = 0; i < count; ++i) {
const KeyFrameList& kfl = inputs[i];
const size_t ksize = kfl.get<0>()->size();
if (ksize > next_pos[i] && kfl.get<0>()->at(next_pos[i]) == time) {
++next_pos[i];
}
const size_t id0 = next_pos[i]>0 ? next_pos[i]-1 : 0;
const size_t id1 = next_pos[i]==ksize ? ksize-1 : next_pos[i];
// use lerp for interpolation
const KeyValueList::value_type valueA = kfl.get<1>()->at(id0);
const KeyValueList::value_type valueB = kfl.get<1>()->at(id1);
const KeyTimeList::value_type timeA = kfl.get<0>()->at(id0);
const KeyTimeList::value_type timeB = kfl.get<0>()->at(id1);
// do the actual interpolation in double-precision arithmetics
// because it is a bit sensitive to rounding errors.
const double factor = timeB == timeA ? 0. : static_cast<double>((time - timeA) / (timeB - timeA));
const float interpValue = static_cast<float>(valueA + (valueB - valueA) * factor);
if(geom) {
result[kfl.get<2>()] *= interpValue;
}
else {
result[kfl.get<2>()] += interpValue;
}
}
// magic value to convert fbx times to milliseconds
valOut->mTime = static_cast<double>(time) / 46186158;
minTime = std::min(minTime, valOut->mTime);
maxTime = std::max(maxTime, valOut->mTime);
valOut->mValue.x = result[0];
valOut->mValue.y = result[1];
valOut->mValue.z = result[2];
++valOut;
}
}
// ------------------------------------------------------------------------------------------------
void InterpolateKeys(aiQuatKey* valOut,const KeyTimeList& keys, const KeyFrameListList& inputs, const bool geom,
double& maxTime,
double& minTime)
{
ai_assert(keys.size());
ai_assert(valOut);
boost::scoped_array<aiVectorKey> temp(new aiVectorKey[keys.size()]);
InterpolateKeys(temp.get(),keys,inputs,geom,maxTime, minTime);
for (size_t i = 0, c = keys.size(); i < c; ++i) {
valOut[i].mTime = temp[i].mTime;
valOut[i].mValue = EulerToQuaternion(temp[i].mValue);
}
}
// ------------------------------------------------------------------------------------------------
// euler xyz -> quat
aiQuaternion EulerToQuaternion(const aiVector3D& rot)
{
aiMatrix4x4 m;
GetRotationMatrix(RotationMode_Euler_XYZ, rot, m);
return aiQuaternion(aiMatrix3x3(m));
}
// ------------------------------------------------------------------------------------------------
void ConvertScaleKeys(aiNodeAnim* na, const std::vector<const AnimationCurveNode*>& nodes, const LayerMap& layers,
double& maxTime,
double& minTime)
{
ai_assert(nodes.size());
// XXX for now, assume scale should be blended geometrically (i.e. two
// layers should be multiplied with each other). There is a FBX
// property in the layer to specify the behaviour, though.
const KeyFrameListList& inputs = GetKeyframeList(nodes);
const KeyTimeList& keys = GetKeyTimeList(inputs);
na->mNumScalingKeys = static_cast<unsigned int>(keys.size());
na->mScalingKeys = new aiVectorKey[keys.size()];
InterpolateKeys(na->mScalingKeys, keys, inputs, true, maxTime, minTime);
}
// ------------------------------------------------------------------------------------------------
void ConvertTranslationKeys(aiNodeAnim* na, const std::vector<const AnimationCurveNode*>& nodes, const LayerMap& layers,
double& maxTime,
double& minTime)
{
ai_assert(nodes.size());
// XXX see notes in ConvertScaleKeys()
const KeyFrameListList& inputs = GetKeyframeList(nodes);
const KeyTimeList& keys = GetKeyTimeList(inputs);
na->mNumPositionKeys = static_cast<unsigned int>(keys.size());
na->mPositionKeys = new aiVectorKey[keys.size()];
InterpolateKeys(na->mPositionKeys, keys, inputs, false, maxTime, minTime);
}
// ------------------------------------------------------------------------------------------------
void ConvertRotationKeys(aiNodeAnim* na, const std::vector<const AnimationCurveNode*>& nodes, const LayerMap& layers,
double& maxTime,
double& minTime)
{
ai_assert(nodes.size());
// XXX see notes in ConvertScaleKeys()
const std::vector< KeyFrameList >& inputs = GetKeyframeList(nodes);
const KeyTimeList& keys = GetKeyTimeList(inputs);
na->mNumRotationKeys = static_cast<unsigned int>(keys.size());
na->mRotationKeys = new aiQuatKey[keys.size()];
InterpolateKeys(na->mRotationKeys, keys, inputs, false, maxTime, minTime);
}
// ------------------------------------------------------------------------------------------------
// copy generated meshes, animations, lights, cameras and textures to the output scene
void TransferDataToScene()
{
ai_assert(!out->mMeshes && !out->mNumMeshes);
// note: the trailing () ensures initialization with NULL - not
// many C++ users seem to know this, so pointing it out to avoid
// confusion why this code works.
out->mMeshes = new aiMesh*[meshes.size()]();
out->mNumMeshes = static_cast<unsigned int>(meshes.size());
std::swap_ranges(meshes.begin(),meshes.end(),out->mMeshes);
if(materials.size()) {
out->mMaterials = new aiMaterial*[materials.size()]();
out->mNumMaterials = static_cast<unsigned int>(materials.size());
std::swap_ranges(materials.begin(),materials.end(),out->mMaterials);
}
if(animations.size()) {
out->mAnimations = new aiAnimation*[animations.size()]();
out->mNumAnimations = static_cast<unsigned int>(animations.size());
std::swap_ranges(animations.begin(),animations.end(),out->mAnimations);
}
}
private:
// 0: not assigned yet, others: index is value - 1
unsigned int defaultMaterialIndex;
std::vector<aiMesh*> meshes;
std::vector<aiMaterial*> materials;
std::vector<aiAnimation*> animations;
typedef std::map<const Material*, unsigned int> MaterialMap;
MaterialMap materials_converted;
typedef std::map<const Geometry*, std::vector<unsigned int> > MeshMap;
MeshMap meshes_converted;
// fixed node name -> which trafo chain components have animations?
typedef std::map<std::string, unsigned int> NodeAnimBitMap;
NodeAnimBitMap node_anim_chain_bits;
// name -> has had its prefix_stripped?
typedef std::map<std::string, bool> NodeNameMap;
NodeNameMap node_names;
aiScene* const out;
const FBX::Document& doc;
};
//} // !anon
// ------------------------------------------------------------------------------------------------
void ConvertToAssimpScene(aiScene* out, const Document& doc)
{
Converter converter(out,doc);
}
} // !FBX
} // !Assimp
#endif