173 lines
6.2 KiB
C++
173 lines
6.2 KiB
C++
/*
|
|
---------------------------------------------------------------------------
|
|
Open Asset Import Library (ASSIMP)
|
|
---------------------------------------------------------------------------
|
|
|
|
Copyright (c) 2006-2008, ASSIMP Development Team
|
|
|
|
All rights reserved.
|
|
|
|
Redistribution and use of this software in source and binary forms,
|
|
with or without modification, are permitted provided that the following
|
|
conditions are met:
|
|
|
|
* Redistributions of source code must retain the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer in the documentation and/or other
|
|
materials provided with the distribution.
|
|
|
|
* Neither the name of the ASSIMP team, nor the names of its
|
|
contributors may be used to endorse or promote products
|
|
derived from this software without specific prior
|
|
written permission of the ASSIMP Development Team.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
---------------------------------------------------------------------------
|
|
*/
|
|
|
|
/** @file Implementation of the helper class to quickly find
|
|
vertices close to a given position. Special implementation for
|
|
the 3ds loader handling smooth groups correctly */
|
|
|
|
#include <algorithm>
|
|
#include "3DSSpatialSort.h"
|
|
|
|
#include "../include/aiAssert.h"
|
|
|
|
using namespace Assimp;
|
|
using namespace Assimp::Dot3DS;
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
D3DSSpatialSorter::D3DSSpatialSorter()
|
|
{
|
|
// define the reference plane. We choose some arbitrary vector away from all basic axises
|
|
// in the hope that no model spreads all its vertices along this plane.
|
|
mPlaneNormal.Set( 0.8523f, 0.34321f, 0.5736f);
|
|
mPlaneNormal.Normalize();
|
|
}
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Destructor
|
|
D3DSSpatialSorter::~D3DSSpatialSorter()
|
|
{
|
|
// nothing to do here, everything destructs automatically
|
|
}
|
|
// ------------------------------------------------------------------------------------------------
|
|
void D3DSSpatialSorter::AddFace(const Dot3DS::Face* pcFace,
|
|
const std::vector<aiVector3D>& vPositions)
|
|
{
|
|
ai_assert(NULL != pcFace);
|
|
|
|
// store position by index and distance
|
|
float distance = vPositions[pcFace->mIndices[0]] * mPlaneNormal;
|
|
mPositions.push_back( Entry( pcFace->mIndices[0], vPositions[pcFace->mIndices[0]],
|
|
distance, pcFace->iSmoothGroup));
|
|
|
|
// triangle vertex 2
|
|
distance = vPositions[pcFace->mIndices[1]] * mPlaneNormal;
|
|
mPositions.push_back( Entry( pcFace->mIndices[1], vPositions[pcFace->mIndices[1]],
|
|
distance, pcFace->iSmoothGroup));
|
|
|
|
// triangle vertex 3
|
|
distance = vPositions[pcFace->mIndices[2]] * mPlaneNormal;
|
|
mPositions.push_back( Entry( pcFace->mIndices[2], vPositions[pcFace->mIndices[2]],
|
|
distance, pcFace->iSmoothGroup));
|
|
}
|
|
// ------------------------------------------------------------------------------------------------
|
|
void D3DSSpatialSorter::Prepare()
|
|
{
|
|
// now sort the array ascending by distance.
|
|
std::sort( this->mPositions.begin(), this->mPositions.end());
|
|
}
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Returns an iterator for all positions close to the given position.
|
|
void D3DSSpatialSorter::FindPositions( const aiVector3D& pPosition,
|
|
uint32_t pSG,
|
|
float pRadius,
|
|
std::vector<unsigned int>& poResults) const
|
|
{
|
|
float dist = pPosition * mPlaneNormal;
|
|
float minDist = dist - pRadius, maxDist = dist + pRadius;
|
|
|
|
// clear the array in this strange fashion because a simple clear() would also deallocate
|
|
// the array which we want to avoid
|
|
poResults.erase( poResults.begin(), poResults.end());
|
|
|
|
// quick check for positions outside the range
|
|
if( mPositions.size() == 0)
|
|
return;
|
|
if( maxDist < mPositions.front().mDistance)
|
|
return;
|
|
if( minDist > mPositions.back().mDistance)
|
|
return;
|
|
|
|
// do a binary search for the minimal distance to start the iteration there
|
|
unsigned int index = (unsigned int)mPositions.size() / 2;
|
|
unsigned int binaryStepSize = (unsigned int)mPositions.size() / 4;
|
|
while( binaryStepSize > 1)
|
|
{
|
|
if( mPositions[index].mDistance < minDist)
|
|
index += binaryStepSize;
|
|
else
|
|
index -= binaryStepSize;
|
|
|
|
binaryStepSize /= 2;
|
|
}
|
|
|
|
// depending on the direction of the last step we need to single step a bit back or forth
|
|
// to find the actual beginning element of the range
|
|
while( index > 0 && mPositions[index].mDistance > minDist)
|
|
index--;
|
|
while( index < (mPositions.size() - 1) && mPositions[index].mDistance < minDist)
|
|
index++;
|
|
|
|
// Mow start iterating from there until the first position lays outside of the distance range.
|
|
// Add all positions inside the distance range within the given radius to the result aray
|
|
|
|
float squareEpsilon = pRadius * pRadius;
|
|
std::vector<Entry>::const_iterator it = mPositions.begin() + index;
|
|
if (0 == pSG)
|
|
{
|
|
while( it->mDistance < maxDist)
|
|
{
|
|
if((it->mPosition - pPosition).SquareLength() < squareEpsilon)
|
|
{
|
|
poResults.push_back( it->mIndex);
|
|
}
|
|
++it;
|
|
if( it == mPositions.end())
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
while( it->mDistance < maxDist)
|
|
{
|
|
if((it->mPosition - pPosition).SquareLength() < squareEpsilon &&
|
|
(it->mSmoothGroups & pSG || 0 == it->mSmoothGroups))
|
|
{
|
|
poResults.push_back( it->mIndex);
|
|
}
|
|
++it;
|
|
if( it == mPositions.end())
|
|
break;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|