1248 lines
38 KiB
C++
1248 lines
38 KiB
C++
/*
|
|
---------------------------------------------------------------------------
|
|
Open Asset Import Library (ASSIMP)
|
|
---------------------------------------------------------------------------
|
|
|
|
Copyright (c) 2006-2010, ASSIMP Development Team
|
|
|
|
All rights reserved.
|
|
|
|
Redistribution and use of this software in source and binary forms,
|
|
with or without modification, are permitted provided that the following
|
|
conditions are met:
|
|
|
|
* Redistributions of source code must retain the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer in the documentation and/or other
|
|
materials provided with the distribution.
|
|
|
|
* Neither the name of the ASSIMP team, nor the names of its
|
|
contributors may be used to endorse or promote products
|
|
derived from this software without specific prior
|
|
written permission of the ASSIMP Development Team.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
---------------------------------------------------------------------------
|
|
*/
|
|
|
|
/** @file WriteTextDumb.cpp
|
|
* @brief Implementation of the 'assimp dump' utility
|
|
*/
|
|
|
|
#include "Main.h"
|
|
#include "../code/ProcessHelper.h"
|
|
|
|
const char* AICMD_MSG_DUMP_HELP =
|
|
"assimp dump <model> [<out>] [-b] [-s] [-z] [common parameters]\n"
|
|
"\t -b Binary output \n"
|
|
"\t -s Shortened \n"
|
|
"\t -z Compressed \n"
|
|
"\t[See the assimp_cmd docs for a full list of all common parameters] \n"
|
|
"\t -cfast Fast post processing preset, runs just a few important steps \n"
|
|
"\t -cdefault Default post processing: runs all recommended steps\n"
|
|
"\t -cfull Fires almost all post processing steps \n"
|
|
;
|
|
|
|
#include "../../code/assbin_chunks.h"
|
|
|
|
FILE* out = NULL;
|
|
bool shortened = false;
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
// Compress a binary dump file (beginning at offset head_size)
|
|
void CompressBinaryDump(const char* file, unsigned int head_size)
|
|
{
|
|
// for simplicity ... copy the file into memory again and compress it there
|
|
FILE* p = fopen(file,"r");
|
|
fseek(p,0,SEEK_END);
|
|
const uint32_t size = ftell(p);
|
|
fseek(p,0,SEEK_SET);
|
|
|
|
if (size<head_size) {
|
|
fclose(p);
|
|
return;
|
|
}
|
|
|
|
uint8_t* data = new uint8_t[size];
|
|
fread(data,1,size,p);
|
|
|
|
uLongf out_size = (uLongf)((size-head_size) * 1.001 + 12.);
|
|
uint8_t* out = new uint8_t[out_size];
|
|
|
|
compress2(out,&out_size,data+head_size,size-head_size,9);
|
|
fclose(p);
|
|
p = fopen(file,"w");
|
|
|
|
fwrite(data,head_size,1,p);
|
|
fwrite(&out_size,4,1,p); // write size of uncompressed data
|
|
fwrite(out,out_size,1,p);
|
|
|
|
fclose(p);
|
|
delete[] data;
|
|
delete[] out;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
// Write a magic start value for each serialized data structure
|
|
inline uint32_t WriteMagic(uint32_t magic)
|
|
{
|
|
fwrite(&magic,4,1,out);
|
|
fwrite(&magic,4,1,out);
|
|
return ftell(out)-4;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
// Serialize an aiString
|
|
inline uint32_t WriteAiString(const aiString& s)
|
|
{
|
|
const uint32_t s2 = (uint32_t)s.length;
|
|
fwrite(&s,4,1,out);
|
|
fwrite(s.data,s2,1,out);
|
|
return s2+4;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
// Serialize an unsigned int as uint32_t
|
|
inline uint32_t WriteInteger(unsigned int w)
|
|
{
|
|
const uint32_t t = (uint32_t)w;
|
|
fwrite(&t,4,1,out);
|
|
return 4;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
// Serialize an unsigned int as uint16_t
|
|
inline uint32_t WriteShort(unsigned int w)
|
|
{
|
|
const uint16_t t = (uint16_t)w;
|
|
fwrite(&t,2,1,out);
|
|
return 2;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
// Serialize a float
|
|
inline uint32_t WriteFloat(float f)
|
|
{
|
|
fwrite(&f,4,1,out);
|
|
return 4;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
// Serialize a double
|
|
inline uint32_t WriteDouble(double f)
|
|
{
|
|
fwrite(&f,8,1,out);
|
|
return 8;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
// Serialize a vec3
|
|
inline uint32_t WriteVec3(const aiVector3D& v)
|
|
{
|
|
fwrite(&v,12,1,out);
|
|
return 12;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
// Serialize a mat4x4
|
|
inline uint32_t WriteMat4x4(const aiMatrix4x4& m)
|
|
{
|
|
for (unsigned int i = 0; i < 4;++i) {
|
|
for (unsigned int i2 = 0; i2 < 4;++i2) {
|
|
WriteFloat(m[i][i2]);
|
|
}
|
|
}
|
|
return 64;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
// Write the min/max values of an array of Ts to the file
|
|
template <typename T>
|
|
inline uint32_t WriteBounds(const T* in, unsigned int size)
|
|
{
|
|
T minc,maxc;
|
|
ArrayBounds(in,size,minc,maxc);
|
|
fwrite(&minc,sizeof(T),1,out);
|
|
fwrite(&maxc,sizeof(T),1,out);
|
|
return sizeof(T)*2;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
void ChangeInteger(uint32_t ofs,uint32_t n)
|
|
{
|
|
const uint32_t cur = ftell(out);
|
|
fseek(out,ofs,SEEK_SET);
|
|
fwrite(&n,4,1,out);
|
|
fseek(out,cur,SEEK_SET);
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
uint32_t WriteBinaryNode(const aiNode* node)
|
|
{
|
|
uint32_t len = 0, old = WriteMagic(ASSBIN_CHUNK_AINODE);
|
|
len += WriteAiString(node->mName);
|
|
len += WriteMat4x4(node->mTransformation);
|
|
len += WriteInteger(node->mNumChildren);
|
|
len += WriteInteger(node->mNumMeshes);
|
|
|
|
for (unsigned int i = 0; i < node->mNumMeshes;++i) {
|
|
len += WriteInteger(node->mMeshes[i]);
|
|
}
|
|
|
|
for (unsigned int i = 0; i < node->mNumChildren;++i) {
|
|
len += WriteBinaryNode(node->mChildren[i])+8;
|
|
}
|
|
|
|
ChangeInteger(old,len);
|
|
return len;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
uint32_t WriteBinaryTexture(const aiTexture* tex)
|
|
{
|
|
uint32_t len = 0, old = WriteMagic(ASSBIN_CHUNK_AITEXTURE);
|
|
|
|
len += WriteInteger(tex->mWidth);
|
|
len += WriteInteger(tex->mHeight);
|
|
len += fwrite(tex->achFormatHint,1,4,out);
|
|
|
|
if(!shortened) {
|
|
if (!tex->mHeight) {
|
|
len += fwrite(tex->pcData,1,tex->mWidth,out);
|
|
}
|
|
else {
|
|
len += fwrite(tex->pcData,1,tex->mWidth*tex->mHeight*4,out);
|
|
}
|
|
}
|
|
|
|
ChangeInteger(old,len);
|
|
return len;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
uint32_t WriteBinaryBone(const aiBone* b)
|
|
{
|
|
uint32_t len = 0, old = WriteMagic(ASSBIN_CHUNK_AIBONE);
|
|
|
|
len += WriteAiString(b->mName);
|
|
len += WriteInteger(b->mNumWeights);
|
|
len += WriteMat4x4(b->mOffsetMatrix);
|
|
|
|
// for the moment we write dumb min/max values for the bones, too.
|
|
// maybe I'll add a better, hash-like solution later
|
|
if (shortened) {
|
|
len += WriteBounds(b->mWeights,b->mNumWeights);
|
|
} // else write as usual
|
|
else len += fwrite(b->mWeights,1,b->mNumWeights*sizeof(aiVertexWeight),out);
|
|
|
|
ChangeInteger(old,len);
|
|
return len;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
uint32_t WriteBinaryMesh(const aiMesh* mesh)
|
|
{
|
|
uint32_t len = 0, old = WriteMagic(ASSBIN_CHUNK_AIMESH);
|
|
|
|
len += WriteInteger(mesh->mPrimitiveTypes);
|
|
len += WriteInteger(mesh->mNumVertices);
|
|
len += WriteInteger(mesh->mNumFaces);
|
|
len += WriteInteger(mesh->mNumBones);
|
|
len += WriteInteger(mesh->mMaterialIndex);
|
|
|
|
// first of all, write bits for all existent vertex components
|
|
unsigned int c = 0;
|
|
if (mesh->mVertices) {
|
|
c |= ASSBIN_MESH_HAS_POSITIONS;
|
|
}
|
|
if (mesh->mNormals) {
|
|
c |= ASSBIN_MESH_HAS_NORMALS;
|
|
}
|
|
if (mesh->mTangents && mesh->mBitangents) {
|
|
c |= ASSBIN_MESH_HAS_TANGENTS_AND_BITANGENTS;
|
|
}
|
|
for (unsigned int n = 0; n < AI_MAX_NUMBER_OF_TEXTURECOORDS;++n) {
|
|
if (!mesh->mTextureCoords[n]) {
|
|
break;
|
|
}
|
|
c |= ASSBIN_MESH_HAS_TEXCOORD(n);
|
|
}
|
|
for (unsigned int n = 0; n < AI_MAX_NUMBER_OF_COLOR_SETS;++n) {
|
|
if (!mesh->mColors[n]) {
|
|
break;
|
|
}
|
|
c |= ASSBIN_MESH_HAS_COLOR(n);
|
|
}
|
|
len += WriteInteger(c);
|
|
|
|
aiVector3D minVec, maxVec;
|
|
if (mesh->mVertices) {
|
|
if (shortened) {
|
|
len += WriteBounds(mesh->mVertices,mesh->mNumVertices);
|
|
} // else write as usual
|
|
else len += fwrite(mesh->mVertices,1,12*mesh->mNumVertices,out);
|
|
}
|
|
if (mesh->mNormals) {
|
|
if (shortened) {
|
|
len += WriteBounds(mesh->mNormals,mesh->mNumVertices);
|
|
} // else write as usual
|
|
else len += fwrite(mesh->mNormals,1,12*mesh->mNumVertices,out);
|
|
}
|
|
if (mesh->mTangents && mesh->mBitangents) {
|
|
if (shortened) {
|
|
len += WriteBounds(mesh->mTangents,mesh->mNumVertices);
|
|
len += WriteBounds(mesh->mBitangents,mesh->mNumVertices);
|
|
} // else write as usual
|
|
else {
|
|
len += fwrite(mesh->mTangents,1,12*mesh->mNumVertices,out);
|
|
len += fwrite(mesh->mBitangents,1,12*mesh->mNumVertices,out);
|
|
}
|
|
}
|
|
for (unsigned int n = 0; n < AI_MAX_NUMBER_OF_COLOR_SETS;++n) {
|
|
if (!mesh->mColors[n])
|
|
break;
|
|
|
|
if (shortened) {
|
|
len += WriteBounds(mesh->mColors[n],mesh->mNumVertices);
|
|
} // else write as usual
|
|
else len += fwrite(mesh->mColors[n],16*mesh->mNumVertices,1,out);
|
|
}
|
|
for (unsigned int n = 0; n < AI_MAX_NUMBER_OF_TEXTURECOORDS;++n) {
|
|
if (!mesh->mTextureCoords[n])
|
|
break;
|
|
|
|
// write number of UV components
|
|
len += WriteInteger(mesh->mNumUVComponents[n]);
|
|
|
|
if (shortened) {
|
|
len += WriteBounds(mesh->mTextureCoords[n],mesh->mNumVertices);
|
|
} // else write as usual
|
|
else len += fwrite(mesh->mTextureCoords[n],12*mesh->mNumVertices,1,out);
|
|
}
|
|
|
|
// write faces. There are no floating-point calculations involved
|
|
// in these, so we can write a simple hash over the face data
|
|
// to the dump file. We generate a single 32 Bit hash for 512 faces
|
|
// using Assimp's standard hashing function.
|
|
if (shortened) {
|
|
unsigned int processed = 0;
|
|
for (unsigned int job;job = std::min(mesh->mNumFaces-processed,512u);processed += job) {
|
|
|
|
unsigned int hash = 0;
|
|
for (unsigned int a = 0; a < job;++a) {
|
|
|
|
const aiFace& f = mesh->mFaces[processed+a];
|
|
hash = SuperFastHash((const char*)&f.mNumIndices,sizeof(unsigned int),hash);
|
|
hash = SuperFastHash((const char*) f.mIndices,f.mNumIndices*sizeof(unsigned int),hash);
|
|
}
|
|
len += WriteInteger(hash);
|
|
}
|
|
}
|
|
else // else write as usual
|
|
{
|
|
// if there are less than 2^16 vertices, we can simply use 16 bit integers ...
|
|
for (unsigned int i = 0; i < mesh->mNumFaces;++i) {
|
|
const aiFace& f = mesh->mFaces[i];
|
|
|
|
if (f.mNumIndices >= (1u<<16)) {
|
|
printf("The assbin format doesn't support polygons with more than 65536 vertices");
|
|
return -1;
|
|
}
|
|
|
|
len += WriteShort(f.mNumIndices);
|
|
for (unsigned int a = 0; a < f.mNumIndices;++a) {
|
|
if (mesh->mNumVertices < (1u<<16)) {
|
|
len += WriteShort(f.mIndices[a]);
|
|
}
|
|
else len += WriteInteger(f.mIndices[a]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// write bones
|
|
if (mesh->mNumBones) {
|
|
for (unsigned int a = 0; a < mesh->mNumBones;++a) {
|
|
const aiBone* b = mesh->mBones[a];
|
|
len += WriteBinaryBone(b)+8;
|
|
}
|
|
}
|
|
|
|
ChangeInteger(old,len);
|
|
return len;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
uint32_t WriteBinaryMaterialProperty(const aiMaterialProperty* prop)
|
|
{
|
|
uint32_t len = 0, old = WriteMagic(ASSBIN_CHUNK_AIMATERIALPROPERTY);
|
|
|
|
len += WriteAiString(prop->mKey);
|
|
len += WriteInteger(prop->mSemantic);
|
|
len += WriteInteger(prop->mIndex);
|
|
|
|
len += WriteInteger(prop->mDataLength);
|
|
len += WriteInteger((unsigned int)prop->mType);
|
|
len += fwrite(prop->mData,1,prop->mDataLength,out);
|
|
|
|
ChangeInteger(old,len);
|
|
return len;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
uint32_t WriteBinaryMaterial(const aiMaterial* mat)
|
|
{
|
|
uint32_t len = 0, old = WriteMagic(ASSBIN_CHUNK_AIMATERIAL);
|
|
|
|
len += WriteInteger(mat->mNumProperties);
|
|
for (unsigned int i = 0; i < mat->mNumProperties;++i) {
|
|
len += WriteBinaryMaterialProperty(mat->mProperties[i])+8;
|
|
}
|
|
|
|
ChangeInteger(old,len);
|
|
return len;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
uint32_t WriteBinaryNodeAnim(const aiNodeAnim* nd)
|
|
{
|
|
uint32_t len = 0, old = WriteMagic(ASSBIN_CHUNK_AINODEANIM);
|
|
|
|
len += WriteAiString(nd->mNodeName);
|
|
len += WriteInteger(nd->mNumPositionKeys);
|
|
len += WriteInteger(nd->mNumRotationKeys);
|
|
len += WriteInteger(nd->mNumScalingKeys);
|
|
len += WriteInteger(nd->mPreState);
|
|
len += WriteInteger(nd->mPostState);
|
|
|
|
if (nd->mPositionKeys) {
|
|
if (shortened) {
|
|
len += WriteBounds(nd->mPositionKeys,nd->mNumPositionKeys);
|
|
|
|
} // else write as usual
|
|
else len += fwrite(nd->mPositionKeys,1,nd->mNumPositionKeys*sizeof(aiVectorKey),out);
|
|
}
|
|
if (nd->mRotationKeys) {
|
|
if (shortened) {
|
|
len += WriteBounds(nd->mRotationKeys,nd->mNumRotationKeys);
|
|
|
|
} // else write as usual
|
|
else len += fwrite(nd->mRotationKeys,1,nd->mNumRotationKeys*sizeof(aiQuatKey),out);
|
|
}
|
|
if (nd->mScalingKeys) {
|
|
if (shortened) {
|
|
len += WriteBounds(nd->mScalingKeys,nd->mNumScalingKeys);
|
|
|
|
} // else write as usual
|
|
else len += fwrite(nd->mScalingKeys,1,nd->mNumScalingKeys*sizeof(aiVectorKey),out);
|
|
}
|
|
|
|
ChangeInteger(old,len);
|
|
return len;
|
|
}
|
|
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
uint32_t WriteBinaryAnim(const aiAnimation* anim)
|
|
{
|
|
uint32_t len = 0, old = WriteMagic(ASSBIN_CHUNK_AIANIMATION);
|
|
|
|
len += WriteAiString (anim->mName);
|
|
len += WriteDouble (anim->mDuration);
|
|
len += WriteDouble (anim->mTicksPerSecond);
|
|
len += WriteInteger(anim->mNumChannels);
|
|
|
|
for (unsigned int a = 0; a < anim->mNumChannels;++a) {
|
|
const aiNodeAnim* nd = anim->mChannels[a];
|
|
len += WriteBinaryNodeAnim(nd)+8;
|
|
}
|
|
|
|
ChangeInteger(old,len);
|
|
return len;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
uint32_t WriteBinaryLight(const aiLight* l)
|
|
{
|
|
uint32_t len = 0, old = WriteMagic(ASSBIN_CHUNK_AILIGHT);
|
|
|
|
len += WriteAiString(l->mName);
|
|
len += WriteInteger(l->mType);
|
|
|
|
if (l->mType != aiLightSource_DIRECTIONAL) {
|
|
len += WriteFloat(l->mAttenuationConstant);
|
|
len += WriteFloat(l->mAttenuationLinear);
|
|
len += WriteFloat(l->mAttenuationQuadratic);
|
|
}
|
|
|
|
len += WriteVec3((const aiVector3D&)l->mColorDiffuse);
|
|
len += WriteVec3((const aiVector3D&)l->mColorSpecular);
|
|
len += WriteVec3((const aiVector3D&)l->mColorAmbient);
|
|
|
|
if (l->mType == aiLightSource_SPOT) {
|
|
len += WriteFloat(l->mAngleInnerCone);
|
|
len += WriteFloat(l->mAngleOuterCone);
|
|
}
|
|
|
|
ChangeInteger(old,len);
|
|
return len;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
uint32_t WriteBinaryCamera(const aiCamera* cam)
|
|
{
|
|
uint32_t len = 0, old = WriteMagic(ASSBIN_CHUNK_AICAMERA);
|
|
|
|
len += WriteAiString(cam->mName);
|
|
len += WriteVec3(cam->mPosition);
|
|
len += WriteVec3(cam->mLookAt);
|
|
len += WriteVec3(cam->mUp);
|
|
len += WriteFloat(cam->mHorizontalFOV);
|
|
len += WriteFloat(cam->mClipPlaneNear);
|
|
len += WriteFloat(cam->mClipPlaneFar);
|
|
len += WriteFloat(cam->mAspect);
|
|
|
|
ChangeInteger(old,len);
|
|
return len;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
uint32_t WriteBinaryScene(const aiScene* scene)
|
|
{
|
|
uint32_t len = 0, old = WriteMagic(ASSBIN_CHUNK_AISCENE);
|
|
|
|
// basic scene information
|
|
len += WriteInteger(scene->mFlags);
|
|
len += WriteInteger(scene->mNumMeshes);
|
|
len += WriteInteger(scene->mNumMaterials);
|
|
len += WriteInteger(scene->mNumAnimations);
|
|
len += WriteInteger(scene->mNumTextures);
|
|
len += WriteInteger(scene->mNumLights);
|
|
len += WriteInteger(scene->mNumCameras);
|
|
|
|
// write node graph
|
|
len += WriteBinaryNode(scene->mRootNode)+8;
|
|
|
|
// write all meshes
|
|
for (unsigned int i = 0; i < scene->mNumMeshes;++i) {
|
|
const aiMesh* mesh = scene->mMeshes[i];
|
|
len += WriteBinaryMesh(mesh)+8;
|
|
}
|
|
|
|
// write materials
|
|
for (unsigned int i = 0; i< scene->mNumMaterials; ++i) {
|
|
const aiMaterial* mat = scene->mMaterials[i];
|
|
len += WriteBinaryMaterial(mat)+8;
|
|
}
|
|
|
|
// write all animations
|
|
for (unsigned int i = 0; i < scene->mNumAnimations;++i) {
|
|
const aiAnimation* anim = scene->mAnimations[i];
|
|
len += WriteBinaryAnim(anim)+8;
|
|
}
|
|
|
|
|
|
// write all textures
|
|
for (unsigned int i = 0; i < scene->mNumTextures;++i) {
|
|
const aiTexture* mesh = scene->mTextures[i];
|
|
len += WriteBinaryTexture(mesh)+8;
|
|
}
|
|
|
|
// write lights
|
|
for (unsigned int i = 0; i < scene->mNumLights;++i) {
|
|
const aiLight* l = scene->mLights[i];
|
|
len += WriteBinaryLight(l)+8;
|
|
}
|
|
|
|
// write cameras
|
|
for (unsigned int i = 0; i < scene->mNumCameras;++i) {
|
|
const aiCamera* cam = scene->mCameras[i];
|
|
len += WriteBinaryCamera(cam)+8;
|
|
}
|
|
|
|
ChangeInteger(old,len);
|
|
return len;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
// Write a binary model dump
|
|
void WriteBinaryDump(const aiScene* scene, FILE* _out, const char* src, const char* cmd,
|
|
bool _shortened, bool compressed, ImportData& imp)
|
|
{
|
|
out = _out;
|
|
shortened = _shortened;
|
|
|
|
time_t tt = time(NULL);
|
|
tm* p = gmtime(&tt);
|
|
|
|
// header
|
|
fprintf(out,"ASSIMP.binary-dump.%s",asctime(p));
|
|
// == 44 bytes
|
|
|
|
WriteInteger(ASSBIN_VERSION_MAJOR);
|
|
WriteInteger(ASSBIN_VERSION_MINOR);
|
|
WriteInteger(aiGetVersionRevision());
|
|
WriteInteger(aiGetCompileFlags());
|
|
WriteShort(shortened);
|
|
WriteShort(compressed);
|
|
// == 20 bytes
|
|
|
|
char buff[256];
|
|
strncpy(buff,src,256);
|
|
fwrite(buff,256,1,out);
|
|
|
|
strncpy(buff,cmd,128);
|
|
fwrite(buff,128,1,out);
|
|
|
|
// leave 64 bytes free for future extensions
|
|
memset(buff,0xcd,64);
|
|
fwrite(buff,64,1,out);
|
|
// == 435 bytes
|
|
|
|
// ==== total header size: 512 bytes
|
|
assert(ftell(out)==ASSBIN_HEADER_LENGTH);
|
|
|
|
// Up to here the data is uncompressed. For compressed files, the rest
|
|
// is compressed using standard DEFLATE from zlib.
|
|
WriteBinaryScene(scene);
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
// Convert a name to standard XML format
|
|
void ConvertName(aiString& out, const aiString& in)
|
|
{
|
|
out.length = 0;
|
|
for (unsigned int i = 0; i < in.length; ++i) {
|
|
switch (in.data[i]) {
|
|
case '<':
|
|
out.Append("<");break;
|
|
case '>':
|
|
out.Append(">");break;
|
|
case '&':
|
|
out.Append("&");break;
|
|
case '\"':
|
|
out.Append(""");break;
|
|
case '\'':
|
|
out.Append("'");break;
|
|
default:
|
|
out.data[out.length++] = in.data[i];
|
|
}
|
|
}
|
|
out.data[out.length] = 0;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
// Write a single node as text dump
|
|
void WriteNode(const aiNode* node, FILE* out, unsigned int depth)
|
|
{
|
|
char prefix[512];
|
|
for (unsigned int i = 0; i < depth;++i)
|
|
prefix[i] = '\t';
|
|
prefix[depth] = '\0';
|
|
|
|
const aiMatrix4x4& m = node->mTransformation;
|
|
|
|
aiString name;
|
|
ConvertName(name,node->mName);
|
|
fprintf(out,"%s<Node name=\"%s\"> \n"
|
|
"%s\t<Matrix4> \n"
|
|
"%s\t\t%0 6f %0 6f %0 6f %0 6f\n"
|
|
"%s\t\t%0 6f %0 6f %0 6f %0 6f\n"
|
|
"%s\t\t%0 6f %0 6f %0 6f %0 6f\n"
|
|
"%s\t\t%0 6f %0 6f %0 6f %0 6f\n"
|
|
"%s\t</Matrix4> \n",
|
|
prefix,name.data,prefix,
|
|
prefix,m.a1,m.a2,m.a3,m.a4,
|
|
prefix,m.b1,m.b2,m.b3,m.b4,
|
|
prefix,m.c1,m.c2,m.c3,m.c4,
|
|
prefix,m.d1,m.d2,m.d3,m.d4,prefix);
|
|
|
|
if (node->mNumMeshes) {
|
|
fprintf(out, "%s\t<MeshRefs num=\"%i\">\n%s\t",
|
|
prefix,node->mNumMeshes,prefix);
|
|
|
|
for (unsigned int i = 0; i < node->mNumMeshes;++i) {
|
|
fprintf(out,"%i ",node->mMeshes[i]);
|
|
}
|
|
fprintf(out,"\n%s\t</MeshRefs>\n",prefix);
|
|
}
|
|
|
|
if (node->mNumChildren) {
|
|
fprintf(out,"%s\t<NodeList num=\"%i\">\n",
|
|
prefix,node->mNumChildren);
|
|
|
|
for (unsigned int i = 0; i < node->mNumChildren;++i) {
|
|
WriteNode(node->mChildren[i],out,depth+2);
|
|
}
|
|
fprintf(out,"%s\t</NodeList>\n",prefix);
|
|
}
|
|
fprintf(out,"%s</Node>\n",prefix);
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
// Write a text model dump
|
|
void WriteDump(const aiScene* scene, FILE* out, const char* src, const char* cmd, bool shortened)
|
|
{
|
|
time_t tt = ::time(NULL);
|
|
tm* p = ::gmtime(&tt);
|
|
|
|
aiString name;
|
|
|
|
// write header
|
|
fprintf(out,
|
|
"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n"
|
|
"<ASSIMP format_id=\"1\">\n\n"
|
|
|
|
"<!-- XML Model dump produced by assimp dump\n"
|
|
" Library version: %i.%i.%i\n"
|
|
" Source: %s\n"
|
|
" Command line: %s\n"
|
|
" %s\n"
|
|
"-->"
|
|
" \n\n"
|
|
"<Scene flags=\"%i\" postprocessing=\"%i\">\n",
|
|
|
|
aiGetVersionMajor(),aiGetVersionMinor(),aiGetVersionRevision(),src,cmd,asctime(p),
|
|
scene->mFlags,
|
|
0 /*globalImporter->GetEffectivePostProcessing()*/);
|
|
|
|
// write the node graph
|
|
WriteNode(scene->mRootNode, out, 0);
|
|
|
|
#if 0
|
|
// write cameras
|
|
for (unsigned int i = 0; i < scene->mNumCameras;++i) {
|
|
aiCamera* cam = scene->mCameras[i];
|
|
ConvertName(name,cam->mName);
|
|
|
|
// camera header
|
|
fprintf(out,"\t<Camera parent=\"%s\">\n"
|
|
"\t\t<Vector3 name=\"up\" > %0 8f %0 8f %0 8f </Vector3>\n"
|
|
"\t\t<Vector3 name=\"lookat\" > %0 8f %0 8f %0 8f </Vector3>\n"
|
|
"\t\t<Vector3 name=\"pos\" > %0 8f %0 8f %0 8f </Vector3>\n"
|
|
"\t\t<Float name=\"fov\" > %f </Float>\n"
|
|
"\t\t<Float name=\"aspect\" > %f </Float>\n"
|
|
"\t\t<Float name=\"near_clip\" > %f </Float>\n"
|
|
"\t\t<Float name=\"far_clip\" > %f </Float>\n"
|
|
"\t</Camera>\n",
|
|
name.data,
|
|
cam->mUp.x,cam->mUp.y,cam->mUp.z,
|
|
cam->mLookAt.x,cam->mLookAt.y,cam->mLookAt.z,
|
|
cam->mPosition.x,cam->mPosition.y,cam->mPosition.z,
|
|
cam->mHorizontalFOV,cam->mAspect,cam->mClipPlaneNear,cam->mClipPlaneFar,i);
|
|
}
|
|
|
|
// write lights
|
|
for (unsigned int i = 0; i < scene->mNumLights;++i) {
|
|
aiLight* l = scene->mLights[i];
|
|
ConvertName(name,l->mName);
|
|
|
|
// light header
|
|
fprintf(out,"\t<Light parent=\"%s\"> type=\"%s\"\n"
|
|
"\t\t<Vector3 name=\"diffuse\" > %0 8f %0 8f %0 8f </Vector3>\n"
|
|
"\t\t<Vector3 name=\"specular\" > %0 8f %0 8f %0 8f </Vector3>\n"
|
|
"\t\t<Vector3 name=\"ambient\" > %0 8f %0 8f %0 8f </Vector3>\n",
|
|
name.data,
|
|
(l->mType == aiLightSource_DIRECTIONAL ? "directional" :
|
|
(l->mType == aiLightSource_POINT ? "point" : "spot" )),
|
|
l->mColorDiffuse.r, l->mColorDiffuse.g, l->mColorDiffuse.b,
|
|
l->mColorSpecular.r,l->mColorSpecular.g,l->mColorSpecular.b,
|
|
l->mColorAmbient.r, l->mColorAmbient.g, l->mColorAmbient.b);
|
|
|
|
if (l->mType != aiLightSource_DIRECTIONAL) {
|
|
fprintf(out,
|
|
"\t\t<Vector3 name=\"pos\" > %0 8f %0 8f %0 8f </Vector3>\n"
|
|
"\t\t<Float name=\"atten_cst\" > %f </Float>\n"
|
|
"\t\t<Float name=\"atten_lin\" > %f </Float>\n"
|
|
"\t\t<Float name=\"atten_sqr\" > %f </Float>\n",
|
|
l->mPosition.x,l->mPosition.y,l->mPosition.z,
|
|
l->mAttenuationConstant,l->mAttenuationLinear,l->mAttenuationQuadratic);
|
|
}
|
|
|
|
if (l->mType != aiLightSource_POINT) {
|
|
fprintf(out,
|
|
"\t\t<Vector3 name=\"lookat\" > %0 8f %0 8f %0 8f </Vector3>\n",
|
|
l->mDirection.x,l->mDirection.y,l->mDirection.z);
|
|
}
|
|
|
|
if (l->mType == aiLightSource_SPOT) {
|
|
fprintf(out,
|
|
"\t\t<Float name=\"cone_out\" > %f </Float>\n"
|
|
"\t\t<Float name=\"cone_inn\" > %f </Float>\n",
|
|
l->mAngleOuterCone,l->mAngleInnerCone);
|
|
}
|
|
fprintf(out,"\t</Light>\n");
|
|
}
|
|
#endif
|
|
|
|
// write textures
|
|
if (scene->mNumTextures) {
|
|
fprintf(out,"<TextureList num=\"%i\">\n",scene->mNumTextures);
|
|
for (unsigned int i = 0; i < scene->mNumTextures;++i) {
|
|
aiTexture* tex = scene->mTextures[i];
|
|
bool compressed = (tex->mHeight == 0);
|
|
|
|
// mesh header
|
|
fprintf(out,"\t<Texture width=\"%i\" height=\"%i\" compressed=\"%s\"> \n",
|
|
(compressed ? -1 : tex->mWidth),(compressed ? -1 : tex->mHeight),
|
|
(compressed ? "true" : "false"));
|
|
|
|
if (compressed) {
|
|
fprintf(out,"\t\t<Data length=\"%i\"> \n",tex->mWidth);
|
|
|
|
if (!shortened) {
|
|
for (unsigned int n = 0; n < tex->mWidth;++n) {
|
|
fprintf(out,"\t\t\t%2x",reinterpret_cast<uint8_t*>(tex->pcData)[n]);
|
|
if (n && !(n % 50)) {
|
|
fprintf(out,"\n");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if (!shortened){
|
|
fprintf(out,"\t\t<Data length=\"%i\"> \n",tex->mWidth*tex->mHeight*4);
|
|
|
|
const unsigned int width = (unsigned int)log10((double)std::max(tex->mHeight,tex->mWidth))+1;
|
|
for (unsigned int y = 0; y < tex->mHeight;++y) {
|
|
for (unsigned int x = 0; x < tex->mWidth;++x) {
|
|
aiTexel* tx = tex->pcData + y*tex->mWidth+x;
|
|
unsigned int r = tx->r,g=tx->g,b=tx->b,a=tx->a;
|
|
fprintf(out,"\t\t\t%2x %2x %2x %2x",r,g,b,a);
|
|
|
|
// group by four for readibility
|
|
if (0 == (x+y*tex->mWidth) % 4)
|
|
fprintf(out,"\n");
|
|
}
|
|
}
|
|
}
|
|
fprintf(out,"\t\t</Data>\n\t</Texture>\n");
|
|
}
|
|
fprintf(out,"</TextureList>\n");
|
|
}
|
|
|
|
// write materials
|
|
if (scene->mNumMaterials) {
|
|
fprintf(out,"<MaterialList num=\"%i\">\n",scene->mNumMaterials);
|
|
for (unsigned int i = 0; i< scene->mNumMaterials; ++i) {
|
|
const aiMaterial* mat = scene->mMaterials[i];
|
|
|
|
fprintf(out,"\t<Material>\n");
|
|
fprintf(out,"\t\t<MatPropertyList num=\"%i\">\n",mat->mNumProperties);
|
|
for (unsigned int n = 0; n < mat->mNumProperties;++n) {
|
|
|
|
const aiMaterialProperty* prop = mat->mProperties[n];
|
|
const char* sz = "";
|
|
if (prop->mType == aiPTI_Float) {
|
|
sz = "float";
|
|
}
|
|
else if (prop->mType == aiPTI_Integer) {
|
|
sz = "integer";
|
|
}
|
|
else if (prop->mType == aiPTI_String) {
|
|
sz = "string";
|
|
}
|
|
else if (prop->mType == aiPTI_Buffer) {
|
|
sz = "binary_buffer";
|
|
}
|
|
|
|
fprintf(out,"\t\t\t<MatProperty key=\"%s\" \n\t\t\ttype=\"%s\" tex_usage=\"%s\" tex_index=\"%i\"",
|
|
prop->mKey.data, sz,
|
|
TextureTypeToString((aiTextureType)prop->mSemantic),prop->mIndex);
|
|
|
|
if (prop->mType == aiPTI_Float) {
|
|
fprintf(out," size=\"%i\">\n\t\t\t\t",
|
|
static_cast<int>(prop->mDataLength/sizeof(float)));
|
|
|
|
for (unsigned int p = 0; p < prop->mDataLength/sizeof(float);++p) {
|
|
fprintf(out,"%f ",*((float*)(prop->mData+p*sizeof(float))));
|
|
}
|
|
}
|
|
else if (prop->mType == aiPTI_Integer) {
|
|
fprintf(out," size=\"%i\">\n\t\t\t\t",
|
|
static_cast<int>(prop->mDataLength/sizeof(int)));
|
|
|
|
for (unsigned int p = 0; p < prop->mDataLength/sizeof(int);++p) {
|
|
fprintf(out,"%i ",*((int*)(prop->mData+p*sizeof(int))));
|
|
}
|
|
}
|
|
else if (prop->mType == aiPTI_Buffer) {
|
|
fprintf(out," size=\"%i\">\n\t\t\t\t",
|
|
static_cast<int>(prop->mDataLength));
|
|
|
|
for (unsigned int p = 0; p < prop->mDataLength;++p) {
|
|
fprintf(out,"%2x ",prop->mData[p]);
|
|
if (p && 0 == p%30) {
|
|
fprintf(out,"\n\t\t\t\t");
|
|
}
|
|
}
|
|
}
|
|
else if (prop->mType == aiPTI_String) {
|
|
fprintf(out,">\n\t\t\t\"%s\"",prop->mData+4 /* skip length */);
|
|
}
|
|
fprintf(out,"\n\t\t\t</MatProperty>\n");
|
|
}
|
|
fprintf(out,"\t\t</MatPropertyList>\n");
|
|
fprintf(out,"\t</Material>\n");
|
|
}
|
|
fprintf(out,"</MaterialList>\n");
|
|
}
|
|
|
|
// write animations
|
|
if (scene->mNumAnimations) {
|
|
fprintf(out,"<AnimationList num=\"%i\">\n",scene->mNumAnimations);
|
|
for (unsigned int i = 0; i < scene->mNumAnimations;++i) {
|
|
aiAnimation* anim = scene->mAnimations[i];
|
|
|
|
// anim header
|
|
ConvertName(name,anim->mName);
|
|
fprintf(out,"\t<Animation name=\"%s\" duration=\"%e\" tick_cnt=\"%e\">\n",
|
|
name.data, anim->mDuration, anim->mTicksPerSecond);
|
|
|
|
// write bone animation channels
|
|
if (anim->mNumChannels) {
|
|
fprintf(out,"\t\t<NodeAnimList num=\"%i\">\n",anim->mNumChannels);
|
|
for (unsigned int n = 0; n < anim->mNumChannels;++n) {
|
|
aiNodeAnim* nd = anim->mChannels[n];
|
|
|
|
// node anim header
|
|
ConvertName(name,nd->mNodeName);
|
|
fprintf(out,"\t\t\t<NodeAnim node=\"%s\">\n",name.data);
|
|
|
|
if (!shortened) {
|
|
// write position keys
|
|
if (nd->mNumPositionKeys) {
|
|
fprintf(out,"\t\t\t\t<PositionKeyList num=\"%i\">\n",nd->mNumPositionKeys);
|
|
for (unsigned int a = 0; a < nd->mNumPositionKeys;++a) {
|
|
aiVectorKey* vc = nd->mPositionKeys+a;
|
|
fprintf(out,"\t\t\t\t\t<PositionKey time=\"%e\">\n"
|
|
"\t\t\t\t\t\t%0 8f %0 8f %0 8f\n\t\t\t\t\t</PositionKey>\n",
|
|
vc->mTime,vc->mValue.x,vc->mValue.y,vc->mValue.z);
|
|
}
|
|
fprintf(out,"\t\t\t\t</PositionKeyList>\n");
|
|
}
|
|
|
|
// write scaling keys
|
|
if (nd->mNumScalingKeys) {
|
|
fprintf(out,"\t\t\t\t<ScalingKeyList num=\"%i\">\n",nd->mNumScalingKeys);
|
|
for (unsigned int a = 0; a < nd->mNumScalingKeys;++a) {
|
|
aiVectorKey* vc = nd->mScalingKeys+a;
|
|
fprintf(out,"\t\t\t\t\t<ScalingKey time=\"%e\">\n"
|
|
"\t\t\t\t\t\t%0 8f %0 8f %0 8f\n\t\t\t\t\t</ScalingKey>\n",
|
|
vc->mTime,vc->mValue.x,vc->mValue.y,vc->mValue.z);
|
|
}
|
|
fprintf(out,"\t\t\t\t</ScalingKeyList>\n");
|
|
}
|
|
|
|
// write rotation keys
|
|
if (nd->mNumRotationKeys) {
|
|
fprintf(out,"\t\t\t\t<RotationKeyList num=\"%i\">\n",nd->mNumRotationKeys);
|
|
for (unsigned int a = 0; a < nd->mNumRotationKeys;++a) {
|
|
aiQuatKey* vc = nd->mRotationKeys+a;
|
|
fprintf(out,"\t\t\t\t\t<RotationKey time=\"%e\">\n"
|
|
"\t\t\t\t\t\t%0 8f %0 8f %0 8f %0 8f\n\t\t\t\t\t</RotationKey>\n",
|
|
vc->mTime,vc->mValue.x,vc->mValue.y,vc->mValue.z,vc->mValue.w);
|
|
}
|
|
fprintf(out,"\t\t\t\t</RotationKeyList>\n");
|
|
}
|
|
}
|
|
fprintf(out,"\t\t\t</NodeAnim>\n");
|
|
}
|
|
fprintf(out,"\t\t</NodeAnimList>\n");
|
|
}
|
|
fprintf(out,"\t</Animation>\n");
|
|
}
|
|
fprintf(out,"</AnimationList>\n");
|
|
}
|
|
|
|
// write meshes
|
|
if (scene->mNumMeshes) {
|
|
fprintf(out,"<MeshList num=\"%i\">\n",scene->mNumMeshes);
|
|
for (unsigned int i = 0; i < scene->mNumMeshes;++i) {
|
|
aiMesh* mesh = scene->mMeshes[i];
|
|
const unsigned int width = (unsigned int)log10((double)mesh->mNumVertices)+1;
|
|
|
|
// mesh header
|
|
fprintf(out,"\t<Mesh types=\"%s %s %s %s\" material_index=\"%i\">\n",
|
|
(mesh->mPrimitiveTypes & aiPrimitiveType_POINT ? "points" : ""),
|
|
(mesh->mPrimitiveTypes & aiPrimitiveType_LINE ? "lines" : ""),
|
|
(mesh->mPrimitiveTypes & aiPrimitiveType_TRIANGLE ? "triangles" : ""),
|
|
(mesh->mPrimitiveTypes & aiPrimitiveType_POLYGON ? "polygons" : ""),
|
|
mesh->mMaterialIndex);
|
|
|
|
// bones
|
|
if (mesh->mNumBones) {
|
|
fprintf(out,"\t\t<BoneList num=\"%i\">\n",mesh->mNumBones);
|
|
|
|
for (unsigned int n = 0; n < mesh->mNumBones;++n) {
|
|
aiBone* bone = mesh->mBones[n];
|
|
|
|
ConvertName(name,bone->mName);
|
|
// bone header
|
|
fprintf(out,"\t\t\t<Bone name=\"%s\">\n"
|
|
"\t\t\t\t<Matrix4> \n"
|
|
"\t\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n"
|
|
"\t\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n"
|
|
"\t\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n"
|
|
"\t\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n"
|
|
"\t\t\t\t</Matrix4> \n",
|
|
name.data,
|
|
bone->mOffsetMatrix.a1,bone->mOffsetMatrix.a2,bone->mOffsetMatrix.a3,bone->mOffsetMatrix.a4,
|
|
bone->mOffsetMatrix.b1,bone->mOffsetMatrix.b2,bone->mOffsetMatrix.b3,bone->mOffsetMatrix.b4,
|
|
bone->mOffsetMatrix.c1,bone->mOffsetMatrix.c2,bone->mOffsetMatrix.c3,bone->mOffsetMatrix.c4,
|
|
bone->mOffsetMatrix.d1,bone->mOffsetMatrix.d2,bone->mOffsetMatrix.d3,bone->mOffsetMatrix.d4);
|
|
|
|
if (!shortened && bone->mNumWeights) {
|
|
fprintf(out,"\t\t\t\t<WeightList num=\"%i\">\n",bone->mNumWeights);
|
|
|
|
// bone weights
|
|
for (unsigned int a = 0; a < bone->mNumWeights;++a) {
|
|
aiVertexWeight* wght = bone->mWeights+a;
|
|
|
|
fprintf(out,"\t\t\t\t\t<Weight index=\"%i\">\n\t\t\t\t\t\t%f\n\t\t\t\t\t</Weight>\n",
|
|
wght->mVertexId,wght->mWeight);
|
|
}
|
|
fprintf(out,"\t\t\t\t</WeightList>\n");
|
|
}
|
|
fprintf(out,"\t\t\t</Bone>\n");
|
|
}
|
|
fprintf(out,"\t\t</BoneList>\n");
|
|
}
|
|
|
|
// faces
|
|
if (!shortened && mesh->mNumFaces) {
|
|
fprintf(out,"\t\t<FaceList num=\"%i\">\n",mesh->mNumFaces);
|
|
for (unsigned int n = 0; n < mesh->mNumFaces; ++n) {
|
|
aiFace& f = mesh->mFaces[n];
|
|
fprintf(out,"\t\t\t<Face num=\"%i\">\n"
|
|
"\t\t\t\t",f.mNumIndices);
|
|
|
|
for (unsigned int j = 0; j < f.mNumIndices;++j)
|
|
fprintf(out,"%i ",f.mIndices[j]);
|
|
|
|
fprintf(out,"\n\t\t\t</Face>\n");
|
|
}
|
|
fprintf(out,"\t\t</FaceList>\n");
|
|
}
|
|
|
|
// vertex positions
|
|
if (mesh->HasPositions()) {
|
|
fprintf(out,"\t\t<Positions num=\"%i\" set=\"0\" num_components=\"3\"> \n",mesh->mNumVertices);
|
|
if (!shortened) {
|
|
for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
|
|
fprintf(out,"\t\t%0 8f %0 8f %0 8f\n",
|
|
mesh->mVertices[n].x,
|
|
mesh->mVertices[n].y,
|
|
mesh->mVertices[n].z);
|
|
}
|
|
}
|
|
fprintf(out,"\t\t</Positions>\n");
|
|
}
|
|
|
|
// vertex normals
|
|
if (mesh->HasNormals()) {
|
|
fprintf(out,"\t\t<Normals num=\"%i\" set=\"0\" num_components=\"3\"> \n",mesh->mNumVertices);
|
|
if (!shortened) {
|
|
for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
|
|
fprintf(out,"\t\t%0 8f %0 8f %0 8f\n",
|
|
mesh->mNormals[n].x,
|
|
mesh->mNormals[n].y,
|
|
mesh->mNormals[n].z);
|
|
}
|
|
}
|
|
else {
|
|
}
|
|
fprintf(out,"\t\t</Normals>\n");
|
|
}
|
|
|
|
// vertex tangents and bitangents
|
|
if (mesh->HasTangentsAndBitangents()) {
|
|
fprintf(out,"\t\t<Tangents num=\"%i\" set=\"0\" num_components=\"3\"> \n",mesh->mNumVertices);
|
|
if (!shortened) {
|
|
for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
|
|
fprintf(out,"\t\t%0 8f %0 8f %0 8f\n",
|
|
mesh->mTangents[n].x,
|
|
mesh->mTangents[n].y,
|
|
mesh->mTangents[n].z);
|
|
}
|
|
}
|
|
fprintf(out,"\t\t</Tangents>\n");
|
|
|
|
fprintf(out,"\t\t<Bitangents num=\"%i\" set=\"0\" num_components=\"3\"> \n",mesh->mNumVertices);
|
|
if (!shortened) {
|
|
for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
|
|
fprintf(out,"\t\t%0 8f %0 8f %0 8f\n",
|
|
mesh->mBitangents[n].x,
|
|
mesh->mBitangents[n].y,
|
|
mesh->mBitangents[n].z);
|
|
}
|
|
}
|
|
fprintf(out,"\t\t</Bitangents>\n");
|
|
}
|
|
|
|
// texture coordinates
|
|
for (unsigned int a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a) {
|
|
if (!mesh->mTextureCoords[a])
|
|
break;
|
|
|
|
fprintf(out,"\t\t<TextureCoords num=\"%i\" set=\"%i\" num_components=\"%i\"> \n",mesh->mNumVertices,
|
|
a,mesh->mNumUVComponents[a]);
|
|
|
|
if (!shortened) {
|
|
if (mesh->mNumUVComponents[a] == 3) {
|
|
for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
|
|
fprintf(out,"\t\t%0 8f %0 8f %0 8f\n",
|
|
mesh->mTextureCoords[a][n].x,
|
|
mesh->mTextureCoords[a][n].y,
|
|
mesh->mTextureCoords[a][n].z);
|
|
}
|
|
}
|
|
else {
|
|
for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
|
|
fprintf(out,"\t\t%0 8f %0 8f\n",
|
|
mesh->mTextureCoords[a][n].x,
|
|
mesh->mTextureCoords[a][n].y);
|
|
}
|
|
}
|
|
}
|
|
fprintf(out,"\t\t</TextureCoords>\n");
|
|
}
|
|
|
|
// vertex colors
|
|
for (unsigned int a = 0; a < AI_MAX_NUMBER_OF_COLOR_SETS; ++a) {
|
|
if (!mesh->mColors[a])
|
|
break;
|
|
fprintf(out,"\t\t<Colors num=\"%i\" set=\"%i\" num_components=\"4\"> \n",mesh->mNumVertices,a);
|
|
if (!shortened) {
|
|
for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
|
|
fprintf(out,"\t\t%0 8f %0 8f %0 8f %0 8f\n",
|
|
mesh->mColors[a][n].r,
|
|
mesh->mColors[a][n].g,
|
|
mesh->mColors[a][n].b,
|
|
mesh->mColors[a][n].a);
|
|
}
|
|
}
|
|
fprintf(out,"\t\t</Color>\n");
|
|
}
|
|
fprintf(out,"\t</Mesh>\n");
|
|
}
|
|
fprintf(out,"</MeshList>\n");
|
|
}
|
|
fprintf(out,"</Scene>\n</ASSIMP>");
|
|
}
|
|
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
int Assimp_Dump (const char* const* params, unsigned int num)
|
|
{
|
|
if (num < 1) {
|
|
::printf("assimp dump: Invalid number of arguments. "
|
|
"See \'assimp dump --help\'\r\n");
|
|
return 1;
|
|
}
|
|
|
|
// --help
|
|
if (!strcmp( params[0], "-h") || !strcmp( params[0], "--help") || !strcmp( params[0], "-?") ) {
|
|
printf("%s",AICMD_MSG_DUMP_HELP);
|
|
return 0;
|
|
}
|
|
|
|
// asssimp dump in out [options]
|
|
if (num < 1) {
|
|
::printf("assimp dump: Invalid number of arguments. "
|
|
"See \'assimp dump --help\'\r\n");
|
|
return 1;
|
|
}
|
|
|
|
std::string in = std::string(params[0]);
|
|
std::string out = (num > 1 ? std::string(params[1]) : std::string("-"));
|
|
|
|
// store full command line
|
|
std::string cmd;
|
|
for (unsigned int i = (out[0] == '-' ? 1 : 2); i < num;++i) {
|
|
if (!params[i])continue;
|
|
cmd.append(params[i]);
|
|
cmd.append(" ");
|
|
}
|
|
|
|
// get import flags
|
|
ImportData import;
|
|
ProcessStandardArguments(import,params+1,num-1);
|
|
|
|
bool binary = false, shortened = false,compressed=false;
|
|
|
|
// process other flags
|
|
for (unsigned int i = 1; i < num;++i) {
|
|
if (!params[i])continue;
|
|
if (!strcmp( params[i], "-b") || !strcmp( params[i], "--binary")) {
|
|
binary = true;
|
|
}
|
|
else if (!strcmp( params[i], "-s") || !strcmp( params[i], "--short")) {
|
|
shortened = true;
|
|
}
|
|
else if (!strcmp( params[i], "-z") || !strcmp( params[i], "--compressed")) {
|
|
compressed = true;
|
|
}
|
|
#if 0
|
|
else if (i > 2 || params[i][0] == '-') {
|
|
::printf("Unknown parameter: %s\n",params[i]);
|
|
return 10;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
if (out[0] == '-') {
|
|
// take file name from input file
|
|
std::string::size_type s = in.find_last_of('.');
|
|
if (s == std::string::npos)
|
|
s = in.length();
|
|
|
|
out = in.substr(0,s);
|
|
out.append((binary ? ".assbin" : ".assxml"));
|
|
if (shortened && binary)
|
|
out.append(".regress");
|
|
}
|
|
|
|
// import the main model
|
|
const aiScene* scene = ImportModel(import,in);
|
|
if (!scene) {
|
|
::printf("assimp dump: Unable to load input file %s\n",
|
|
in.c_str());
|
|
return 5;
|
|
}
|
|
|
|
// open the output file and build the dump
|
|
FILE* o = ::fopen(out.c_str(),(binary ? "wb" : "wt"));
|
|
if (!o) {
|
|
::printf("assimp dump: Unable to open output file %s\n",
|
|
out.c_str());
|
|
return 12;
|
|
}
|
|
|
|
if (binary) {
|
|
WriteBinaryDump (scene,o,in.c_str(),cmd.c_str(),shortened,compressed,import);
|
|
}
|
|
else WriteDump (scene,o,in.c_str(),cmd.c_str(),shortened);
|
|
::fclose(o);
|
|
|
|
if (compressed && binary) {
|
|
CompressBinaryDump(out.c_str(),ASSBIN_HEADER_LENGTH);
|
|
}
|
|
|
|
::printf("assimp dump: Wrote output dump %s\n",out.c_str());
|
|
return 0;
|
|
}
|
|
|