assimp/code/ASELoader.cpp

1032 lines
34 KiB
C++

/*
---------------------------------------------------------------------------
Open Asset Import Library (ASSIMP)
---------------------------------------------------------------------------
Copyright (c) 2006-2008, ASSIMP Development Team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the following
conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the ASSIMP team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the ASSIMP Development Team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------
*/
/** @file Implementation of the ASE importer class */
#include "ASELoader.h"
#include "3DSSpatialSort.h"
#include "MaterialSystem.h"
#include "fast_atof.h"
#include "../include/IOStream.h"
#include "../include/IOSystem.h"
#include "../include/aiMesh.h"
#include "../include/aiScene.h"
#include "../include/aiAssert.h"
#include "../include/DefaultLogger.h"
#include <boost/scoped_ptr.hpp>
using namespace Assimp;
using namespace Assimp::ASE;
#define LOGOUT_WARN(x) DefaultLogger::get()->warn(x);
// ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer
ASEImporter::ASEImporter()
{
}
// ------------------------------------------------------------------------------------------------
// Destructor, private as well
ASEImporter::~ASEImporter()
{
}
// ------------------------------------------------------------------------------------------------
// Returns whether the class can handle the format of the given file.
bool ASEImporter::CanRead( const std::string& pFile, IOSystem* pIOHandler) const
{
// simple check of file extension is enough for the moment
std::string::size_type pos = pFile.find_last_of('.');
// no file extension - can't read
if( pos == std::string::npos)
return false;
std::string extension = pFile.substr( pos);
if (extension.length() < 4)return false;
if (extension[0] != '.')return false;
if (extension[1] != 'a' && extension[1] != 'A')return false;
if (extension[2] != 's' && extension[2] != 'S')return false;
// NOTE: Sometimes the extension .ASK is also used
// however, often it only contains static animation skeletons
// without the real animations.
if (extension[3] != 'e' && extension[3] != 'E' &&
extension[3] != 'k' && extension[3] != 'K')return false;
return true;
}
// ------------------------------------------------------------------------------------------------
// Imports the given file into the given scene structure.
void ASEImporter::InternReadFile(
const std::string& pFile, aiScene* pScene, IOSystem* pIOHandler)
{
boost::scoped_ptr<IOStream> file( pIOHandler->Open( pFile));
// Check whether we can read from the file
if( file.get() == NULL)
{
throw new ImportErrorException( "Failed to open ASE file " + pFile + ".");
}
size_t fileSize = file->FileSize();
std::string::size_type pos = pFile.find_last_of('.');
std::string extension = pFile.substr( pos);
if(extension[3] == 'k' || extension[3] == 'K')
{
this->mIsAsk = true;
}
else this->mIsAsk = false;
// allocate storage and copy the contents of the file to a memory buffer
// (terminate it with zero)
this->mBuffer = new unsigned char[fileSize+1];
file->Read( (void*)mBuffer, 1, fileSize);
this->mBuffer[fileSize] = '\0';
// construct an ASE parser and parse the file
this->mParser = new ASE::Parser((const char*)this->mBuffer);
this->mParser->Parse();
// the .ask file format contains normally three LODs of
// a single object. Named <name>n, where n = 1 designates
// the highest level of detail.
if (this->mIsAsk)
{
this->AskFilterLOD(this->mParser->m_vMeshes);
}
// process all meshes
std::vector<aiMesh*> avOutMeshes;
avOutMeshes.reserve(this->mParser->m_vMeshes.size()*2);
for (std::vector<ASE::Mesh>::iterator
i = this->mParser->m_vMeshes.begin();
i != this->mParser->m_vMeshes.end();++i)
{
if ((*i).bSkip)continue;
// transform all vertices into worldspace
// world2obj transform is specified in the
// transformation matrix of a scenegraph node
this->TransformVertices(*i);
// now we need to create proper meshes from the import
// we need to split them by materials, build valid vertex/face lists ...
this->BuildUniqueRepresentation(*i);
// need to generate proper vertex normals if necessary
this->GenerateNormals(*i);
// convert all meshes to aiMesh objects
this->ConvertMeshes(*i,avOutMeshes);
}
// now build the output mesh list
pScene->mNumMeshes = avOutMeshes.size();
pScene->mMeshes = new aiMesh*[pScene->mNumMeshes];
for (unsigned int i = 0; i < pScene->mNumMeshes;++i)
pScene->mMeshes[i] = avOutMeshes[i];
// buil final material indices (remove submaterials and make the final list)
this->BuildMaterialIndices(pScene);
// build the final node graph
this->BuildNodes(pScene);
// delete the ASE parser
delete this->mParser;
this->mParser = NULL;
return;
}
// ------------------------------------------------------------------------------------------------
void ASEImporter::AddNodes(aiScene* pcScene,aiNode* pcParent,
const char* szName)
{
ai_assert(4 <= AI_MAX_NUMBER_OF_COLOR_SETS);
std::vector<aiNode*> apcNodes;
for (unsigned int i = 0; i < pcScene->mNumMeshes;++i)
{
// get the name of the mesh ([0] = name, [1] = parent)
std::string* szMyName = (std::string*)pcScene->mMeshes[i]->mColors[1];
if (!szMyName)
{
continue;
}
if (szName)
{
if(0 != ASSIMP_stricmp ( szName, szMyName[1].c_str() ))
continue;
}
else if ('\0' != szMyName[1].c_str()[0])continue;
apcNodes.push_back(new aiNode());
aiNode* node = apcNodes.back();
// get the transformation matrix of the mesh
aiMatrix4x4* pmTransform = (aiMatrix4x4*)pcScene->mMeshes[i]->mColors[2];
node->mName.Set(szMyName[0]);
node->mNumMeshes = 1;
node->mMeshes = new unsigned int[1];
node->mMeshes[0] = i;
node->mParent = pcParent;
node->mTransformation = *pmTransform;
// delete the matrix (a mesh is always the child of ONE node, so this is safe)
delete pmTransform;
pcScene->mMeshes[i]->mColors[2] = NULL;
delete[] szMyName;
pcScene->mMeshes[i]->mColors[1] = NULL;
// add sub nodes
this->AddNodes(pcScene,node,node->mName.data);
}
// allocate enough space for the child nodes
pcParent->mNumChildren = apcNodes.size();
pcParent->mChildren = new aiNode*[apcNodes.size()];
// now build all nodes
for (unsigned int p = 0; p < apcNodes.size();++p)
{
pcParent->mChildren[p] = apcNodes[p];
}
return;
}
// ------------------------------------------------------------------------------------------------
void ASEImporter::BuildNodes(aiScene* pcScene)
{
ai_assert(NULL != pcScene);
// allocate the root node
pcScene->mRootNode = new aiNode();
pcScene->mRootNode->mNumMeshes = 0;
pcScene->mRootNode->mMeshes = 0;
pcScene->mRootNode->mName.Set("<root>");
// add all nodes
this->AddNodes(pcScene,pcScene->mRootNode,NULL);
// if there is only one subnode, set it as root node
if (1 == pcScene->mRootNode->mNumChildren)
{
aiNode* pc = pcScene->mRootNode;
pcScene->mRootNode = pcScene->mRootNode->mChildren[0];
pcScene->mRootNode->mParent = NULL;
delete pc;
}
else if (0 == pcScene->mRootNode->mNumChildren)
{
throw new ImportErrorException("No nodes loaded. The ASE/ASK file is either empty or corrupt");
}
return;
}
// ------------------------------------------------------------------------------------------------
void ASEImporter::TransformVertices(ASE::Mesh& mesh)
{
// the matrix data is stored in column-major format,
// but we need row major
mesh.mTransform.Transpose();
}
// ------------------------------------------------------------------------------------------------
void ASEImporter::BuildUniqueRepresentation(ASE::Mesh& mesh)
{
// allocate output storage
std::vector<aiVector3D> mPositions;
std::vector<aiVector3D> amTexCoords[AI_MAX_NUMBER_OF_TEXTURECOORDS];
std::vector<aiColor4D> mVertexColors;
std::vector<aiVector3D> mNormals;
std::vector<BoneVertex> mBoneVertices;
unsigned int iSize = mesh.mFaces.size() * 3;
mPositions.resize(iSize);
// optional texture coordinates
for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS;++i)
{
if (!mesh.amTexCoords[i].empty())
{
amTexCoords[i].resize(iSize);
}
}
// optional vertex colors
if (!mesh.mVertexColors.empty())
{
mVertexColors.resize(iSize);
}
// optional vertex normals (vertex normals can simply be copied)
if (!mesh.mNormals.empty())
{
mNormals.resize(iSize);
}
// bone vertices. There is no need to change the bone list
if (!mesh.mBoneVertices.empty())
{
mBoneVertices.resize(iSize);
}
// iterate through all faces in the mesh
unsigned int iCurrent = 0;
for (std::vector<ASE::Face>::iterator
i = mesh.mFaces.begin();
i != mesh.mFaces.end();++i)
{
for (unsigned int n = 0; n < 3;++n,++iCurrent)
{
mPositions[iCurrent] = mesh.mPositions[(*i).mIndices[n]];
// add texture coordinates
for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS;++c)
{
if (!mesh.amTexCoords[c].empty())
{
amTexCoords[c][iCurrent] = mesh.amTexCoords[c][(*i).amUVIndices[c][n]];
}
}
// add vertex colors
if (!mesh.mVertexColors.empty())
{
mVertexColors[iCurrent] = mesh.mVertexColors[(*i).mColorIndices[n]];
}
// add normal vectors
if (!mesh.mNormals.empty())
{
mNormals[iCurrent] = mesh.mNormals[(*i).mIndices[n]];
}
// handle bone vertices
if ((*i).mIndices[n] < mesh.mBoneVertices.size())
{
// (sometimes this will cause bone verts to be duplicated
// however, I' quite sure Schrompf' JoinVerticesStep
// will fix that again ...)
mBoneVertices[iCurrent] = mesh.mBoneVertices[(*i).mIndices[n]];
}
}
// we need to flip the order of the indices
(*i).mIndices[0] = iCurrent-1;
(*i).mIndices[1] = iCurrent-2;
(*i).mIndices[2] = iCurrent-3;
}
// replace the old arrays
mesh.mNormals = mNormals;
mesh.mPositions = mPositions;
mesh.mVertexColors = mVertexColors;
for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS;++c)
mesh.amTexCoords[c] = amTexCoords[c];
// now need to transform all vertices with the inverse of their
// transformation matrix ...
aiMatrix4x4 mInverse = mesh.mTransform;
mInverse.Inverse();
for (std::vector<aiVector3D>::iterator
i = mesh.mPositions.begin();
i != mesh.mPositions.end();++i)
{
(*i) = mInverse * (*i);
}
return;
}
// ------------------------------------------------------------------------------------------------
void ASEImporter::ConvertMaterial(ASE::Material& mat)
{
// allocate the output material
mat.pcInstance = new MaterialHelper();
// At first add the base ambient color of the
// scene to the material
mat.mAmbient.r += this->mParser->m_clrAmbient.r;
mat.mAmbient.g += this->mParser->m_clrAmbient.g;
mat.mAmbient.b += this->mParser->m_clrAmbient.b;
aiString name;
name.Set( mat.mName);
mat.pcInstance->AddProperty( &name, AI_MATKEY_NAME);
// material colors
mat.pcInstance->AddProperty( &mat.mAmbient, 1, AI_MATKEY_COLOR_AMBIENT);
mat.pcInstance->AddProperty( &mat.mDiffuse, 1, AI_MATKEY_COLOR_DIFFUSE);
mat.pcInstance->AddProperty( &mat.mSpecular, 1, AI_MATKEY_COLOR_SPECULAR);
mat.pcInstance->AddProperty( &mat.mEmissive, 1, AI_MATKEY_COLOR_EMISSIVE);
// shininess
if (0.0f != mat.mSpecularExponent && 0.0f != mat.mShininessStrength)
{
mat.pcInstance->AddProperty( &mat.mSpecularExponent, 1, AI_MATKEY_SHININESS);
mat.pcInstance->AddProperty( &mat.mShininessStrength, 1, AI_MATKEY_SHININESS_STRENGTH);
}
// if there is no shininess, we can disable phong lighting
else if (Dot3DS::Dot3DSFile::Metal == mat.mShading ||
Dot3DS::Dot3DSFile::Phong == mat.mShading ||
Dot3DS::Dot3DSFile::Blinn == mat.mShading)
{
mat.mShading = Dot3DS::Dot3DSFile::Gouraud;
}
// opacity
mat.pcInstance->AddProperty<float>( &mat.mTransparency,1,AI_MATKEY_OPACITY);
// shading mode
aiShadingMode eShading = aiShadingMode_NoShading;
switch (mat.mShading)
{
case Dot3DS::Dot3DSFile::Flat:
eShading = aiShadingMode_Flat; break;
case Dot3DS::Dot3DSFile::Phong :
eShading = aiShadingMode_Phong; break;
case Dot3DS::Dot3DSFile::Blinn :
eShading = aiShadingMode_Blinn; break;
// I don't know what "Wire" shading should be,
// assume it is simple lambertian diffuse (L dot N) shading
case Dot3DS::Dot3DSFile::Wire:
case Dot3DS::Dot3DSFile::Gouraud:
eShading = aiShadingMode_Gouraud; break;
case Dot3DS::Dot3DSFile::Metal :
eShading = aiShadingMode_CookTorrance; break;
}
mat.pcInstance->AddProperty<int>( (int*)&eShading,1,AI_MATKEY_SHADING_MODEL);
if (Dot3DS::Dot3DSFile::Wire == mat.mShading)
{
// set the wireframe flag
unsigned int iWire = 1;
mat.pcInstance->AddProperty<int>( (int*)&iWire,1,AI_MATKEY_ENABLE_WIREFRAME);
}
// texture, if there is one
if( mat.sTexDiffuse.mMapName.length() > 0)
{
aiString tex;
tex.Set( mat.sTexDiffuse.mMapName);
mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_DIFFUSE(0));
if (is_not_qnan(mat.sTexDiffuse.mTextureBlend))
mat.pcInstance->AddProperty<float>( &mat.sTexDiffuse.mTextureBlend, 1,
AI_MATKEY_TEXBLEND_DIFFUSE(0));
}
if( mat.sTexSpecular.mMapName.length() > 0)
{
aiString tex;
tex.Set( mat.sTexSpecular.mMapName);
mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_SPECULAR(0));
if (is_not_qnan(mat.sTexSpecular.mTextureBlend))
mat.pcInstance->AddProperty<float>( &mat.sTexSpecular.mTextureBlend, 1,
AI_MATKEY_TEXBLEND_SPECULAR(0));
}
if( mat.sTexOpacity.mMapName.length() > 0)
{
aiString tex;
tex.Set( mat.sTexOpacity.mMapName);
mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_OPACITY(0));
if (is_not_qnan(mat.sTexOpacity.mTextureBlend))
mat.pcInstance->AddProperty<float>( &mat.sTexOpacity.mTextureBlend, 1,
AI_MATKEY_TEXBLEND_OPACITY(0));
}
if( mat.sTexEmissive.mMapName.length() > 0)
{
aiString tex;
tex.Set( mat.sTexEmissive.mMapName);
mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_EMISSIVE(0));
if (is_not_qnan(mat.sTexEmissive.mTextureBlend))
mat.pcInstance->AddProperty<float>( &mat.sTexEmissive.mTextureBlend, 1,
AI_MATKEY_TEXBLEND_EMISSIVE(0));
}
if( mat.sTexAmbient.mMapName.length() > 0)
{
aiString tex;
tex.Set( mat.sTexAmbient.mMapName);
mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_AMBIENT(0));
if (is_not_qnan(mat.sTexAmbient.mTextureBlend))
mat.pcInstance->AddProperty<float>( &mat.sTexAmbient.mTextureBlend, 1,
AI_MATKEY_TEXBLEND_AMBIENT(0));
}
if( mat.sTexBump.mMapName.length() > 0)
{
aiString tex;
tex.Set( mat.sTexBump.mMapName);
mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_HEIGHT(0));
if (is_not_qnan(mat.sTexBump.mTextureBlend))
mat.pcInstance->AddProperty<float>( &mat.sTexBump.mTextureBlend, 1,
AI_MATKEY_TEXBLEND_HEIGHT(0));
}
if( mat.sTexShininess.mMapName.length() > 0)
{
aiString tex;
tex.Set( mat.sTexShininess.mMapName);
mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_SHININESS(0));
if (is_not_qnan(mat.sTexShininess.mTextureBlend))
mat.pcInstance->AddProperty<float>( &mat.sTexBump.mTextureBlend, 1,
AI_MATKEY_TEXBLEND_SHININESS(0));
}
// store the name of the material itself, too
if( mat.mName.length() > 0)
{
aiString tex;
tex.Set( mat.mName);
mat.pcInstance->AddProperty( &tex, AI_MATKEY_NAME);
}
return;
}
// ------------------------------------------------------------------------------------------------
void ASEImporter::ConvertMeshes(ASE::Mesh& mesh, std::vector<aiMesh*>& avOutMeshes)
{
// validate the material index of the mesh
if (mesh.iMaterialIndex >= this->mParser->m_vMaterials.size())
{
mesh.iMaterialIndex = this->mParser->m_vMaterials.size()-1;
LOGOUT_WARN("Material index is out of range");
}
// if the material the mesh is assigned to is consisting of submeshes
// we'll need to split it ... Quak.
if (!this->mParser->m_vMaterials[mesh.iMaterialIndex].avSubMaterials.empty())
{
std::vector<ASE::Material> vSubMaterials = this->mParser->
m_vMaterials[mesh.iMaterialIndex].avSubMaterials;
std::vector<unsigned int>* aiSplit = new std::vector<unsigned int>[
vSubMaterials.size()];
// build a list of all faces per submaterial
unsigned int iNum = 0;
for (unsigned int i = 0; i < mesh.mFaces.size();++i)
{
// check range
if (mesh.mFaces[i].iMaterial >= vSubMaterials.size())
{
LOGOUT_WARN("Submaterial index is out of range");
// use the last material instead
aiSplit[vSubMaterials.size()-1].push_back(i);
}
else aiSplit[mesh.mFaces[i].iMaterial].push_back(i);
}
// now generate submeshes
for (unsigned int p = 0; p < vSubMaterials.size();++p)
{
if (aiSplit[p].size() != 0)
{
aiMesh* p_pcOut = new aiMesh();
// let the sub material index
p_pcOut->mMaterialIndex = p;
// we will need this material
this->mParser->m_vMaterials[mesh.iMaterialIndex].avSubMaterials[p].bNeed = true;
// store the real index here ... color channel 3
p_pcOut->mColors[3] = (aiColor4D*)(uintptr_t)mesh.iMaterialIndex;
// store the real transformation matrix in color channel 2
p_pcOut->mColors[2] = (aiColor4D*) new aiMatrix4x4(mesh.mTransform);
// store the name of the mesh and the
// name of its parent in color channel 1
p_pcOut->mColors[1] = (aiColor4D*) new std::string[2];
((std::string*)p_pcOut->mColors[1])[0] = mesh.mName;
((std::string*)p_pcOut->mColors[1])[1] = mesh.mParent;
avOutMeshes.push_back(p_pcOut);
// convert vertices
p_pcOut->mNumVertices = aiSplit[p].size()*3;
p_pcOut->mNumFaces = aiSplit[p].size();
// receive output vertex weights
std::vector<std::pair<unsigned int, float> >* avOutputBones;
if (!mesh.mBones.empty())
{
avOutputBones = new std::vector<std::pair<unsigned int, float> >[mesh.mBones.size()];
}
// allocate enough storage for faces
p_pcOut->mFaces = new aiFace[p_pcOut->mNumFaces];
if (p_pcOut->mNumVertices != 0)
{
p_pcOut->mVertices = new aiVector3D[p_pcOut->mNumVertices];
p_pcOut->mNormals = new aiVector3D[p_pcOut->mNumVertices];
unsigned int iBase = 0;
for (unsigned int q = 0; q < aiSplit[p].size();++q)
{
unsigned int iIndex = aiSplit[p][q];
p_pcOut->mFaces[q].mIndices = new unsigned int[3];
p_pcOut->mFaces[q].mNumIndices = 3;
for (unsigned int t = 0; t < 3;++t)
{
const uint32_t iIndex2 = mesh.mFaces[iIndex].mIndices[t];
p_pcOut->mVertices[iBase] = mesh.mPositions[iIndex2];
p_pcOut->mNormals[iBase] = mesh.mNormals[iIndex2];
// convert bones, if existing
if (!mesh.mBones.empty())
{
// check whether there is a vertex weight that is using
// this vertex index ...
if (iIndex2 < mesh.mBoneVertices.size())
{
for (std::vector<std::pair<int,float> >::const_iterator
blubb = mesh.mBoneVertices[iIndex2].mBoneWeights.begin();
blubb != mesh.mBoneVertices[iIndex2].mBoneWeights.end();++blubb)
{
// NOTE: illegal cases have already been filtered out
avOutputBones[(*blubb).first].push_back(std::pair<unsigned int, float>(
iBase,(*blubb).second));
}
}
}
++iBase;
}
p_pcOut->mFaces[q].mIndices[0] = iBase-2;
p_pcOut->mFaces[q].mIndices[1] = iBase-1;
p_pcOut->mFaces[q].mIndices[2] = iBase;
}
}
// convert texture coordinates
for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS;++c)
{
if (!mesh.amTexCoords[c].empty())
{
p_pcOut->mTextureCoords[c] = new aiVector3D[p_pcOut->mNumVertices];
unsigned int iBase = 0;
for (unsigned int q = 0; q < aiSplit[p].size();++q)
{
unsigned int iIndex = aiSplit[p][q];
for (unsigned int t = 0; t < 3;++t)
{
p_pcOut->mTextureCoords[c][iBase++] = mesh.amTexCoords[c][mesh.mFaces[iIndex].mIndices[t]];
}
}
// setup the number of valid vertex components
p_pcOut->mNumUVComponents[c] = mesh.mNumUVComponents[c];
}
}
// convert vertex colors (only one set supported)
if (!mesh.mVertexColors.empty())
{
p_pcOut->mColors[0] = new aiColor4D[p_pcOut->mNumVertices];
unsigned int iBase = 0;
for (unsigned int q = 0; q < aiSplit[p].size();++q)
{
unsigned int iIndex = aiSplit[p][q];
for (unsigned int t = 0; t < 3;++t)
{
p_pcOut->mColors[0][iBase++] = mesh.mVertexColors[mesh.mFaces[iIndex].mIndices[t]];
}
}
}
if (!mesh.mBones.empty())
{
p_pcOut->mNumBones = 0;
for (unsigned int mrspock = 0; mrspock < mesh.mBones.size();++mrspock)
if (!avOutputBones[mrspock].empty())p_pcOut->mNumBones++;
p_pcOut->mBones = new aiBone* [ p_pcOut->mNumBones ];
aiBone** pcBone = p_pcOut->mBones;
for (unsigned int mrspock = 0; mrspock < mesh.mBones.size();++mrspock)
{
if (!avOutputBones[mrspock].empty())
{
// we will need this bone. add it to the output mesh and
// add all per-vertex weights
aiBone* pc = *pcBone = new aiBone();
pc->mName.Set(mesh.mBones[mrspock].mName);
pc->mNumWeights = avOutputBones[mrspock].size();
pc->mWeights = new aiVertexWeight[pc->mNumWeights];
for (unsigned int captainkirk = 0; captainkirk < pc->mNumWeights;++captainkirk)
{
const std::pair<unsigned int,float>& ref = avOutputBones[mrspock][captainkirk];
pc->mWeights[captainkirk].mVertexId = ref.first;
pc->mWeights[captainkirk].mWeight = ref.second;
}
++pcBone;
}
}
// delete allocated storage
delete[] avOutputBones;
}
}
}
// delete storage
delete[] aiSplit;
}
else
{
// otherwise we can simply copy the data to one output mesh
aiMesh* p_pcOut = new aiMesh();
// set an empty sub material index
p_pcOut->mMaterialIndex = ASE::Face::DEFAULT_MATINDEX;
this->mParser->m_vMaterials[mesh.iMaterialIndex].bNeed = true;
// store the real index here ... in color channel 3
p_pcOut->mColors[3] = (aiColor4D*)(uintptr_t)mesh.iMaterialIndex;
// store the transformation matrix in color channel 2
p_pcOut->mColors[2] = (aiColor4D*) new aiMatrix4x4(mesh.mTransform);
avOutMeshes.push_back(p_pcOut);
// store the name of the mesh and the
// name of its parent in color channel 1
p_pcOut->mColors[1] = (aiColor4D*) new std::string[2];
((std::string*)p_pcOut->mColors[1])[0] = mesh.mName;
((std::string*)p_pcOut->mColors[1])[1] = mesh.mParent;
// convert vertices
p_pcOut->mNumVertices = mesh.mPositions.size();
p_pcOut->mNumFaces = mesh.mFaces.size();
// allocate enough storage for faces
p_pcOut->mFaces = new aiFace[p_pcOut->mNumFaces];
// copy vertices
p_pcOut->mVertices = new aiVector3D[mesh.mPositions.size()];
memcpy(p_pcOut->mVertices,&mesh.mPositions[0],
mesh.mPositions.size() * sizeof(aiVector3D));
// copy normals
p_pcOut->mNormals = new aiVector3D[mesh.mNormals.size()];
memcpy(p_pcOut->mNormals,&mesh.mNormals[0],
mesh.mNormals.size() * sizeof(aiVector3D));
// copy texture coordinates
for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS;++c)
{
if (!mesh.amTexCoords[c].empty())
{
p_pcOut->mTextureCoords[c] = new aiVector3D[mesh.amTexCoords[c].size()];
memcpy(p_pcOut->mTextureCoords[c],&mesh.amTexCoords[c][0],
mesh.amTexCoords[c].size() * sizeof(aiVector3D));
// setup the number of valid vertex components
p_pcOut->mNumUVComponents[c] = mesh.mNumUVComponents[c];
}
}
// copy vertex colors
if (!mesh.mVertexColors.empty())
{
p_pcOut->mColors[0] = new aiColor4D[mesh.mVertexColors.size()];
memcpy(p_pcOut->mColors[0],&mesh.mVertexColors[0],
mesh.mVertexColors.size() * sizeof(aiColor4D));
}
// copy faces
for (unsigned int iFace = 0; iFace < p_pcOut->mNumFaces;++iFace)
{
p_pcOut->mFaces[iFace].mNumIndices = 3;
p_pcOut->mFaces[iFace].mIndices = new unsigned int[3];
// copy indices
p_pcOut->mFaces[iFace].mIndices[0] = mesh.mFaces[iFace].mIndices[0];
p_pcOut->mFaces[iFace].mIndices[1] = mesh.mFaces[iFace].mIndices[1];
p_pcOut->mFaces[iFace].mIndices[2] = mesh.mFaces[iFace].mIndices[2];
}
// copy vertex bones
if (!mesh.mBones.empty() && !mesh.mBoneVertices.empty())
{
std::vector<aiVertexWeight>* avBonesOut = new
std::vector<aiVertexWeight>[mesh.mBones.size()];
// find all vertex weights for this bone
unsigned int quak = 0;
for (std::vector<BoneVertex>::const_iterator
harrypotter = mesh.mBoneVertices.begin();
harrypotter != mesh.mBoneVertices.end();++harrypotter,++quak)
{
for (std::vector<std::pair<int,float> >::const_iterator
ronaldweasley = (*harrypotter).mBoneWeights.begin();
ronaldweasley != (*harrypotter).mBoneWeights.end();++ronaldweasley)
{
aiVertexWeight weight;
weight.mVertexId = quak;
weight.mWeight = (*ronaldweasley).second;
avBonesOut[(*ronaldweasley).first].push_back(weight);
}
}
// now build a final bone list
p_pcOut->mNumBones = 0;
for (unsigned int jfkennedy = 0; jfkennedy < mesh.mBones.size();++jfkennedy)
if (!avBonesOut[jfkennedy].empty())p_pcOut->mNumBones++;
p_pcOut->mBones = new aiBone*[p_pcOut->mNumBones];
aiBone** pcBone = p_pcOut->mBones;
for (unsigned int jfkennedy = 0; jfkennedy < mesh.mBones.size();++jfkennedy)
{
if (!avBonesOut[jfkennedy].empty())
{
aiBone* pc = *pcBone = new aiBone();
pc->mName.Set(mesh.mBones[jfkennedy].mName);
pc->mNumWeights = avBonesOut[jfkennedy].size();
pc->mWeights = new aiVertexWeight[pc->mNumWeights];
memcpy(pc->mWeights,&avBonesOut[jfkennedy][0],
sizeof(aiVertexWeight) * pc->mNumWeights);
++pcBone;
}
}
}
}
return;
}
// ------------------------------------------------------------------------------------------------
void ASEImporter::AskFilterLOD(std::vector<ASE::Mesh>& meshes)
{
for (std::vector<ASE::Mesh>::iterator
i = meshes.begin();
i != meshes.end();++i)
{
if ((*i).bSkip)continue;
// search for a number in the name of the node
const char* sz = (*i).mName.c_str();
while (*sz)
{
if (*sz >= '0' && *sz <= '9')
{
// check whether there is another mesh with exactly
// the same name, but a lower number out there ...
unsigned int iLen = (unsigned int)(sz - (*i).mName.c_str());
unsigned int iMyNum = strtol10(sz,NULL);
for (std::vector<ASE::Mesh>::iterator
f = meshes.begin();
f != meshes.end();++f)
{
const char* sz = (*f).mName.c_str();
if (i != f && !(*f).bSkip &&
0 == memcmp(sz,(*i).mName.c_str(),iLen) &&
iMyNum > strtol10(sz))
{
(*f).bSkip = true;
}
}
break;
}++sz;
}
}
return;
}
// ------------------------------------------------------------------------------------------------
void ASEImporter::BuildMaterialIndices(aiScene* pcScene)
{
ai_assert(NULL != pcScene);
// iterate through all materials and check whether we need them
unsigned int iNum = 0;
for (unsigned int iMat = 0; iMat < this->mParser->m_vMaterials.size();++iMat)
{
if (this->mParser->m_vMaterials[iMat].bNeed)
{
// convert it to the aiMaterial layout
this->ConvertMaterial(this->mParser->m_vMaterials[iMat]);
iNum++;
}
for (unsigned int iSubMat = 0; iSubMat < this->mParser->m_vMaterials[
iMat].avSubMaterials.size();++iSubMat)
{
if (this->mParser->m_vMaterials[iMat].avSubMaterials[iSubMat].bNeed)
{
// convert it to the aiMaterial layout
this->ConvertMaterial(this->mParser->m_vMaterials[iMat].avSubMaterials[iSubMat]);
iNum++;
}
}
}
// allocate the output material array
pcScene->mNumMaterials = iNum;
pcScene->mMaterials = new aiMaterial*[pcScene->mNumMaterials];
iNum = 0;
for (unsigned int iMat = 0; iMat < this->mParser->m_vMaterials.size();++iMat)
{
if (this->mParser->m_vMaterials[iMat].bNeed)
{
ai_assert(NULL != this->mParser->m_vMaterials[iMat].pcInstance);
pcScene->mMaterials[iNum] = this->mParser->m_vMaterials[iMat].pcInstance;
// iterate through all meshes and search for one which is using
// this top-level material index
for (unsigned int iMesh = 0; iMesh < pcScene->mNumMeshes;++iMesh)
{
if (ASE::Face::DEFAULT_MATINDEX == pcScene->mMeshes[iMesh]->mMaterialIndex &&
iMat == (uintptr_t)pcScene->mMeshes[iMesh]->mColors[3])
{
pcScene->mMeshes[iMesh]->mMaterialIndex = iNum;
pcScene->mMeshes[iMesh]->mColors[3] = NULL;
}
}
iNum++;
}
for (unsigned int iSubMat = 0; iSubMat < this->mParser->m_vMaterials[iMat].avSubMaterials.size();++iSubMat)
{
if (this->mParser->m_vMaterials[iMat].avSubMaterials[iSubMat].bNeed)
{
ai_assert(NULL != this->mParser->m_vMaterials[iMat].avSubMaterials[iSubMat].pcInstance);
pcScene->mMaterials[iNum] = this->mParser->m_vMaterials[iMat].
avSubMaterials[iSubMat].pcInstance;
// iterate through all meshes and search for one which is using
// this sub-level material index
for (unsigned int iMesh = 0; iMesh < pcScene->mNumMeshes;++iMesh)
{
if (iSubMat == pcScene->mMeshes[iMesh]->mMaterialIndex &&
iMat == (uintptr_t)pcScene->mMeshes[iMesh]->mColors[3])
{
pcScene->mMeshes[iMesh]->mMaterialIndex = iNum;
pcScene->mMeshes[iMesh]->mColors[3] = NULL;
}
}
iNum++;
}
}
}
// finished!
return;
}
// ------------------------------------------------------------------------------------------------
// Generate normal vectors basing on smoothing groups
void ASEImporter::GenerateNormals(ASE::Mesh& mesh)
{
if (mesh.mNormals.empty())
{
// need to calculate normals ...
// TODO: Find a way to merge this with the code in 3DSGenNormals.cpp
mesh.mNormals.resize(mesh.mPositions.size(),aiVector3D());
for( unsigned int a = 0; a < mesh.mFaces.size(); a++)
{
const ASE::Face& face = mesh.mFaces[a];
// assume it is a triangle
aiVector3D* pV1 = &mesh.mPositions[face.mIndices[2]];
aiVector3D* pV2 = &mesh.mPositions[face.mIndices[1]];
aiVector3D* pV3 = &mesh.mPositions[face.mIndices[0]];
aiVector3D pDelta1 = *pV2 - *pV1;
aiVector3D pDelta2 = *pV3 - *pV1;
aiVector3D vNor = pDelta1 ^ pDelta2;
mesh.mNormals[face.mIndices[0]] = vNor;
mesh.mNormals[face.mIndices[1]] = vNor;
mesh.mNormals[face.mIndices[2]] = vNor;
}
// calculate the position bounds so we have a reliable epsilon to
// check position differences against
// @Schrompf: This is the 7th time this snippet is repeated!
aiVector3D minVec( 1e10f, 1e10f, 1e10f), maxVec( -1e10f, -1e10f, -1e10f);
for( unsigned int a = 0; a < mesh.mPositions.size(); a++)
{
minVec.x = std::min( minVec.x, mesh.mPositions[a].x);
minVec.y = std::min( minVec.y, mesh.mPositions[a].y);
minVec.z = std::min( minVec.z, mesh.mPositions[a].z);
maxVec.x = std::max( maxVec.x, mesh.mPositions[a].x);
maxVec.y = std::max( maxVec.y, mesh.mPositions[a].y);
maxVec.z = std::max( maxVec.z, mesh.mPositions[a].z);
}
const float posEpsilon = (maxVec - minVec).Length() * 1e-5f;
std::vector<aiVector3D> avNormals;
avNormals.resize(mesh.mNormals.size());
// now generate the spatial sort tree
D3DSSpatialSorter sSort;
for( std::vector<ASE::Face>::iterator
i = mesh.mFaces.begin();
i != mesh.mFaces.end();++i){sSort.AddFace(&(*i),mesh.mPositions);}
sSort.Prepare();
for( std::vector<ASE::Face>::iterator
i = mesh.mFaces.begin();
i != mesh.mFaces.end();++i)
{
std::vector<unsigned int> poResult;
for (unsigned int c = 0; c < 3;++c)
{
sSort.FindPositions(mesh.mPositions[(*i).mIndices[c]],(*i).iSmoothGroup,
posEpsilon,poResult);
aiVector3D vNormals;
float fDiv = 0.0f;
for (std::vector<unsigned int>::const_iterator
a = poResult.begin();
a != poResult.end();++a)
{
vNormals += mesh.mNormals[(*a)];
fDiv += 1.0f;
}
vNormals.x /= fDiv;vNormals.y /= fDiv;vNormals.z /= fDiv;
vNormals.Normalize();
avNormals[(*i).mIndices[c]] = vNormals;
poResult.clear();
}
}
mesh.mNormals = avNormals;
}
return;
}