assimp/code/AssetLib/Obj/ObjFileImporter.cpp

781 lines
31 KiB
C++

/*
---------------------------------------------------------------------------
Open Asset Import Library (assimp)
---------------------------------------------------------------------------
Copyright (c) 2006-2020, assimp team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the following
conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the assimp team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the assimp team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------
*/
#ifndef ASSIMP_BUILD_NO_OBJ_IMPORTER
#include "ObjFileImporter.h"
#include "ObjFileData.h"
#include "ObjFileParser.h"
#include <assimp/DefaultIOSystem.h>
#include <assimp/IOStreamBuffer.h>
#include <assimp/ai_assert.h>
#include <assimp/importerdesc.h>
#include <assimp/scene.h>
#include <assimp/DefaultLogger.hpp>
#include <assimp/Importer.hpp>
#include <assimp/ObjMaterial.h>
#include <memory>
static const aiImporterDesc desc = {
"Wavefront Object Importer",
"",
"",
"surfaces not supported",
aiImporterFlags_SupportTextFlavour,
0,
0,
0,
0,
"obj"
};
static const unsigned int ObjMinSize = 16;
namespace Assimp {
using namespace std;
// ------------------------------------------------------------------------------------------------
// Default constructor
ObjFileImporter::ObjFileImporter() :
m_Buffer(),
m_pRootObject(nullptr),
m_strAbsPath(std::string(1, DefaultIOSystem().getOsSeparator())) {}
// ------------------------------------------------------------------------------------------------
// Destructor.
ObjFileImporter::~ObjFileImporter() {
delete m_pRootObject;
m_pRootObject = nullptr;
}
// ------------------------------------------------------------------------------------------------
// Returns true if file is an obj file.
bool ObjFileImporter::CanRead(const std::string &pFile, IOSystem *pIOHandler, bool /*checkSig*/) const {
static const char *tokens[] = { "mtllib", "usemtl", "v ", "vt ", "vn ", "o ", "g ", "s ", "f " };
return BaseImporter::SearchFileHeaderForToken(pIOHandler, pFile, tokens, AI_COUNT_OF(tokens), 200, false, true);
}
// ------------------------------------------------------------------------------------------------
const aiImporterDesc *ObjFileImporter::GetInfo() const {
return &desc;
}
// ------------------------------------------------------------------------------------------------
// Obj-file import implementation
void ObjFileImporter::InternReadFile(const std::string &file, aiScene *pScene, IOSystem *pIOHandler) {
// Read file into memory
static const std::string mode = "rb";
auto streamCloser = [&](IOStream *pStream) {
pIOHandler->Close(pStream);
};
std::unique_ptr<IOStream, decltype(streamCloser)> fileStream(pIOHandler->Open(file, mode), streamCloser);
if (!fileStream.get()) {
throw DeadlyImportError("Failed to open file ", file, ".");
}
// Get the file-size and validate it, throwing an exception when fails
size_t fileSize = fileStream->FileSize();
if (fileSize < ObjMinSize) {
throw DeadlyImportError("OBJ-file is too small.");
}
IOStreamBuffer<char> streamedBuffer;
streamedBuffer.open(fileStream.get());
// Allocate buffer and read file into it
//TextFileToBuffer( fileStream.get(),m_Buffer);
// Get the model name
std::string modelName, folderName;
std::string::size_type pos = file.find_last_of("\\/");
if (pos != std::string::npos) {
modelName = file.substr(pos + 1, file.size() - pos - 1);
folderName = file.substr(0, pos);
if (!folderName.empty()) {
pIOHandler->PushDirectory(folderName);
}
} else {
modelName = file;
}
// parse the file into a temporary representation
ObjFileParser parser(streamedBuffer, modelName, pIOHandler, m_progress, file);
// And create the proper return structures out of it
CreateDataFromImport(parser.GetModel(), pScene);
streamedBuffer.close();
// Clean up allocated storage for the next import
m_Buffer.clear();
// Pop directory stack
if (pIOHandler->StackSize() > 0) {
pIOHandler->PopDirectory();
}
}
// ------------------------------------------------------------------------------------------------
// Create the data from parsed obj-file
void ObjFileImporter::CreateDataFromImport(const ObjFile::Model *pModel, aiScene *pScene) {
if (nullptr == pModel) {
return;
}
// Create the root node of the scene
pScene->mRootNode = new aiNode;
if (!pModel->m_ModelName.empty()) {
// Set the name of the scene
pScene->mRootNode->mName.Set(pModel->m_ModelName);
} else {
// This is a fatal error, so break down the application
ai_assert(false);
}
if (!pModel->m_Objects.empty()) {
unsigned int meshCount = 0;
unsigned int childCount = 0;
for (auto object : pModel->m_Objects) {
if (object) {
++childCount;
meshCount += (unsigned int)object->m_Meshes.size();
}
}
// Allocate space for the child nodes on the root node
pScene->mRootNode->mChildren = new aiNode *[childCount];
// Create nodes for the whole scene
std::vector<aiMesh *> MeshArray;
MeshArray.reserve(meshCount);
for (size_t index = 0; index < pModel->m_Objects.size(); ++index) {
createNodes(pModel, pModel->m_Objects[index], pScene->mRootNode, pScene, MeshArray);
}
ai_assert(pScene->mRootNode->mNumChildren == childCount);
// Create mesh pointer buffer for this scene
if (pScene->mNumMeshes > 0) {
pScene->mMeshes = new aiMesh *[MeshArray.size()];
for (size_t index = 0; index < MeshArray.size(); ++index) {
pScene->mMeshes[index] = MeshArray[index];
}
}
// Create all materials
createMaterials(pModel, pScene);
} else {
if (pModel->m_Vertices.empty()) {
return;
}
std::unique_ptr<aiMesh> mesh(new aiMesh);
mesh->mPrimitiveTypes = aiPrimitiveType_POINT;
unsigned int n = (unsigned int)pModel->m_Vertices.size();
mesh->mNumVertices = n;
mesh->mVertices = new aiVector3D[n];
memcpy(mesh->mVertices, pModel->m_Vertices.data(), n * sizeof(aiVector3D));
if (!pModel->m_Normals.empty()) {
mesh->mNormals = new aiVector3D[n];
if (pModel->m_Normals.size() < n) {
throw DeadlyImportError("OBJ: vertex normal index out of range");
}
memcpy(mesh->mNormals, pModel->m_Normals.data(), n * sizeof(aiVector3D));
}
if (!pModel->m_VertexColors.empty()) {
mesh->mColors[0] = new aiColor4D[mesh->mNumVertices];
for (unsigned int i = 0; i < n; ++i) {
if (i < pModel->m_VertexColors.size()) {
const aiVector3D &color = pModel->m_VertexColors[i];
mesh->mColors[0][i] = aiColor4D(color.x, color.y, color.z, 1.0);
} else {
throw DeadlyImportError("OBJ: vertex color index out of range");
}
}
}
pScene->mRootNode->mNumMeshes = 1;
pScene->mRootNode->mMeshes = new unsigned int[1];
pScene->mRootNode->mMeshes[0] = 0;
pScene->mMeshes = new aiMesh *[1];
pScene->mNumMeshes = 1;
pScene->mMeshes[0] = mesh.release();
}
}
// ------------------------------------------------------------------------------------------------
// Creates all nodes of the model
aiNode *ObjFileImporter::createNodes(const ObjFile::Model *pModel, const ObjFile::Object *pObject,
aiNode *pParent, aiScene *pScene,
std::vector<aiMesh *> &MeshArray) {
ai_assert(nullptr != pModel);
if (nullptr == pObject) {
return nullptr;
}
// Store older mesh size to be able to computes mesh offsets for new mesh instances
const size_t oldMeshSize = MeshArray.size();
aiNode *pNode = new aiNode;
pNode->mName = pObject->m_strObjName;
// If we have a parent node, store it
ai_assert(nullptr != pParent);
appendChildToParentNode(pParent, pNode);
for (size_t i = 0; i < pObject->m_Meshes.size(); ++i) {
unsigned int meshId = pObject->m_Meshes[i];
aiMesh *pMesh = createTopology(pModel, pObject, meshId);
if (pMesh) {
if (pMesh->mNumFaces > 0) {
MeshArray.push_back(pMesh);
} else {
delete pMesh;
}
}
}
// Create all nodes from the sub-objects stored in the current object
if (!pObject->m_SubObjects.empty()) {
size_t numChilds = pObject->m_SubObjects.size();
pNode->mNumChildren = static_cast<unsigned int>(numChilds);
pNode->mChildren = new aiNode *[numChilds];
pNode->mNumMeshes = 1;
pNode->mMeshes = new unsigned int[1];
}
// Set mesh instances into scene- and node-instances
const size_t meshSizeDiff = MeshArray.size() - oldMeshSize;
if (meshSizeDiff > 0) {
pNode->mMeshes = new unsigned int[meshSizeDiff];
pNode->mNumMeshes = static_cast<unsigned int>(meshSizeDiff);
size_t index = 0;
for (size_t i = oldMeshSize; i < MeshArray.size(); ++i) {
pNode->mMeshes[index] = pScene->mNumMeshes;
pScene->mNumMeshes++;
++index;
}
}
return pNode;
}
// ------------------------------------------------------------------------------------------------
// Create topology data
aiMesh *ObjFileImporter::createTopology(const ObjFile::Model *pModel, const ObjFile::Object *pData, unsigned int meshIndex) {
// Checking preconditions
ai_assert(nullptr != pModel);
if (nullptr == pData) {
return nullptr;
}
// Create faces
ObjFile::Mesh *pObjMesh = pModel->m_Meshes[meshIndex];
if (!pObjMesh) {
return nullptr;
}
if (pObjMesh->m_Faces.empty()) {
return nullptr;
}
std::unique_ptr<aiMesh> pMesh(new aiMesh);
if (!pObjMesh->m_name.empty()) {
pMesh->mName.Set(pObjMesh->m_name);
}
for (size_t index = 0; index < pObjMesh->m_Faces.size(); index++) {
ObjFile::Face *const inp = pObjMesh->m_Faces[index];
ai_assert(nullptr != inp);
if (inp->m_PrimitiveType == aiPrimitiveType_LINE) {
pMesh->mNumFaces += static_cast<unsigned int>(inp->m_vertices.size() - 1);
pMesh->mPrimitiveTypes |= aiPrimitiveType_LINE;
} else if (inp->m_PrimitiveType == aiPrimitiveType_POINT) {
pMesh->mNumFaces += static_cast<unsigned int>(inp->m_vertices.size());
pMesh->mPrimitiveTypes |= aiPrimitiveType_POINT;
} else {
++pMesh->mNumFaces;
if (inp->m_vertices.size() > 3) {
pMesh->mPrimitiveTypes |= aiPrimitiveType_POLYGON;
} else {
pMesh->mPrimitiveTypes |= aiPrimitiveType_TRIANGLE;
}
}
}
unsigned int uiIdxCount(0u);
if (pMesh->mNumFaces > 0) {
pMesh->mFaces = new aiFace[pMesh->mNumFaces];
if (pObjMesh->m_uiMaterialIndex != ObjFile::Mesh::NoMaterial) {
pMesh->mMaterialIndex = pObjMesh->m_uiMaterialIndex;
}
unsigned int outIndex(0);
// Copy all data from all stored meshes
for (auto &face : pObjMesh->m_Faces) {
ObjFile::Face *const inp = face;
if (inp->m_PrimitiveType == aiPrimitiveType_LINE) {
for (size_t i = 0; i < inp->m_vertices.size() - 1; ++i) {
aiFace &f = pMesh->mFaces[outIndex++];
uiIdxCount += f.mNumIndices = 2;
f.mIndices = new unsigned int[2];
}
continue;
} else if (inp->m_PrimitiveType == aiPrimitiveType_POINT) {
for (size_t i = 0; i < inp->m_vertices.size(); ++i) {
aiFace &f = pMesh->mFaces[outIndex++];
uiIdxCount += f.mNumIndices = 1;
f.mIndices = new unsigned int[1];
}
continue;
}
aiFace *pFace = &pMesh->mFaces[outIndex++];
const unsigned int uiNumIndices = (unsigned int)face->m_vertices.size();
uiIdxCount += pFace->mNumIndices = (unsigned int)uiNumIndices;
if (pFace->mNumIndices > 0) {
pFace->mIndices = new unsigned int[uiNumIndices];
}
}
}
// Create mesh vertices
createVertexArray(pModel, pData, meshIndex, pMesh.get(), uiIdxCount);
return pMesh.release();
}
// ------------------------------------------------------------------------------------------------
// Creates a vertex array
void ObjFileImporter::createVertexArray(const ObjFile::Model *pModel,
const ObjFile::Object *pCurrentObject,
unsigned int uiMeshIndex,
aiMesh *pMesh,
unsigned int numIndices) {
// Checking preconditions
ai_assert(nullptr != pCurrentObject);
// Break, if no faces are stored in object
if (pCurrentObject->m_Meshes.empty())
return;
// Get current mesh
ObjFile::Mesh *pObjMesh = pModel->m_Meshes[uiMeshIndex];
if (nullptr == pObjMesh || pObjMesh->m_uiNumIndices < 1) {
return;
}
// Copy vertices of this mesh instance
pMesh->mNumVertices = numIndices;
if (pMesh->mNumVertices == 0) {
throw DeadlyImportError("OBJ: no vertices");
} else if (pMesh->mNumVertices > AI_MAX_VERTICES) {
throw DeadlyImportError("OBJ: Too many vertices");
}
pMesh->mVertices = new aiVector3D[pMesh->mNumVertices];
// Allocate buffer for normal vectors
if (!pModel->m_Normals.empty() && pObjMesh->m_hasNormals)
pMesh->mNormals = new aiVector3D[pMesh->mNumVertices];
// Allocate buffer for vertex-color vectors
if (!pModel->m_VertexColors.empty())
pMesh->mColors[0] = new aiColor4D[pMesh->mNumVertices];
// Allocate buffer for texture coordinates
if (!pModel->m_TextureCoord.empty() && pObjMesh->m_uiUVCoordinates[0]) {
pMesh->mNumUVComponents[0] = pModel->m_TextureCoordDim;
pMesh->mTextureCoords[0] = new aiVector3D[pMesh->mNumVertices];
}
// Copy vertices, normals and textures into aiMesh instance
bool normalsok = true, uvok = true;
unsigned int newIndex = 0, outIndex = 0;
for (auto sourceFace : pObjMesh->m_Faces) {
// Copy all index arrays
for (size_t vertexIndex = 0, outVertexIndex = 0; vertexIndex < sourceFace->m_vertices.size(); vertexIndex++) {
const unsigned int vertex = sourceFace->m_vertices.at(vertexIndex);
if (vertex >= pModel->m_Vertices.size()) {
throw DeadlyImportError("OBJ: vertex index out of range");
}
if (pMesh->mNumVertices <= newIndex) {
throw DeadlyImportError("OBJ: bad vertex index");
}
pMesh->mVertices[newIndex] = pModel->m_Vertices[vertex];
// Copy all normals
if (normalsok && !pModel->m_Normals.empty() && vertexIndex < sourceFace->m_normals.size()) {
const unsigned int normal = sourceFace->m_normals.at(vertexIndex);
if (normal >= pModel->m_Normals.size()) {
normalsok = false;
} else {
pMesh->mNormals[newIndex] = pModel->m_Normals[normal];
}
}
// Copy all vertex colors
if (vertex < pModel->m_VertexColors.size()) {
const aiVector3D &color = pModel->m_VertexColors[vertex];
pMesh->mColors[0][newIndex] = aiColor4D(color.x, color.y, color.z, 1.0);
}
// Copy all texture coordinates
if (uvok && !pModel->m_TextureCoord.empty() && vertexIndex < sourceFace->m_texturCoords.size()) {
const unsigned int tex = sourceFace->m_texturCoords.at(vertexIndex);
if (tex >= pModel->m_TextureCoord.size()) {
uvok = false;
} else {
const aiVector3D &coord3d = pModel->m_TextureCoord[tex];
pMesh->mTextureCoords[0][newIndex] = aiVector3D(coord3d.x, coord3d.y, coord3d.z);
}
}
// Get destination face
aiFace *pDestFace = &pMesh->mFaces[outIndex];
const bool last = (vertexIndex == sourceFace->m_vertices.size() - 1);
if (sourceFace->m_PrimitiveType != aiPrimitiveType_LINE || !last) {
pDestFace->mIndices[outVertexIndex] = newIndex;
outVertexIndex++;
}
if (sourceFace->m_PrimitiveType == aiPrimitiveType_POINT) {
outIndex++;
outVertexIndex = 0;
} else if (sourceFace->m_PrimitiveType == aiPrimitiveType_LINE) {
outVertexIndex = 0;
if (!last)
outIndex++;
if (vertexIndex) {
if (!last) {
pMesh->mVertices[newIndex + 1] = pMesh->mVertices[newIndex];
if (!sourceFace->m_normals.empty() && !pModel->m_Normals.empty()) {
pMesh->mNormals[newIndex + 1] = pMesh->mNormals[newIndex];
}
if (!pModel->m_TextureCoord.empty()) {
for (size_t i = 0; i < pMesh->GetNumUVChannels(); i++) {
pMesh->mTextureCoords[i][newIndex + 1] = pMesh->mTextureCoords[i][newIndex];
}
}
++newIndex;
}
pDestFace[-1].mIndices[1] = newIndex;
}
} else if (last) {
outIndex++;
}
++newIndex;
}
}
if (!normalsok) {
delete[] pMesh->mNormals;
pMesh->mNormals = nullptr;
}
if (!uvok) {
delete[] pMesh->mTextureCoords[0];
pMesh->mTextureCoords[0] = nullptr;
}
}
// ------------------------------------------------------------------------------------------------
// Counts all stored meshes
void ObjFileImporter::countObjects(const std::vector<ObjFile::Object *> &rObjects, int &iNumMeshes) {
iNumMeshes = 0;
if (rObjects.empty())
return;
iNumMeshes += static_cast<unsigned int>(rObjects.size());
for (auto object : rObjects) {
if (!object->m_SubObjects.empty()) {
countObjects(object->m_SubObjects, iNumMeshes);
}
}
}
// ------------------------------------------------------------------------------------------------
// Add clamp mode property to material if necessary
void ObjFileImporter::addTextureMappingModeProperty(aiMaterial *mat, aiTextureType type, int clampMode, int index) {
if (nullptr == mat) {
return;
}
mat->AddProperty<int>(&clampMode, 1, AI_MATKEY_MAPPINGMODE_U(type, index));
mat->AddProperty<int>(&clampMode, 1, AI_MATKEY_MAPPINGMODE_V(type, index));
}
// ------------------------------------------------------------------------------------------------
// Creates the material
void ObjFileImporter::createMaterials(const ObjFile::Model *pModel, aiScene *pScene) {
if (nullptr == pScene) {
return;
}
const unsigned int numMaterials = (unsigned int)pModel->m_MaterialLib.size();
pScene->mNumMaterials = 0;
if (pModel->m_MaterialLib.empty()) {
ASSIMP_LOG_DEBUG("OBJ: no materials specified");
return;
}
pScene->mMaterials = new aiMaterial *[numMaterials];
for (unsigned int matIndex = 0; matIndex < numMaterials; matIndex++) {
// Store material name
std::map<std::string, ObjFile::Material *>::const_iterator it;
it = pModel->m_MaterialMap.find(pModel->m_MaterialLib[matIndex]);
// No material found, use the default material
if (pModel->m_MaterialMap.end() == it)
continue;
aiMaterial *mat = new aiMaterial;
ObjFile::Material *pCurrentMaterial = (*it).second;
mat->AddProperty(&pCurrentMaterial->MaterialName, AI_MATKEY_NAME);
// convert illumination model
int sm = 0;
switch (pCurrentMaterial->illumination_model) {
case 0:
sm = aiShadingMode_NoShading;
break;
case 1:
sm = aiShadingMode_Gouraud;
break;
case 2:
sm = aiShadingMode_Phong;
break;
default:
sm = aiShadingMode_Gouraud;
ASSIMP_LOG_ERROR("OBJ: unexpected illumination model (0-2 recognized)");
}
mat->AddProperty<int>(&sm, 1, AI_MATKEY_SHADING_MODEL);
// Adding material colors
mat->AddProperty(&pCurrentMaterial->ambient, 1, AI_MATKEY_COLOR_AMBIENT);
mat->AddProperty(&pCurrentMaterial->diffuse, 1, AI_MATKEY_COLOR_DIFFUSE);
mat->AddProperty(&pCurrentMaterial->specular, 1, AI_MATKEY_COLOR_SPECULAR);
mat->AddProperty(&pCurrentMaterial->emissive, 1, AI_MATKEY_COLOR_EMISSIVE);
mat->AddProperty(&pCurrentMaterial->shineness, 1, AI_MATKEY_SHININESS);
mat->AddProperty(&pCurrentMaterial->alpha, 1, AI_MATKEY_OPACITY);
mat->AddProperty(&pCurrentMaterial->transparent, 1, AI_MATKEY_COLOR_TRANSPARENT);
mat->AddProperty(&pCurrentMaterial->roughness, 1, AI_MATKEY_ROUGHNESS_FACTOR);
mat->AddProperty(&pCurrentMaterial->metallic, 1, AI_MATKEY_METALLIC_FACTOR);
mat->AddProperty(&pCurrentMaterial->sheen, 1, AI_MATKEY_SHEEN_COLOR_FACTOR);
mat->AddProperty(&pCurrentMaterial->clearcoat_thickness, 1, AI_MATKEY_CLEARCOAT_FACTOR);
mat->AddProperty(&pCurrentMaterial->clearcoat_roughness, 1, AI_MATKEY_CLEARCOAT_ROUGHNESS_FACTOR);
mat->AddProperty(&pCurrentMaterial->anisotropy, 1, AI_MATKEY_ANISOTROPY_FACTOR);
// Adding refraction index
mat->AddProperty(&pCurrentMaterial->ior, 1, AI_MATKEY_REFRACTI);
// Adding textures
const int uvwIndex = 0;
if (0 != pCurrentMaterial->texture.length) {
mat->AddProperty(&pCurrentMaterial->texture, AI_MATKEY_TEXTURE_DIFFUSE(0));
mat->AddProperty(&uvwIndex, 1, AI_MATKEY_UVWSRC_DIFFUSE(0));
if (pCurrentMaterial->clamp[ObjFile::Material::TextureDiffuseType]) {
addTextureMappingModeProperty(mat, aiTextureType_DIFFUSE);
}
}
if (0 != pCurrentMaterial->textureAmbient.length) {
mat->AddProperty(&pCurrentMaterial->textureAmbient, AI_MATKEY_TEXTURE_AMBIENT(0));
mat->AddProperty(&uvwIndex, 1, AI_MATKEY_UVWSRC_AMBIENT(0));
if (pCurrentMaterial->clamp[ObjFile::Material::TextureAmbientType]) {
addTextureMappingModeProperty(mat, aiTextureType_AMBIENT);
}
}
if (0 != pCurrentMaterial->textureEmissive.length) {
mat->AddProperty(&pCurrentMaterial->textureEmissive, AI_MATKEY_TEXTURE_EMISSIVE(0));
mat->AddProperty(&uvwIndex, 1, AI_MATKEY_UVWSRC_EMISSIVE(0));
}
if (0 != pCurrentMaterial->textureSpecular.length) {
mat->AddProperty(&pCurrentMaterial->textureSpecular, AI_MATKEY_TEXTURE_SPECULAR(0));
mat->AddProperty(&uvwIndex, 1, AI_MATKEY_UVWSRC_SPECULAR(0));
if (pCurrentMaterial->clamp[ObjFile::Material::TextureSpecularType]) {
addTextureMappingModeProperty(mat, aiTextureType_SPECULAR);
}
}
if (0 != pCurrentMaterial->textureBump.length) {
mat->AddProperty(&pCurrentMaterial->textureBump, AI_MATKEY_TEXTURE_HEIGHT(0));
mat->AddProperty(&uvwIndex, 1, AI_MATKEY_UVWSRC_HEIGHT(0));
if (pCurrentMaterial->bump_multiplier != 1.0) {
mat->AddProperty(&pCurrentMaterial->bump_multiplier, 1, AI_MATKEY_OBJ_BUMPMULT_HEIGHT(0));
}
if (pCurrentMaterial->clamp[ObjFile::Material::TextureBumpType]) {
addTextureMappingModeProperty(mat, aiTextureType_HEIGHT);
}
}
if (0 != pCurrentMaterial->textureNormal.length) {
mat->AddProperty(&pCurrentMaterial->textureNormal, AI_MATKEY_TEXTURE_NORMALS(0));
mat->AddProperty(&uvwIndex, 1, AI_MATKEY_UVWSRC_NORMALS(0));
if (pCurrentMaterial->bump_multiplier != 1.0) {
mat->AddProperty(&pCurrentMaterial->bump_multiplier, 1, AI_MATKEY_OBJ_BUMPMULT_NORMALS(0));
}
if (pCurrentMaterial->clamp[ObjFile::Material::TextureNormalType]) {
addTextureMappingModeProperty(mat, aiTextureType_NORMALS);
}
}
if (0 != pCurrentMaterial->textureReflection[0].length) {
ObjFile::Material::TextureType type = 0 != pCurrentMaterial->textureReflection[1].length ?
ObjFile::Material::TextureReflectionCubeTopType :
ObjFile::Material::TextureReflectionSphereType;
unsigned count = type == ObjFile::Material::TextureReflectionSphereType ? 1 : 6;
for (unsigned i = 0; i < count; i++) {
mat->AddProperty(&pCurrentMaterial->textureReflection[i], AI_MATKEY_TEXTURE_REFLECTION(i));
mat->AddProperty(&uvwIndex, 1, AI_MATKEY_UVWSRC_REFLECTION(i));
if (pCurrentMaterial->clamp[type])
addTextureMappingModeProperty(mat, aiTextureType_REFLECTION, 1, i);
}
}
if (0 != pCurrentMaterial->textureDisp.length) {
mat->AddProperty(&pCurrentMaterial->textureDisp, AI_MATKEY_TEXTURE_DISPLACEMENT(0));
mat->AddProperty(&uvwIndex, 1, AI_MATKEY_UVWSRC_DISPLACEMENT(0));
if (pCurrentMaterial->clamp[ObjFile::Material::TextureDispType]) {
addTextureMappingModeProperty(mat, aiTextureType_DISPLACEMENT);
}
}
if (0 != pCurrentMaterial->textureOpacity.length) {
mat->AddProperty(&pCurrentMaterial->textureOpacity, AI_MATKEY_TEXTURE_OPACITY(0));
mat->AddProperty(&uvwIndex, 1, AI_MATKEY_UVWSRC_OPACITY(0));
if (pCurrentMaterial->clamp[ObjFile::Material::TextureOpacityType]) {
addTextureMappingModeProperty(mat, aiTextureType_OPACITY);
}
}
if (0 != pCurrentMaterial->textureSpecularity.length) {
mat->AddProperty(&pCurrentMaterial->textureSpecularity, AI_MATKEY_TEXTURE_SHININESS(0));
mat->AddProperty(&uvwIndex, 1, AI_MATKEY_UVWSRC_SHININESS(0));
if (pCurrentMaterial->clamp[ObjFile::Material::TextureSpecularityType]) {
addTextureMappingModeProperty(mat, aiTextureType_SHININESS);
}
}
if (0 != pCurrentMaterial->textureRoughness.length) {
mat->AddProperty(&pCurrentMaterial->textureRoughness, _AI_MATKEY_TEXTURE_BASE, aiTextureType_DIFFUSE_ROUGHNESS, 0);
mat->AddProperty(&uvwIndex, 1, _AI_MATKEY_UVWSRC_BASE, aiTextureType_DIFFUSE_ROUGHNESS, 0 );
if (pCurrentMaterial->clamp[ObjFile::Material::TextureRoughnessType]) {
addTextureMappingModeProperty(mat, aiTextureType_DIFFUSE_ROUGHNESS);
}
}
if (0 != pCurrentMaterial->textureMetallic.length) {
mat->AddProperty(&pCurrentMaterial->textureMetallic, _AI_MATKEY_TEXTURE_BASE, aiTextureType_METALNESS, 0);
mat->AddProperty(&uvwIndex, 1, _AI_MATKEY_UVWSRC_BASE, aiTextureType_METALNESS, 0 );
if (pCurrentMaterial->clamp[ObjFile::Material::TextureMetallicType]) {
addTextureMappingModeProperty(mat, aiTextureType_METALNESS);
}
}
if (0 != pCurrentMaterial->textureSheen.length) {
mat->AddProperty(&pCurrentMaterial->textureSheen, _AI_MATKEY_TEXTURE_BASE, aiTextureType_SHEEN, 0);
mat->AddProperty(&uvwIndex, 1, _AI_MATKEY_UVWSRC_BASE, aiTextureType_SHEEN, 0 );
if (pCurrentMaterial->clamp[ObjFile::Material::TextureSheenType]) {
addTextureMappingModeProperty(mat, aiTextureType_SHEEN);
}
}
if (0 != pCurrentMaterial->textureRMA.length) {
// NOTE: glTF importer places Rough/Metal/AO texture in Unknown so doing the same here for consistency.
mat->AddProperty(&pCurrentMaterial->textureRMA, _AI_MATKEY_TEXTURE_BASE, aiTextureType_UNKNOWN, 0);
mat->AddProperty(&uvwIndex, 1, _AI_MATKEY_UVWSRC_BASE, aiTextureType_UNKNOWN, 0 );
if (pCurrentMaterial->clamp[ObjFile::Material::TextureRMAType]) {
addTextureMappingModeProperty(mat, aiTextureType_UNKNOWN);
}
}
// Store material property info in material array in scene
pScene->mMaterials[pScene->mNumMaterials] = mat;
pScene->mNumMaterials++;
}
// Test number of created materials.
ai_assert(pScene->mNumMaterials == numMaterials);
}
// ------------------------------------------------------------------------------------------------
// Appends this node to the parent node
void ObjFileImporter::appendChildToParentNode(aiNode *pParent, aiNode *pChild) {
// Checking preconditions
ai_assert(nullptr != pParent);
ai_assert(nullptr != pChild);
// Assign parent to child
pChild->mParent = pParent;
// Copy node instances into parent node
pParent->mNumChildren++;
pParent->mChildren[pParent->mNumChildren - 1] = pChild;
}
// ------------------------------------------------------------------------------------------------
} // Namespace Assimp
#endif // !! ASSIMP_BUILD_NO_OBJ_IMPORTER