1372 lines
43 KiB
C++
1372 lines
43 KiB
C++
/*
|
|
Open Asset Import Library (ASSIMP)
|
|
----------------------------------------------------------------------
|
|
|
|
Copyright (c) 2006-2010, ASSIMP Development Team
|
|
All rights reserved.
|
|
|
|
Redistribution and use of this software in source and binary forms,
|
|
with or without modification, are permitted provided that the
|
|
following conditions are met:
|
|
|
|
* Redistributions of source code must retain the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer in the documentation and/or other
|
|
materials provided with the distribution.
|
|
|
|
* Neither the name of the ASSIMP team, nor the names of its
|
|
contributors may be used to endorse or promote products
|
|
derived from this software without specific prior
|
|
written permission of the ASSIMP Development Team.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
----------------------------------------------------------------------
|
|
*/
|
|
|
|
/** @file IFCGeometry.cpp
|
|
* @brief Geometry conversion and synthesis for IFC
|
|
*/
|
|
|
|
#include "AssimpPCH.h"
|
|
|
|
#ifndef ASSIMP_BUILD_NO_IFC_IMPORTER
|
|
#include "IFCUtil.h"
|
|
#include "PolyTools.h"
|
|
#include "ProcessHelper.h"
|
|
|
|
#include <iterator>
|
|
|
|
namespace Assimp {
|
|
namespace IFC {
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
bool ProcessPolyloop(const IfcPolyLoop& loop, TempMesh& meshout, ConversionData& /*conv*/)
|
|
{
|
|
size_t cnt = 0;
|
|
BOOST_FOREACH(const IfcCartesianPoint& c, loop.Polygon) {
|
|
aiVector3D tmp;
|
|
ConvertCartesianPoint(tmp,c);
|
|
|
|
meshout.verts.push_back(tmp);
|
|
++cnt;
|
|
}
|
|
|
|
meshout.vertcnt.push_back(cnt);
|
|
|
|
// zero- or one- vertex polyloops simply ignored
|
|
if (meshout.vertcnt.back() > 1) {
|
|
return true;
|
|
}
|
|
|
|
if (meshout.vertcnt.back()==1) {
|
|
meshout.vertcnt.pop_back();
|
|
meshout.verts.pop_back();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ComputePolygonNormals(const TempMesh& meshout, std::vector<aiVector3D>& normals, bool normalize = true, size_t ofs = 0)
|
|
{
|
|
size_t max_vcount = 0;
|
|
std::vector<unsigned int>::const_iterator begin=meshout.vertcnt.begin()+ofs, end=meshout.vertcnt.end(), iit;
|
|
for(iit = begin; iit != end; ++iit) {
|
|
max_vcount = std::max(max_vcount,static_cast<size_t>(*iit));
|
|
}
|
|
|
|
std::vector<float> temp((max_vcount+2)*4);
|
|
normals.reserve( normals.size() + meshout.vertcnt.size()-ofs );
|
|
|
|
// `NewellNormal()` currently has a relatively strange interface and need to
|
|
// re-structure things a bit to meet them.
|
|
size_t vidx = std::accumulate(meshout.vertcnt.begin(),begin,0);
|
|
for(iit = begin; iit != end; vidx += *iit++) {
|
|
if (!*iit) {
|
|
normals.push_back(aiVector3D());
|
|
continue;
|
|
}
|
|
for(size_t vofs = 0, cnt = 0; vofs < *iit; ++vofs) {
|
|
const aiVector3D& v = meshout.verts[vidx+vofs];
|
|
temp[cnt++] = v.x;
|
|
temp[cnt++] = v.y;
|
|
temp[cnt++] = v.z;
|
|
#ifdef _DEBUG
|
|
temp[cnt] = std::numeric_limits<float>::quiet_NaN();
|
|
#endif
|
|
++cnt;
|
|
}
|
|
|
|
normals.push_back(aiVector3D());
|
|
NewellNormal<4,4,4>(normals.back(),*iit,&temp[0],&temp[1],&temp[2]);
|
|
}
|
|
|
|
if(normalize) {
|
|
BOOST_FOREACH(aiVector3D& n, normals) {
|
|
n.Normalize();
|
|
}
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Compute the normal of the last polygon in the given mesh
|
|
aiVector3D ComputePolygonNormal(const TempMesh& inmesh, bool normalize = true)
|
|
{
|
|
size_t total = inmesh.vertcnt.back(), vidx = inmesh.verts.size() - total;
|
|
std::vector<float> temp((total+2)*3);
|
|
for(size_t vofs = 0, cnt = 0; vofs < total; ++vofs) {
|
|
const aiVector3D& v = inmesh.verts[vidx+vofs];
|
|
temp[cnt++] = v.x;
|
|
temp[cnt++] = v.y;
|
|
temp[cnt++] = v.z;
|
|
}
|
|
aiVector3D nor;
|
|
NewellNormal<3,3,3>(nor,total,&temp[0],&temp[1],&temp[2]);
|
|
return normalize ? nor.Normalize() : nor;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void FixupFaceOrientation(TempMesh& result)
|
|
{
|
|
const aiVector3D vavg = result.Center();
|
|
|
|
std::vector<aiVector3D> normals;
|
|
ComputePolygonNormals(result,normals);
|
|
|
|
size_t c = 0, ofs = 0;
|
|
BOOST_FOREACH(unsigned int cnt, result.vertcnt) {
|
|
if (cnt>2){
|
|
const aiVector3D& thisvert = result.verts[c];
|
|
if (normals[ofs]*(thisvert-vavg) < 0) {
|
|
std::reverse(result.verts.begin()+c,result.verts.begin()+cnt+c);
|
|
}
|
|
}
|
|
c += cnt;
|
|
++ofs;
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void RecursiveMergeBoundaries(TempMesh& final_result, const TempMesh& in, const TempMesh& boundary, std::vector<aiVector3D>& normals, const aiVector3D& nor_boundary)
|
|
{
|
|
ai_assert(in.vertcnt.size() >= 1);
|
|
ai_assert(boundary.vertcnt.size() == 1);
|
|
std::vector<unsigned int>::const_iterator end = in.vertcnt.end(), begin=in.vertcnt.begin(), iit, best_iit;
|
|
|
|
TempMesh out;
|
|
|
|
// iterate through all other bounds and find the one for which the shortest connection
|
|
// to the outer boundary is actually the shortest possible.
|
|
size_t vidx = 0, best_vidx_start = 0;
|
|
size_t best_ofs, best_outer = boundary.verts.size();
|
|
float best_dist = 1e10;
|
|
for(std::vector<unsigned int>::const_iterator iit = begin; iit != end; vidx += *iit++) {
|
|
|
|
for(size_t vofs = 0; vofs < *iit; ++vofs) {
|
|
const aiVector3D& v = in.verts[vidx+vofs];
|
|
|
|
for(size_t outer = 0; outer < boundary.verts.size(); ++outer) {
|
|
const aiVector3D& o = boundary.verts[outer];
|
|
const float d = (o-v).SquareLength();
|
|
|
|
if (d < best_dist) {
|
|
best_dist = d;
|
|
best_ofs = vofs;
|
|
best_outer = outer;
|
|
best_iit = iit;
|
|
best_vidx_start = vidx;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
ai_assert(best_outer != boundary.verts.size());
|
|
|
|
|
|
// now that we collected all vertex connections to be added, build the output polygon
|
|
const size_t cnt = boundary.verts.size() + *best_iit+2;
|
|
out.verts.reserve(cnt);
|
|
|
|
for(size_t outer = 0; outer < boundary.verts.size(); ++outer) {
|
|
const aiVector3D& o = boundary.verts[outer];
|
|
out.verts.push_back(o);
|
|
|
|
if (outer == best_outer) {
|
|
for(size_t i = best_ofs; i < *best_iit; ++i) {
|
|
out.verts.push_back(in.verts[best_vidx_start + i]);
|
|
}
|
|
|
|
// we need the first vertex of the inner polygon twice as we return to the
|
|
// outer loop through the very same connection through which we got there.
|
|
for(size_t i = 0; i <= best_ofs; ++i) {
|
|
out.verts.push_back(in.verts[best_vidx_start + i]);
|
|
}
|
|
|
|
// reverse face winding if the normal of the sub-polygon points in the
|
|
// same direction as the normal of the outer polygonal boundary
|
|
if (normals[std::distance(begin,best_iit)] * nor_boundary > 0) {
|
|
std::reverse(out.verts.rbegin(),out.verts.rbegin()+*best_iit+1);
|
|
}
|
|
|
|
// also append a copy of the initial insertion point to be able to continue the outer polygon
|
|
out.verts.push_back(o);
|
|
}
|
|
}
|
|
out.vertcnt.push_back(cnt);
|
|
ai_assert(out.verts.size() == cnt);
|
|
|
|
if (in.vertcnt.size()-std::count(begin,end,0) > 1) {
|
|
// Recursively apply the same algorithm if there are more boundaries to merge. The
|
|
// current implementation is relatively inefficient, though.
|
|
|
|
TempMesh temp;
|
|
|
|
// drop the boundary that we just processed
|
|
const size_t dist = std::distance(begin, best_iit);
|
|
TempMesh remaining = in;
|
|
remaining.vertcnt.erase(remaining.vertcnt.begin() + dist);
|
|
remaining.verts.erase(remaining.verts.begin()+best_vidx_start,remaining.verts.begin()+best_vidx_start+*best_iit);
|
|
|
|
normals.erase(normals.begin() + dist);
|
|
RecursiveMergeBoundaries(temp,remaining,out,normals,nor_boundary);
|
|
|
|
final_result.Append(temp);
|
|
}
|
|
else final_result.Append(out);
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void MergePolygonBoundaries(TempMesh& result, const TempMesh& inmesh, size_t master_bounds = -1)
|
|
{
|
|
// standard case - only one boundary, just copy it to the result vector
|
|
if (inmesh.vertcnt.size() <= 1) {
|
|
result.Append(inmesh);
|
|
return;
|
|
}
|
|
|
|
result.vertcnt.reserve(inmesh.vertcnt.size()+result.vertcnt.size());
|
|
|
|
// XXX get rid of the extra copy if possible
|
|
TempMesh meshout = inmesh;
|
|
|
|
// handle polygons with holes. Our built in triangulation won't handle them as is, but
|
|
// the ear cutting algorithm is solid enough to deal with them if we join the inner
|
|
// holes with the outer boundaries by dummy connections.
|
|
IFCImporter::LogDebug("fixing polygon with holes for triangulation via ear-cutting");
|
|
std::vector<unsigned int>::iterator outer_polygon = meshout.vertcnt.end(), begin=meshout.vertcnt.begin(), end=outer_polygon, iit;
|
|
|
|
// each hole results in two extra vertices
|
|
result.verts.reserve(meshout.verts.size()+meshout.vertcnt.size()*2+result.verts.size());
|
|
size_t outer_polygon_start = 0;
|
|
|
|
// do not normalize 'normals', we need the original length for computing the polygon area
|
|
std::vector<aiVector3D> normals;
|
|
ComputePolygonNormals(meshout,normals,false);
|
|
|
|
// see if one of the polygons is a IfcFaceOuterBound (in which case `master_bounds` is its index).
|
|
// sadly we can't rely on it, the docs say 'At most one of the bounds shall be of the type IfcFaceOuterBound'
|
|
float area_outer_polygon = 1e-10f;
|
|
if (master_bounds != (size_t)-1) {
|
|
outer_polygon = begin + master_bounds;
|
|
outer_polygon_start = std::accumulate(begin,outer_polygon,0);
|
|
area_outer_polygon = normals[master_bounds].SquareLength();
|
|
}
|
|
else {
|
|
size_t vidx = 0;
|
|
for(iit = begin; iit != meshout.vertcnt.end(); vidx += *iit++) {
|
|
// find the polygon with the largest area, it must be the outer bound.
|
|
aiVector3D& n = normals[std::distance(begin,iit)];
|
|
const float area = n.SquareLength();
|
|
if (area > area_outer_polygon) {
|
|
area_outer_polygon = area;
|
|
outer_polygon = iit;
|
|
outer_polygon_start = vidx;
|
|
}
|
|
}
|
|
}
|
|
|
|
ai_assert(outer_polygon != meshout.vertcnt.end());
|
|
std::vector<aiVector3D>& in = meshout.verts;
|
|
|
|
// skip over extremely small boundaries - this is a workaround to fix cases
|
|
// in which the number of holes is so extremely large that the
|
|
// triangulation code fails.
|
|
#define IFC_VERTICAL_HOLE_SIZE_TRESHOLD 0.000001f
|
|
size_t vidx = 0, removed = 0, index = 0;
|
|
const float treshold = area_outer_polygon * IFC_VERTICAL_HOLE_SIZE_TRESHOLD;
|
|
for(iit = begin; iit != end ;++index) {
|
|
const float sqlen = normals[index].SquareLength();
|
|
if (sqlen < treshold) {
|
|
std::vector<aiVector3D>::iterator inbase = in.begin()+vidx;
|
|
in.erase(inbase,inbase+*iit);
|
|
|
|
outer_polygon_start -= outer_polygon_start>vidx ? *iit : 0;
|
|
*iit++ = 0;
|
|
++removed;
|
|
|
|
IFCImporter::LogDebug("skip small hole below treshold");
|
|
}
|
|
else {
|
|
normals[index] /= sqrt(sqlen);
|
|
vidx += *iit++;
|
|
}
|
|
}
|
|
|
|
// see if one or more of the hole has a face that lies directly on an outer bound.
|
|
// this happens for doors, for example.
|
|
vidx = 0;
|
|
for(iit = begin; ; vidx += *iit++) {
|
|
next_loop:
|
|
if (iit == end) {
|
|
break;
|
|
}
|
|
if (iit == outer_polygon) {
|
|
continue;
|
|
}
|
|
|
|
for(size_t vofs = 0; vofs < *iit; ++vofs) {
|
|
if (!*iit) {
|
|
continue;
|
|
}
|
|
const size_t next = (vofs+1)%*iit;
|
|
const aiVector3D& v = in[vidx+vofs], &vnext = in[vidx+next],&vd = (vnext-v).Normalize();
|
|
|
|
for(size_t outer = 0; outer < *outer_polygon; ++outer) {
|
|
const aiVector3D& o = in[outer_polygon_start+outer], &onext = in[outer_polygon_start+(outer+1)%*outer_polygon], &od = (onext-o).Normalize();
|
|
|
|
if (fabs(vd * od) > 1.f-1e-6f && (onext-v).Normalize() * vd > 1.f-1e-6f && (onext-v)*(o-v) < 0) {
|
|
IFCImporter::LogDebug("got an inner hole that lies partly on the outer polygonal boundary, merging them to a single contour");
|
|
|
|
// in between outer and outer+1 insert all vertices of this loop, then drop the original altogether.
|
|
std::vector<aiVector3D> tmp(*iit);
|
|
|
|
const size_t start = (v-o).SquareLength() > (vnext-o).SquareLength() ? vofs : next;
|
|
std::vector<aiVector3D>::iterator inbase = in.begin()+vidx, it = std::copy(inbase+start, inbase+*iit,tmp.begin());
|
|
std::copy(inbase, inbase+start,it);
|
|
std::reverse(tmp.begin(),tmp.end());
|
|
|
|
in.insert(in.begin()+outer_polygon_start+(outer+1)%*outer_polygon,tmp.begin(),tmp.end());
|
|
vidx += outer_polygon_start<vidx ? *iit : 0;
|
|
|
|
inbase = in.begin()+vidx;
|
|
in.erase(inbase,inbase+*iit);
|
|
|
|
outer_polygon_start -= outer_polygon_start>vidx ? *iit : 0;
|
|
|
|
*outer_polygon += tmp.size();
|
|
*iit++ = 0;
|
|
++removed;
|
|
goto next_loop;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if ( meshout.vertcnt.size() - removed <= 1) {
|
|
result.Append(meshout);
|
|
return;
|
|
}
|
|
|
|
// extract the outer boundary and move it to a separate mesh
|
|
TempMesh boundary;
|
|
boundary.vertcnt.resize(1,*outer_polygon);
|
|
boundary.verts.resize(*outer_polygon);
|
|
|
|
std::vector<aiVector3D>::iterator b = in.begin()+outer_polygon_start;
|
|
std::copy(b,b+*outer_polygon,boundary.verts.begin());
|
|
in.erase(b,b+*outer_polygon);
|
|
|
|
std::vector<aiVector3D>::iterator norit = normals.begin()+std::distance(meshout.vertcnt.begin(),outer_polygon);
|
|
const aiVector3D nor_boundary = *norit;
|
|
normals.erase(norit);
|
|
meshout.vertcnt.erase(outer_polygon);
|
|
|
|
// keep merging the closest inner boundary with the outer boundary until no more boundaries are left
|
|
RecursiveMergeBoundaries(result,meshout,boundary,normals,nor_boundary);
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ProcessConnectedFaceSet(const IfcConnectedFaceSet& fset, TempMesh& result, ConversionData& conv)
|
|
{
|
|
BOOST_FOREACH(const IfcFace& face, fset.CfsFaces) {
|
|
|
|
// size_t ob = -1, cnt = 0;
|
|
TempMesh meshout;
|
|
BOOST_FOREACH(const IfcFaceBound& bound, face.Bounds) {
|
|
|
|
// XXX implement proper merging for polygonal loops
|
|
if(const IfcPolyLoop* const polyloop = bound.Bound->ToPtr<IfcPolyLoop>()) {
|
|
if(ProcessPolyloop(*polyloop, meshout,conv)) {
|
|
|
|
//if(bound.ToPtr<IfcFaceOuterBound>()) {
|
|
// ob = cnt;
|
|
//}
|
|
//++cnt;
|
|
|
|
}
|
|
}
|
|
else {
|
|
IFCImporter::LogWarn("skipping unknown IfcFaceBound entity, type is " + bound.Bound->GetClassName());
|
|
continue;
|
|
}
|
|
|
|
/*if(!IsTrue(bound.Orientation)) {
|
|
size_t c = 0;
|
|
BOOST_FOREACH(unsigned int& c, meshout.vertcnt) {
|
|
std::reverse(result.verts.begin() + cnt,result.verts.begin() + cnt + c);
|
|
cnt += c;
|
|
}
|
|
}*/
|
|
|
|
}
|
|
MergePolygonBoundaries(result,meshout);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ProcessRevolvedAreaSolid(const IfcRevolvedAreaSolid& solid, TempMesh& result, ConversionData& conv)
|
|
{
|
|
TempMesh meshout;
|
|
|
|
// first read the profile description
|
|
if(!ProcessProfile(*solid.SweptArea,meshout,conv) || meshout.verts.size()<=1) {
|
|
return;
|
|
}
|
|
|
|
aiVector3D axis, pos;
|
|
ConvertAxisPlacement(axis,pos,solid.Axis);
|
|
|
|
aiMatrix4x4 tb0,tb1;
|
|
aiMatrix4x4::Translation(pos,tb0);
|
|
aiMatrix4x4::Translation(-pos,tb1);
|
|
|
|
const std::vector<aiVector3D>& in = meshout.verts;
|
|
const size_t size=in.size();
|
|
|
|
bool has_area = solid.SweptArea->ProfileType == "AREA" && size>2;
|
|
const float max_angle = solid.Angle*conv.angle_scale;
|
|
if(fabs(max_angle) < 1e-3) {
|
|
if(has_area) {
|
|
result = meshout;
|
|
}
|
|
return;
|
|
}
|
|
|
|
const unsigned int cnt_segments = std::max(2u,static_cast<unsigned int>(16 * fabs(max_angle)/AI_MATH_HALF_PI_F));
|
|
const float delta = max_angle/cnt_segments;
|
|
|
|
has_area = has_area && fabs(max_angle) < AI_MATH_TWO_PI_F*0.99;
|
|
|
|
result.verts.reserve(size*((cnt_segments+1)*4+(has_area?2:0)));
|
|
result.vertcnt.reserve(size*cnt_segments+2);
|
|
|
|
aiMatrix4x4 rot;
|
|
rot = tb0 * aiMatrix4x4::Rotation(delta,axis,rot) * tb1;
|
|
|
|
size_t base = 0;
|
|
std::vector<aiVector3D>& out = result.verts;
|
|
|
|
// dummy data to simplify later processing
|
|
for(size_t i = 0; i < size; ++i) {
|
|
out.insert(out.end(),4,in[i]);
|
|
}
|
|
|
|
for(unsigned int seg = 0; seg < cnt_segments; ++seg) {
|
|
for(size_t i = 0; i < size; ++i) {
|
|
const size_t next = (i+1)%size;
|
|
|
|
result.vertcnt.push_back(4);
|
|
const aiVector3D& base_0 = out[base+i*4+3],base_1 = out[base+next*4+3];
|
|
|
|
out.push_back(base_0);
|
|
out.push_back(base_1);
|
|
out.push_back(rot*base_1);
|
|
out.push_back(rot*base_0);
|
|
}
|
|
base += size*4;
|
|
}
|
|
|
|
out.erase(out.begin(),out.begin()+size*4);
|
|
|
|
if(has_area) {
|
|
// leave the triangulation of the profile area to the ear cutting
|
|
// implementation in aiProcess_Triangulate - for now we just
|
|
// feed in two huge polygons.
|
|
base -= size*8;
|
|
for(size_t i = size; i--; ) {
|
|
out.push_back(out[base+i*4+3]);
|
|
}
|
|
for(size_t i = 0; i < size; ++i ) {
|
|
out.push_back(out[i*4]);
|
|
}
|
|
result.vertcnt.push_back(size);
|
|
result.vertcnt.push_back(size);
|
|
}
|
|
|
|
aiMatrix4x4 trafo;
|
|
ConvertAxisPlacement(trafo, solid.Position);
|
|
|
|
result.Transform(trafo);
|
|
IFCImporter::LogDebug("generate mesh procedurally by radial extrusion (IfcRevolvedAreaSolid)");
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
bool TryAddOpenings(const std::vector<TempOpening>& openings,const std::vector<aiVector3D>& nors, TempMesh& curmesh)
|
|
{
|
|
std::vector<aiVector3D>& out = curmesh.verts;
|
|
|
|
const size_t s = out.size();
|
|
|
|
const aiVector3D any_point = out[s-1];
|
|
const aiVector3D nor = ComputePolygonNormal(curmesh); ;
|
|
|
|
bool got_openings = false;
|
|
TempMesh res;
|
|
|
|
size_t c = 0;
|
|
BOOST_FOREACH(const TempOpening& t,openings) {
|
|
const aiVector3D& outernor = nors[c++];
|
|
const float dot = nor * outernor;
|
|
if (fabs(dot)<1.f-1e-6f) {
|
|
continue;
|
|
}
|
|
|
|
// const aiVector3D diff = t.extrusionDir;
|
|
const std::vector<aiVector3D>& va = t.profileMesh->verts;
|
|
if(va.size() <= 2) {
|
|
continue;
|
|
}
|
|
|
|
// const float dd = t.extrusionDir*nor;
|
|
IFCImporter::LogDebug("apply an IfcOpeningElement linked via IfcRelVoidsElement to this polygon");
|
|
|
|
got_openings = true;
|
|
|
|
// project va[i] onto the plane formed by the current polygon [given by (any_point,nor)]
|
|
for(size_t i = 0; i < va.size(); ++i) {
|
|
const aiVector3D& v = va[i];
|
|
out.push_back(v-(nor*(v-any_point))*nor);
|
|
}
|
|
|
|
|
|
curmesh.vertcnt.push_back(va.size());
|
|
|
|
res.Clear();
|
|
MergePolygonBoundaries(res,curmesh,0);
|
|
curmesh = res;
|
|
}
|
|
return got_openings;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
struct DistanceSorter {
|
|
|
|
DistanceSorter(const aiVector3D& base) : base(base) {}
|
|
|
|
bool operator () (const TempOpening& a, const TempOpening& b) const {
|
|
return (a.profileMesh->Center()-base).SquareLength() < (b.profileMesh->Center()-base).SquareLength();
|
|
}
|
|
|
|
aiVector3D base;
|
|
};
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
struct XYSorter {
|
|
|
|
// sort first by X coordinates, then by Y coordinates
|
|
bool operator () (const aiVector2D&a, const aiVector2D& b) const {
|
|
if (a.x == b.x) {
|
|
return a.y < b.y;
|
|
}
|
|
return a.x < b.x;
|
|
}
|
|
};
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
struct ProjectionInfo {
|
|
unsigned int ac, bc;
|
|
aiVector3D p,u,v;
|
|
};
|
|
|
|
typedef std::pair< aiVector2D, aiVector2D > BoundingBox;
|
|
typedef std::map<aiVector2D,size_t,XYSorter> XYSortedField;
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
aiVector2D ProjectPositionVectorOntoPlane(const aiVector3D& x, const ProjectionInfo& proj)
|
|
{
|
|
const aiVector3D xx = x-proj.p;
|
|
return aiVector2D(xx[proj.ac]/proj.u[proj.ac],xx[proj.bc]/proj.v[proj.bc]);
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void QuadrifyPart(const aiVector2D& pmin, const aiVector2D& pmax, XYSortedField& field, const std::vector< BoundingBox >& bbs,
|
|
std::vector<aiVector2D>& out)
|
|
{
|
|
if (!(pmin.x-pmax.x) || !(pmin.y-pmax.y)) {
|
|
return;
|
|
}
|
|
|
|
float xs = 1e10, xe = 1e10;
|
|
bool found = false;
|
|
|
|
// Search along the x-axis until we find an opening
|
|
XYSortedField::iterator start = field.begin();
|
|
for(; start != field.end(); ++start) {
|
|
const BoundingBox& bb = bbs[(*start).second];
|
|
if(bb.first.x >= pmax.x) {
|
|
break;
|
|
}
|
|
|
|
if (bb.second.x > pmin.x && bb.second.y > pmin.y && bb.first.y < pmax.y) {
|
|
xs = bb.first.x;
|
|
xe = bb.second.x;
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!found) {
|
|
// the rectangle [pmin,pend] is opaque, fill it
|
|
out.push_back(pmin);
|
|
out.push_back(aiVector2D(pmin.x,pmax.y));
|
|
out.push_back(pmax);
|
|
out.push_back(aiVector2D(pmax.x,pmin.y));
|
|
return;
|
|
}
|
|
|
|
xs = std::max(pmin.x,xs);
|
|
xe = std::min(pmax.x,xe);
|
|
|
|
// see if there's an offset to fill at the top of our quad
|
|
if (xs - pmin.x) {
|
|
out.push_back(pmin);
|
|
out.push_back(aiVector2D(pmin.x,pmax.y));
|
|
out.push_back(aiVector2D(xs,pmax.y));
|
|
out.push_back(aiVector2D(xs,pmin.y));
|
|
}
|
|
|
|
// search along the y-axis for all openings that overlap xs and our quad
|
|
float ylast = pmin.y;
|
|
found = false;
|
|
for(; start != field.end(); ++start) {
|
|
const BoundingBox& bb = bbs[(*start).second];
|
|
if (bb.first.x > xs || bb.first.y >= pmax.y) {
|
|
break;
|
|
}
|
|
|
|
if (bb.second.y > ylast) {
|
|
|
|
found = true;
|
|
const float ys = std::max(bb.first.y,pmin.y), ye = std::min(bb.second.y,pmax.y);
|
|
if (ys - ylast) {
|
|
QuadrifyPart( aiVector2D(xs,ylast), aiVector2D(xe,ys) ,field,bbs,out);
|
|
}
|
|
|
|
// the following are the window vertices
|
|
|
|
/*wnd.push_back(aiVector2D(xs,ys));
|
|
wnd.push_back(aiVector2D(xs,ye));
|
|
wnd.push_back(aiVector2D(xe,ye));
|
|
wnd.push_back(aiVector2D(xe,ys));*/
|
|
ylast = ye;
|
|
}
|
|
}
|
|
if (!found) {
|
|
// the rectangle [pmin,pend] is opaque, fill it
|
|
out.push_back(aiVector2D(xs,pmin.y));
|
|
out.push_back(aiVector2D(xs,pmax.y));
|
|
out.push_back(aiVector2D(xe,pmax.y));
|
|
out.push_back(aiVector2D(xe,pmin.y));
|
|
return;
|
|
}
|
|
if (ylast < pmax.y) {
|
|
QuadrifyPart( aiVector2D(xs,ylast), aiVector2D(xe,pmax.y) ,field,bbs,out);
|
|
}
|
|
|
|
// now for the whole rest
|
|
if (pmax.x-xe) {
|
|
QuadrifyPart(aiVector2D(xe,pmin.y), pmax ,field,bbs,out);
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
enum Intersect {
|
|
Intersect_No,
|
|
Intersect_LiesOnPlane,
|
|
Intersect_Yes
|
|
};
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
Intersect IntersectSegmentPlane(const aiVector3D& p,const aiVector3D& n, const aiVector3D& e0, const aiVector3D& e1, aiVector3D& out)
|
|
{
|
|
const aiVector3D pdelta = e0 - p, seg = e1-e0;
|
|
const float dotOne = n*seg, dotTwo = -(n*pdelta);
|
|
|
|
if (fabs(dotOne) < 1e-6) {
|
|
return fabs(dotTwo) < 1e-6f ? Intersect_LiesOnPlane : Intersect_No;
|
|
}
|
|
|
|
const float t = dotTwo/dotOne;
|
|
// t must be in [0..1] if the intersection point is within the given segment
|
|
if (t > 1.f || t < 0.f) {
|
|
return Intersect_No;
|
|
}
|
|
out = e0+t*seg;
|
|
return Intersect_Yes;
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
aiVector3D Unproject(const aiVector2D& vproj, const ProjectionInfo& proj)
|
|
{
|
|
return vproj.x*proj.u + vproj.y*proj.v + proj.p;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void InsertWindowContours(const std::vector< BoundingBox >& bbs,const std::vector< std::vector<aiVector2D> >& contours,const ProjectionInfo& proj, TempMesh& curmesh)
|
|
{
|
|
ai_assert(contours.size() == bbs.size());
|
|
|
|
// fix windows - we need to insert the real, polygonal shapes into the quadratic holes that we have now
|
|
for(size_t i = 0; i < contours.size();++i) {
|
|
const BoundingBox& bb = bbs[i];
|
|
const std::vector<aiVector2D>& contour = contours[i];
|
|
|
|
// check if we need to do it at all - many windows just fit perfectly into their quadratic holes,
|
|
// i.e. their contours *are* already their bounding boxes.
|
|
if (contour.size() == 4) {
|
|
std::set<aiVector2D,XYSorter> verts;
|
|
for(size_t n = 0; n < 4; ++n) {
|
|
verts.insert(contour[n]);
|
|
}
|
|
const std::set<aiVector2D,XYSorter>::const_iterator end = verts.end();
|
|
if (verts.find(bb.first)!=end && verts.find(bb.second)!=end
|
|
&& verts.find(aiVector2D(bb.first.x,bb.second.y))!=end
|
|
&& verts.find(aiVector2D(bb.second.x,bb.first.y))!=end
|
|
) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
const float epsilon = (bb.first-bb.second).Length()/1000.f;
|
|
|
|
// walk through all contour points and find those that lie on the BB corner
|
|
size_t last_hit = -1, very_first_hit = -1;
|
|
aiVector2D edge;
|
|
for(size_t n = 0, e=0, size = contour.size();; n=(n+1)%size, ++e) {
|
|
|
|
// sanity checking
|
|
if (e == size*2) {
|
|
IFCImporter::LogError("encountered unexpected topology while generating window contour");
|
|
break;
|
|
}
|
|
|
|
const aiVector2D& v = contour[n];
|
|
|
|
bool hit = false;
|
|
if (fabs(v.x-bb.first.x)<epsilon) {
|
|
edge.x = bb.first.x;
|
|
hit = true;
|
|
}
|
|
else if (fabs(v.x-bb.second.x)<epsilon) {
|
|
edge.x = bb.second.x;
|
|
hit = true;
|
|
}
|
|
|
|
if (fabs(v.y-bb.first.y)<epsilon) {
|
|
edge.y = bb.first.y;
|
|
hit = true;
|
|
}
|
|
else if (fabs(v.y-bb.second.y)<epsilon) {
|
|
edge.y = bb.second.y;
|
|
hit = true;
|
|
}
|
|
|
|
if (hit) {
|
|
if (last_hit != (size_t)-1) {
|
|
|
|
const size_t old = curmesh.verts.size();
|
|
size_t cnt = last_hit > n ? size-(last_hit-n) : n-last_hit;
|
|
for(size_t a = last_hit, e = 0; e <= cnt; a=(a+1)%size, ++e) {
|
|
curmesh.verts.push_back(Unproject(contour[a],proj));
|
|
}
|
|
|
|
if (edge != contour[last_hit] && edge != contour[n]) {
|
|
curmesh.verts.push_back(Unproject(edge,proj));
|
|
}
|
|
else if (cnt == 1) {
|
|
// avoid degenerate polygons (also known as lines or points)
|
|
curmesh.verts.erase(curmesh.verts.begin()+old,curmesh.verts.end());
|
|
}
|
|
|
|
if (const size_t d = curmesh.verts.size()-old) {
|
|
curmesh.vertcnt.push_back(d);
|
|
std::reverse(curmesh.verts.rbegin(),curmesh.verts.rbegin()+d);
|
|
}
|
|
if (n == very_first_hit) {
|
|
break;
|
|
}
|
|
}
|
|
else {
|
|
very_first_hit = n;
|
|
}
|
|
|
|
last_hit = n;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
bool TryAddOpenings_Quadrulate(const std::vector<TempOpening>& openings,const std::vector<aiVector3D>& nors, TempMesh& curmesh)
|
|
{
|
|
std::vector<aiVector3D>& out = curmesh.verts;
|
|
|
|
// Try to derive a solid base plane within the current surface for use as
|
|
// working coordinate system.
|
|
aiVector3D vmin,vmax;
|
|
ArrayBounds(&out[0],out.size(),vmin,vmax);
|
|
|
|
const size_t s = out.size();
|
|
|
|
const aiVector3D any_point = out[s-4];
|
|
const aiVector3D nor = ((out[s-3]-any_point)^(out[s-2]-any_point)).Normalize();
|
|
|
|
const aiVector3D diag = vmax-vmin;
|
|
const float ax = fabs(nor.x);
|
|
const float ay = fabs(nor.y);
|
|
const float az = fabs(nor.z);
|
|
|
|
unsigned int ac = 0, bc = 1; /* no z coord. -> projection to xy */
|
|
if (ax > ay) {
|
|
if (ax > az) { /* no x coord. -> projection to yz */
|
|
ac = 1; bc = 2;
|
|
}
|
|
}
|
|
else if (ay > az) { /* no y coord. -> projection to zy */
|
|
ac = 2; bc = 0;
|
|
}
|
|
|
|
ProjectionInfo proj;
|
|
proj.u = proj.v = diag;
|
|
proj.u[bc]=0;
|
|
proj.v[ac]=0;
|
|
proj.ac = ac;
|
|
proj.bc = bc;
|
|
proj.p = vmin;
|
|
|
|
// project all points into the coordinate system defined by the p+sv*tu plane
|
|
// and compute bounding boxes for them
|
|
std::vector< BoundingBox > bbs;
|
|
XYSortedField field;
|
|
|
|
std::vector<aiVector2D> contour_flat;
|
|
contour_flat.reserve(out.size());
|
|
BOOST_FOREACH(const aiVector3D& x, out) {
|
|
contour_flat.push_back(ProjectPositionVectorOntoPlane(x,proj));
|
|
}
|
|
|
|
std::vector< std::vector<aiVector2D> > contours;
|
|
|
|
size_t c = 0;
|
|
BOOST_FOREACH(const TempOpening& t,openings) {
|
|
const aiVector3D& outernor = nors[c++];
|
|
const float dot = nor * outernor;
|
|
if (fabs(dot)<1.f-1e-6f) {
|
|
continue;
|
|
}
|
|
|
|
|
|
// const aiVector3D diff = t.extrusionDir;
|
|
|
|
const std::vector<aiVector3D>& va = t.profileMesh->verts;
|
|
if(va.size() <= 2) {
|
|
continue;
|
|
}
|
|
|
|
aiVector2D vpmin,vpmax;
|
|
MinMaxChooser<aiVector2D>()(vpmin,vpmax);
|
|
|
|
contours.push_back(std::vector<aiVector2D>());
|
|
std::vector<aiVector2D>& contour = contours.back();
|
|
|
|
BOOST_FOREACH(const aiVector3D& x, t.profileMesh->verts) {
|
|
const aiVector2D& vproj = ProjectPositionVectorOntoPlane(x,proj);
|
|
|
|
vpmin = std::min(vpmin,vproj);
|
|
vpmax = std::max(vpmax,vproj);
|
|
|
|
contour.push_back(vproj);
|
|
}
|
|
|
|
|
|
if (field.find(vpmin) != field.end()) {
|
|
IFCImporter::LogWarn("constraint failure during generation of wall openings, results may be faulty");
|
|
}
|
|
field[vpmin] = bbs.size();
|
|
bbs.push_back(BoundingBox(vpmin,vpmax));
|
|
}
|
|
|
|
if (bbs.empty()) {
|
|
return false;
|
|
}
|
|
|
|
|
|
std::vector<aiVector2D> outflat;
|
|
outflat.reserve(openings.size()*4);
|
|
QuadrifyPart(aiVector2D(0.f,0.f),aiVector2D(1.f,1.f),field,bbs,outflat);
|
|
ai_assert(!(outflat.size() % 4));
|
|
|
|
//FixOuterBoundaries(outflat,contour_flat);
|
|
|
|
// undo the projection, generate output quads
|
|
std::vector<aiVector3D> vold;
|
|
vold.reserve(outflat.size());
|
|
std::swap(vold,curmesh.verts);
|
|
|
|
std::vector<unsigned int> iold;
|
|
iold.resize(outflat.size()/4,4);
|
|
std::swap(iold,curmesh.vertcnt);
|
|
|
|
BOOST_FOREACH(const aiVector2D& vproj, outflat) {
|
|
out.push_back(Unproject(vproj,proj));
|
|
}
|
|
|
|
InsertWindowContours(bbs,contours,proj,curmesh);
|
|
return true;
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ProcessExtrudedAreaSolid(const IfcExtrudedAreaSolid& solid, TempMesh& result, ConversionData& conv)
|
|
{
|
|
TempMesh meshout;
|
|
|
|
// first read the profile description
|
|
if(!ProcessProfile(*solid.SweptArea,meshout,conv) || meshout.verts.size()<=1) {
|
|
return;
|
|
}
|
|
|
|
aiVector3D dir;
|
|
ConvertDirection(dir,solid.ExtrudedDirection);
|
|
|
|
dir *= solid.Depth;
|
|
|
|
// assuming that `meshout.verts` is now a list of vertex points forming
|
|
// the underlying profile, extrude along the given axis, forming new
|
|
// triangles.
|
|
|
|
std::vector<aiVector3D>& in = meshout.verts;
|
|
const size_t size=in.size();
|
|
|
|
const bool has_area = solid.SweptArea->ProfileType == "AREA" && size>2;
|
|
if(solid.Depth < 1e-3) {
|
|
if(has_area) {
|
|
meshout = result;
|
|
}
|
|
return;
|
|
}
|
|
|
|
result.verts.reserve(size*(has_area?4:2));
|
|
result.vertcnt.reserve(meshout.vertcnt.size()+2);
|
|
|
|
// transform to target space
|
|
aiMatrix4x4 trafo;
|
|
ConvertAxisPlacement(trafo, solid.Position);
|
|
BOOST_FOREACH(aiVector3D& v,in) {
|
|
v *= trafo;
|
|
}
|
|
|
|
|
|
aiVector3D min = in[0];
|
|
dir *= aiMatrix3x3(trafo);
|
|
|
|
std::vector<aiVector3D> nors;
|
|
|
|
// compute the normal vectors for all opening polygons
|
|
if (conv.apply_openings) {
|
|
if (!conv.settings.useCustomTriangulation) {
|
|
// it is essential to apply the openings in the correct spatial order. The direction
|
|
// doesn't matter, but we would screw up if we started with e.g. a door in between
|
|
// two windows.
|
|
std::sort(conv.apply_openings->begin(),conv.apply_openings->end(),DistanceSorter(min));
|
|
}
|
|
|
|
nors.reserve(conv.apply_openings->size());
|
|
BOOST_FOREACH(TempOpening& t,*conv.apply_openings) {
|
|
TempMesh& bounds = *t.profileMesh.get();
|
|
|
|
if (bounds.verts.size() <= 2) {
|
|
nors.push_back(aiVector3D());
|
|
continue;
|
|
}
|
|
nors.push_back(((bounds.verts[2]-bounds.verts[0])^(bounds.verts[1]-bounds.verts[0]) ).Normalize());
|
|
}
|
|
}
|
|
|
|
TempMesh temp;
|
|
TempMesh& curmesh = conv.apply_openings ? temp : result;
|
|
std::vector<aiVector3D>& out = curmesh.verts;
|
|
|
|
bool (* const gen_openings)(const std::vector<TempOpening>&,const std::vector<aiVector3D>&, TempMesh&) = conv.settings.useCustomTriangulation
|
|
? &TryAddOpenings_Quadrulate
|
|
: &TryAddOpenings;
|
|
|
|
size_t sides_with_openings = 0;
|
|
for(size_t i = 0; i < size; ++i) {
|
|
const size_t next = (i+1)%size;
|
|
|
|
curmesh.vertcnt.push_back(4);
|
|
|
|
out.push_back(in[i]);
|
|
out.push_back(in[i]+dir);
|
|
out.push_back(in[next]+dir);
|
|
out.push_back(in[next]);
|
|
|
|
if(conv.apply_openings) {
|
|
if(gen_openings(*conv.apply_openings,nors,temp)) {
|
|
++sides_with_openings;
|
|
}
|
|
|
|
result.Append(temp);
|
|
temp.Clear();
|
|
}
|
|
}
|
|
|
|
size_t sides_with_v_openings = 0;
|
|
if(has_area) {
|
|
|
|
for(size_t n = 0; n < 2; ++n) {
|
|
for(size_t i = size; i--; ) {
|
|
out.push_back(in[i]+(n?dir:aiVector3D()));
|
|
}
|
|
|
|
curmesh.vertcnt.push_back(size);
|
|
if(conv.apply_openings && size > 2) {
|
|
// XXX here we are forced to use the un-triangulated version of TryAddOpening, with
|
|
// all the problems it causes. The reason is that vertical walls (ehm, floors)
|
|
// can have an arbitrary outer shape, so the usual approach of projecting
|
|
// the surface and all openings onto a flat quad and triangulating the quad
|
|
// fails.
|
|
if(TryAddOpenings(*conv.apply_openings,nors,temp)) {
|
|
++sides_with_v_openings;
|
|
}
|
|
|
|
result.Append(temp);
|
|
temp.Clear();
|
|
}
|
|
}
|
|
}
|
|
|
|
// add connection geometry to close the 'holes' for the openings
|
|
if(conv.apply_openings) {
|
|
//result.infacing.resize(result.verts.size()+);
|
|
BOOST_FOREACH(const TempOpening& t,*conv.apply_openings) {
|
|
const std::vector<aiVector3D>& in = t.profileMesh->verts;
|
|
std::vector<aiVector3D>& out = result.verts;
|
|
|
|
const aiVector3D dir = t.extrusionDir;
|
|
for(size_t i = 0, size = in.size(); i < size; ++i) {
|
|
const size_t next = (i+1)%size;
|
|
|
|
result.vertcnt.push_back(4);
|
|
|
|
out.push_back(in[i]);
|
|
out.push_back(in[i]+dir);
|
|
out.push_back(in[next]+dir);
|
|
out.push_back(in[next]);
|
|
}
|
|
}
|
|
}
|
|
|
|
if(conv.apply_openings && ((sides_with_openings != 2 && sides_with_openings) || (sides_with_v_openings != 2 && sides_with_v_openings))) {
|
|
IFCImporter::LogWarn("failed to resolve all openings, presumably their topology is not supported by Assimp");
|
|
}
|
|
|
|
IFCImporter::LogDebug("generate mesh procedurally by extrusion (IfcExtrudedAreaSolid)");
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ProcessSweptAreaSolid(const IfcSweptAreaSolid& swept, TempMesh& meshout, ConversionData& conv)
|
|
{
|
|
if(const IfcExtrudedAreaSolid* const solid = swept.ToPtr<IfcExtrudedAreaSolid>()) {
|
|
// Do we just collect openings for a parent element (i.e. a wall)?
|
|
// In this case we don't extrude the surface yet, just keep the profile and transform it correctly
|
|
if(conv.collect_openings) {
|
|
boost::shared_ptr<TempMesh> meshtmp(new TempMesh());
|
|
ProcessProfile(swept.SweptArea,*meshtmp,conv);
|
|
|
|
aiMatrix4x4 m;
|
|
ConvertAxisPlacement(m,solid->Position);
|
|
meshtmp->Transform(m);
|
|
|
|
aiVector3D dir;
|
|
ConvertDirection(dir,solid->ExtrudedDirection);
|
|
conv.collect_openings->push_back(TempOpening(solid, aiMatrix3x3(m) * (dir*solid->Depth),meshtmp));
|
|
return;
|
|
}
|
|
|
|
ProcessExtrudedAreaSolid(*solid,meshout,conv);
|
|
}
|
|
else if(const IfcRevolvedAreaSolid* const rev = swept.ToPtr<IfcRevolvedAreaSolid>()) {
|
|
ProcessRevolvedAreaSolid(*rev,meshout,conv);
|
|
}
|
|
else {
|
|
IFCImporter::LogWarn("skipping unknown IfcSweptAreaSolid entity, type is " + swept.GetClassName());
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ProcessBoolean(const IfcBooleanResult& boolean, TempMesh& result, ConversionData& conv)
|
|
{
|
|
if(const IfcBooleanResult* const clip = boolean.ToPtr<IfcBooleanResult>()) {
|
|
if(clip->Operator != "DIFFERENCE") {
|
|
IFCImporter::LogWarn("encountered unsupported boolean operator: " + (std::string)clip->Operator);
|
|
return;
|
|
}
|
|
|
|
TempMesh meshout;
|
|
const IfcHalfSpaceSolid* const hs = clip->SecondOperand->ResolveSelectPtr<IfcHalfSpaceSolid>(conv.db);
|
|
if(!hs) {
|
|
IFCImporter::LogError("expected IfcHalfSpaceSolid as second clipping operand");
|
|
return;
|
|
}
|
|
|
|
const IfcPlane* const plane = hs->BaseSurface->ToPtr<IfcPlane>();
|
|
if(!plane) {
|
|
IFCImporter::LogError("expected IfcPlane as base surface for the IfcHalfSpaceSolid");
|
|
return;
|
|
}
|
|
|
|
if(const IfcBooleanResult* const op0 = clip->FirstOperand->ResolveSelectPtr<IfcBooleanResult>(conv.db)) {
|
|
ProcessBoolean(*op0,meshout,conv);
|
|
}
|
|
else if (const IfcSweptAreaSolid* const swept = clip->FirstOperand->ResolveSelectPtr<IfcSweptAreaSolid>(conv.db)) {
|
|
ProcessSweptAreaSolid(*swept,meshout,conv);
|
|
}
|
|
else {
|
|
IFCImporter::LogError("expected IfcSweptAreaSolid or IfcBooleanResult as first clipping operand");
|
|
return;
|
|
}
|
|
|
|
// extract plane base position vector and normal vector
|
|
aiVector3D p,n(0.f,0.f,1.f);
|
|
if (plane->Position->Axis) {
|
|
ConvertDirection(n,plane->Position->Axis.Get());
|
|
}
|
|
ConvertCartesianPoint(p,plane->Position->Location);
|
|
|
|
if(!IsTrue(hs->AgreementFlag)) {
|
|
n *= -1.f;
|
|
}
|
|
|
|
// clip the current contents of `meshout` against the plane we obtained from the second operand
|
|
const std::vector<aiVector3D>& in = meshout.verts;
|
|
std::vector<aiVector3D>& outvert = result.verts;
|
|
std::vector<unsigned int>::const_iterator begin=meshout.vertcnt.begin(), end=meshout.vertcnt.end(), iit;
|
|
|
|
outvert.reserve(in.size());
|
|
result.vertcnt.reserve(meshout.vertcnt.size());
|
|
|
|
unsigned int vidx = 0;
|
|
for(iit = begin; iit != end; vidx += *iit++) {
|
|
|
|
unsigned int newcount = 0;
|
|
for(unsigned int i = 0; i < *iit; ++i) {
|
|
const aiVector3D& e0 = in[vidx+i], e1 = in[vidx+(i+1)%*iit];
|
|
|
|
// does the next segment intersect the plane?
|
|
aiVector3D isectpos;
|
|
const Intersect isect = IntersectSegmentPlane(p,n,e0,e1,isectpos);
|
|
if (isect == Intersect_No || isect == Intersect_LiesOnPlane) {
|
|
if ( (e0-p).Normalize()*n > 0 ) {
|
|
outvert.push_back(e0);
|
|
++newcount;
|
|
}
|
|
}
|
|
else if (isect == Intersect_Yes) {
|
|
if ( (e0-p).Normalize()*n > 0 ) {
|
|
// e0 is on the right side, so keep it
|
|
outvert.push_back(e0);
|
|
outvert.push_back(isectpos);
|
|
newcount += 2;
|
|
}
|
|
else {
|
|
// e0 is on the wrong side, so drop it and keep e1 instead
|
|
outvert.push_back(isectpos);
|
|
++newcount;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!newcount) {
|
|
continue;
|
|
}
|
|
|
|
aiVector3D vmin,vmax;
|
|
ArrayBounds(&*(outvert.end()-newcount),newcount,vmin,vmax);
|
|
|
|
// filter our double points - those may happen if a point lies
|
|
// directly on the intersection line. However, due to float
|
|
// precision a bitwise comparison is not feasible to detect
|
|
// this case.
|
|
const float epsilon = (vmax-vmin).SquareLength() / 1e6f;
|
|
FuzzyVectorCompare fz(epsilon);
|
|
|
|
std::vector<aiVector3D>::iterator e = std::unique( outvert.end()-newcount, outvert.end(), fz );
|
|
if (e != outvert.end()) {
|
|
newcount -= static_cast<unsigned int>(std::distance(e,outvert.end()));
|
|
outvert.erase(e,outvert.end());
|
|
}
|
|
if (fz(*( outvert.end()-newcount),outvert.back())) {
|
|
outvert.pop_back();
|
|
--newcount;
|
|
}
|
|
if(newcount > 2) {
|
|
result.vertcnt.push_back(newcount);
|
|
}
|
|
else while(newcount-->0)result.verts.pop_back();
|
|
|
|
}
|
|
IFCImporter::LogDebug("generating CSG geometry by plane clipping (IfcBooleanClippingResult)");
|
|
}
|
|
else {
|
|
IFCImporter::LogWarn("skipping unknown IfcBooleanResult entity, type is " + boolean.GetClassName());
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
bool ProcessGeometricItem(const IfcRepresentationItem& geo, std::vector<unsigned int>& mesh_indices, ConversionData& conv)
|
|
{
|
|
TempMesh meshtmp;
|
|
if(const IfcShellBasedSurfaceModel* shellmod = geo.ToPtr<IfcShellBasedSurfaceModel>()) {
|
|
BOOST_FOREACH(boost::shared_ptr<const IfcShell> shell,shellmod->SbsmBoundary) {
|
|
try {
|
|
const EXPRESS::ENTITY& e = shell->To<ENTITY>();
|
|
const IfcConnectedFaceSet& fs = conv.db.MustGetObject(e).To<IfcConnectedFaceSet>();
|
|
|
|
ProcessConnectedFaceSet(fs,meshtmp,conv);
|
|
}
|
|
catch(std::bad_cast&) {
|
|
IFCImporter::LogWarn("unexpected type error, IfcShell ought to inherit from IfcConnectedFaceSet");
|
|
}
|
|
}
|
|
}
|
|
else if(const IfcConnectedFaceSet* fset = geo.ToPtr<IfcConnectedFaceSet>()) {
|
|
ProcessConnectedFaceSet(*fset,meshtmp,conv);
|
|
}
|
|
else if(const IfcSweptAreaSolid* swept = geo.ToPtr<IfcSweptAreaSolid>()) {
|
|
ProcessSweptAreaSolid(*swept,meshtmp,conv);
|
|
}
|
|
else if(const IfcManifoldSolidBrep* brep = geo.ToPtr<IfcManifoldSolidBrep>()) {
|
|
ProcessConnectedFaceSet(brep->Outer,meshtmp,conv);
|
|
}
|
|
else if(const IfcFaceBasedSurfaceModel* surf = geo.ToPtr<IfcFaceBasedSurfaceModel>()) {
|
|
BOOST_FOREACH(const IfcConnectedFaceSet& fc, surf->FbsmFaces) {
|
|
ProcessConnectedFaceSet(fc,meshtmp,conv);
|
|
}
|
|
}
|
|
else if(const IfcBooleanResult* boolean = geo.ToPtr<IfcBooleanResult>()) {
|
|
ProcessBoolean(*boolean,meshtmp,conv);
|
|
}
|
|
else if(geo.ToPtr<IfcBoundingBox>()) {
|
|
// silently skip over bounding boxes
|
|
return false;
|
|
}
|
|
else {
|
|
IFCImporter::LogWarn("skipping unknown IfcGeometricRepresentationItem entity, type is " + geo.GetClassName());
|
|
return false;
|
|
}
|
|
|
|
meshtmp.RemoveAdjacentDuplicates();
|
|
FixupFaceOrientation(meshtmp);
|
|
|
|
aiMesh* const mesh = meshtmp.ToMesh();
|
|
if(mesh) {
|
|
mesh->mMaterialIndex = ProcessMaterials(geo,conv);
|
|
mesh_indices.push_back(conv.meshes.size());
|
|
conv.meshes.push_back(mesh);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void AssignAddedMeshes(std::vector<unsigned int>& mesh_indices,aiNode* nd,ConversionData& /*conv*/)
|
|
{
|
|
if (!mesh_indices.empty()) {
|
|
|
|
// make unique
|
|
std::sort(mesh_indices.begin(),mesh_indices.end());
|
|
std::vector<unsigned int>::iterator it_end = std::unique(mesh_indices.begin(),mesh_indices.end());
|
|
|
|
const size_t size = std::distance(mesh_indices.begin(),it_end);
|
|
|
|
nd->mNumMeshes = size;
|
|
nd->mMeshes = new unsigned int[nd->mNumMeshes];
|
|
for(unsigned int i = 0; i < nd->mNumMeshes; ++i) {
|
|
nd->mMeshes[i] = mesh_indices[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
bool TryQueryMeshCache(const IfcRepresentationItem& item, std::vector<unsigned int>& mesh_indices, ConversionData& conv)
|
|
{
|
|
ConversionData::MeshCache::const_iterator it = conv.cached_meshes.find(&item);
|
|
if (it != conv.cached_meshes.end()) {
|
|
std::copy((*it).second.begin(),(*it).second.end(),std::back_inserter(mesh_indices));
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void PopulateMeshCache(const IfcRepresentationItem& item, const std::vector<unsigned int>& mesh_indices, ConversionData& conv)
|
|
{
|
|
conv.cached_meshes[&item] = mesh_indices;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
bool ProcessRepresentationItem(const IfcRepresentationItem& item, std::vector<unsigned int>& mesh_indices, ConversionData& conv)
|
|
{
|
|
if (!TryQueryMeshCache(item,mesh_indices,conv)) {
|
|
if(ProcessGeometricItem(item,mesh_indices,conv)) {
|
|
if(mesh_indices.size()) {
|
|
PopulateMeshCache(item,mesh_indices,conv);
|
|
}
|
|
}
|
|
else return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
} // ! IFC
|
|
} // ! Assimp
|
|
|
|
#endif
|