1463 lines
48 KiB
C++
1463 lines
48 KiB
C++
/*
|
|
---------------------------------------------------------------------------
|
|
Open Asset Import Library (ASSIMP)
|
|
---------------------------------------------------------------------------
|
|
|
|
Copyright (c) 2006-2010, ASSIMP Development Team
|
|
|
|
All rights reserved.
|
|
|
|
Redistribution and use of this software in source and binary forms,
|
|
with or without modification, are permitted provided that the following
|
|
conditions are met:
|
|
|
|
* Redistributions of source code must retain the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer in the documentation and/or other
|
|
materials provided with the distribution.
|
|
|
|
* Neither the name of the ASSIMP team, nor the names of its
|
|
contributors may be used to endorse or promote products
|
|
derived from this software without specific prior
|
|
written permission of the ASSIMP Development Team.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
---------------------------------------------------------------------------
|
|
*/
|
|
|
|
/** @file IRRLoader.cpp
|
|
* @brief Implementation of the Irr importer class
|
|
*/
|
|
|
|
#include "AssimpPCH.h"
|
|
|
|
#include "IRRLoader.h"
|
|
#include "ParsingUtils.h"
|
|
#include "fast_atof.h"
|
|
#include "GenericProperty.h"
|
|
|
|
#include "SceneCombiner.h"
|
|
#include "StandardShapes.h"
|
|
#include "Importer.h"
|
|
|
|
// We need boost::common_factor to compute the lcm/gcd of a number
|
|
#include <boost/math/common_factor_rt.hpp>
|
|
|
|
using namespace Assimp;
|
|
using namespace irr;
|
|
using namespace irr::io;
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Constructor to be privately used by Importer
|
|
IRRImporter::IRRImporter()
|
|
{}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Destructor, private as well
|
|
IRRImporter::~IRRImporter()
|
|
{}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Returns whether the class can handle the format of the given file.
|
|
bool IRRImporter::CanRead( const std::string& pFile, IOSystem* pIOHandler, bool checkSig) const
|
|
{
|
|
/* NOTE: A simple check for the file extension is not enough
|
|
* here. Irrmesh and irr are easy, but xml is too generic
|
|
* and could be collada, too. So we need to open the file and
|
|
* search for typical tokens.
|
|
*/
|
|
const std::string extension = GetExtension(pFile);
|
|
|
|
if (extension == "irr")return true;
|
|
else if (extension == "xml" || checkSig)
|
|
{
|
|
/* If CanRead() is called in order to check whether we
|
|
* support a specific file extension in general pIOHandler
|
|
* might be NULL and it's our duty to return true here.
|
|
*/
|
|
if (!pIOHandler)return true;
|
|
const char* tokens[] = {"irr_scene"};
|
|
return SearchFileHeaderForToken(pIOHandler,pFile,tokens,1);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void IRRImporter::GetExtensionList(std::set<std::string>& extensions)
|
|
{
|
|
extensions.insert("irr");
|
|
extensions.insert("xml");
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void IRRImporter::SetupProperties(const Importer* pImp)
|
|
{
|
|
// read the output frame rate of all node animation channels
|
|
fps = pImp->GetPropertyInteger(AI_CONFIG_IMPORT_IRR_ANIM_FPS,100);
|
|
if (fps < 10.) {
|
|
DefaultLogger::get()->error("IRR: Invalid FPS configuration");
|
|
fps = 100;
|
|
}
|
|
|
|
// AI_CONFIG_FAVOUR_SPEED
|
|
configSpeedFlag = (0 != pImp->GetPropertyInteger(AI_CONFIG_FAVOUR_SPEED,0));
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Build a mesh tha consists of a single squad (a side of a skybox)
|
|
aiMesh* IRRImporter::BuildSingleQuadMesh(const SkyboxVertex& v1,
|
|
const SkyboxVertex& v2,
|
|
const SkyboxVertex& v3,
|
|
const SkyboxVertex& v4)
|
|
{
|
|
// allocate and prepare the mesh
|
|
aiMesh* out = new aiMesh();
|
|
|
|
out->mPrimitiveTypes = aiPrimitiveType_POLYGON;
|
|
out->mNumFaces = 1;
|
|
|
|
// build the face
|
|
out->mFaces = new aiFace[1];
|
|
aiFace& face = out->mFaces[0];
|
|
|
|
face.mNumIndices = 4;
|
|
face.mIndices = new unsigned int[4];
|
|
for (unsigned int i = 0; i < 4;++i)
|
|
face.mIndices[i] = i;
|
|
|
|
out->mNumVertices = 4;
|
|
|
|
// copy vertex positions
|
|
aiVector3D* vec = out->mVertices = new aiVector3D[4];
|
|
*vec++ = v1.position;
|
|
*vec++ = v2.position;
|
|
*vec++ = v3.position;
|
|
*vec = v4.position;
|
|
|
|
// copy vertex normals
|
|
vec = out->mNormals = new aiVector3D[4];
|
|
*vec++ = v1.normal;
|
|
*vec++ = v2.normal;
|
|
*vec++ = v3.normal;
|
|
*vec = v4.normal;
|
|
|
|
// copy texture coordinates
|
|
vec = out->mTextureCoords[0] = new aiVector3D[4];
|
|
*vec++ = v1.uv;
|
|
*vec++ = v2.uv;
|
|
*vec++ = v3.uv;
|
|
*vec = v4.uv;
|
|
return out;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void IRRImporter::BuildSkybox(std::vector<aiMesh*>& meshes, std::vector<aiMaterial*> materials)
|
|
{
|
|
// Update the material of the skybox - replace the name and disable shading for skyboxes.
|
|
for (unsigned int i = 0; i < 6;++i) {
|
|
MaterialHelper* out = ( MaterialHelper* ) (*(materials.end()-(6-i)));
|
|
|
|
aiString s;
|
|
s.length = ::sprintf( s.data, "SkyboxSide_%i",i );
|
|
out->AddProperty(&s,AI_MATKEY_NAME);
|
|
|
|
int shading = aiShadingMode_NoShading;
|
|
out->AddProperty(&shading,1,AI_MATKEY_SHADING_MODEL);
|
|
}
|
|
|
|
// Skyboxes are much more difficult. They are represented
|
|
// by six single planes with different textures, so we'll
|
|
// need to build six meshes.
|
|
|
|
const float l = 10.f; // the size used by Irrlicht
|
|
|
|
// FRONT SIDE
|
|
meshes.push_back( BuildSingleQuadMesh(
|
|
SkyboxVertex(-l,-l,-l, 0, 0, 1, 1.f,1.f),
|
|
SkyboxVertex( l,-l,-l, 0, 0, 1, 0.f,1.f),
|
|
SkyboxVertex( l, l,-l, 0, 0, 1, 0.f,0.f),
|
|
SkyboxVertex(-l, l,-l, 0, 0, 1, 1.f,0.f)) );
|
|
meshes.back()->mMaterialIndex = materials.size()-6u;
|
|
|
|
// LEFT SIDE
|
|
meshes.push_back( BuildSingleQuadMesh(
|
|
SkyboxVertex( l,-l,-l, -1, 0, 0, 1.f,1.f),
|
|
SkyboxVertex( l,-l, l, -1, 0, 0, 0.f,1.f),
|
|
SkyboxVertex( l, l, l, -1, 0, 0, 0.f,0.f),
|
|
SkyboxVertex( l, l,-l, -1, 0, 0, 1.f,0.f)) );
|
|
meshes.back()->mMaterialIndex = materials.size()-5u;
|
|
|
|
// BACK SIDE
|
|
meshes.push_back( BuildSingleQuadMesh(
|
|
SkyboxVertex( l,-l, l, 0, 0, -1, 1.f,1.f),
|
|
SkyboxVertex(-l,-l, l, 0, 0, -1, 0.f,1.f),
|
|
SkyboxVertex(-l, l, l, 0, 0, -1, 0.f,0.f),
|
|
SkyboxVertex( l, l, l, 0, 0, -1, 1.f,0.f)) );
|
|
meshes.back()->mMaterialIndex = materials.size()-4u;
|
|
|
|
// RIGHT SIDE
|
|
meshes.push_back( BuildSingleQuadMesh(
|
|
SkyboxVertex(-l,-l, l, 1, 0, 0, 1.f,1.f),
|
|
SkyboxVertex(-l,-l,-l, 1, 0, 0, 0.f,1.f),
|
|
SkyboxVertex(-l, l,-l, 1, 0, 0, 0.f,0.f),
|
|
SkyboxVertex(-l, l, l, 1, 0, 0, 1.f,0.f)) );
|
|
meshes.back()->mMaterialIndex = materials.size()-3u;
|
|
|
|
// TOP SIDE
|
|
meshes.push_back( BuildSingleQuadMesh(
|
|
SkyboxVertex( l, l,-l, 0, -1, 0, 1.f,1.f),
|
|
SkyboxVertex( l, l, l, 0, -1, 0, 0.f,1.f),
|
|
SkyboxVertex(-l, l, l, 0, -1, 0, 0.f,0.f),
|
|
SkyboxVertex(-l, l,-l, 0, -1, 0, 1.f,0.f)) );
|
|
meshes.back()->mMaterialIndex = materials.size()-2u;
|
|
|
|
// BOTTOM SIDE
|
|
meshes.push_back( BuildSingleQuadMesh(
|
|
SkyboxVertex( l,-l, l, 0, 1, 0, 0.f,0.f),
|
|
SkyboxVertex( l,-l,-l, 0, 1, 0, 1.f,0.f),
|
|
SkyboxVertex(-l,-l,-l, 0, 1, 0, 1.f,1.f),
|
|
SkyboxVertex(-l,-l, l, 0, 1, 0, 0.f,1.f)) );
|
|
meshes.back()->mMaterialIndex = materials.size()-1u;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void IRRImporter::CopyMaterial(std::vector<aiMaterial*>& materials,
|
|
std::vector< std::pair<aiMaterial*, unsigned int> >& inmaterials,
|
|
unsigned int& defMatIdx,
|
|
aiMesh* mesh)
|
|
{
|
|
if (inmaterials.empty()) {
|
|
// Do we have a default material? If not we need to create one
|
|
if (UINT_MAX == defMatIdx)
|
|
{
|
|
defMatIdx = (unsigned int)materials.size();
|
|
MaterialHelper* mat = new MaterialHelper();
|
|
|
|
aiString s;
|
|
s.Set(AI_DEFAULT_MATERIAL_NAME);
|
|
mat->AddProperty(&s,AI_MATKEY_NAME);
|
|
|
|
aiColor3D c(0.6f,0.6f,0.6f);
|
|
mat->AddProperty(&c,1,AI_MATKEY_COLOR_DIFFUSE);
|
|
}
|
|
mesh->mMaterialIndex = defMatIdx;
|
|
return;
|
|
}
|
|
else if (inmaterials.size() > 1) {
|
|
DefaultLogger::get()->info("IRR: Skipping additional materials");
|
|
}
|
|
|
|
mesh->mMaterialIndex = (unsigned int)materials.size();
|
|
materials.push_back(inmaterials[0].first);
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
inline int ClampSpline(int idx, int size)
|
|
{
|
|
return ( idx<0 ? size+idx : ( idx>=size ? idx-size : idx ) );
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
inline void FindSuitableMultiple(int& angle)
|
|
{
|
|
if (angle < 3)angle = 3;
|
|
else if (angle < 10) angle = 10;
|
|
else if (angle < 20) angle = 20;
|
|
else if (angle < 30) angle = 30;
|
|
else
|
|
{
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void IRRImporter::ComputeAnimations(Node* root, aiNode* real, std::vector<aiNodeAnim*>& anims)
|
|
{
|
|
ai_assert(NULL != root && NULL != real);
|
|
|
|
// XXX totally WIP - doesn't produce proper results, need to evaluate
|
|
// whether there's any use for Irrlicht's proprietary scene format
|
|
// outside Irrlicht ...
|
|
|
|
if (root->animators.empty()) {
|
|
return;
|
|
}
|
|
unsigned int total = 0;
|
|
for (std::list<Animator>::iterator it = root->animators.begin();it != root->animators.end(); ++it) {
|
|
if ((*it).type == Animator::UNKNOWN || (*it).type == Animator::OTHER) {
|
|
DefaultLogger::get()->warn("IRR: Skipping unknown or unsupported animator");
|
|
continue;
|
|
}
|
|
++total;
|
|
}
|
|
if (!total)return;
|
|
else if (1 == total) {
|
|
DefaultLogger::get()->warn("IRR: Adding dummy nodes to simulate multiple animators");
|
|
}
|
|
|
|
// NOTE: 1 tick == i millisecond
|
|
|
|
unsigned int cur = 0;
|
|
for (std::list<Animator>::iterator it = root->animators.begin();
|
|
it != root->animators.end(); ++it)
|
|
{
|
|
if ((*it).type == Animator::UNKNOWN || (*it).type == Animator::OTHER)continue;
|
|
|
|
Animator& in = *it ;
|
|
aiNodeAnim* anim = new aiNodeAnim();
|
|
|
|
if (cur != total-1) {
|
|
// Build a new name - a prefix instead of a suffix because it is
|
|
// easier to check against
|
|
anim->mNodeName.length = ::sprintf(anim->mNodeName.data,
|
|
"$INST_DUMMY_%i_%s",total-1,
|
|
(root->name.length() ? root->name.c_str() : ""));
|
|
|
|
// we'll also need to insert a dummy in the node hierarchy.
|
|
aiNode* dummy = new aiNode();
|
|
|
|
for (unsigned int i = 0; i < real->mParent->mNumChildren;++i)
|
|
if (real->mParent->mChildren[i] == real)
|
|
real->mParent->mChildren[i] = dummy;
|
|
|
|
dummy->mParent = real->mParent;
|
|
dummy->mName = anim->mNodeName;
|
|
|
|
dummy->mNumChildren = 1;
|
|
dummy->mChildren = new aiNode*[dummy->mNumChildren];
|
|
dummy->mChildren[0] = real;
|
|
|
|
// the transformation matrix of the dummy node is the identity
|
|
|
|
real->mParent = dummy;
|
|
}
|
|
else anim->mNodeName.Set(root->name);
|
|
++cur;
|
|
|
|
switch (in.type) {
|
|
case Animator::ROTATION:
|
|
{
|
|
// -----------------------------------------------------
|
|
// find out how long a full rotation will take
|
|
// This is the least common multiple of 360.f and all
|
|
// three euler angles. Although we'll surely find a
|
|
// possible multiple (haha) it could be somewhat large
|
|
// for our purposes. So we need to modify the angles
|
|
// here in order to get good results.
|
|
// -----------------------------------------------------
|
|
int angles[3];
|
|
angles[0] = (int)(in.direction.x*100);
|
|
angles[1] = (int)(in.direction.y*100);
|
|
angles[2] = (int)(in.direction.z*100);
|
|
|
|
angles[0] %= 360;
|
|
angles[1] %= 360;
|
|
angles[2] %= 360;
|
|
|
|
if ((angles[0]*angles[1]) && (angles[1]*angles[2]))
|
|
{
|
|
FindSuitableMultiple(angles[0]);
|
|
FindSuitableMultiple(angles[1]);
|
|
FindSuitableMultiple(angles[2]);
|
|
}
|
|
|
|
int lcm = 360;
|
|
|
|
if (angles[0])
|
|
lcm = boost::math::lcm(lcm,angles[0]);
|
|
|
|
if (angles[1])
|
|
lcm = boost::math::lcm(lcm,angles[1]);
|
|
|
|
if (angles[2])
|
|
lcm = boost::math::lcm(lcm,angles[2]);
|
|
|
|
if (360 == lcm)
|
|
break;
|
|
|
|
#if 0
|
|
// This can be a division through zero, but we don't care
|
|
float f1 = (float)lcm / angles[0];
|
|
float f2 = (float)lcm / angles[1];
|
|
float f3 = (float)lcm / angles[2];
|
|
#endif
|
|
|
|
// find out how many time units we'll need for the finest
|
|
// track (in seconds) - this defines the number of output
|
|
// keys (fps * seconds)
|
|
float max = 0.f;
|
|
if (angles[0])
|
|
max = (float)lcm / angles[0];
|
|
if (angles[1])
|
|
max = std::max(max, (float)lcm / angles[1]);
|
|
if (angles[2])
|
|
max = std::max(max, (float)lcm / angles[2]);
|
|
|
|
anim->mNumRotationKeys = (unsigned int)(max*fps);
|
|
anim->mRotationKeys = new aiQuatKey[anim->mNumRotationKeys];
|
|
|
|
// begin with a zero angle
|
|
aiVector3D angle;
|
|
for (unsigned int i = 0; i < anim->mNumRotationKeys;++i)
|
|
{
|
|
// build the quaternion for the given euler angles
|
|
aiQuatKey& q = anim->mRotationKeys[i];
|
|
|
|
q.mValue = aiQuaternion(angle.x, angle.y, angle.z);
|
|
q.mTime = (double)i;
|
|
|
|
// increase the angle
|
|
angle += in.direction;
|
|
}
|
|
|
|
// This animation is repeated and repeated ...
|
|
anim->mPostState = anim->mPreState = aiAnimBehaviour_REPEAT;
|
|
}
|
|
break;
|
|
|
|
case Animator::FLY_CIRCLE:
|
|
{
|
|
// -----------------------------------------------------
|
|
// Find out how much time we'll need to perform a
|
|
// full circle.
|
|
// -----------------------------------------------------
|
|
const double seconds = (1. / in.speed) / 1000.;
|
|
const double tdelta = 1000. / fps;
|
|
|
|
anim->mNumPositionKeys = (unsigned int) (fps * seconds);
|
|
anim->mPositionKeys = new aiVectorKey[anim->mNumPositionKeys];
|
|
|
|
// from Irrlicht, what else should we do than copying it?
|
|
aiVector3D vecU,vecV;
|
|
if (in.direction.y) {
|
|
vecV = aiVector3D(50,0,0) ^ in.direction;
|
|
}
|
|
else vecV = aiVector3D(0,50,00) ^ in.direction;
|
|
vecV.Normalize();
|
|
vecU = (vecV ^ in.direction).Normalize();
|
|
|
|
// build the output keys
|
|
for (unsigned int i = 0; i < anim->mNumPositionKeys;++i) {
|
|
aiVectorKey& key = anim->mPositionKeys[i];
|
|
key.mTime = i * tdelta;
|
|
|
|
const float t = (float) ( in.speed * key.mTime );
|
|
key.mValue = in.circleCenter + in.circleRadius * ((vecU*::cos(t)) + (vecV*::sin(t)));
|
|
}
|
|
|
|
// This animation is repeated and repeated ...
|
|
anim->mPostState = anim->mPreState = aiAnimBehaviour_REPEAT;
|
|
}
|
|
break;
|
|
|
|
case Animator::FLY_STRAIGHT:
|
|
{
|
|
anim->mPostState = anim->mPreState = (in.loop ? aiAnimBehaviour_REPEAT : aiAnimBehaviour_CONSTANT);
|
|
const double seconds = in.timeForWay / 1000.;
|
|
const double tdelta = 1000. / fps;
|
|
|
|
anim->mNumPositionKeys = (unsigned int) (fps * seconds);
|
|
anim->mPositionKeys = new aiVectorKey[anim->mNumPositionKeys];
|
|
|
|
aiVector3D diff = in.direction - in.circleCenter;
|
|
const float lengthOfWay = diff.Length();
|
|
diff.Normalize();
|
|
|
|
const double timeFactor = lengthOfWay / in.timeForWay;
|
|
|
|
// build the output keys
|
|
for (unsigned int i = 0; i < anim->mNumPositionKeys;++i) {
|
|
aiVectorKey& key = anim->mPositionKeys[i];
|
|
key.mTime = i * tdelta;
|
|
key.mValue = in.circleCenter + diff * float(timeFactor * key.mTime);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case Animator::FOLLOW_SPLINE:
|
|
{
|
|
// repeat outside the defined time range
|
|
anim->mPostState = anim->mPreState = aiAnimBehaviour_REPEAT;
|
|
const int size = (int)in.splineKeys.size();
|
|
if (!size) {
|
|
// We have no point in the spline. That's bad. Really bad.
|
|
DefaultLogger::get()->warn("IRR: Spline animators with no points defined");
|
|
|
|
delete anim;anim = NULL;
|
|
break;
|
|
}
|
|
else if (size == 1) {
|
|
// We have just one point in the spline so we don't need the full calculation
|
|
anim->mNumPositionKeys = 1;
|
|
anim->mPositionKeys = new aiVectorKey[anim->mNumPositionKeys];
|
|
|
|
anim->mPositionKeys[0].mValue = in.splineKeys[0].mValue;
|
|
anim->mPositionKeys[0].mTime = 0.f;
|
|
break;
|
|
}
|
|
|
|
unsigned int ticksPerFull = 15;
|
|
anim->mNumPositionKeys = (unsigned int) ( ticksPerFull * fps );
|
|
anim->mPositionKeys = new aiVectorKey[anim->mNumPositionKeys];
|
|
|
|
for (unsigned int i = 0; i < anim->mNumPositionKeys;++i)
|
|
{
|
|
aiVectorKey& key = anim->mPositionKeys[i];
|
|
|
|
const float dt = (i * in.speed * 0.001f );
|
|
const float u = dt - floor(dt);
|
|
const int idx = (int)floor(dt) % size;
|
|
|
|
// get the 4 current points to evaluate the spline
|
|
const aiVector3D& p0 = in.splineKeys[ ClampSpline( idx - 1, size ) ].mValue;
|
|
const aiVector3D& p1 = in.splineKeys[ ClampSpline( idx + 0, size ) ].mValue;
|
|
const aiVector3D& p2 = in.splineKeys[ ClampSpline( idx + 1, size ) ].mValue;
|
|
const aiVector3D& p3 = in.splineKeys[ ClampSpline( idx + 2, size ) ].mValue;
|
|
|
|
// compute polynomials
|
|
const float u2 = u*u;
|
|
const float u3 = u2*2;
|
|
|
|
const float h1 = 2.0f * u3 - 3.0f * u2 + 1.0f;
|
|
const float h2 = -2.0f * u3 + 3.0f * u3;
|
|
const float h3 = u3 - 2.0f * u3;
|
|
const float h4 = u3 - u2;
|
|
|
|
// compute the spline tangents
|
|
const aiVector3D t1 = ( p2 - p0 ) * in.tightness;
|
|
aiVector3D t2 = ( p3 - p1 ) * in.tightness;
|
|
|
|
// and use them to get the interpolated point
|
|
t2 = (h1 * p1 + p2 * h2 + t1 * h3 + h4 * t2);
|
|
|
|
// build a simple translation matrix from it
|
|
key.mValue = t2.x;
|
|
key.mTime = (double) i;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
// UNKNOWN , OTHER
|
|
break;
|
|
};
|
|
if (anim) {
|
|
anims.push_back(anim);
|
|
++total;
|
|
}
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// This function is maybe more generic than we'd need it here
|
|
void SetupMapping (MaterialHelper* mat, aiTextureMapping mode, const aiVector3D& axis = aiVector3D(0.f,0.f,-1.f))
|
|
{
|
|
// Check whether there are texture properties defined - setup
|
|
// the desired texture mapping mode for all of them and ignore
|
|
// all UV settings we might encounter. WE HAVE NO UVS!
|
|
|
|
std::vector<aiMaterialProperty*> p;
|
|
p.reserve(mat->mNumProperties+1);
|
|
|
|
for (unsigned int i = 0; i < mat->mNumProperties;++i)
|
|
{
|
|
aiMaterialProperty* prop = mat->mProperties[i];
|
|
if (!::strcmp( prop->mKey.data, "$tex.file")) {
|
|
// Setup the mapping key
|
|
aiMaterialProperty* m = new aiMaterialProperty();
|
|
m->mKey.Set("$tex.mapping");
|
|
m->mIndex = prop->mIndex;
|
|
m->mSemantic = prop->mSemantic;
|
|
m->mType = aiPTI_Integer;
|
|
|
|
m->mDataLength = 4;
|
|
m->mData = new char[4];
|
|
*((int*)m->mData) = mode;
|
|
|
|
p.push_back(prop);
|
|
p.push_back(m);
|
|
|
|
// Setup the mapping axis
|
|
if (mode == aiTextureMapping_CYLINDER || mode == aiTextureMapping_PLANE || mode == aiTextureMapping_SPHERE) {
|
|
m = new aiMaterialProperty();
|
|
m->mKey.Set("$tex.mapaxis");
|
|
m->mIndex = prop->mIndex;
|
|
m->mSemantic = prop->mSemantic;
|
|
m->mType = aiPTI_Float;
|
|
|
|
m->mDataLength = 12;
|
|
m->mData = new char[12];
|
|
*((aiVector3D*)m->mData) = axis;
|
|
p.push_back(m);
|
|
}
|
|
}
|
|
else if (! ::strcmp( prop->mKey.data, "$tex.uvwsrc")) {
|
|
delete mat->mProperties[i];
|
|
}
|
|
else p.push_back(prop);
|
|
}
|
|
|
|
if (p.empty())return;
|
|
|
|
// rebuild the output array
|
|
if (p.size() > mat->mNumAllocated) {
|
|
delete[] mat->mProperties;
|
|
mat->mProperties = new aiMaterialProperty*[p.size()*2];
|
|
|
|
mat->mNumAllocated = p.size()*2;
|
|
}
|
|
mat->mNumProperties = (unsigned int)p.size();
|
|
::memcpy(mat->mProperties,&p[0],sizeof(void*)*mat->mNumProperties);
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void IRRImporter::GenerateGraph(Node* root,aiNode* rootOut ,aiScene* scene,
|
|
BatchLoader& batch,
|
|
std::vector<aiMesh*>& meshes,
|
|
std::vector<aiNodeAnim*>& anims,
|
|
std::vector<AttachmentInfo>& attach,
|
|
std::vector<aiMaterial*>& materials,
|
|
unsigned int& defMatIdx)
|
|
{
|
|
unsigned int oldMeshSize = (unsigned int)meshes.size();
|
|
//unsigned int meshTrafoAssign = 0;
|
|
|
|
// Now determine the type of the node
|
|
switch (root->type)
|
|
{
|
|
case Node::ANIMMESH:
|
|
case Node::MESH:
|
|
{
|
|
if (!root->meshPath.length())
|
|
break;
|
|
|
|
// Get the loaded mesh from the scene and add it to
|
|
// the list of all scenes to be attached to the
|
|
// graph we're currently building
|
|
aiScene* scene = batch.GetImport(root->id);
|
|
if (!scene) {
|
|
DefaultLogger::get()->error("IRR: Unable to load external file: " + root->meshPath);
|
|
break;
|
|
}
|
|
attach.push_back(AttachmentInfo(scene,rootOut));
|
|
|
|
// Now combine the material we've loaded for this mesh
|
|
// with the real materials we got from the file. As we
|
|
// don't execute any pp-steps on the file, the numbers
|
|
// should be equal. If they are not, we can impossibly
|
|
// do this ...
|
|
if (root->materials.size() != (unsigned int)scene->mNumMaterials) {
|
|
DefaultLogger::get()->warn("IRR: Failed to match imported materials "
|
|
"with the materials found in the IRR scene file");
|
|
|
|
break;
|
|
}
|
|
for (unsigned int i = 0; i < scene->mNumMaterials;++i) {
|
|
// Delete the old material, we don't need it anymore
|
|
delete scene->mMaterials[i];
|
|
|
|
std::pair<aiMaterial*, unsigned int>& src = root->materials[i];
|
|
scene->mMaterials[i] = src.first;
|
|
}
|
|
|
|
// NOTE: Each mesh should have exactly one material assigned,
|
|
// but we do it in a separate loop if this behaviour changes
|
|
// in future.
|
|
for (unsigned int i = 0; i < scene->mNumMeshes;++i) {
|
|
// Process material flags
|
|
aiMesh* mesh = scene->mMeshes[i];
|
|
|
|
|
|
// If "trans_vertex_alpha" mode is enabled, search all vertex colors
|
|
// and check whether they have a common alpha value. This is quite
|
|
// often the case so we can simply extract it to a shared oacity
|
|
// value.
|
|
std::pair<aiMaterial*, unsigned int>& src = root->materials[mesh->mMaterialIndex];
|
|
MaterialHelper* mat = (MaterialHelper*)src.first;
|
|
|
|
if (mesh->HasVertexColors(0) && src.second & AI_IRRMESH_MAT_trans_vertex_alpha)
|
|
{
|
|
bool bdo = true;
|
|
for (unsigned int a = 1; a < mesh->mNumVertices;++a) {
|
|
|
|
if (mesh->mColors[0][a].a != mesh->mColors[0][a-1].a) {
|
|
bdo = false;
|
|
break;
|
|
}
|
|
}
|
|
if (bdo) {
|
|
DefaultLogger::get()->info("IRR: Replacing mesh vertex alpha with common opacity");
|
|
|
|
for (unsigned int a = 0; a < mesh->mNumVertices;++a)
|
|
mesh->mColors[0][a].a = 1.f;
|
|
|
|
mat->AddProperty(& mesh->mColors[0][0].a, 1, AI_MATKEY_OPACITY);
|
|
}
|
|
}
|
|
|
|
// If we have a second texture coordinate set and a second texture
|
|
// (either lightmap, normalmap, 2layered material) we need to
|
|
// setup the correct UV index for it. The texture can either
|
|
// be diffuse (lightmap & 2layer) or a normal map (normal & parallax)
|
|
if (mesh->HasTextureCoords(1)) {
|
|
|
|
int idx = 1;
|
|
if (src.second & (AI_IRRMESH_MAT_solid_2layer | AI_IRRMESH_MAT_lightmap)) {
|
|
mat->AddProperty(&idx,1,AI_MATKEY_UVWSRC_DIFFUSE(0));
|
|
}
|
|
else if (src.second & AI_IRRMESH_MAT_normalmap_solid) {
|
|
mat->AddProperty(&idx,1,AI_MATKEY_UVWSRC_NORMALS(0));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case Node::LIGHT:
|
|
case Node::CAMERA:
|
|
|
|
// We're already finished with lights and cameras
|
|
break;
|
|
|
|
|
|
case Node::SPHERE:
|
|
{
|
|
// Generate the sphere model. Our input parameter to
|
|
// the sphere generation algorithm is the number of
|
|
// subdivisions of each triangle - but here we have
|
|
// the number of poylgons on a specific axis. Just
|
|
// use some hardcoded limits to approximate this ...
|
|
unsigned int mul = root->spherePolyCountX*root->spherePolyCountY;
|
|
if (mul < 100)mul = 2;
|
|
else if (mul < 300)mul = 3;
|
|
else mul = 4;
|
|
|
|
meshes.push_back(StandardShapes::MakeMesh(mul,
|
|
&StandardShapes::MakeSphere));
|
|
|
|
// Adjust scaling
|
|
root->scaling *= root->sphereRadius/2;
|
|
|
|
// Copy one output material
|
|
CopyMaterial(materials, root->materials, defMatIdx, meshes.back());
|
|
|
|
// Now adjust this output material - if there is a first texture
|
|
// set, setup spherical UV mapping around the Y axis.
|
|
SetupMapping ( (MaterialHelper*) materials.back(), aiTextureMapping_SPHERE);
|
|
}
|
|
break;
|
|
|
|
case Node::CUBE:
|
|
{
|
|
// Generate an unit cube first
|
|
meshes.push_back(StandardShapes::MakeMesh(
|
|
&StandardShapes::MakeHexahedron));
|
|
|
|
// Adjust scaling
|
|
root->scaling *= root->sphereRadius;
|
|
|
|
// Copy one output material
|
|
CopyMaterial(materials, root->materials, defMatIdx, meshes.back());
|
|
|
|
// Now adjust this output material - if there is a first texture
|
|
// set, setup cubic UV mapping
|
|
SetupMapping ( (MaterialHelper*) materials.back(), aiTextureMapping_BOX );
|
|
}
|
|
break;
|
|
|
|
|
|
case Node::SKYBOX:
|
|
{
|
|
// A skybox is defined by six materials
|
|
if (root->materials.size() < 6) {
|
|
DefaultLogger::get()->error("IRR: There should be six materials for a skybox");
|
|
break;
|
|
}
|
|
|
|
// copy those materials and generate 6 meshes for our new skybox
|
|
materials.reserve(materials.size() + 6);
|
|
for (unsigned int i = 0; i < 6;++i)
|
|
materials.insert(materials.end(),root->materials[i].first);
|
|
|
|
BuildSkybox(meshes,materials);
|
|
|
|
// *************************************************************
|
|
// Skyboxes will require a different code path for rendering,
|
|
// so there must be a way for the user to add special support
|
|
// for IRR skyboxes. We add a 'IRR.SkyBox_' prefix to the node.
|
|
// *************************************************************
|
|
root->name = "IRR.SkyBox_" + root->name;
|
|
DefaultLogger::get()->info("IRR: Loading skybox, this will "
|
|
"require special handling to be displayed correctly");
|
|
}
|
|
break;
|
|
|
|
case Node::TERRAIN:
|
|
{
|
|
// to support terrains, we'd need to have a texture decoder
|
|
DefaultLogger::get()->error("IRR: Unsupported node - TERRAIN");
|
|
}
|
|
break;
|
|
default:
|
|
// DUMMY
|
|
break;
|
|
};
|
|
|
|
// Check whether we added a mesh (or more than one ...). In this case
|
|
// we'll also need to attach it to the node
|
|
if (oldMeshSize != (unsigned int) meshes.size()) {
|
|
|
|
rootOut->mNumMeshes = (unsigned int)meshes.size() - oldMeshSize;
|
|
rootOut->mMeshes = new unsigned int[rootOut->mNumMeshes];
|
|
|
|
for (unsigned int a = 0; a < rootOut->mNumMeshes;++a) {
|
|
rootOut->mMeshes[a] = oldMeshSize+a;
|
|
}
|
|
}
|
|
|
|
// Setup the name of this node
|
|
rootOut->mName.Set(root->name);
|
|
|
|
// Now compute the final local transformation matrix of the
|
|
// node from the given translation, rotation and scaling values.
|
|
// (the rotation is given in Euler angles, XYZ order)
|
|
//std::swap((float&)root->rotation.z,(float&)root->rotation.y);
|
|
rootOut->mTransformation.FromEulerAnglesXYZ(AI_DEG_TO_RAD(root->rotation) );
|
|
|
|
// apply scaling
|
|
aiMatrix4x4& mat = rootOut->mTransformation;
|
|
mat.a1 *= root->scaling.x;
|
|
mat.b1 *= root->scaling.x;
|
|
mat.c1 *= root->scaling.x;
|
|
mat.a2 *= root->scaling.y;
|
|
mat.b2 *= root->scaling.y;
|
|
mat.c2 *= root->scaling.y;
|
|
mat.a3 *= root->scaling.z;
|
|
mat.b3 *= root->scaling.z;
|
|
mat.c3 *= root->scaling.z;
|
|
|
|
// apply translation
|
|
mat.a4 += root->position.x;
|
|
mat.b4 += root->position.y;
|
|
mat.c4 += root->position.z;
|
|
|
|
// now compute animations for the node
|
|
ComputeAnimations(root,rootOut, anims);
|
|
|
|
// Add all children recursively. First allocate enough storage
|
|
// for them, then call us again
|
|
rootOut->mNumChildren = (unsigned int)root->children.size();
|
|
if (rootOut->mNumChildren) {
|
|
|
|
rootOut->mChildren = new aiNode*[rootOut->mNumChildren];
|
|
for (unsigned int i = 0; i < rootOut->mNumChildren;++i) {
|
|
|
|
aiNode* node = rootOut->mChildren[i] = new aiNode();
|
|
node->mParent = rootOut;
|
|
GenerateGraph(root->children[i],node,scene,batch,meshes,
|
|
anims,attach,materials,defMatIdx);
|
|
}
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Imports the given file into the given scene structure.
|
|
void IRRImporter::InternReadFile( const std::string& pFile,
|
|
aiScene* pScene, IOSystem* pIOHandler)
|
|
{
|
|
boost::scoped_ptr<IOStream> file( pIOHandler->Open( pFile));
|
|
|
|
// Check whether we can read from the file
|
|
if( file.get() == NULL)
|
|
throw DeadlyImportError( "Failed to open IRR file " + pFile + "");
|
|
|
|
// Construct the irrXML parser
|
|
CIrrXML_IOStreamReader st(file.get());
|
|
reader = createIrrXMLReader((IFileReadCallBack*) &st);
|
|
|
|
// The root node of the scene
|
|
Node* root = new Node(Node::DUMMY);
|
|
root->parent = NULL;
|
|
root->name = "<IRRSceneRoot>";
|
|
|
|
// Current node parent
|
|
Node* curParent = root;
|
|
|
|
// Scenegraph node we're currently working on
|
|
Node* curNode = NULL;
|
|
|
|
// List of output cameras
|
|
std::vector<aiCamera*> cameras;
|
|
|
|
// List of output lights
|
|
std::vector<aiLight*> lights;
|
|
|
|
// Batch loader used to load external models
|
|
BatchLoader batch(pIOHandler);
|
|
// batch.SetBasePath(pFile);
|
|
|
|
cameras.reserve(5);
|
|
lights.reserve(5);
|
|
|
|
bool inMaterials = false, inAnimator = false;
|
|
unsigned int guessedAnimCnt = 0, guessedMeshCnt = 0, guessedMatCnt = 0;
|
|
|
|
// Parse the XML file
|
|
while (reader->read()) {
|
|
switch (reader->getNodeType()) {
|
|
case EXN_ELEMENT:
|
|
|
|
if (!ASSIMP_stricmp(reader->getNodeName(),"node")) {
|
|
// ***********************************************************************
|
|
/* What we're going to do with the node depends
|
|
* on its type:
|
|
*
|
|
* "mesh" - Load a mesh from an external file
|
|
* "cube" - Generate a cube
|
|
* "skybox" - Generate a skybox
|
|
* "light" - A light source
|
|
* "sphere" - Generate a sphere mesh
|
|
* "animatedMesh" - Load an animated mesh from an external file
|
|
* and join its animation channels with ours.
|
|
* "empty" - A dummy node
|
|
* "camera" - A camera
|
|
* "terrain" - a terrain node (data comes from a heightmap)
|
|
* "billboard", ""
|
|
*
|
|
* Each of these nodes can be animated and all can have multiple
|
|
* materials assigned (except lights, cameras and dummies, of course).
|
|
*/
|
|
// ***********************************************************************
|
|
const char* sz = reader->getAttributeValueSafe("type");
|
|
Node* nd;
|
|
if (!ASSIMP_stricmp(sz,"mesh") || !ASSIMP_stricmp(sz,"octTree")) {
|
|
// OctTree's and meshes are treated equally
|
|
nd = new Node(Node::MESH);
|
|
}
|
|
else if (!ASSIMP_stricmp(sz,"cube")) {
|
|
nd = new Node(Node::CUBE);
|
|
++guessedMeshCnt;
|
|
// meshes.push_back(StandardShapes::MakeMesh(&StandardShapes::MakeHexahedron));
|
|
}
|
|
else if (!ASSIMP_stricmp(sz,"skybox")) {
|
|
nd = new Node(Node::SKYBOX);
|
|
guessedMeshCnt += 6;
|
|
}
|
|
else if (!ASSIMP_stricmp(sz,"camera")) {
|
|
nd = new Node(Node::CAMERA);
|
|
|
|
// Setup a temporary name for the camera
|
|
aiCamera* cam = new aiCamera();
|
|
cam->mName.Set( nd->name );
|
|
cameras.push_back(cam);
|
|
}
|
|
else if (!ASSIMP_stricmp(sz,"light")) {
|
|
nd = new Node(Node::LIGHT);
|
|
|
|
// Setup a temporary name for the light
|
|
aiLight* cam = new aiLight();
|
|
cam->mName.Set( nd->name );
|
|
lights.push_back(cam);
|
|
}
|
|
else if (!ASSIMP_stricmp(sz,"sphere")) {
|
|
nd = new Node(Node::SPHERE);
|
|
++guessedMeshCnt;
|
|
}
|
|
else if (!ASSIMP_stricmp(sz,"animatedMesh")) {
|
|
nd = new Node(Node::ANIMMESH);
|
|
}
|
|
else if (!ASSIMP_stricmp(sz,"empty")) {
|
|
nd = new Node(Node::DUMMY);
|
|
}
|
|
else if (!ASSIMP_stricmp(sz,"terrain")) {
|
|
nd = new Node(Node::TERRAIN);
|
|
}
|
|
else if (!ASSIMP_stricmp(sz,"billBoard")) {
|
|
// We don't support billboards, so ignore them
|
|
DefaultLogger::get()->error("IRR: Billboards are not supported by Assimp");
|
|
nd = new Node(Node::DUMMY);
|
|
}
|
|
else {
|
|
DefaultLogger::get()->warn("IRR: Found unknown node: " + std::string(sz));
|
|
|
|
/* We skip the contents of nodes we don't know.
|
|
* We parse the transformation and all animators
|
|
* and skip the rest.
|
|
*/
|
|
nd = new Node(Node::DUMMY);
|
|
}
|
|
|
|
/* Attach the newly created node to the scenegraph
|
|
*/
|
|
curNode = nd;
|
|
nd->parent = curParent;
|
|
curParent->children.push_back(nd);
|
|
}
|
|
else if (!ASSIMP_stricmp(reader->getNodeName(),"materials")) {
|
|
inMaterials = true;
|
|
}
|
|
else if (!ASSIMP_stricmp(reader->getNodeName(),"animators")) {
|
|
inAnimator = true;
|
|
}
|
|
else if (!ASSIMP_stricmp(reader->getNodeName(),"attributes")) {
|
|
/* We should have a valid node here
|
|
* FIX: no ... the scene root node is also contained in an attributes block
|
|
*/
|
|
if (!curNode) {
|
|
#if 0
|
|
DefaultLogger::get()->error("IRR: Encountered <attributes> element, but "
|
|
"there is no node active");
|
|
#endif
|
|
continue;
|
|
}
|
|
|
|
Animator* curAnim = NULL;
|
|
|
|
// Materials can occur for nearly any type of node
|
|
if (inMaterials && curNode->type != Node::DUMMY) {
|
|
/* This is a material description - parse it!
|
|
*/
|
|
curNode->materials.push_back(std::pair< aiMaterial*, unsigned int > () );
|
|
std::pair< aiMaterial*, unsigned int >& p = curNode->materials.back();
|
|
|
|
p.first = ParseMaterial(p.second);
|
|
|
|
++guessedMatCnt;
|
|
continue;
|
|
}
|
|
else if (inAnimator) {
|
|
/* This is an animation path - add a new animator
|
|
* to the list.
|
|
*/
|
|
curNode->animators.push_back(Animator());
|
|
curAnim = & curNode->animators.back();
|
|
|
|
++guessedAnimCnt;
|
|
}
|
|
|
|
/* Parse all elements in the attributes block
|
|
* and process them.
|
|
*/
|
|
while (reader->read()) {
|
|
if (reader->getNodeType() == EXN_ELEMENT) {
|
|
if (!ASSIMP_stricmp(reader->getNodeName(),"vector3d")) {
|
|
VectorProperty prop;
|
|
ReadVectorProperty(prop);
|
|
|
|
if (inAnimator) {
|
|
if (curAnim->type == Animator::ROTATION && prop.name == "Rotation") {
|
|
// We store the rotation euler angles in 'direction'
|
|
curAnim->direction = prop.value;
|
|
}
|
|
else if (curAnim->type == Animator::FOLLOW_SPLINE) {
|
|
// Check whether the vector follows the PointN naming scheme,
|
|
// here N is the ONE-based index of the point
|
|
if (prop.name.length() >= 6 && prop.name.substr(0,5) == "Point") {
|
|
// Add a new key to the list
|
|
curAnim->splineKeys.push_back(aiVectorKey());
|
|
aiVectorKey& key = curAnim->splineKeys.back();
|
|
|
|
// and parse its properties
|
|
key.mValue = prop.value;
|
|
key.mTime = strtoul10(&prop.name[5]);
|
|
}
|
|
}
|
|
else if (curAnim->type == Animator::FLY_CIRCLE) {
|
|
if (prop.name == "Center") {
|
|
curAnim->circleCenter = prop.value;
|
|
}
|
|
else if (prop.name == "Direction") {
|
|
curAnim->direction = prop.value;
|
|
|
|
// From Irrlicht's source - a workaround for backward compatibility with Irrlicht 1.1
|
|
if (curAnim->direction == aiVector3D()) {
|
|
curAnim->direction = aiVector3D(0.f,1.f,0.f);
|
|
}
|
|
else curAnim->direction.Normalize();
|
|
}
|
|
}
|
|
else if (curAnim->type == Animator::FLY_STRAIGHT) {
|
|
if (prop.name == "Start") {
|
|
// We reuse the field here
|
|
curAnim->circleCenter = prop.value;
|
|
}
|
|
else if (prop.name == "End") {
|
|
// We reuse the field here
|
|
curAnim->direction = prop.value;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
if (prop.name == "Position") {
|
|
curNode->position = prop.value;
|
|
}
|
|
else if (prop.name == "Rotation") {
|
|
curNode->rotation = prop.value;
|
|
}
|
|
else if (prop.name == "Scale") {
|
|
curNode->scaling = prop.value;
|
|
}
|
|
else if (Node::CAMERA == curNode->type)
|
|
{
|
|
aiCamera* cam = cameras.back();
|
|
if (prop.name == "Target") {
|
|
cam->mLookAt = prop.value;
|
|
}
|
|
else if (prop.name == "UpVector") {
|
|
cam->mUp = prop.value;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if (!ASSIMP_stricmp(reader->getNodeName(),"bool")) {
|
|
BoolProperty prop;
|
|
ReadBoolProperty(prop);
|
|
|
|
if (inAnimator && curAnim->type == Animator::FLY_CIRCLE && prop.name == "Loop") {
|
|
curAnim->loop = prop.value;
|
|
}
|
|
}
|
|
else if (!ASSIMP_stricmp(reader->getNodeName(),"float")) {
|
|
FloatProperty prop;
|
|
ReadFloatProperty(prop);
|
|
|
|
if (inAnimator) {
|
|
// The speed property exists for several animators
|
|
if (prop.name == "Speed") {
|
|
curAnim->speed = prop.value;
|
|
}
|
|
else if (curAnim->type == Animator::FLY_CIRCLE && prop.name == "Radius") {
|
|
curAnim->circleRadius = prop.value;
|
|
}
|
|
else if (curAnim->type == Animator::FOLLOW_SPLINE && prop.name == "Tightness") {
|
|
curAnim->tightness = prop.value;
|
|
}
|
|
}
|
|
else {
|
|
if (prop.name == "FramesPerSecond" && Node::ANIMMESH == curNode->type) {
|
|
curNode->framesPerSecond = prop.value;
|
|
}
|
|
else if (Node::CAMERA == curNode->type) {
|
|
/* This is the vertical, not the horizontal FOV.
|
|
* We need to compute the right FOV from the
|
|
* screen aspect which we don't know yet.
|
|
*/
|
|
if (prop.name == "Fovy") {
|
|
cameras.back()->mHorizontalFOV = prop.value;
|
|
}
|
|
else if (prop.name == "Aspect") {
|
|
cameras.back()->mAspect = prop.value;
|
|
}
|
|
else if (prop.name == "ZNear") {
|
|
cameras.back()->mClipPlaneNear = prop.value;
|
|
}
|
|
else if (prop.name == "ZFar") {
|
|
cameras.back()->mClipPlaneFar = prop.value;
|
|
}
|
|
}
|
|
else if (Node::LIGHT == curNode->type) {
|
|
/* Additional light information
|
|
*/
|
|
if (prop.name == "Attenuation") {
|
|
lights.back()->mAttenuationLinear = prop.value;
|
|
}
|
|
else if (prop.name == "OuterCone") {
|
|
lights.back()->mAngleOuterCone = AI_DEG_TO_RAD( prop.value );
|
|
}
|
|
else if (prop.name == "InnerCone") {
|
|
lights.back()->mAngleInnerCone = AI_DEG_TO_RAD( prop.value );
|
|
}
|
|
}
|
|
// radius of the sphere to be generated -
|
|
// or alternatively, size of the cube
|
|
else if ((Node::SPHERE == curNode->type && prop.name == "Radius")
|
|
|| (Node::CUBE == curNode->type && prop.name == "Size" )) {
|
|
|
|
curNode->sphereRadius = prop.value;
|
|
}
|
|
}
|
|
}
|
|
else if (!ASSIMP_stricmp(reader->getNodeName(),"int")) {
|
|
IntProperty prop;
|
|
ReadIntProperty(prop);
|
|
|
|
if (inAnimator) {
|
|
if (curAnim->type == Animator::FLY_STRAIGHT && prop.name == "TimeForWay") {
|
|
curAnim->timeForWay = prop.value;
|
|
}
|
|
}
|
|
else {
|
|
// sphere polgon numbers in each direction
|
|
if (Node::SPHERE == curNode->type) {
|
|
|
|
if (prop.name == "PolyCountX") {
|
|
curNode->spherePolyCountX = prop.value;
|
|
}
|
|
else if (prop.name == "PolyCountY") {
|
|
curNode->spherePolyCountY = prop.value;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if (!ASSIMP_stricmp(reader->getNodeName(),"string") ||!ASSIMP_stricmp(reader->getNodeName(),"enum")) {
|
|
StringProperty prop;
|
|
ReadStringProperty(prop);
|
|
if (prop.value.length()) {
|
|
if (prop.name == "Name") {
|
|
curNode->name = prop.value;
|
|
|
|
/* If we're either a camera or a light source
|
|
* we need to update the name in the aiLight/
|
|
* aiCamera structure, too.
|
|
*/
|
|
if (Node::CAMERA == curNode->type) {
|
|
cameras.back()->mName.Set(prop.value);
|
|
}
|
|
else if (Node::LIGHT == curNode->type) {
|
|
lights.back()->mName.Set(prop.value);
|
|
}
|
|
}
|
|
else if (Node::LIGHT == curNode->type && "LightType" == prop.name)
|
|
{
|
|
if (prop.value == "Spot")
|
|
lights.back()->mType = aiLightSource_SPOT;
|
|
else if (prop.value == "Point")
|
|
lights.back()->mType = aiLightSource_POINT;
|
|
else if (prop.value == "Directional")
|
|
lights.back()->mType = aiLightSource_DIRECTIONAL;
|
|
else
|
|
{
|
|
// We won't pass the validation with aiLightSourceType_UNDEFINED,
|
|
// so we remove the light and replace it with a silly dummy node
|
|
delete lights.back();
|
|
lights.pop_back();
|
|
curNode->type = Node::DUMMY;
|
|
|
|
DefaultLogger::get()->error("Ignoring light of unknown type: " + prop.value);
|
|
}
|
|
}
|
|
else if ((prop.name == "Mesh" && Node::MESH == curNode->type) ||
|
|
Node::ANIMMESH == curNode->type)
|
|
{
|
|
/* This is the file name of the mesh - either
|
|
* animated or not. We need to make sure we setup
|
|
* the correct postprocessing settings here.
|
|
*/
|
|
unsigned int pp = 0;
|
|
BatchLoader::PropertyMap map;
|
|
|
|
/* If the mesh is a static one remove all animations from the impor data
|
|
*/
|
|
if (Node::ANIMMESH != curNode->type) {
|
|
pp |= aiProcess_RemoveComponent;
|
|
SetGenericProperty<int>(map.ints,AI_CONFIG_PP_RVC_FLAGS,
|
|
aiComponent_ANIMATIONS | aiComponent_BONEWEIGHTS);
|
|
}
|
|
|
|
/* TODO: maybe implement the protection against recursive
|
|
* loading calls directly in BatchLoader? The current
|
|
* implementation is not absolutely safe. A LWS and an IRR
|
|
* file referencing each other *could* cause the system to
|
|
* recurse forever.
|
|
*/
|
|
|
|
const std::string extension = GetExtension(prop.value);
|
|
if ("irr" == extension) {
|
|
DefaultLogger::get()->error("IRR: Can't load another IRR file recursively");
|
|
}
|
|
else
|
|
{
|
|
curNode->id = batch.AddLoadRequest(prop.value,pp,&map);
|
|
curNode->meshPath = prop.value;
|
|
}
|
|
}
|
|
else if (inAnimator && prop.name == "Type")
|
|
{
|
|
// type of the animator
|
|
if (prop.value == "rotation") {
|
|
curAnim->type = Animator::ROTATION;
|
|
}
|
|
else if (prop.value == "flyCircle") {
|
|
curAnim->type = Animator::FLY_CIRCLE;
|
|
}
|
|
else if (prop.value == "flyStraight") {
|
|
curAnim->type = Animator::FLY_CIRCLE;
|
|
}
|
|
else if (prop.value == "followSpline") {
|
|
curAnim->type = Animator::FOLLOW_SPLINE;
|
|
}
|
|
else {
|
|
DefaultLogger::get()->warn("IRR: Ignoring unknown animator: "
|
|
+ prop.value);
|
|
|
|
curAnim->type = Animator::UNKNOWN;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if (reader->getNodeType() == EXN_ELEMENT_END && !ASSIMP_stricmp(reader->getNodeName(),"attributes")) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case EXN_ELEMENT_END:
|
|
|
|
// If we reached the end of a node, we need to continue processing its parent
|
|
if (!ASSIMP_stricmp(reader->getNodeName(),"node")) {
|
|
if (!curNode) {
|
|
// currently is no node set. We need to go
|
|
// back in the node hierarchy
|
|
if (!curParent) {
|
|
curParent = root;
|
|
DefaultLogger::get()->error("IRR: Too many closing <node> elements");
|
|
}
|
|
else curParent = curParent->parent;
|
|
}
|
|
else curNode = NULL;
|
|
}
|
|
// clear all flags
|
|
else if (!ASSIMP_stricmp(reader->getNodeName(),"materials")) {
|
|
inMaterials = false;
|
|
}
|
|
else if (!ASSIMP_stricmp(reader->getNodeName(),"animators")) {
|
|
inAnimator = false;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
// GCC complains that not all enumeration values are handled
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Now iterate through all cameras and compute their final (horizontal) FOV
|
|
*/
|
|
for (std::vector<aiCamera*>::iterator it = cameras.begin(), end = cameras.end();it != end; ++it) {
|
|
aiCamera* cam = *it;
|
|
|
|
// screen aspect could be missing
|
|
if (cam->mAspect) {
|
|
cam->mHorizontalFOV *= cam->mAspect;
|
|
}
|
|
else DefaultLogger::get()->warn("IRR: Camera aspect is not given, can't compute horizontal FOV");
|
|
}
|
|
|
|
batch.LoadAll();
|
|
|
|
/* Allocate a tempoary scene data structure
|
|
*/
|
|
aiScene* tempScene = new aiScene();
|
|
tempScene->mRootNode = new aiNode();
|
|
tempScene->mRootNode->mName.Set("<IRRRoot>");
|
|
|
|
/* Copy the cameras to the output array
|
|
*/
|
|
if (!cameras.empty()) {
|
|
tempScene->mNumCameras = (unsigned int)cameras.size();
|
|
tempScene->mCameras = new aiCamera*[tempScene->mNumCameras];
|
|
::memcpy(tempScene->mCameras,&cameras[0],sizeof(void*)*tempScene->mNumCameras);
|
|
}
|
|
|
|
/* Copy the light sources to the output array
|
|
*/
|
|
if (!lights.empty()) {
|
|
tempScene->mNumLights = (unsigned int)lights.size();
|
|
tempScene->mLights = new aiLight*[tempScene->mNumLights];
|
|
::memcpy(tempScene->mLights,&lights[0],sizeof(void*)*tempScene->mNumLights);
|
|
}
|
|
|
|
// temporary data
|
|
std::vector< aiNodeAnim*> anims;
|
|
std::vector< aiMaterial*> materials;
|
|
std::vector< AttachmentInfo > attach;
|
|
std::vector<aiMesh*> meshes;
|
|
|
|
// try to guess how much storage we'll need
|
|
anims.reserve (guessedAnimCnt + (guessedAnimCnt >> 2));
|
|
meshes.reserve (guessedMeshCnt + (guessedMeshCnt >> 2));
|
|
materials.reserve (guessedMatCnt + (guessedMatCnt >> 2));
|
|
|
|
/* Now process our scenegraph recursively: generate final
|
|
* meshes and generate animation channels for all nodes.
|
|
*/
|
|
unsigned int defMatIdx = UINT_MAX;
|
|
GenerateGraph(root,tempScene->mRootNode, tempScene,
|
|
batch, meshes, anims, attach, materials, defMatIdx);
|
|
|
|
if (!anims.empty())
|
|
{
|
|
tempScene->mNumAnimations = 1;
|
|
tempScene->mAnimations = new aiAnimation*[tempScene->mNumAnimations];
|
|
aiAnimation* an = tempScene->mAnimations[0] = new aiAnimation();
|
|
|
|
// ***********************************************************
|
|
// This is only the global animation channel of the scene.
|
|
// If there are animated models, they will have separate
|
|
// animation channels in the scene. To display IRR scenes
|
|
// correctly, users will need to combine the global anim
|
|
// channel with all the local animations they want to play
|
|
// ***********************************************************
|
|
an->mName.Set("Irr_GlobalAnimChannel");
|
|
|
|
// copy all node animation channels to the global channel
|
|
an->mNumChannels = (unsigned int)anims.size();
|
|
an->mChannels = new aiNodeAnim*[an->mNumChannels];
|
|
::memcpy(an->mChannels, & anims [0], sizeof(void*)*an->mNumChannels);
|
|
}
|
|
if (!meshes.empty()) {
|
|
// copy all meshes to the temporary scene
|
|
tempScene->mNumMeshes = (unsigned int)meshes.size();
|
|
tempScene->mMeshes = new aiMesh*[tempScene->mNumMeshes];
|
|
::memcpy(tempScene->mMeshes,&meshes[0],tempScene->mNumMeshes*
|
|
sizeof(void*));
|
|
}
|
|
|
|
/* Copy all materials to the output array
|
|
*/
|
|
if (!materials.empty()) {
|
|
tempScene->mNumMaterials = (unsigned int)materials.size();
|
|
tempScene->mMaterials = new aiMaterial*[tempScene->mNumMaterials];
|
|
::memcpy(tempScene->mMaterials,&materials[0],sizeof(void*)*
|
|
tempScene->mNumMaterials);
|
|
}
|
|
|
|
/* Now merge all sub scenes and attach them to the correct
|
|
* attachment points in the scenegraph.
|
|
*/
|
|
SceneCombiner::MergeScenes(&pScene,tempScene,attach,
|
|
AI_INT_MERGE_SCENE_GEN_UNIQUE_NAMES | (!configSpeedFlag ? (
|
|
AI_INT_MERGE_SCENE_GEN_UNIQUE_NAMES_IF_NECESSARY | AI_INT_MERGE_SCENE_GEN_UNIQUE_MATNAMES) : 0));
|
|
|
|
|
|
/* If we have no meshes | no materials now set the INCOMPLETE
|
|
* scene flag. This is necessary if we failed to load all
|
|
* models from external files
|
|
*/
|
|
if (!pScene->mNumMeshes || !pScene->mNumMaterials) {
|
|
DefaultLogger::get()->warn("IRR: No meshes loaded, setting AI_SCENE_FLAGS_INCOMPLETE");
|
|
pScene->mFlags |= AI_SCENE_FLAGS_INCOMPLETE;
|
|
}
|
|
|
|
/* Finished ... everything destructs automatically and all
|
|
* temporary scenes have already been deleted by MergeScenes()
|
|
*/
|
|
return;
|
|
}
|