assimp/contrib/gtest/src/gtest.cc

6796 lines
250 KiB
C++

// Copyright 2005, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// The Google C++ Testing and Mocking Framework (Google Test)
#include "gtest/gtest.h"
#include <ctype.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <wchar.h>
#include <wctype.h>
#include <algorithm>
#include <chrono> // NOLINT
#include <cmath>
#include <cstdint>
#include <initializer_list>
#include <iomanip>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <ostream> // NOLINT
#include <sstream>
#include <unordered_set>
#include <vector>
#include "gtest/gtest-assertion-result.h"
#include "gtest/gtest-spi.h"
#include "gtest/internal/custom/gtest.h"
#if GTEST_OS_LINUX
#include <fcntl.h> // NOLINT
#include <limits.h> // NOLINT
#include <sched.h> // NOLINT
// Declares vsnprintf(). This header is not available on Windows.
#include <strings.h> // NOLINT
#include <sys/mman.h> // NOLINT
#include <sys/time.h> // NOLINT
#include <unistd.h> // NOLINT
#include <string>
#elif GTEST_OS_ZOS
#include <sys/time.h> // NOLINT
// On z/OS we additionally need strings.h for strcasecmp.
#include <strings.h> // NOLINT
#elif GTEST_OS_WINDOWS_MOBILE // We are on Windows CE.
#include <windows.h> // NOLINT
#undef min
#elif GTEST_OS_WINDOWS // We are on Windows proper.
#include <windows.h> // NOLINT
#undef min
#ifdef _MSC_VER
#include <crtdbg.h> // NOLINT
#endif
#include <io.h> // NOLINT
#include <sys/stat.h> // NOLINT
#include <sys/timeb.h> // NOLINT
#include <sys/types.h> // NOLINT
#if GTEST_OS_WINDOWS_MINGW
#include <sys/time.h> // NOLINT
#endif // GTEST_OS_WINDOWS_MINGW
#else
// cpplint thinks that the header is already included, so we want to
// silence it.
#include <sys/time.h> // NOLINT
#include <unistd.h> // NOLINT
#endif // GTEST_OS_LINUX
#if GTEST_HAS_EXCEPTIONS
#include <stdexcept>
#endif
#if GTEST_CAN_STREAM_RESULTS_
#include <arpa/inet.h> // NOLINT
#include <netdb.h> // NOLINT
#include <sys/socket.h> // NOLINT
#include <sys/types.h> // NOLINT
#endif
#include "src/gtest-internal-inl.h"
#if GTEST_OS_WINDOWS
#define vsnprintf _vsnprintf
#endif // GTEST_OS_WINDOWS
#if GTEST_OS_MAC
#ifndef GTEST_OS_IOS
#include <crt_externs.h>
#endif
#endif
#if GTEST_HAS_ABSL
#include "absl/debugging/failure_signal_handler.h"
#include "absl/debugging/stacktrace.h"
#include "absl/debugging/symbolize.h"
#include "absl/flags/parse.h"
#include "absl/flags/usage.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_replace.h"
#endif // GTEST_HAS_ABSL
namespace testing {
using internal::CountIf;
using internal::ForEach;
using internal::GetElementOr;
using internal::Shuffle;
// Constants.
// A test whose test suite name or test name matches this filter is
// disabled and not run.
static const char kDisableTestFilter[] = "DISABLED_*:*/DISABLED_*";
// A test suite whose name matches this filter is considered a death
// test suite and will be run before test suites whose name doesn't
// match this filter.
static const char kDeathTestSuiteFilter[] = "*DeathTest:*DeathTest/*";
// A test filter that matches everything.
static const char kUniversalFilter[] = "*";
// The default output format.
static const char kDefaultOutputFormat[] = "xml";
// The default output file.
static const char kDefaultOutputFile[] = "test_detail";
// The environment variable name for the test shard index.
static const char kTestShardIndex[] = "GTEST_SHARD_INDEX";
// The environment variable name for the total number of test shards.
static const char kTestTotalShards[] = "GTEST_TOTAL_SHARDS";
// The environment variable name for the test shard status file.
static const char kTestShardStatusFile[] = "GTEST_SHARD_STATUS_FILE";
namespace internal {
// The text used in failure messages to indicate the start of the
// stack trace.
const char kStackTraceMarker[] = "\nStack trace:\n";
// g_help_flag is true if and only if the --help flag or an equivalent form
// is specified on the command line.
bool g_help_flag = false;
// Utility function to Open File for Writing
static FILE* OpenFileForWriting(const std::string& output_file) {
FILE* fileout = nullptr;
FilePath output_file_path(output_file);
FilePath output_dir(output_file_path.RemoveFileName());
if (output_dir.CreateDirectoriesRecursively()) {
fileout = posix::FOpen(output_file.c_str(), "w");
}
if (fileout == nullptr) {
GTEST_LOG_(FATAL) << "Unable to open file \"" << output_file << "\"";
}
return fileout;
}
} // namespace internal
// Bazel passes in the argument to '--test_filter' via the TESTBRIDGE_TEST_ONLY
// environment variable.
static const char* GetDefaultFilter() {
const char* const testbridge_test_only =
internal::posix::GetEnv("TESTBRIDGE_TEST_ONLY");
if (testbridge_test_only != nullptr) {
return testbridge_test_only;
}
return kUniversalFilter;
}
// Bazel passes in the argument to '--test_runner_fail_fast' via the
// TESTBRIDGE_TEST_RUNNER_FAIL_FAST environment variable.
static bool GetDefaultFailFast() {
const char* const testbridge_test_runner_fail_fast =
internal::posix::GetEnv("TESTBRIDGE_TEST_RUNNER_FAIL_FAST");
if (testbridge_test_runner_fail_fast != nullptr) {
return strcmp(testbridge_test_runner_fail_fast, "1") == 0;
}
return false;
}
} // namespace testing
GTEST_DEFINE_bool_(
fail_fast,
testing::internal::BoolFromGTestEnv("fail_fast",
testing::GetDefaultFailFast()),
"True if and only if a test failure should stop further test execution.");
GTEST_DEFINE_bool_(
also_run_disabled_tests,
testing::internal::BoolFromGTestEnv("also_run_disabled_tests", false),
"Run disabled tests too, in addition to the tests normally being run.");
GTEST_DEFINE_bool_(
break_on_failure,
testing::internal::BoolFromGTestEnv("break_on_failure", false),
"True if and only if a failed assertion should be a debugger "
"break-point.");
GTEST_DEFINE_bool_(catch_exceptions,
testing::internal::BoolFromGTestEnv("catch_exceptions",
true),
"True if and only if " GTEST_NAME_
" should catch exceptions and treat them as test failures.");
GTEST_DEFINE_string_(
color, testing::internal::StringFromGTestEnv("color", "auto"),
"Whether to use colors in the output. Valid values: yes, no, "
"and auto. 'auto' means to use colors if the output is "
"being sent to a terminal and the TERM environment variable "
"is set to a terminal type that supports colors.");
GTEST_DEFINE_string_(
filter,
testing::internal::StringFromGTestEnv("filter",
testing::GetDefaultFilter()),
"A colon-separated list of glob (not regex) patterns "
"for filtering the tests to run, optionally followed by a "
"'-' and a : separated list of negative patterns (tests to "
"exclude). A test is run if it matches one of the positive "
"patterns and does not match any of the negative patterns.");
GTEST_DEFINE_bool_(
install_failure_signal_handler,
testing::internal::BoolFromGTestEnv("install_failure_signal_handler",
false),
"If true and supported on the current platform, " GTEST_NAME_
" should "
"install a signal handler that dumps debugging information when fatal "
"signals are raised.");
GTEST_DEFINE_bool_(list_tests, false, "List all tests without running them.");
// The net priority order after flag processing is thus:
// --gtest_output command line flag
// GTEST_OUTPUT environment variable
// XML_OUTPUT_FILE environment variable
// ''
GTEST_DEFINE_string_(
output,
testing::internal::StringFromGTestEnv(
"output", testing::internal::OutputFlagAlsoCheckEnvVar().c_str()),
"A format (defaults to \"xml\" but can be specified to be \"json\"), "
"optionally followed by a colon and an output file name or directory. "
"A directory is indicated by a trailing pathname separator. "
"Examples: \"xml:filename.xml\", \"xml::directoryname/\". "
"If a directory is specified, output files will be created "
"within that directory, with file-names based on the test "
"executable's name and, if necessary, made unique by adding "
"digits.");
GTEST_DEFINE_bool_(
brief, testing::internal::BoolFromGTestEnv("brief", false),
"True if only test failures should be displayed in text output.");
GTEST_DEFINE_bool_(print_time,
testing::internal::BoolFromGTestEnv("print_time", true),
"True if and only if " GTEST_NAME_
" should display elapsed time in text output.");
GTEST_DEFINE_bool_(print_utf8,
testing::internal::BoolFromGTestEnv("print_utf8", true),
"True if and only if " GTEST_NAME_
" prints UTF8 characters as text.");
GTEST_DEFINE_int32_(
random_seed, testing::internal::Int32FromGTestEnv("random_seed", 0),
"Random number seed to use when shuffling test orders. Must be in range "
"[1, 99999], or 0 to use a seed based on the current time.");
GTEST_DEFINE_int32_(
repeat, testing::internal::Int32FromGTestEnv("repeat", 1),
"How many times to repeat each test. Specify a negative number "
"for repeating forever. Useful for shaking out flaky tests.");
GTEST_DEFINE_bool_(
recreate_environments_when_repeating,
testing::internal::BoolFromGTestEnv("recreate_environments_when_repeating",
false),
"Controls whether global test environments are recreated for each repeat "
"of the tests. If set to false the global test environments are only set "
"up once, for the first iteration, and only torn down once, for the last. "
"Useful for shaking out flaky tests with stable, expensive test "
"environments. If --gtest_repeat is set to a negative number, meaning "
"there is no last run, the environments will always be recreated to avoid "
"leaks.");
GTEST_DEFINE_bool_(show_internal_stack_frames, false,
"True if and only if " GTEST_NAME_
" should include internal stack frames when "
"printing test failure stack traces.");
GTEST_DEFINE_bool_(shuffle,
testing::internal::BoolFromGTestEnv("shuffle", false),
"True if and only if " GTEST_NAME_
" should randomize tests' order on every run.");
GTEST_DEFINE_int32_(
stack_trace_depth,
testing::internal::Int32FromGTestEnv("stack_trace_depth",
testing::kMaxStackTraceDepth),
"The maximum number of stack frames to print when an "
"assertion fails. The valid range is 0 through 100, inclusive.");
GTEST_DEFINE_string_(
stream_result_to,
testing::internal::StringFromGTestEnv("stream_result_to", ""),
"This flag specifies the host name and the port number on which to stream "
"test results. Example: \"localhost:555\". The flag is effective only on "
"Linux.");
GTEST_DEFINE_bool_(
throw_on_failure,
testing::internal::BoolFromGTestEnv("throw_on_failure", false),
"When this flag is specified, a failed assertion will throw an exception "
"if exceptions are enabled or exit the program with a non-zero code "
"otherwise. For use with an external test framework.");
#if GTEST_USE_OWN_FLAGFILE_FLAG_
GTEST_DEFINE_string_(
flagfile, testing::internal::StringFromGTestEnv("flagfile", ""),
"This flag specifies the flagfile to read command-line flags from.");
#endif // GTEST_USE_OWN_FLAGFILE_FLAG_
namespace testing {
namespace internal {
// Generates a random number from [0, range), using a Linear
// Congruential Generator (LCG). Crashes if 'range' is 0 or greater
// than kMaxRange.
uint32_t Random::Generate(uint32_t range) {
// These constants are the same as are used in glibc's rand(3).
// Use wider types than necessary to prevent unsigned overflow diagnostics.
state_ = static_cast<uint32_t>(1103515245ULL * state_ + 12345U) % kMaxRange;
GTEST_CHECK_(range > 0) << "Cannot generate a number in the range [0, 0).";
GTEST_CHECK_(range <= kMaxRange)
<< "Generation of a number in [0, " << range << ") was requested, "
<< "but this can only generate numbers in [0, " << kMaxRange << ").";
// Converting via modulus introduces a bit of downward bias, but
// it's simple, and a linear congruential generator isn't too good
// to begin with.
return state_ % range;
}
// GTestIsInitialized() returns true if and only if the user has initialized
// Google Test. Useful for catching the user mistake of not initializing
// Google Test before calling RUN_ALL_TESTS().
static bool GTestIsInitialized() { return GetArgvs().size() > 0; }
// Iterates over a vector of TestSuites, keeping a running sum of the
// results of calling a given int-returning method on each.
// Returns the sum.
static int SumOverTestSuiteList(const std::vector<TestSuite*>& case_list,
int (TestSuite::*method)() const) {
int sum = 0;
for (size_t i = 0; i < case_list.size(); i++) {
sum += (case_list[i]->*method)();
}
return sum;
}
// Returns true if and only if the test suite passed.
static bool TestSuitePassed(const TestSuite* test_suite) {
return test_suite->should_run() && test_suite->Passed();
}
// Returns true if and only if the test suite failed.
static bool TestSuiteFailed(const TestSuite* test_suite) {
return test_suite->should_run() && test_suite->Failed();
}
// Returns true if and only if test_suite contains at least one test that
// should run.
static bool ShouldRunTestSuite(const TestSuite* test_suite) {
return test_suite->should_run();
}
// AssertHelper constructor.
AssertHelper::AssertHelper(TestPartResult::Type type, const char* file,
int line, const char* message)
: data_(new AssertHelperData(type, file, line, message)) {}
AssertHelper::~AssertHelper() { delete data_; }
// Message assignment, for assertion streaming support.
void AssertHelper::operator=(const Message& message) const {
UnitTest::GetInstance()->AddTestPartResult(
data_->type, data_->file, data_->line,
AppendUserMessage(data_->message, message),
UnitTest::GetInstance()->impl()->CurrentOsStackTraceExceptTop(1)
// Skips the stack frame for this function itself.
); // NOLINT
}
namespace {
// When TEST_P is found without a matching INSTANTIATE_TEST_SUITE_P
// to creates test cases for it, a synthetic test case is
// inserted to report ether an error or a log message.
//
// This configuration bit will likely be removed at some point.
constexpr bool kErrorOnUninstantiatedParameterizedTest = true;
constexpr bool kErrorOnUninstantiatedTypeParameterizedTest = true;
// A test that fails at a given file/line location with a given message.
class FailureTest : public Test {
public:
explicit FailureTest(const CodeLocation& loc, std::string error_message,
bool as_error)
: loc_(loc),
error_message_(std::move(error_message)),
as_error_(as_error) {}
void TestBody() override {
if (as_error_) {
AssertHelper(TestPartResult::kNonFatalFailure, loc_.file.c_str(),
loc_.line, "") = Message() << error_message_;
} else {
std::cout << error_message_ << std::endl;
}
}
private:
const CodeLocation loc_;
const std::string error_message_;
const bool as_error_;
};
} // namespace
std::set<std::string>* GetIgnoredParameterizedTestSuites() {
return UnitTest::GetInstance()->impl()->ignored_parameterized_test_suites();
}
// Add a given test_suit to the list of them allow to go un-instantiated.
MarkAsIgnored::MarkAsIgnored(const char* test_suite) {
GetIgnoredParameterizedTestSuites()->insert(test_suite);
}
// If this parameterized test suite has no instantiations (and that
// has not been marked as okay), emit a test case reporting that.
void InsertSyntheticTestCase(const std::string& name, CodeLocation location,
bool has_test_p) {
const auto& ignored = *GetIgnoredParameterizedTestSuites();
if (ignored.find(name) != ignored.end()) return;
const char kMissingInstantiation[] = //
" is defined via TEST_P, but never instantiated. None of the test cases "
"will run. Either no INSTANTIATE_TEST_SUITE_P is provided or the only "
"ones provided expand to nothing."
"\n\n"
"Ideally, TEST_P definitions should only ever be included as part of "
"binaries that intend to use them. (As opposed to, for example, being "
"placed in a library that may be linked in to get other utilities.)";
const char kMissingTestCase[] = //
" is instantiated via INSTANTIATE_TEST_SUITE_P, but no tests are "
"defined via TEST_P . No test cases will run."
"\n\n"
"Ideally, INSTANTIATE_TEST_SUITE_P should only ever be invoked from "
"code that always depend on code that provides TEST_P. Failing to do "
"so is often an indication of dead code, e.g. the last TEST_P was "
"removed but the rest got left behind.";
std::string message =
"Parameterized test suite " + name +
(has_test_p ? kMissingInstantiation : kMissingTestCase) +
"\n\n"
"To suppress this error for this test suite, insert the following line "
"(in a non-header) in the namespace it is defined in:"
"\n\n"
"GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(" +
name + ");";
std::string full_name = "UninstantiatedParameterizedTestSuite<" + name + ">";
RegisterTest( //
"GoogleTestVerification", full_name.c_str(),
nullptr, // No type parameter.
nullptr, // No value parameter.
location.file.c_str(), location.line, [message, location] {
return new FailureTest(location, message,
kErrorOnUninstantiatedParameterizedTest);
});
}
void RegisterTypeParameterizedTestSuite(const char* test_suite_name,
CodeLocation code_location) {
GetUnitTestImpl()->type_parameterized_test_registry().RegisterTestSuite(
test_suite_name, code_location);
}
void RegisterTypeParameterizedTestSuiteInstantiation(const char* case_name) {
GetUnitTestImpl()->type_parameterized_test_registry().RegisterInstantiation(
case_name);
}
void TypeParameterizedTestSuiteRegistry::RegisterTestSuite(
const char* test_suite_name, CodeLocation code_location) {
suites_.emplace(std::string(test_suite_name),
TypeParameterizedTestSuiteInfo(code_location));
}
void TypeParameterizedTestSuiteRegistry::RegisterInstantiation(
const char* test_suite_name) {
auto it = suites_.find(std::string(test_suite_name));
if (it != suites_.end()) {
it->second.instantiated = true;
} else {
GTEST_LOG_(ERROR) << "Unknown type parameterized test suit '"
<< test_suite_name << "'";
}
}
void TypeParameterizedTestSuiteRegistry::CheckForInstantiations() {
const auto& ignored = *GetIgnoredParameterizedTestSuites();
for (const auto& testcase : suites_) {
if (testcase.second.instantiated) continue;
if (ignored.find(testcase.first) != ignored.end()) continue;
std::string message =
"Type parameterized test suite " + testcase.first +
" is defined via REGISTER_TYPED_TEST_SUITE_P, but never instantiated "
"via INSTANTIATE_TYPED_TEST_SUITE_P. None of the test cases will run."
"\n\n"
"Ideally, TYPED_TEST_P definitions should only ever be included as "
"part of binaries that intend to use them. (As opposed to, for "
"example, being placed in a library that may be linked in to get other "
"utilities.)"
"\n\n"
"To suppress this error for this test suite, insert the following line "
"(in a non-header) in the namespace it is defined in:"
"\n\n"
"GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(" +
testcase.first + ");";
std::string full_name =
"UninstantiatedTypeParameterizedTestSuite<" + testcase.first + ">";
RegisterTest( //
"GoogleTestVerification", full_name.c_str(),
nullptr, // No type parameter.
nullptr, // No value parameter.
testcase.second.code_location.file.c_str(),
testcase.second.code_location.line, [message, testcase] {
return new FailureTest(testcase.second.code_location, message,
kErrorOnUninstantiatedTypeParameterizedTest);
});
}
}
// A copy of all command line arguments. Set by InitGoogleTest().
static ::std::vector<std::string> g_argvs;
::std::vector<std::string> GetArgvs() {
#if defined(GTEST_CUSTOM_GET_ARGVS_)
// GTEST_CUSTOM_GET_ARGVS_() may return a container of std::string or
// ::string. This code converts it to the appropriate type.
const auto& custom = GTEST_CUSTOM_GET_ARGVS_();
return ::std::vector<std::string>(custom.begin(), custom.end());
#else // defined(GTEST_CUSTOM_GET_ARGVS_)
return g_argvs;
#endif // defined(GTEST_CUSTOM_GET_ARGVS_)
}
// Returns the current application's name, removing directory path if that
// is present.
FilePath GetCurrentExecutableName() {
FilePath result;
#if GTEST_OS_WINDOWS || GTEST_OS_OS2
result.Set(FilePath(GetArgvs()[0]).RemoveExtension("exe"));
#else
result.Set(FilePath(GetArgvs()[0]));
#endif // GTEST_OS_WINDOWS
return result.RemoveDirectoryName();
}
// Functions for processing the gtest_output flag.
// Returns the output format, or "" for normal printed output.
std::string UnitTestOptions::GetOutputFormat() {
std::string s = GTEST_FLAG_GET(output);
const char* const gtest_output_flag = s.c_str();
const char* const colon = strchr(gtest_output_flag, ':');
return (colon == nullptr)
? std::string(gtest_output_flag)
: std::string(gtest_output_flag,
static_cast<size_t>(colon - gtest_output_flag));
}
// Returns the name of the requested output file, or the default if none
// was explicitly specified.
std::string UnitTestOptions::GetAbsolutePathToOutputFile() {
std::string s = GTEST_FLAG_GET(output);
const char* const gtest_output_flag = s.c_str();
std::string format = GetOutputFormat();
if (format.empty()) format = std::string(kDefaultOutputFormat);
const char* const colon = strchr(gtest_output_flag, ':');
if (colon == nullptr)
return internal::FilePath::MakeFileName(
internal::FilePath(
UnitTest::GetInstance()->original_working_dir()),
internal::FilePath(kDefaultOutputFile), 0, format.c_str())
.string();
internal::FilePath output_name(colon + 1);
if (!output_name.IsAbsolutePath())
output_name = internal::FilePath::ConcatPaths(
internal::FilePath(UnitTest::GetInstance()->original_working_dir()),
internal::FilePath(colon + 1));
if (!output_name.IsDirectory()) return output_name.string();
internal::FilePath result(internal::FilePath::GenerateUniqueFileName(
output_name, internal::GetCurrentExecutableName(),
GetOutputFormat().c_str()));
return result.string();
}
// Returns true if and only if the wildcard pattern matches the string. Each
// pattern consists of regular characters, single-character wildcards (?), and
// multi-character wildcards (*).
//
// This function implements a linear-time string globbing algorithm based on
// https://research.swtch.com/glob.
static bool PatternMatchesString(const std::string& name_str,
const char* pattern, const char* pattern_end) {
const char* name = name_str.c_str();
const char* const name_begin = name;
const char* const name_end = name + name_str.size();
const char* pattern_next = pattern;
const char* name_next = name;
while (pattern < pattern_end || name < name_end) {
if (pattern < pattern_end) {
switch (*pattern) {
default: // Match an ordinary character.
if (name < name_end && *name == *pattern) {
++pattern;
++name;
continue;
}
break;
case '?': // Match any single character.
if (name < name_end) {
++pattern;
++name;
continue;
}
break;
case '*':
// Match zero or more characters. Start by skipping over the wildcard
// and matching zero characters from name. If that fails, restart and
// match one more character than the last attempt.
pattern_next = pattern;
name_next = name + 1;
++pattern;
continue;
}
}
// Failed to match a character. Restart if possible.
if (name_begin < name_next && name_next <= name_end) {
pattern = pattern_next;
name = name_next;
continue;
}
return false;
}
return true;
}
namespace {
bool IsGlobPattern(const std::string& pattern) {
return std::any_of(pattern.begin(), pattern.end(),
[](const char c) { return c == '?' || c == '*'; });
}
class UnitTestFilter {
public:
UnitTestFilter() = default;
// Constructs a filter from a string of patterns separated by `:`.
explicit UnitTestFilter(const std::string& filter) {
// By design "" filter matches "" string.
std::vector<std::string> all_patterns;
SplitString(filter, ':', &all_patterns);
const auto exact_match_patterns_begin = std::partition(
all_patterns.begin(), all_patterns.end(), &IsGlobPattern);
glob_patterns_.reserve(static_cast<size_t>(
std::distance(all_patterns.begin(), exact_match_patterns_begin)));
std::move(all_patterns.begin(), exact_match_patterns_begin,
std::inserter(glob_patterns_, glob_patterns_.begin()));
std::move(
exact_match_patterns_begin, all_patterns.end(),
std::inserter(exact_match_patterns_, exact_match_patterns_.begin()));
}
// Returns true if and only if name matches at least one of the patterns in
// the filter.
bool MatchesName(const std::string& name) const {
return exact_match_patterns_.count(name) > 0 ||
std::any_of(glob_patterns_.begin(), glob_patterns_.end(),
[&name](const std::string& pattern) {
return PatternMatchesString(
name, pattern.c_str(),
pattern.c_str() + pattern.size());
});
}
private:
std::vector<std::string> glob_patterns_;
std::unordered_set<std::string> exact_match_patterns_;
};
class PositiveAndNegativeUnitTestFilter {
public:
// Constructs a positive and a negative filter from a string. The string
// contains a positive filter optionally followed by a '-' character and a
// negative filter. In case only a negative filter is provided the positive
// filter will be assumed "*".
// A filter is a list of patterns separated by ':'.
explicit PositiveAndNegativeUnitTestFilter(const std::string& filter) {
std::vector<std::string> positive_and_negative_filters;
// NOTE: `SplitString` always returns a non-empty container.
SplitString(filter, '-', &positive_and_negative_filters);
const auto& positive_filter = positive_and_negative_filters.front();
if (positive_and_negative_filters.size() > 1) {
positive_filter_ = UnitTestFilter(
positive_filter.empty() ? kUniversalFilter : positive_filter);
// TODO(b/214626361): Fail on multiple '-' characters
// For the moment to preserve old behavior we concatenate the rest of the
// string parts with `-` as separator to generate the negative filter.
auto negative_filter_string = positive_and_negative_filters[1];
for (std::size_t i = 2; i < positive_and_negative_filters.size(); i++)
negative_filter_string =
negative_filter_string + '-' + positive_and_negative_filters[i];
negative_filter_ = UnitTestFilter(negative_filter_string);
} else {
// In case we don't have a negative filter and positive filter is ""
// we do not use kUniversalFilter by design as opposed to when we have a
// negative filter.
positive_filter_ = UnitTestFilter(positive_filter);
}
}
// Returns true if and only if test name (this is generated by appending test
// suit name and test name via a '.' character) matches the positive filter
// and does not match the negative filter.
bool MatchesTest(const std::string& test_suite_name,
const std::string& test_name) const {
return MatchesName(test_suite_name + "." + test_name);
}
// Returns true if and only if name matches the positive filter and does not
// match the negative filter.
bool MatchesName(const std::string& name) const {
return positive_filter_.MatchesName(name) &&
!negative_filter_.MatchesName(name);
}
private:
UnitTestFilter positive_filter_;
UnitTestFilter negative_filter_;
};
} // namespace
bool UnitTestOptions::MatchesFilter(const std::string& name_str,
const char* filter) {
return UnitTestFilter(filter).MatchesName(name_str);
}
// Returns true if and only if the user-specified filter matches the test
// suite name and the test name.
bool UnitTestOptions::FilterMatchesTest(const std::string& test_suite_name,
const std::string& test_name) {
// Split --gtest_filter at '-', if there is one, to separate into
// positive filter and negative filter portions
return PositiveAndNegativeUnitTestFilter(GTEST_FLAG_GET(filter))
.MatchesTest(test_suite_name, test_name);
}
#if GTEST_HAS_SEH
// Returns EXCEPTION_EXECUTE_HANDLER if Google Test should handle the
// given SEH exception, or EXCEPTION_CONTINUE_SEARCH otherwise.
// This function is useful as an __except condition.
int UnitTestOptions::GTestShouldProcessSEH(DWORD exception_code) {
// Google Test should handle a SEH exception if:
// 1. the user wants it to, AND
// 2. this is not a breakpoint exception, AND
// 3. this is not a C++ exception (VC++ implements them via SEH,
// apparently).
//
// SEH exception code for C++ exceptions.
// (see http://support.microsoft.com/kb/185294 for more information).
const DWORD kCxxExceptionCode = 0xe06d7363;
bool should_handle = true;
if (!GTEST_FLAG_GET(catch_exceptions))
should_handle = false;
else if (exception_code == EXCEPTION_BREAKPOINT)
should_handle = false;
else if (exception_code == kCxxExceptionCode)
should_handle = false;
return should_handle ? EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH;
}
#endif // GTEST_HAS_SEH
} // namespace internal
// The c'tor sets this object as the test part result reporter used by
// Google Test. The 'result' parameter specifies where to report the
// results. Intercepts only failures from the current thread.
ScopedFakeTestPartResultReporter::ScopedFakeTestPartResultReporter(
TestPartResultArray* result)
: intercept_mode_(INTERCEPT_ONLY_CURRENT_THREAD), result_(result) {
Init();
}
// The c'tor sets this object as the test part result reporter used by
// Google Test. The 'result' parameter specifies where to report the
// results.
ScopedFakeTestPartResultReporter::ScopedFakeTestPartResultReporter(
InterceptMode intercept_mode, TestPartResultArray* result)
: intercept_mode_(intercept_mode), result_(result) {
Init();
}
void ScopedFakeTestPartResultReporter::Init() {
internal::UnitTestImpl* const impl = internal::GetUnitTestImpl();
if (intercept_mode_ == INTERCEPT_ALL_THREADS) {
old_reporter_ = impl->GetGlobalTestPartResultReporter();
impl->SetGlobalTestPartResultReporter(this);
} else {
old_reporter_ = impl->GetTestPartResultReporterForCurrentThread();
impl->SetTestPartResultReporterForCurrentThread(this);
}
}
// The d'tor restores the test part result reporter used by Google Test
// before.
ScopedFakeTestPartResultReporter::~ScopedFakeTestPartResultReporter() {
internal::UnitTestImpl* const impl = internal::GetUnitTestImpl();
if (intercept_mode_ == INTERCEPT_ALL_THREADS) {
impl->SetGlobalTestPartResultReporter(old_reporter_);
} else {
impl->SetTestPartResultReporterForCurrentThread(old_reporter_);
}
}
// Increments the test part result count and remembers the result.
// This method is from the TestPartResultReporterInterface interface.
void ScopedFakeTestPartResultReporter::ReportTestPartResult(
const TestPartResult& result) {
result_->Append(result);
}
namespace internal {
// Returns the type ID of ::testing::Test. We should always call this
// instead of GetTypeId< ::testing::Test>() to get the type ID of
// testing::Test. This is to work around a suspected linker bug when
// using Google Test as a framework on Mac OS X. The bug causes
// GetTypeId< ::testing::Test>() to return different values depending
// on whether the call is from the Google Test framework itself or
// from user test code. GetTestTypeId() is guaranteed to always
// return the same value, as it always calls GetTypeId<>() from the
// gtest.cc, which is within the Google Test framework.
TypeId GetTestTypeId() { return GetTypeId<Test>(); }
// The value of GetTestTypeId() as seen from within the Google Test
// library. This is solely for testing GetTestTypeId().
extern const TypeId kTestTypeIdInGoogleTest = GetTestTypeId();
// This predicate-formatter checks that 'results' contains a test part
// failure of the given type and that the failure message contains the
// given substring.
static AssertionResult HasOneFailure(const char* /* results_expr */,
const char* /* type_expr */,
const char* /* substr_expr */,
const TestPartResultArray& results,
TestPartResult::Type type,
const std::string& substr) {
const std::string expected(type == TestPartResult::kFatalFailure
? "1 fatal failure"
: "1 non-fatal failure");
Message msg;
if (results.size() != 1) {
msg << "Expected: " << expected << "\n"
<< " Actual: " << results.size() << " failures";
for (int i = 0; i < results.size(); i++) {
msg << "\n" << results.GetTestPartResult(i);
}
return AssertionFailure() << msg;
}
const TestPartResult& r = results.GetTestPartResult(0);
if (r.type() != type) {
return AssertionFailure() << "Expected: " << expected << "\n"
<< " Actual:\n"
<< r;
}
if (strstr(r.message(), substr.c_str()) == nullptr) {
return AssertionFailure()
<< "Expected: " << expected << " containing \"" << substr << "\"\n"
<< " Actual:\n"
<< r;
}
return AssertionSuccess();
}
// The constructor of SingleFailureChecker remembers where to look up
// test part results, what type of failure we expect, and what
// substring the failure message should contain.
SingleFailureChecker::SingleFailureChecker(const TestPartResultArray* results,
TestPartResult::Type type,
const std::string& substr)
: results_(results), type_(type), substr_(substr) {}
// The destructor of SingleFailureChecker verifies that the given
// TestPartResultArray contains exactly one failure that has the given
// type and contains the given substring. If that's not the case, a
// non-fatal failure will be generated.
SingleFailureChecker::~SingleFailureChecker() {
EXPECT_PRED_FORMAT3(HasOneFailure, *results_, type_, substr_);
}
DefaultGlobalTestPartResultReporter::DefaultGlobalTestPartResultReporter(
UnitTestImpl* unit_test)
: unit_test_(unit_test) {}
void DefaultGlobalTestPartResultReporter::ReportTestPartResult(
const TestPartResult& result) {
unit_test_->current_test_result()->AddTestPartResult(result);
unit_test_->listeners()->repeater()->OnTestPartResult(result);
}
DefaultPerThreadTestPartResultReporter::DefaultPerThreadTestPartResultReporter(
UnitTestImpl* unit_test)
: unit_test_(unit_test) {}
void DefaultPerThreadTestPartResultReporter::ReportTestPartResult(
const TestPartResult& result) {
unit_test_->GetGlobalTestPartResultReporter()->ReportTestPartResult(result);
}
// Returns the global test part result reporter.
TestPartResultReporterInterface*
UnitTestImpl::GetGlobalTestPartResultReporter() {
internal::MutexLock lock(&global_test_part_result_reporter_mutex_);
return global_test_part_result_repoter_;
}
// Sets the global test part result reporter.
void UnitTestImpl::SetGlobalTestPartResultReporter(
TestPartResultReporterInterface* reporter) {
internal::MutexLock lock(&global_test_part_result_reporter_mutex_);
global_test_part_result_repoter_ = reporter;
}
// Returns the test part result reporter for the current thread.
TestPartResultReporterInterface*
UnitTestImpl::GetTestPartResultReporterForCurrentThread() {
return per_thread_test_part_result_reporter_.get();
}
// Sets the test part result reporter for the current thread.
void UnitTestImpl::SetTestPartResultReporterForCurrentThread(
TestPartResultReporterInterface* reporter) {
per_thread_test_part_result_reporter_.set(reporter);
}
// Gets the number of successful test suites.
int UnitTestImpl::successful_test_suite_count() const {
return CountIf(test_suites_, TestSuitePassed);
}
// Gets the number of failed test suites.
int UnitTestImpl::failed_test_suite_count() const {
return CountIf(test_suites_, TestSuiteFailed);
}
// Gets the number of all test suites.
int UnitTestImpl::total_test_suite_count() const {
return static_cast<int>(test_suites_.size());
}
// Gets the number of all test suites that contain at least one test
// that should run.
int UnitTestImpl::test_suite_to_run_count() const {
return CountIf(test_suites_, ShouldRunTestSuite);
}
// Gets the number of successful tests.
int UnitTestImpl::successful_test_count() const {
return SumOverTestSuiteList(test_suites_, &TestSuite::successful_test_count);
}
// Gets the number of skipped tests.
int UnitTestImpl::skipped_test_count() const {
return SumOverTestSuiteList(test_suites_, &TestSuite::skipped_test_count);
}
// Gets the number of failed tests.
int UnitTestImpl::failed_test_count() const {
return SumOverTestSuiteList(test_suites_, &TestSuite::failed_test_count);
}
// Gets the number of disabled tests that will be reported in the XML report.
int UnitTestImpl::reportable_disabled_test_count() const {
return SumOverTestSuiteList(test_suites_,
&TestSuite::reportable_disabled_test_count);
}
// Gets the number of disabled tests.
int UnitTestImpl::disabled_test_count() const {
return SumOverTestSuiteList(test_suites_, &TestSuite::disabled_test_count);
}
// Gets the number of tests to be printed in the XML report.
int UnitTestImpl::reportable_test_count() const {
return SumOverTestSuiteList(test_suites_, &TestSuite::reportable_test_count);
}
// Gets the number of all tests.
int UnitTestImpl::total_test_count() const {
return SumOverTestSuiteList(test_suites_, &TestSuite::total_test_count);
}
// Gets the number of tests that should run.
int UnitTestImpl::test_to_run_count() const {
return SumOverTestSuiteList(test_suites_, &TestSuite::test_to_run_count);
}
// Returns the current OS stack trace as an std::string.
//
// The maximum number of stack frames to be included is specified by
// the gtest_stack_trace_depth flag. The skip_count parameter
// specifies the number of top frames to be skipped, which doesn't
// count against the number of frames to be included.
//
// For example, if Foo() calls Bar(), which in turn calls
// CurrentOsStackTraceExceptTop(1), Foo() will be included in the
// trace but Bar() and CurrentOsStackTraceExceptTop() won't.
std::string UnitTestImpl::CurrentOsStackTraceExceptTop(int skip_count) {
return os_stack_trace_getter()->CurrentStackTrace(
static_cast<int>(GTEST_FLAG_GET(stack_trace_depth)), skip_count + 1
// Skips the user-specified number of frames plus this function
// itself.
); // NOLINT
}
// A helper class for measuring elapsed times.
class Timer {
public:
Timer() : start_(std::chrono::steady_clock::now()) {}
// Return time elapsed in milliseconds since the timer was created.
TimeInMillis Elapsed() {
return std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::steady_clock::now() - start_)
.count();
}
private:
std::chrono::steady_clock::time_point start_;
};
// Returns a timestamp as milliseconds since the epoch. Note this time may jump
// around subject to adjustments by the system, to measure elapsed time use
// Timer instead.
TimeInMillis GetTimeInMillis() {
return std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::system_clock::now() -
std::chrono::system_clock::from_time_t(0))
.count();
}
// Utilities
// class String.
#if GTEST_OS_WINDOWS_MOBILE
// Creates a UTF-16 wide string from the given ANSI string, allocating
// memory using new. The caller is responsible for deleting the return
// value using delete[]. Returns the wide string, or NULL if the
// input is NULL.
LPCWSTR String::AnsiToUtf16(const char* ansi) {
if (!ansi) return nullptr;
const int length = strlen(ansi);
const int unicode_length =
MultiByteToWideChar(CP_ACP, 0, ansi, length, nullptr, 0);
WCHAR* unicode = new WCHAR[unicode_length + 1];
MultiByteToWideChar(CP_ACP, 0, ansi, length, unicode, unicode_length);
unicode[unicode_length] = 0;
return unicode;
}
// Creates an ANSI string from the given wide string, allocating
// memory using new. The caller is responsible for deleting the return
// value using delete[]. Returns the ANSI string, or NULL if the
// input is NULL.
const char* String::Utf16ToAnsi(LPCWSTR utf16_str) {
if (!utf16_str) return nullptr;
const int ansi_length = WideCharToMultiByte(CP_ACP, 0, utf16_str, -1, nullptr,
0, nullptr, nullptr);
char* ansi = new char[ansi_length + 1];
WideCharToMultiByte(CP_ACP, 0, utf16_str, -1, ansi, ansi_length, nullptr,
nullptr);
ansi[ansi_length] = 0;
return ansi;
}
#endif // GTEST_OS_WINDOWS_MOBILE
// Compares two C strings. Returns true if and only if they have the same
// content.
//
// Unlike strcmp(), this function can handle NULL argument(s). A NULL
// C string is considered different to any non-NULL C string,
// including the empty string.
bool String::CStringEquals(const char* lhs, const char* rhs) {
if (lhs == nullptr) return rhs == nullptr;
if (rhs == nullptr) return false;
return strcmp(lhs, rhs) == 0;
}
#if GTEST_HAS_STD_WSTRING
// Converts an array of wide chars to a narrow string using the UTF-8
// encoding, and streams the result to the given Message object.
static void StreamWideCharsToMessage(const wchar_t* wstr, size_t length,
Message* msg) {
for (size_t i = 0; i != length;) { // NOLINT
if (wstr[i] != L'\0') {
*msg << WideStringToUtf8(wstr + i, static_cast<int>(length - i));
while (i != length && wstr[i] != L'\0') i++;
} else {
*msg << '\0';
i++;
}
}
}
#endif // GTEST_HAS_STD_WSTRING
void SplitString(const ::std::string& str, char delimiter,
::std::vector< ::std::string>* dest) {
::std::vector< ::std::string> parsed;
::std::string::size_type pos = 0;
while (::testing::internal::AlwaysTrue()) {
const ::std::string::size_type colon = str.find(delimiter, pos);
if (colon == ::std::string::npos) {
parsed.push_back(str.substr(pos));
break;
} else {
parsed.push_back(str.substr(pos, colon - pos));
pos = colon + 1;
}
}
dest->swap(parsed);
}
} // namespace internal
// Constructs an empty Message.
// We allocate the stringstream separately because otherwise each use of
// ASSERT/EXPECT in a procedure adds over 200 bytes to the procedure's
// stack frame leading to huge stack frames in some cases; gcc does not reuse
// the stack space.
Message::Message() : ss_(new ::std::stringstream) {
// By default, we want there to be enough precision when printing
// a double to a Message.
*ss_ << std::setprecision(std::numeric_limits<double>::digits10 + 2);
}
// These two overloads allow streaming a wide C string to a Message
// using the UTF-8 encoding.
Message& Message::operator<<(const wchar_t* wide_c_str) {
return *this << internal::String::ShowWideCString(wide_c_str);
}
Message& Message::operator<<(wchar_t* wide_c_str) {
return *this << internal::String::ShowWideCString(wide_c_str);
}
#if GTEST_HAS_STD_WSTRING
// Converts the given wide string to a narrow string using the UTF-8
// encoding, and streams the result to this Message object.
Message& Message::operator<<(const ::std::wstring& wstr) {
internal::StreamWideCharsToMessage(wstr.c_str(), wstr.length(), this);
return *this;
}
#endif // GTEST_HAS_STD_WSTRING
// Gets the text streamed to this object so far as an std::string.
// Each '\0' character in the buffer is replaced with "\\0".
std::string Message::GetString() const {
return internal::StringStreamToString(ss_.get());
}
namespace internal {
namespace edit_distance {
std::vector<EditType> CalculateOptimalEdits(const std::vector<size_t>& left,
const std::vector<size_t>& right) {
std::vector<std::vector<double> > costs(
left.size() + 1, std::vector<double>(right.size() + 1));
std::vector<std::vector<EditType> > best_move(
left.size() + 1, std::vector<EditType>(right.size() + 1));
// Populate for empty right.
for (size_t l_i = 0; l_i < costs.size(); ++l_i) {
costs[l_i][0] = static_cast<double>(l_i);
best_move[l_i][0] = kRemove;
}
// Populate for empty left.
for (size_t r_i = 1; r_i < costs[0].size(); ++r_i) {
costs[0][r_i] = static_cast<double>(r_i);
best_move[0][r_i] = kAdd;
}
for (size_t l_i = 0; l_i < left.size(); ++l_i) {
for (size_t r_i = 0; r_i < right.size(); ++r_i) {
if (left[l_i] == right[r_i]) {
// Found a match. Consume it.
costs[l_i + 1][r_i + 1] = costs[l_i][r_i];
best_move[l_i + 1][r_i + 1] = kMatch;
continue;
}
const double add = costs[l_i + 1][r_i];
const double remove = costs[l_i][r_i + 1];
const double replace = costs[l_i][r_i];
if (add < remove && add < replace) {
costs[l_i + 1][r_i + 1] = add + 1;
best_move[l_i + 1][r_i + 1] = kAdd;
} else if (remove < add && remove < replace) {
costs[l_i + 1][r_i + 1] = remove + 1;
best_move[l_i + 1][r_i + 1] = kRemove;
} else {
// We make replace a little more expensive than add/remove to lower
// their priority.
costs[l_i + 1][r_i + 1] = replace + 1.00001;
best_move[l_i + 1][r_i + 1] = kReplace;
}
}
}
// Reconstruct the best path. We do it in reverse order.
std::vector<EditType> best_path;
for (size_t l_i = left.size(), r_i = right.size(); l_i > 0 || r_i > 0;) {
EditType move = best_move[l_i][r_i];
best_path.push_back(move);
l_i -= move != kAdd;
r_i -= move != kRemove;
}
std::reverse(best_path.begin(), best_path.end());
return best_path;
}
namespace {
// Helper class to convert string into ids with deduplication.
class InternalStrings {
public:
size_t GetId(const std::string& str) {
IdMap::iterator it = ids_.find(str);
if (it != ids_.end()) return it->second;
size_t id = ids_.size();
return ids_[str] = id;
}
private:
typedef std::map<std::string, size_t> IdMap;
IdMap ids_;
};
} // namespace
std::vector<EditType> CalculateOptimalEdits(
const std::vector<std::string>& left,
const std::vector<std::string>& right) {
std::vector<size_t> left_ids, right_ids;
{
InternalStrings intern_table;
for (size_t i = 0; i < left.size(); ++i) {
left_ids.push_back(intern_table.GetId(left[i]));
}
for (size_t i = 0; i < right.size(); ++i) {
right_ids.push_back(intern_table.GetId(right[i]));
}
}
return CalculateOptimalEdits(left_ids, right_ids);
}
namespace {
// Helper class that holds the state for one hunk and prints it out to the
// stream.
// It reorders adds/removes when possible to group all removes before all
// adds. It also adds the hunk header before printint into the stream.
class Hunk {
public:
Hunk(size_t left_start, size_t right_start)
: left_start_(left_start),
right_start_(right_start),
adds_(),
removes_(),
common_() {}
void PushLine(char edit, const char* line) {
switch (edit) {
case ' ':
++common_;
FlushEdits();
hunk_.push_back(std::make_pair(' ', line));
break;
case '-':
++removes_;
hunk_removes_.push_back(std::make_pair('-', line));
break;
case '+':
++adds_;
hunk_adds_.push_back(std::make_pair('+', line));
break;
}
}
void PrintTo(std::ostream* os) {
PrintHeader(os);
FlushEdits();
for (std::list<std::pair<char, const char*> >::const_iterator it =
hunk_.begin();
it != hunk_.end(); ++it) {
*os << it->first << it->second << "\n";
}
}
bool has_edits() const { return adds_ || removes_; }
private:
void FlushEdits() {
hunk_.splice(hunk_.end(), hunk_removes_);
hunk_.splice(hunk_.end(), hunk_adds_);
}
// Print a unified diff header for one hunk.
// The format is
// "@@ -<left_start>,<left_length> +<right_start>,<right_length> @@"
// where the left/right parts are omitted if unnecessary.
void PrintHeader(std::ostream* ss) const {
*ss << "@@ ";
if (removes_) {
*ss << "-" << left_start_ << "," << (removes_ + common_);
}
if (removes_ && adds_) {
*ss << " ";
}
if (adds_) {
*ss << "+" << right_start_ << "," << (adds_ + common_);
}
*ss << " @@\n";
}
size_t left_start_, right_start_;
size_t adds_, removes_, common_;
std::list<std::pair<char, const char*> > hunk_, hunk_adds_, hunk_removes_;
};
} // namespace
// Create a list of diff hunks in Unified diff format.
// Each hunk has a header generated by PrintHeader above plus a body with
// lines prefixed with ' ' for no change, '-' for deletion and '+' for
// addition.
// 'context' represents the desired unchanged prefix/suffix around the diff.
// If two hunks are close enough that their contexts overlap, then they are
// joined into one hunk.
std::string CreateUnifiedDiff(const std::vector<std::string>& left,
const std::vector<std::string>& right,
size_t context) {
const std::vector<EditType> edits = CalculateOptimalEdits(left, right);
size_t l_i = 0, r_i = 0, edit_i = 0;
std::stringstream ss;
while (edit_i < edits.size()) {
// Find first edit.
while (edit_i < edits.size() && edits[edit_i] == kMatch) {
++l_i;
++r_i;
++edit_i;
}
// Find the first line to include in the hunk.
const size_t prefix_context = std::min(l_i, context);
Hunk hunk(l_i - prefix_context + 1, r_i - prefix_context + 1);
for (size_t i = prefix_context; i > 0; --i) {
hunk.PushLine(' ', left[l_i - i].c_str());
}
// Iterate the edits until we found enough suffix for the hunk or the input
// is over.
size_t n_suffix = 0;
for (; edit_i < edits.size(); ++edit_i) {
if (n_suffix >= context) {
// Continue only if the next hunk is very close.
auto it = edits.begin() + static_cast<int>(edit_i);
while (it != edits.end() && *it == kMatch) ++it;
if (it == edits.end() ||
static_cast<size_t>(it - edits.begin()) - edit_i >= context) {
// There is no next edit or it is too far away.
break;
}
}
EditType edit = edits[edit_i];
// Reset count when a non match is found.
n_suffix = edit == kMatch ? n_suffix + 1 : 0;
if (edit == kMatch || edit == kRemove || edit == kReplace) {
hunk.PushLine(edit == kMatch ? ' ' : '-', left[l_i].c_str());
}
if (edit == kAdd || edit == kReplace) {
hunk.PushLine('+', right[r_i].c_str());
}
// Advance indices, depending on edit type.
l_i += edit != kAdd;
r_i += edit != kRemove;
}
if (!hunk.has_edits()) {
// We are done. We don't want this hunk.
break;
}
hunk.PrintTo(&ss);
}
return ss.str();
}
} // namespace edit_distance
namespace {
// The string representation of the values received in EqFailure() are already
// escaped. Split them on escaped '\n' boundaries. Leave all other escaped
// characters the same.
std::vector<std::string> SplitEscapedString(const std::string& str) {
std::vector<std::string> lines;
size_t start = 0, end = str.size();
if (end > 2 && str[0] == '"' && str[end - 1] == '"') {
++start;
--end;
}
bool escaped = false;
for (size_t i = start; i + 1 < end; ++i) {
if (escaped) {
escaped = false;
if (str[i] == 'n') {
lines.push_back(str.substr(start, i - start - 1));
start = i + 1;
}
} else {
escaped = str[i] == '\\';
}
}
lines.push_back(str.substr(start, end - start));
return lines;
}
} // namespace
// Constructs and returns the message for an equality assertion
// (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
//
// The first four parameters are the expressions used in the assertion
// and their values, as strings. For example, for ASSERT_EQ(foo, bar)
// where foo is 5 and bar is 6, we have:
//
// lhs_expression: "foo"
// rhs_expression: "bar"
// lhs_value: "5"
// rhs_value: "6"
//
// The ignoring_case parameter is true if and only if the assertion is a
// *_STRCASEEQ*. When it's true, the string "Ignoring case" will
// be inserted into the message.
AssertionResult EqFailure(const char* lhs_expression,
const char* rhs_expression,
const std::string& lhs_value,
const std::string& rhs_value, bool ignoring_case) {
Message msg;
msg << "Expected equality of these values:";
msg << "\n " << lhs_expression;
if (lhs_value != lhs_expression) {
msg << "\n Which is: " << lhs_value;
}
msg << "\n " << rhs_expression;
if (rhs_value != rhs_expression) {
msg << "\n Which is: " << rhs_value;
}
if (ignoring_case) {
msg << "\nIgnoring case";
}
if (!lhs_value.empty() && !rhs_value.empty()) {
const std::vector<std::string> lhs_lines = SplitEscapedString(lhs_value);
const std::vector<std::string> rhs_lines = SplitEscapedString(rhs_value);
if (lhs_lines.size() > 1 || rhs_lines.size() > 1) {
msg << "\nWith diff:\n"
<< edit_distance::CreateUnifiedDiff(lhs_lines, rhs_lines);
}
}
return AssertionFailure() << msg;
}
// Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
std::string GetBoolAssertionFailureMessage(
const AssertionResult& assertion_result, const char* expression_text,
const char* actual_predicate_value, const char* expected_predicate_value) {
const char* actual_message = assertion_result.message();
Message msg;
msg << "Value of: " << expression_text
<< "\n Actual: " << actual_predicate_value;
if (actual_message[0] != '\0') msg << " (" << actual_message << ")";
msg << "\nExpected: " << expected_predicate_value;
return msg.GetString();
}
// Helper function for implementing ASSERT_NEAR.
AssertionResult DoubleNearPredFormat(const char* expr1, const char* expr2,
const char* abs_error_expr, double val1,
double val2, double abs_error) {
const double diff = fabs(val1 - val2);
if (diff <= abs_error) return AssertionSuccess();
// Find the value which is closest to zero.
const double min_abs = std::min(fabs(val1), fabs(val2));
// Find the distance to the next double from that value.
const double epsilon =
nextafter(min_abs, std::numeric_limits<double>::infinity()) - min_abs;
// Detect the case where abs_error is so small that EXPECT_NEAR is
// effectively the same as EXPECT_EQUAL, and give an informative error
// message so that the situation can be more easily understood without
// requiring exotic floating-point knowledge.
// Don't do an epsilon check if abs_error is zero because that implies
// that an equality check was actually intended.
if (!(std::isnan)(val1) && !(std::isnan)(val2) && abs_error > 0 &&
abs_error < epsilon) {
return AssertionFailure()
<< "The difference between " << expr1 << " and " << expr2 << " is "
<< diff << ", where\n"
<< expr1 << " evaluates to " << val1 << ",\n"
<< expr2 << " evaluates to " << val2 << ".\nThe abs_error parameter "
<< abs_error_expr << " evaluates to " << abs_error
<< " which is smaller than the minimum distance between doubles for "
"numbers of this magnitude which is "
<< epsilon
<< ", thus making this EXPECT_NEAR check equivalent to "
"EXPECT_EQUAL. Consider using EXPECT_DOUBLE_EQ instead.";
}
return AssertionFailure()
<< "The difference between " << expr1 << " and " << expr2 << " is "
<< diff << ", which exceeds " << abs_error_expr << ", where\n"
<< expr1 << " evaluates to " << val1 << ",\n"
<< expr2 << " evaluates to " << val2 << ", and\n"
<< abs_error_expr << " evaluates to " << abs_error << ".";
}
// Helper template for implementing FloatLE() and DoubleLE().
template <typename RawType>
AssertionResult FloatingPointLE(const char* expr1, const char* expr2,
RawType val1, RawType val2) {
// Returns success if val1 is less than val2,
if (val1 < val2) {
return AssertionSuccess();
}
// or if val1 is almost equal to val2.
const FloatingPoint<RawType> lhs(val1), rhs(val2);
if (lhs.AlmostEquals(rhs)) {
return AssertionSuccess();
}
// Note that the above two checks will both fail if either val1 or
// val2 is NaN, as the IEEE floating-point standard requires that
// any predicate involving a NaN must return false.
::std::stringstream val1_ss;
val1_ss << std::setprecision(std::numeric_limits<RawType>::digits10 + 2)
<< val1;
::std::stringstream val2_ss;
val2_ss << std::setprecision(std::numeric_limits<RawType>::digits10 + 2)
<< val2;
return AssertionFailure()
<< "Expected: (" << expr1 << ") <= (" << expr2 << ")\n"
<< " Actual: " << StringStreamToString(&val1_ss) << " vs "
<< StringStreamToString(&val2_ss);
}
} // namespace internal
// Asserts that val1 is less than, or almost equal to, val2. Fails
// otherwise. In particular, it fails if either val1 or val2 is NaN.
AssertionResult FloatLE(const char* expr1, const char* expr2, float val1,
float val2) {
return internal::FloatingPointLE<float>(expr1, expr2, val1, val2);
}
// Asserts that val1 is less than, or almost equal to, val2. Fails
// otherwise. In particular, it fails if either val1 or val2 is NaN.
AssertionResult DoubleLE(const char* expr1, const char* expr2, double val1,
double val2) {
return internal::FloatingPointLE<double>(expr1, expr2, val1, val2);
}
namespace internal {
// The helper function for {ASSERT|EXPECT}_STREQ.
AssertionResult CmpHelperSTREQ(const char* lhs_expression,
const char* rhs_expression, const char* lhs,
const char* rhs) {
if (String::CStringEquals(lhs, rhs)) {
return AssertionSuccess();
}
return EqFailure(lhs_expression, rhs_expression, PrintToString(lhs),
PrintToString(rhs), false);
}
// The helper function for {ASSERT|EXPECT}_STRCASEEQ.
AssertionResult CmpHelperSTRCASEEQ(const char* lhs_expression,
const char* rhs_expression, const char* lhs,
const char* rhs) {
if (String::CaseInsensitiveCStringEquals(lhs, rhs)) {
return AssertionSuccess();
}
return EqFailure(lhs_expression, rhs_expression, PrintToString(lhs),
PrintToString(rhs), true);
}
// The helper function for {ASSERT|EXPECT}_STRNE.
AssertionResult CmpHelperSTRNE(const char* s1_expression,
const char* s2_expression, const char* s1,
const char* s2) {
if (!String::CStringEquals(s1, s2)) {
return AssertionSuccess();
} else {
return AssertionFailure()
<< "Expected: (" << s1_expression << ") != (" << s2_expression
<< "), actual: \"" << s1 << "\" vs \"" << s2 << "\"";
}
}
// The helper function for {ASSERT|EXPECT}_STRCASENE.
AssertionResult CmpHelperSTRCASENE(const char* s1_expression,
const char* s2_expression, const char* s1,
const char* s2) {
if (!String::CaseInsensitiveCStringEquals(s1, s2)) {
return AssertionSuccess();
} else {
return AssertionFailure()
<< "Expected: (" << s1_expression << ") != (" << s2_expression
<< ") (ignoring case), actual: \"" << s1 << "\" vs \"" << s2 << "\"";
}
}
} // namespace internal
namespace {
// Helper functions for implementing IsSubString() and IsNotSubstring().
// This group of overloaded functions return true if and only if needle
// is a substring of haystack. NULL is considered a substring of
// itself only.
bool IsSubstringPred(const char* needle, const char* haystack) {
if (needle == nullptr || haystack == nullptr) return needle == haystack;
return strstr(haystack, needle) != nullptr;
}
bool IsSubstringPred(const wchar_t* needle, const wchar_t* haystack) {
if (needle == nullptr || haystack == nullptr) return needle == haystack;
return wcsstr(haystack, needle) != nullptr;
}
// StringType here can be either ::std::string or ::std::wstring.
template <typename StringType>
bool IsSubstringPred(const StringType& needle, const StringType& haystack) {
return haystack.find(needle) != StringType::npos;
}
// This function implements either IsSubstring() or IsNotSubstring(),
// depending on the value of the expected_to_be_substring parameter.
// StringType here can be const char*, const wchar_t*, ::std::string,
// or ::std::wstring.
template <typename StringType>
AssertionResult IsSubstringImpl(bool expected_to_be_substring,
const char* needle_expr,
const char* haystack_expr,
const StringType& needle,
const StringType& haystack) {
if (IsSubstringPred(needle, haystack) == expected_to_be_substring)
return AssertionSuccess();
const bool is_wide_string = sizeof(needle[0]) > 1;
const char* const begin_string_quote = is_wide_string ? "L\"" : "\"";
return AssertionFailure()
<< "Value of: " << needle_expr << "\n"
<< " Actual: " << begin_string_quote << needle << "\"\n"
<< "Expected: " << (expected_to_be_substring ? "" : "not ")
<< "a substring of " << haystack_expr << "\n"
<< "Which is: " << begin_string_quote << haystack << "\"";
}
} // namespace
// IsSubstring() and IsNotSubstring() check whether needle is a
// substring of haystack (NULL is considered a substring of itself
// only), and return an appropriate error message when they fail.
AssertionResult IsSubstring(const char* needle_expr, const char* haystack_expr,
const char* needle, const char* haystack) {
return IsSubstringImpl(true, needle_expr, haystack_expr, needle, haystack);
}
AssertionResult IsSubstring(const char* needle_expr, const char* haystack_expr,
const wchar_t* needle, const wchar_t* haystack) {
return IsSubstringImpl(true, needle_expr, haystack_expr, needle, haystack);
}
AssertionResult IsNotSubstring(const char* needle_expr,
const char* haystack_expr, const char* needle,
const char* haystack) {
return IsSubstringImpl(false, needle_expr, haystack_expr, needle, haystack);
}
AssertionResult IsNotSubstring(const char* needle_expr,
const char* haystack_expr, const wchar_t* needle,
const wchar_t* haystack) {
return IsSubstringImpl(false, needle_expr, haystack_expr, needle, haystack);
}
AssertionResult IsSubstring(const char* needle_expr, const char* haystack_expr,
const ::std::string& needle,
const ::std::string& haystack) {
return IsSubstringImpl(true, needle_expr, haystack_expr, needle, haystack);
}
AssertionResult IsNotSubstring(const char* needle_expr,
const char* haystack_expr,
const ::std::string& needle,
const ::std::string& haystack) {
return IsSubstringImpl(false, needle_expr, haystack_expr, needle, haystack);
}
#if GTEST_HAS_STD_WSTRING
AssertionResult IsSubstring(const char* needle_expr, const char* haystack_expr,
const ::std::wstring& needle,
const ::std::wstring& haystack) {
return IsSubstringImpl(true, needle_expr, haystack_expr, needle, haystack);
}
AssertionResult IsNotSubstring(const char* needle_expr,
const char* haystack_expr,
const ::std::wstring& needle,
const ::std::wstring& haystack) {
return IsSubstringImpl(false, needle_expr, haystack_expr, needle, haystack);
}
#endif // GTEST_HAS_STD_WSTRING
namespace internal {
#if GTEST_OS_WINDOWS
namespace {
// Helper function for IsHRESULT{SuccessFailure} predicates
AssertionResult HRESULTFailureHelper(const char* expr, const char* expected,
long hr) { // NOLINT
#if GTEST_OS_WINDOWS_MOBILE || GTEST_OS_WINDOWS_TV_TITLE
// Windows CE doesn't support FormatMessage.
const char error_text[] = "";
#else
// Looks up the human-readable system message for the HRESULT code
// and since we're not passing any params to FormatMessage, we don't
// want inserts expanded.
const DWORD kFlags =
FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS;
const DWORD kBufSize = 4096;
// Gets the system's human readable message string for this HRESULT.
char error_text[kBufSize] = {'\0'};
DWORD message_length = ::FormatMessageA(kFlags,
0, // no source, we're asking system
static_cast<DWORD>(hr), // the error
0, // no line width restrictions
error_text, // output buffer
kBufSize, // buf size
nullptr); // no arguments for inserts
// Trims tailing white space (FormatMessage leaves a trailing CR-LF)
for (; message_length && IsSpace(error_text[message_length - 1]);
--message_length) {
error_text[message_length - 1] = '\0';
}
#endif // GTEST_OS_WINDOWS_MOBILE
const std::string error_hex("0x" + String::FormatHexInt(hr));
return ::testing::AssertionFailure()
<< "Expected: " << expr << " " << expected << ".\n"
<< " Actual: " << error_hex << " " << error_text << "\n";
}
} // namespace
AssertionResult IsHRESULTSuccess(const char* expr, long hr) { // NOLINT
if (SUCCEEDED(hr)) {
return AssertionSuccess();
}
return HRESULTFailureHelper(expr, "succeeds", hr);
}
AssertionResult IsHRESULTFailure(const char* expr, long hr) { // NOLINT
if (FAILED(hr)) {
return AssertionSuccess();
}
return HRESULTFailureHelper(expr, "fails", hr);
}
#endif // GTEST_OS_WINDOWS
// Utility functions for encoding Unicode text (wide strings) in
// UTF-8.
// A Unicode code-point can have up to 21 bits, and is encoded in UTF-8
// like this:
//
// Code-point length Encoding
// 0 - 7 bits 0xxxxxxx
// 8 - 11 bits 110xxxxx 10xxxxxx
// 12 - 16 bits 1110xxxx 10xxxxxx 10xxxxxx
// 17 - 21 bits 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
// The maximum code-point a one-byte UTF-8 sequence can represent.
constexpr uint32_t kMaxCodePoint1 = (static_cast<uint32_t>(1) << 7) - 1;
// The maximum code-point a two-byte UTF-8 sequence can represent.
constexpr uint32_t kMaxCodePoint2 = (static_cast<uint32_t>(1) << (5 + 6)) - 1;
// The maximum code-point a three-byte UTF-8 sequence can represent.
constexpr uint32_t kMaxCodePoint3 =
(static_cast<uint32_t>(1) << (4 + 2 * 6)) - 1;
// The maximum code-point a four-byte UTF-8 sequence can represent.
constexpr uint32_t kMaxCodePoint4 =
(static_cast<uint32_t>(1) << (3 + 3 * 6)) - 1;
// Chops off the n lowest bits from a bit pattern. Returns the n
// lowest bits. As a side effect, the original bit pattern will be
// shifted to the right by n bits.
inline uint32_t ChopLowBits(uint32_t* bits, int n) {
const uint32_t low_bits = *bits & ((static_cast<uint32_t>(1) << n) - 1);
*bits >>= n;
return low_bits;
}
// Converts a Unicode code point to a narrow string in UTF-8 encoding.
// code_point parameter is of type uint32_t because wchar_t may not be
// wide enough to contain a code point.
// If the code_point is not a valid Unicode code point
// (i.e. outside of Unicode range U+0 to U+10FFFF) it will be converted
// to "(Invalid Unicode 0xXXXXXXXX)".
std::string CodePointToUtf8(uint32_t code_point) {
if (code_point > kMaxCodePoint4) {
return "(Invalid Unicode 0x" + String::FormatHexUInt32(code_point) + ")";
}
char str[5]; // Big enough for the largest valid code point.
if (code_point <= kMaxCodePoint1) {
str[1] = '\0';
str[0] = static_cast<char>(code_point); // 0xxxxxxx
} else if (code_point <= kMaxCodePoint2) {
str[2] = '\0';
str[1] = static_cast<char>(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx
str[0] = static_cast<char>(0xC0 | code_point); // 110xxxxx
} else if (code_point <= kMaxCodePoint3) {
str[3] = '\0';
str[2] = static_cast<char>(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx
str[1] = static_cast<char>(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx
str[0] = static_cast<char>(0xE0 | code_point); // 1110xxxx
} else { // code_point <= kMaxCodePoint4
str[4] = '\0';
str[3] = static_cast<char>(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx
str[2] = static_cast<char>(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx
str[1] = static_cast<char>(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx
str[0] = static_cast<char>(0xF0 | code_point); // 11110xxx
}
return str;
}
// The following two functions only make sense if the system
// uses UTF-16 for wide string encoding. All supported systems
// with 16 bit wchar_t (Windows, Cygwin) do use UTF-16.
// Determines if the arguments constitute UTF-16 surrogate pair
// and thus should be combined into a single Unicode code point
// using CreateCodePointFromUtf16SurrogatePair.
inline bool IsUtf16SurrogatePair(wchar_t first, wchar_t second) {
return sizeof(wchar_t) == 2 && (first & 0xFC00) == 0xD800 &&
(second & 0xFC00) == 0xDC00;
}
// Creates a Unicode code point from UTF16 surrogate pair.
inline uint32_t CreateCodePointFromUtf16SurrogatePair(wchar_t first,
wchar_t second) {
const auto first_u = static_cast<uint32_t>(first);
const auto second_u = static_cast<uint32_t>(second);
const uint32_t mask = (1 << 10) - 1;
return (sizeof(wchar_t) == 2)
? (((first_u & mask) << 10) | (second_u & mask)) + 0x10000
:
// This function should not be called when the condition is
// false, but we provide a sensible default in case it is.
first_u;
}
// Converts a wide string to a narrow string in UTF-8 encoding.
// The wide string is assumed to have the following encoding:
// UTF-16 if sizeof(wchar_t) == 2 (on Windows, Cygwin)
// UTF-32 if sizeof(wchar_t) == 4 (on Linux)
// Parameter str points to a null-terminated wide string.
// Parameter num_chars may additionally limit the number
// of wchar_t characters processed. -1 is used when the entire string
// should be processed.
// If the string contains code points that are not valid Unicode code points
// (i.e. outside of Unicode range U+0 to U+10FFFF) they will be output
// as '(Invalid Unicode 0xXXXXXXXX)'. If the string is in UTF16 encoding
// and contains invalid UTF-16 surrogate pairs, values in those pairs
// will be encoded as individual Unicode characters from Basic Normal Plane.
std::string WideStringToUtf8(const wchar_t* str, int num_chars) {
if (num_chars == -1) num_chars = static_cast<int>(wcslen(str));
::std::stringstream stream;
for (int i = 0; i < num_chars; ++i) {
uint32_t unicode_code_point;
if (str[i] == L'\0') {
break;
} else if (i + 1 < num_chars && IsUtf16SurrogatePair(str[i], str[i + 1])) {
unicode_code_point =
CreateCodePointFromUtf16SurrogatePair(str[i], str[i + 1]);
i++;
} else {
unicode_code_point = static_cast<uint32_t>(str[i]);
}
stream << CodePointToUtf8(unicode_code_point);
}
return StringStreamToString(&stream);
}
// Converts a wide C string to an std::string using the UTF-8 encoding.
// NULL will be converted to "(null)".
std::string String::ShowWideCString(const wchar_t* wide_c_str) {
if (wide_c_str == nullptr) return "(null)";
return internal::WideStringToUtf8(wide_c_str, -1);
}
// Compares two wide C strings. Returns true if and only if they have the
// same content.
//
// Unlike wcscmp(), this function can handle NULL argument(s). A NULL
// C string is considered different to any non-NULL C string,
// including the empty string.
bool String::WideCStringEquals(const wchar_t* lhs, const wchar_t* rhs) {
if (lhs == nullptr) return rhs == nullptr;
if (rhs == nullptr) return false;
return wcscmp(lhs, rhs) == 0;
}
// Helper function for *_STREQ on wide strings.
AssertionResult CmpHelperSTREQ(const char* lhs_expression,
const char* rhs_expression, const wchar_t* lhs,
const wchar_t* rhs) {
if (String::WideCStringEquals(lhs, rhs)) {
return AssertionSuccess();
}
return EqFailure(lhs_expression, rhs_expression, PrintToString(lhs),
PrintToString(rhs), false);
}
// Helper function for *_STRNE on wide strings.
AssertionResult CmpHelperSTRNE(const char* s1_expression,
const char* s2_expression, const wchar_t* s1,
const wchar_t* s2) {
if (!String::WideCStringEquals(s1, s2)) {
return AssertionSuccess();
}
return AssertionFailure()
<< "Expected: (" << s1_expression << ") != (" << s2_expression
<< "), actual: " << PrintToString(s1) << " vs " << PrintToString(s2);
}
// Compares two C strings, ignoring case. Returns true if and only if they have
// the same content.
//
// Unlike strcasecmp(), this function can handle NULL argument(s). A
// NULL C string is considered different to any non-NULL C string,
// including the empty string.
bool String::CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) {
if (lhs == nullptr) return rhs == nullptr;
if (rhs == nullptr) return false;
return posix::StrCaseCmp(lhs, rhs) == 0;
}
// Compares two wide C strings, ignoring case. Returns true if and only if they
// have the same content.
//
// Unlike wcscasecmp(), this function can handle NULL argument(s).
// A NULL C string is considered different to any non-NULL wide C string,
// including the empty string.
// NB: The implementations on different platforms slightly differ.
// On windows, this method uses _wcsicmp which compares according to LC_CTYPE
// environment variable. On GNU platform this method uses wcscasecmp
// which compares according to LC_CTYPE category of the current locale.
// On MacOS X, it uses towlower, which also uses LC_CTYPE category of the
// current locale.
bool String::CaseInsensitiveWideCStringEquals(const wchar_t* lhs,
const wchar_t* rhs) {
if (lhs == nullptr) return rhs == nullptr;
if (rhs == nullptr) return false;
#if GTEST_OS_WINDOWS
return _wcsicmp(lhs, rhs) == 0;
#elif GTEST_OS_LINUX && !GTEST_OS_LINUX_ANDROID
return wcscasecmp(lhs, rhs) == 0;
#else
// Android, Mac OS X and Cygwin don't define wcscasecmp.
// Other unknown OSes may not define it either.
wint_t left, right;
do {
left = towlower(static_cast<wint_t>(*lhs++));
right = towlower(static_cast<wint_t>(*rhs++));
} while (left && left == right);
return left == right;
#endif // OS selector
}
// Returns true if and only if str ends with the given suffix, ignoring case.
// Any string is considered to end with an empty suffix.
bool String::EndsWithCaseInsensitive(const std::string& str,
const std::string& suffix) {
const size_t str_len = str.length();
const size_t suffix_len = suffix.length();
return (str_len >= suffix_len) &&
CaseInsensitiveCStringEquals(str.c_str() + str_len - suffix_len,
suffix.c_str());
}
// Formats an int value as "%02d".
std::string String::FormatIntWidth2(int value) {
return FormatIntWidthN(value, 2);
}
// Formats an int value to given width with leading zeros.
std::string String::FormatIntWidthN(int value, int width) {
std::stringstream ss;
ss << std::setfill('0') << std::setw(width) << value;
return ss.str();
}
// Formats an int value as "%X".
std::string String::FormatHexUInt32(uint32_t value) {
std::stringstream ss;
ss << std::hex << std::uppercase << value;
return ss.str();
}
// Formats an int value as "%X".
std::string String::FormatHexInt(int value) {
return FormatHexUInt32(static_cast<uint32_t>(value));
}
// Formats a byte as "%02X".
std::string String::FormatByte(unsigned char value) {
std::stringstream ss;
ss << std::setfill('0') << std::setw(2) << std::hex << std::uppercase
<< static_cast<unsigned int>(value);
return ss.str();
}
// Converts the buffer in a stringstream to an std::string, converting NUL
// bytes to "\\0" along the way.
std::string StringStreamToString(::std::stringstream* ss) {
const ::std::string& str = ss->str();
const char* const start = str.c_str();
const char* const end = start + str.length();
std::string result;
result.reserve(static_cast<size_t>(2 * (end - start)));
for (const char* ch = start; ch != end; ++ch) {
if (*ch == '\0') {
result += "\\0"; // Replaces NUL with "\\0";
} else {
result += *ch;
}
}
return result;
}
// Appends the user-supplied message to the Google-Test-generated message.
std::string AppendUserMessage(const std::string& gtest_msg,
const Message& user_msg) {
// Appends the user message if it's non-empty.
const std::string user_msg_string = user_msg.GetString();
if (user_msg_string.empty()) {
return gtest_msg;
}
if (gtest_msg.empty()) {
return user_msg_string;
}
return gtest_msg + "\n" + user_msg_string;
}
} // namespace internal
// class TestResult
// Creates an empty TestResult.
TestResult::TestResult()
: death_test_count_(0), start_timestamp_(0), elapsed_time_(0) {}
// D'tor.
TestResult::~TestResult() {}
// Returns the i-th test part result among all the results. i can
// range from 0 to total_part_count() - 1. If i is not in that range,
// aborts the program.
const TestPartResult& TestResult::GetTestPartResult(int i) const {
if (i < 0 || i >= total_part_count()) internal::posix::Abort();
return test_part_results_.at(static_cast<size_t>(i));
}
// Returns the i-th test property. i can range from 0 to
// test_property_count() - 1. If i is not in that range, aborts the
// program.
const TestProperty& TestResult::GetTestProperty(int i) const {
if (i < 0 || i >= test_property_count()) internal::posix::Abort();
return test_properties_.at(static_cast<size_t>(i));
}
// Clears the test part results.
void TestResult::ClearTestPartResults() { test_part_results_.clear(); }
// Adds a test part result to the list.
void TestResult::AddTestPartResult(const TestPartResult& test_part_result) {
test_part_results_.push_back(test_part_result);
}
// Adds a test property to the list. If a property with the same key as the
// supplied property is already represented, the value of this test_property
// replaces the old value for that key.
void TestResult::RecordProperty(const std::string& xml_element,
const TestProperty& test_property) {
if (!ValidateTestProperty(xml_element, test_property)) {
return;
}
internal::MutexLock lock(&test_properties_mutex_);
const std::vector<TestProperty>::iterator property_with_matching_key =
std::find_if(test_properties_.begin(), test_properties_.end(),
internal::TestPropertyKeyIs(test_property.key()));
if (property_with_matching_key == test_properties_.end()) {
test_properties_.push_back(test_property);
return;
}
property_with_matching_key->SetValue(test_property.value());
}
// The list of reserved attributes used in the <testsuites> element of XML
// output.
static const char* const kReservedTestSuitesAttributes[] = {
"disabled", "errors", "failures", "name",
"random_seed", "tests", "time", "timestamp"};
// The list of reserved attributes used in the <testsuite> element of XML
// output.
static const char* const kReservedTestSuiteAttributes[] = {
"disabled", "errors", "failures", "name",
"tests", "time", "timestamp", "skipped"};
// The list of reserved attributes used in the <testcase> element of XML output.
static const char* const kReservedTestCaseAttributes[] = {
"classname", "name", "status", "time",
"type_param", "value_param", "file", "line"};
// Use a slightly different set for allowed output to ensure existing tests can
// still RecordProperty("result") or "RecordProperty(timestamp")
static const char* const kReservedOutputTestCaseAttributes[] = {
"classname", "name", "status", "time", "type_param",
"value_param", "file", "line", "result", "timestamp"};
template <size_t kSize>
std::vector<std::string> ArrayAsVector(const char* const (&array)[kSize]) {
return std::vector<std::string>(array, array + kSize);
}
static std::vector<std::string> GetReservedAttributesForElement(
const std::string& xml_element) {
if (xml_element == "testsuites") {
return ArrayAsVector(kReservedTestSuitesAttributes);
} else if (xml_element == "testsuite") {
return ArrayAsVector(kReservedTestSuiteAttributes);
} else if (xml_element == "testcase") {
return ArrayAsVector(kReservedTestCaseAttributes);
} else {
GTEST_CHECK_(false) << "Unrecognized xml_element provided: " << xml_element;
}
// This code is unreachable but some compilers may not realizes that.
return std::vector<std::string>();
}
// TODO(jdesprez): Merge the two getReserved attributes once skip is improved
static std::vector<std::string> GetReservedOutputAttributesForElement(
const std::string& xml_element) {
if (xml_element == "testsuites") {
return ArrayAsVector(kReservedTestSuitesAttributes);
} else if (xml_element == "testsuite") {
return ArrayAsVector(kReservedTestSuiteAttributes);
} else if (xml_element == "testcase") {
return ArrayAsVector(kReservedOutputTestCaseAttributes);
} else {
GTEST_CHECK_(false) << "Unrecognized xml_element provided: " << xml_element;
}
// This code is unreachable but some compilers may not realizes that.
return std::vector<std::string>();
}
static std::string FormatWordList(const std::vector<std::string>& words) {
Message word_list;
for (size_t i = 0; i < words.size(); ++i) {
if (i > 0 && words.size() > 2) {
word_list << ", ";
}
if (i == words.size() - 1) {
word_list << "and ";
}
word_list << "'" << words[i] << "'";
}
return word_list.GetString();
}
static bool ValidateTestPropertyName(
const std::string& property_name,
const std::vector<std::string>& reserved_names) {
if (std::find(reserved_names.begin(), reserved_names.end(), property_name) !=
reserved_names.end()) {
ADD_FAILURE() << "Reserved key used in RecordProperty(): " << property_name
<< " (" << FormatWordList(reserved_names)
<< " are reserved by " << GTEST_NAME_ << ")";
return false;
}
return true;
}
// Adds a failure if the key is a reserved attribute of the element named
// xml_element. Returns true if the property is valid.
bool TestResult::ValidateTestProperty(const std::string& xml_element,
const TestProperty& test_property) {
return ValidateTestPropertyName(test_property.key(),
GetReservedAttributesForElement(xml_element));
}
// Clears the object.
void TestResult::Clear() {
test_part_results_.clear();
test_properties_.clear();
death_test_count_ = 0;
elapsed_time_ = 0;
}
// Returns true off the test part was skipped.
static bool TestPartSkipped(const TestPartResult& result) {
return result.skipped();
}
// Returns true if and only if the test was skipped.
bool TestResult::Skipped() const {
return !Failed() && CountIf(test_part_results_, TestPartSkipped) > 0;
}
// Returns true if and only if the test failed.
bool TestResult::Failed() const {
for (int i = 0; i < total_part_count(); ++i) {
if (GetTestPartResult(i).failed()) return true;
}
return false;
}
// Returns true if and only if the test part fatally failed.
static bool TestPartFatallyFailed(const TestPartResult& result) {
return result.fatally_failed();
}
// Returns true if and only if the test fatally failed.
bool TestResult::HasFatalFailure() const {
return CountIf(test_part_results_, TestPartFatallyFailed) > 0;
}
// Returns true if and only if the test part non-fatally failed.
static bool TestPartNonfatallyFailed(const TestPartResult& result) {
return result.nonfatally_failed();
}
// Returns true if and only if the test has a non-fatal failure.
bool TestResult::HasNonfatalFailure() const {
return CountIf(test_part_results_, TestPartNonfatallyFailed) > 0;
}
// Gets the number of all test parts. This is the sum of the number
// of successful test parts and the number of failed test parts.
int TestResult::total_part_count() const {
return static_cast<int>(test_part_results_.size());
}
// Returns the number of the test properties.
int TestResult::test_property_count() const {
return static_cast<int>(test_properties_.size());
}
// class Test
// Creates a Test object.
// The c'tor saves the states of all flags.
Test::Test() : gtest_flag_saver_(new GTEST_FLAG_SAVER_) {}
// The d'tor restores the states of all flags. The actual work is
// done by the d'tor of the gtest_flag_saver_ field, and thus not
// visible here.
Test::~Test() {}
// Sets up the test fixture.
//
// A sub-class may override this.
void Test::SetUp() {}
// Tears down the test fixture.
//
// A sub-class may override this.
void Test::TearDown() {}
// Allows user supplied key value pairs to be recorded for later output.
void Test::RecordProperty(const std::string& key, const std::string& value) {
UnitTest::GetInstance()->RecordProperty(key, value);
}
// Allows user supplied key value pairs to be recorded for later output.
void Test::RecordProperty(const std::string& key, int value) {
Message value_message;
value_message << value;
RecordProperty(key, value_message.GetString().c_str());
}
namespace internal {
void ReportFailureInUnknownLocation(TestPartResult::Type result_type,
const std::string& message) {
// This function is a friend of UnitTest and as such has access to
// AddTestPartResult.
UnitTest::GetInstance()->AddTestPartResult(
result_type,
nullptr, // No info about the source file where the exception occurred.
-1, // We have no info on which line caused the exception.
message,
""); // No stack trace, either.
}
} // namespace internal
// Google Test requires all tests in the same test suite to use the same test
// fixture class. This function checks if the current test has the
// same fixture class as the first test in the current test suite. If
// yes, it returns true; otherwise it generates a Google Test failure and
// returns false.
bool Test::HasSameFixtureClass() {
internal::UnitTestImpl* const impl = internal::GetUnitTestImpl();
const TestSuite* const test_suite = impl->current_test_suite();
// Info about the first test in the current test suite.
const TestInfo* const first_test_info = test_suite->test_info_list()[0];
const internal::TypeId first_fixture_id = first_test_info->fixture_class_id_;
const char* const first_test_name = first_test_info->name();
// Info about the current test.
const TestInfo* const this_test_info = impl->current_test_info();
const internal::TypeId this_fixture_id = this_test_info->fixture_class_id_;
const char* const this_test_name = this_test_info->name();
if (this_fixture_id != first_fixture_id) {
// Is the first test defined using TEST?
const bool first_is_TEST = first_fixture_id == internal::GetTestTypeId();
// Is this test defined using TEST?
const bool this_is_TEST = this_fixture_id == internal::GetTestTypeId();
if (first_is_TEST || this_is_TEST) {
// Both TEST and TEST_F appear in same test suite, which is incorrect.
// Tell the user how to fix this.
// Gets the name of the TEST and the name of the TEST_F. Note
// that first_is_TEST and this_is_TEST cannot both be true, as
// the fixture IDs are different for the two tests.
const char* const TEST_name =
first_is_TEST ? first_test_name : this_test_name;
const char* const TEST_F_name =
first_is_TEST ? this_test_name : first_test_name;
ADD_FAILURE()
<< "All tests in the same test suite must use the same test fixture\n"
<< "class, so mixing TEST_F and TEST in the same test suite is\n"
<< "illegal. In test suite " << this_test_info->test_suite_name()
<< ",\n"
<< "test " << TEST_F_name << " is defined using TEST_F but\n"
<< "test " << TEST_name << " is defined using TEST. You probably\n"
<< "want to change the TEST to TEST_F or move it to another test\n"
<< "case.";
} else {
// Two fixture classes with the same name appear in two different
// namespaces, which is not allowed. Tell the user how to fix this.
ADD_FAILURE()
<< "All tests in the same test suite must use the same test fixture\n"
<< "class. However, in test suite "
<< this_test_info->test_suite_name() << ",\n"
<< "you defined test " << first_test_name << " and test "
<< this_test_name << "\n"
<< "using two different test fixture classes. This can happen if\n"
<< "the two classes are from different namespaces or translation\n"
<< "units and have the same name. You should probably rename one\n"
<< "of the classes to put the tests into different test suites.";
}
return false;
}
return true;
}
#if GTEST_HAS_SEH
// Adds an "exception thrown" fatal failure to the current test. This
// function returns its result via an output parameter pointer because VC++
// prohibits creation of objects with destructors on stack in functions
// using __try (see error C2712).
static std::string* FormatSehExceptionMessage(DWORD exception_code,
const char* location) {
Message message;
message << "SEH exception with code 0x" << std::setbase(16) << exception_code
<< std::setbase(10) << " thrown in " << location << ".";
return new std::string(message.GetString());
}
#endif // GTEST_HAS_SEH
namespace internal {
#if GTEST_HAS_EXCEPTIONS
// Adds an "exception thrown" fatal failure to the current test.
static std::string FormatCxxExceptionMessage(const char* description,
const char* location) {
Message message;
if (description != nullptr) {
message << "C++ exception with description \"" << description << "\"";
} else {
message << "Unknown C++ exception";
}
message << " thrown in " << location << ".";
return message.GetString();
}
static std::string PrintTestPartResultToString(
const TestPartResult& test_part_result);
GoogleTestFailureException::GoogleTestFailureException(
const TestPartResult& failure)
: ::std::runtime_error(PrintTestPartResultToString(failure).c_str()) {}
#endif // GTEST_HAS_EXCEPTIONS
// We put these helper functions in the internal namespace as IBM's xlC
// compiler rejects the code if they were declared static.
// Runs the given method and handles SEH exceptions it throws, when
// SEH is supported; returns the 0-value for type Result in case of an
// SEH exception. (Microsoft compilers cannot handle SEH and C++
// exceptions in the same function. Therefore, we provide a separate
// wrapper function for handling SEH exceptions.)
template <class T, typename Result>
Result HandleSehExceptionsInMethodIfSupported(T* object, Result (T::*method)(),
const char* location) {
#if GTEST_HAS_SEH
__try {
return (object->*method)();
} __except (internal::UnitTestOptions::GTestShouldProcessSEH( // NOLINT
GetExceptionCode())) {
// We create the exception message on the heap because VC++ prohibits
// creation of objects with destructors on stack in functions using __try
// (see error C2712).
std::string* exception_message =
FormatSehExceptionMessage(GetExceptionCode(), location);
internal::ReportFailureInUnknownLocation(TestPartResult::kFatalFailure,
*exception_message);
delete exception_message;
return static_cast<Result>(0);
}
#else
(void)location;
return (object->*method)();
#endif // GTEST_HAS_SEH
}
// Runs the given method and catches and reports C++ and/or SEH-style
// exceptions, if they are supported; returns the 0-value for type
// Result in case of an SEH exception.
template <class T, typename Result>
Result HandleExceptionsInMethodIfSupported(T* object, Result (T::*method)(),
const char* location) {
// NOTE: The user code can affect the way in which Google Test handles
// exceptions by setting GTEST_FLAG(catch_exceptions), but only before
// RUN_ALL_TESTS() starts. It is technically possible to check the flag
// after the exception is caught and either report or re-throw the
// exception based on the flag's value:
//
// try {
// // Perform the test method.
// } catch (...) {
// if (GTEST_FLAG_GET(catch_exceptions))
// // Report the exception as failure.
// else
// throw; // Re-throws the original exception.
// }
//
// However, the purpose of this flag is to allow the program to drop into
// the debugger when the exception is thrown. On most platforms, once the
// control enters the catch block, the exception origin information is
// lost and the debugger will stop the program at the point of the
// re-throw in this function -- instead of at the point of the original
// throw statement in the code under test. For this reason, we perform
// the check early, sacrificing the ability to affect Google Test's
// exception handling in the method where the exception is thrown.
if (internal::GetUnitTestImpl()->catch_exceptions()) {
#if GTEST_HAS_EXCEPTIONS
try {
return HandleSehExceptionsInMethodIfSupported(object, method, location);
} catch (const AssertionException&) { // NOLINT
// This failure was reported already.
} catch (const internal::GoogleTestFailureException&) { // NOLINT
// This exception type can only be thrown by a failed Google
// Test assertion with the intention of letting another testing
// framework catch it. Therefore we just re-throw it.
throw;
} catch (const std::exception& e) { // NOLINT
internal::ReportFailureInUnknownLocation(
TestPartResult::kFatalFailure,
FormatCxxExceptionMessage(e.what(), location));
} catch (...) { // NOLINT
internal::ReportFailureInUnknownLocation(
TestPartResult::kFatalFailure,
FormatCxxExceptionMessage(nullptr, location));
}
return static_cast<Result>(0);
#else
return HandleSehExceptionsInMethodIfSupported(object, method, location);
#endif // GTEST_HAS_EXCEPTIONS
} else {
return (object->*method)();
}
}
} // namespace internal
// Runs the test and updates the test result.
void Test::Run() {
if (!HasSameFixtureClass()) return;
internal::UnitTestImpl* const impl = internal::GetUnitTestImpl();
impl->os_stack_trace_getter()->UponLeavingGTest();
internal::HandleExceptionsInMethodIfSupported(this, &Test::SetUp, "SetUp()");
// We will run the test only if SetUp() was successful and didn't call
// GTEST_SKIP().
if (!HasFatalFailure() && !IsSkipped()) {
impl->os_stack_trace_getter()->UponLeavingGTest();
internal::HandleExceptionsInMethodIfSupported(this, &Test::TestBody,
"the test body");
}
// However, we want to clean up as much as possible. Hence we will
// always call TearDown(), even if SetUp() or the test body has
// failed.
impl->os_stack_trace_getter()->UponLeavingGTest();
internal::HandleExceptionsInMethodIfSupported(this, &Test::TearDown,
"TearDown()");
}
// Returns true if and only if the current test has a fatal failure.
bool Test::HasFatalFailure() {
return internal::GetUnitTestImpl()->current_test_result()->HasFatalFailure();
}
// Returns true if and only if the current test has a non-fatal failure.
bool Test::HasNonfatalFailure() {
return internal::GetUnitTestImpl()
->current_test_result()
->HasNonfatalFailure();
}
// Returns true if and only if the current test was skipped.
bool Test::IsSkipped() {
return internal::GetUnitTestImpl()->current_test_result()->Skipped();
}
// class TestInfo
// Constructs a TestInfo object. It assumes ownership of the test factory
// object.
TestInfo::TestInfo(const std::string& a_test_suite_name,
const std::string& a_name, const char* a_type_param,
const char* a_value_param,
internal::CodeLocation a_code_location,
internal::TypeId fixture_class_id,
internal::TestFactoryBase* factory)
: test_suite_name_(a_test_suite_name),
name_(a_name),
type_param_(a_type_param ? new std::string(a_type_param) : nullptr),
value_param_(a_value_param ? new std::string(a_value_param) : nullptr),
location_(a_code_location),
fixture_class_id_(fixture_class_id),
should_run_(false),
is_disabled_(false),
matches_filter_(false),
is_in_another_shard_(false),
factory_(factory),
result_() {}
// Destructs a TestInfo object.
TestInfo::~TestInfo() { delete factory_; }
namespace internal {
// Creates a new TestInfo object and registers it with Google Test;
// returns the created object.
//
// Arguments:
//
// test_suite_name: name of the test suite
// name: name of the test
// type_param: the name of the test's type parameter, or NULL if
// this is not a typed or a type-parameterized test.
// value_param: text representation of the test's value parameter,
// or NULL if this is not a value-parameterized test.
// code_location: code location where the test is defined
// fixture_class_id: ID of the test fixture class
// set_up_tc: pointer to the function that sets up the test suite
// tear_down_tc: pointer to the function that tears down the test suite
// factory: pointer to the factory that creates a test object.
// The newly created TestInfo instance will assume
// ownership of the factory object.
TestInfo* MakeAndRegisterTestInfo(
const char* test_suite_name, const char* name, const char* type_param,
const char* value_param, CodeLocation code_location,
TypeId fixture_class_id, SetUpTestSuiteFunc set_up_tc,
TearDownTestSuiteFunc tear_down_tc, TestFactoryBase* factory) {
TestInfo* const test_info =
new TestInfo(test_suite_name, name, type_param, value_param,
code_location, fixture_class_id, factory);
GetUnitTestImpl()->AddTestInfo(set_up_tc, tear_down_tc, test_info);
return test_info;
}
void ReportInvalidTestSuiteType(const char* test_suite_name,
CodeLocation code_location) {
Message errors;
errors
<< "Attempted redefinition of test suite " << test_suite_name << ".\n"
<< "All tests in the same test suite must use the same test fixture\n"
<< "class. However, in test suite " << test_suite_name << ", you tried\n"
<< "to define a test using a fixture class different from the one\n"
<< "used earlier. This can happen if the two fixture classes are\n"
<< "from different namespaces and have the same name. You should\n"
<< "probably rename one of the classes to put the tests into different\n"
<< "test suites.";
GTEST_LOG_(ERROR) << FormatFileLocation(code_location.file.c_str(),
code_location.line)
<< " " << errors.GetString();
}
} // namespace internal
namespace {
// A predicate that checks the test name of a TestInfo against a known
// value.
//
// This is used for implementation of the TestSuite class only. We put
// it in the anonymous namespace to prevent polluting the outer
// namespace.
//
// TestNameIs is copyable.
class TestNameIs {
public:
// Constructor.
//
// TestNameIs has NO default constructor.
explicit TestNameIs(const char* name) : name_(name) {}
// Returns true if and only if the test name of test_info matches name_.
bool operator()(const TestInfo* test_info) const {
return test_info && test_info->name() == name_;
}
private:
std::string name_;
};
} // namespace
namespace internal {
// This method expands all parameterized tests registered with macros TEST_P
// and INSTANTIATE_TEST_SUITE_P into regular tests and registers those.
// This will be done just once during the program runtime.
void UnitTestImpl::RegisterParameterizedTests() {
if (!parameterized_tests_registered_) {
parameterized_test_registry_.RegisterTests();
type_parameterized_test_registry_.CheckForInstantiations();
parameterized_tests_registered_ = true;
}
}
} // namespace internal
// Creates the test object, runs it, records its result, and then
// deletes it.
void TestInfo::Run() {
TestEventListener* repeater = UnitTest::GetInstance()->listeners().repeater();
if (!should_run_) {
if (is_disabled_ && matches_filter_) repeater->OnTestDisabled(*this);
return;
}
// Tells UnitTest where to store test result.
internal::UnitTestImpl* const impl = internal::GetUnitTestImpl();
impl->set_current_test_info(this);
// Notifies the unit test event listeners that a test is about to start.
repeater->OnTestStart(*this);
result_.set_start_timestamp(internal::GetTimeInMillis());
internal::Timer timer;
impl->os_stack_trace_getter()->UponLeavingGTest();
// Creates the test object.
Test* const test = internal::HandleExceptionsInMethodIfSupported(
factory_, &internal::TestFactoryBase::CreateTest,
"the test fixture's constructor");
// Runs the test if the constructor didn't generate a fatal failure or invoke
// GTEST_SKIP().
// Note that the object will not be null
if (!Test::HasFatalFailure() && !Test::IsSkipped()) {
// This doesn't throw as all user code that can throw are wrapped into
// exception handling code.
test->Run();
}
if (test != nullptr) {
// Deletes the test object.
impl->os_stack_trace_getter()->UponLeavingGTest();
internal::HandleExceptionsInMethodIfSupported(
test, &Test::DeleteSelf_, "the test fixture's destructor");
}
result_.set_elapsed_time(timer.Elapsed());
// Notifies the unit test event listener that a test has just finished.
repeater->OnTestEnd(*this);
// Tells UnitTest to stop associating assertion results to this
// test.
impl->set_current_test_info(nullptr);
}
// Skip and records a skipped test result for this object.
void TestInfo::Skip() {
if (!should_run_) return;
internal::UnitTestImpl* const impl = internal::GetUnitTestImpl();
impl->set_current_test_info(this);
TestEventListener* repeater = UnitTest::GetInstance()->listeners().repeater();
// Notifies the unit test event listeners that a test is about to start.
repeater->OnTestStart(*this);
const TestPartResult test_part_result =
TestPartResult(TestPartResult::kSkip, this->file(), this->line(), "");
impl->GetTestPartResultReporterForCurrentThread()->ReportTestPartResult(
test_part_result);
// Notifies the unit test event listener that a test has just finished.
repeater->OnTestEnd(*this);
impl->set_current_test_info(nullptr);
}
// class TestSuite
// Gets the number of successful tests in this test suite.
int TestSuite::successful_test_count() const {
return CountIf(test_info_list_, TestPassed);
}
// Gets the number of successful tests in this test suite.
int TestSuite::skipped_test_count() const {
return CountIf(test_info_list_, TestSkipped);
}
// Gets the number of failed tests in this test suite.
int TestSuite::failed_test_count() const {
return CountIf(test_info_list_, TestFailed);
}
// Gets the number of disabled tests that will be reported in the XML report.
int TestSuite::reportable_disabled_test_count() const {
return CountIf(test_info_list_, TestReportableDisabled);
}
// Gets the number of disabled tests in this test suite.
int TestSuite::disabled_test_count() const {
return CountIf(test_info_list_, TestDisabled);
}
// Gets the number of tests to be printed in the XML report.
int TestSuite::reportable_test_count() const {
return CountIf(test_info_list_, TestReportable);
}
// Get the number of tests in this test suite that should run.
int TestSuite::test_to_run_count() const {
return CountIf(test_info_list_, ShouldRunTest);
}
// Gets the number of all tests.
int TestSuite::total_test_count() const {
return static_cast<int>(test_info_list_.size());
}
// Creates a TestSuite with the given name.
//
// Arguments:
//
// a_name: name of the test suite
// a_type_param: the name of the test suite's type parameter, or NULL if
// this is not a typed or a type-parameterized test suite.
// set_up_tc: pointer to the function that sets up the test suite
// tear_down_tc: pointer to the function that tears down the test suite
TestSuite::TestSuite(const char* a_name, const char* a_type_param,
internal::SetUpTestSuiteFunc set_up_tc,
internal::TearDownTestSuiteFunc tear_down_tc)
: name_(a_name),
type_param_(a_type_param ? new std::string(a_type_param) : nullptr),
set_up_tc_(set_up_tc),
tear_down_tc_(tear_down_tc),
should_run_(false),
start_timestamp_(0),
elapsed_time_(0) {}
// Destructor of TestSuite.
TestSuite::~TestSuite() {
// Deletes every Test in the collection.
ForEach(test_info_list_, internal::Delete<TestInfo>);
}
// Returns the i-th test among all the tests. i can range from 0 to
// total_test_count() - 1. If i is not in that range, returns NULL.
const TestInfo* TestSuite::GetTestInfo(int i) const {
const int index = GetElementOr(test_indices_, i, -1);
return index < 0 ? nullptr : test_info_list_[static_cast<size_t>(index)];
}
// Returns the i-th test among all the tests. i can range from 0 to
// total_test_count() - 1. If i is not in that range, returns NULL.
TestInfo* TestSuite::GetMutableTestInfo(int i) {
const int index = GetElementOr(test_indices_, i, -1);
return index < 0 ? nullptr : test_info_list_[static_cast<size_t>(index)];
}
// Adds a test to this test suite. Will delete the test upon
// destruction of the TestSuite object.
void TestSuite::AddTestInfo(TestInfo* test_info) {
test_info_list_.push_back(test_info);
test_indices_.push_back(static_cast<int>(test_indices_.size()));
}
// Runs every test in this TestSuite.
void TestSuite::Run() {
if (!should_run_) return;
internal::UnitTestImpl* const impl = internal::GetUnitTestImpl();
impl->set_current_test_suite(this);
TestEventListener* repeater = UnitTest::GetInstance()->listeners().repeater();
// Call both legacy and the new API
repeater->OnTestSuiteStart(*this);
// Legacy API is deprecated but still available
#ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
repeater->OnTestCaseStart(*this);
#endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_
impl->os_stack_trace_getter()->UponLeavingGTest();
internal::HandleExceptionsInMethodIfSupported(
this, &TestSuite::RunSetUpTestSuite, "SetUpTestSuite()");
const bool skip_all = ad_hoc_test_result().Failed();
start_timestamp_ = internal::GetTimeInMillis();
internal::Timer timer;
for (int i = 0; i < total_test_count(); i++) {
if (skip_all) {
GetMutableTestInfo(i)->Skip();
} else {
GetMutableTestInfo(i)->Run();
}
if (GTEST_FLAG_GET(fail_fast) &&
GetMutableTestInfo(i)->result()->Failed()) {
for (int j = i + 1; j < total_test_count(); j++) {
GetMutableTestInfo(j)->Skip();
}
break;
}
}
elapsed_time_ = timer.Elapsed();
impl->os_stack_trace_getter()->UponLeavingGTest();
internal::HandleExceptionsInMethodIfSupported(
this, &TestSuite::RunTearDownTestSuite, "TearDownTestSuite()");
// Call both legacy and the new API
repeater->OnTestSuiteEnd(*this);
// Legacy API is deprecated but still available
#ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
repeater->OnTestCaseEnd(*this);
#endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_
impl->set_current_test_suite(nullptr);
}
// Skips all tests under this TestSuite.
void TestSuite::Skip() {
if (!should_run_) return;
internal::UnitTestImpl* const impl = internal::GetUnitTestImpl();
impl->set_current_test_suite(this);
TestEventListener* repeater = UnitTest::GetInstance()->listeners().repeater();
// Call both legacy and the new API
repeater->OnTestSuiteStart(*this);
// Legacy API is deprecated but still available
#ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
repeater->OnTestCaseStart(*this);
#endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_
for (int i = 0; i < total_test_count(); i++) {
GetMutableTestInfo(i)->Skip();
}
// Call both legacy and the new API
repeater->OnTestSuiteEnd(*this);
// Legacy API is deprecated but still available
#ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
repeater->OnTestCaseEnd(*this);
#endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_
impl->set_current_test_suite(nullptr);
}
// Clears the results of all tests in this test suite.
void TestSuite::ClearResult() {
ad_hoc_test_result_.Clear();
ForEach(test_info_list_, TestInfo::ClearTestResult);
}
// Shuffles the tests in this test suite.
void TestSuite::ShuffleTests(internal::Random* random) {
Shuffle(random, &test_indices_);
}
// Restores the test order to before the first shuffle.
void TestSuite::UnshuffleTests() {
for (size_t i = 0; i < test_indices_.size(); i++) {
test_indices_[i] = static_cast<int>(i);
}
}
// Formats a countable noun. Depending on its quantity, either the
// singular form or the plural form is used. e.g.
//
// FormatCountableNoun(1, "formula", "formuli") returns "1 formula".
// FormatCountableNoun(5, "book", "books") returns "5 books".
static std::string FormatCountableNoun(int count, const char* singular_form,
const char* plural_form) {
return internal::StreamableToString(count) + " " +
(count == 1 ? singular_form : plural_form);
}
// Formats the count of tests.
static std::string FormatTestCount(int test_count) {
return FormatCountableNoun(test_count, "test", "tests");
}
// Formats the count of test suites.
static std::string FormatTestSuiteCount(int test_suite_count) {
return FormatCountableNoun(test_suite_count, "test suite", "test suites");
}
// Converts a TestPartResult::Type enum to human-friendly string
// representation. Both kNonFatalFailure and kFatalFailure are translated
// to "Failure", as the user usually doesn't care about the difference
// between the two when viewing the test result.
static const char* TestPartResultTypeToString(TestPartResult::Type type) {
switch (type) {
case TestPartResult::kSkip:
return "Skipped\n";
case TestPartResult::kSuccess:
return "Success";
case TestPartResult::kNonFatalFailure:
case TestPartResult::kFatalFailure:
#ifdef _MSC_VER
return "error: ";
#else
return "Failure\n";
#endif
default:
return "Unknown result type";
}
}
namespace internal {
namespace {
enum class GTestColor { kDefault, kRed, kGreen, kYellow };
} // namespace
// Prints a TestPartResult to an std::string.
static std::string PrintTestPartResultToString(
const TestPartResult& test_part_result) {
return (Message() << internal::FormatFileLocation(
test_part_result.file_name(),
test_part_result.line_number())
<< " "
<< TestPartResultTypeToString(test_part_result.type())
<< test_part_result.message())
.GetString();
}
// Prints a TestPartResult.
static void PrintTestPartResult(const TestPartResult& test_part_result) {
const std::string& result = PrintTestPartResultToString(test_part_result);
printf("%s\n", result.c_str());
fflush(stdout);
// If the test program runs in Visual Studio or a debugger, the
// following statements add the test part result message to the Output
// window such that the user can double-click on it to jump to the
// corresponding source code location; otherwise they do nothing.
#if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE
// We don't call OutputDebugString*() on Windows Mobile, as printing
// to stdout is done by OutputDebugString() there already - we don't
// want the same message printed twice.
::OutputDebugStringA(result.c_str());
::OutputDebugStringA("\n");
#endif
}
// class PrettyUnitTestResultPrinter
#if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE && !GTEST_OS_WINDOWS_PHONE && \
!GTEST_OS_WINDOWS_RT && !GTEST_OS_WINDOWS_MINGW
// Returns the character attribute for the given color.
static WORD GetColorAttribute(GTestColor color) {
switch (color) {
case GTestColor::kRed:
return FOREGROUND_RED;
case GTestColor::kGreen:
return FOREGROUND_GREEN;
case GTestColor::kYellow:
return FOREGROUND_RED | FOREGROUND_GREEN;
default:
return 0;
}
}
static int GetBitOffset(WORD color_mask) {
if (color_mask == 0) return 0;
int bitOffset = 0;
while ((color_mask & 1) == 0) {
color_mask >>= 1;
++bitOffset;
}
return bitOffset;
}
static WORD GetNewColor(GTestColor color, WORD old_color_attrs) {
// Let's reuse the BG
static const WORD background_mask = BACKGROUND_BLUE | BACKGROUND_GREEN |
BACKGROUND_RED | BACKGROUND_INTENSITY;
static const WORD foreground_mask = FOREGROUND_BLUE | FOREGROUND_GREEN |
FOREGROUND_RED | FOREGROUND_INTENSITY;
const WORD existing_bg = old_color_attrs & background_mask;
WORD new_color =
GetColorAttribute(color) | existing_bg | FOREGROUND_INTENSITY;
static const int bg_bitOffset = GetBitOffset(background_mask);
static const int fg_bitOffset = GetBitOffset(foreground_mask);
if (((new_color & background_mask) >> bg_bitOffset) ==
((new_color & foreground_mask) >> fg_bitOffset)) {
new_color ^= FOREGROUND_INTENSITY; // invert intensity
}
return new_color;
}
#else
// Returns the ANSI color code for the given color. GTestColor::kDefault is
// an invalid input.
static const char* GetAnsiColorCode(GTestColor color) {
switch (color) {
case GTestColor::kRed:
return "1";
case GTestColor::kGreen:
return "2";
case GTestColor::kYellow:
return "3";
default:
return nullptr;
}
}
#endif // GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE
// Returns true if and only if Google Test should use colors in the output.
bool ShouldUseColor(bool stdout_is_tty) {
std::string c = GTEST_FLAG_GET(color);
const char* const gtest_color = c.c_str();
if (String::CaseInsensitiveCStringEquals(gtest_color, "auto")) {
#if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MINGW
// On Windows the TERM variable is usually not set, but the
// console there does support colors.
return stdout_is_tty;
#else
// On non-Windows platforms, we rely on the TERM variable.
const char* const term = posix::GetEnv("TERM");
const bool term_supports_color =
String::CStringEquals(term, "xterm") ||
String::CStringEquals(term, "xterm-color") ||
String::CStringEquals(term, "xterm-256color") ||
String::CStringEquals(term, "screen") ||
String::CStringEquals(term, "screen-256color") ||
String::CStringEquals(term, "tmux") ||
String::CStringEquals(term, "tmux-256color") ||
String::CStringEquals(term, "rxvt-unicode") ||
String::CStringEquals(term, "rxvt-unicode-256color") ||
String::CStringEquals(term, "linux") ||
String::CStringEquals(term, "cygwin");
return stdout_is_tty && term_supports_color;
#endif // GTEST_OS_WINDOWS
}
return String::CaseInsensitiveCStringEquals(gtest_color, "yes") ||
String::CaseInsensitiveCStringEquals(gtest_color, "true") ||
String::CaseInsensitiveCStringEquals(gtest_color, "t") ||
String::CStringEquals(gtest_color, "1");
// We take "yes", "true", "t", and "1" as meaning "yes". If the
// value is neither one of these nor "auto", we treat it as "no" to
// be conservative.
}
// Helpers for printing colored strings to stdout. Note that on Windows, we
// cannot simply emit special characters and have the terminal change colors.
// This routine must actually emit the characters rather than return a string
// that would be colored when printed, as can be done on Linux.
GTEST_ATTRIBUTE_PRINTF_(2, 3)
static void ColoredPrintf(GTestColor color, const char* fmt, ...) {
va_list args;
va_start(args, fmt);
static const bool in_color_mode =
ShouldUseColor(posix::IsATTY(posix::FileNo(stdout)) != 0);
const bool use_color = in_color_mode && (color != GTestColor::kDefault);
if (!use_color) {
vprintf(fmt, args);
va_end(args);
return;
}
#if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE && !GTEST_OS_WINDOWS_PHONE && \
!GTEST_OS_WINDOWS_RT && !GTEST_OS_WINDOWS_MINGW
const HANDLE stdout_handle = GetStdHandle(STD_OUTPUT_HANDLE);
// Gets the current text color.
CONSOLE_SCREEN_BUFFER_INFO buffer_info;
GetConsoleScreenBufferInfo(stdout_handle, &buffer_info);
const WORD old_color_attrs = buffer_info.wAttributes;
const WORD new_color = GetNewColor(color, old_color_attrs);
// We need to flush the stream buffers into the console before each
// SetConsoleTextAttribute call lest it affect the text that is already
// printed but has not yet reached the console.
fflush(stdout);
SetConsoleTextAttribute(stdout_handle, new_color);
vprintf(fmt, args);
fflush(stdout);
// Restores the text color.
SetConsoleTextAttribute(stdout_handle, old_color_attrs);
#else
printf("\033[0;3%sm", GetAnsiColorCode(color));
vprintf(fmt, args);
printf("\033[m"); // Resets the terminal to default.
#endif // GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE
va_end(args);
}
// Text printed in Google Test's text output and --gtest_list_tests
// output to label the type parameter and value parameter for a test.
static const char kTypeParamLabel[] = "TypeParam";
static const char kValueParamLabel[] = "GetParam()";
static void PrintFullTestCommentIfPresent(const TestInfo& test_info) {
const char* const type_param = test_info.type_param();
const char* const value_param = test_info.value_param();
if (type_param != nullptr || value_param != nullptr) {
printf(", where ");
if (type_param != nullptr) {
printf("%s = %s", kTypeParamLabel, type_param);
if (value_param != nullptr) printf(" and ");
}
if (value_param != nullptr) {
printf("%s = %s", kValueParamLabel, value_param);
}
}
}
// This class implements the TestEventListener interface.
//
// Class PrettyUnitTestResultPrinter is copyable.
class PrettyUnitTestResultPrinter : public TestEventListener {
public:
PrettyUnitTestResultPrinter() {}
static void PrintTestName(const char* test_suite, const char* test) {
printf("%s.%s", test_suite, test);
}
// The following methods override what's in the TestEventListener class.
void OnTestProgramStart(const UnitTest& /*unit_test*/) override {}
void OnTestIterationStart(const UnitTest& unit_test, int iteration) override;
void OnEnvironmentsSetUpStart(const UnitTest& unit_test) override;
void OnEnvironmentsSetUpEnd(const UnitTest& /*unit_test*/) override {}
#ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
void OnTestCaseStart(const TestCase& test_case) override;
#else
void OnTestSuiteStart(const TestSuite& test_suite) override;
#endif // OnTestCaseStart
void OnTestStart(const TestInfo& test_info) override;
void OnTestDisabled(const TestInfo& test_info) override;
void OnTestPartResult(const TestPartResult& result) override;
void OnTestEnd(const TestInfo& test_info) override;
#ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
void OnTestCaseEnd(const TestCase& test_case) override;
#else
void OnTestSuiteEnd(const TestSuite& test_suite) override;
#endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_
void OnEnvironmentsTearDownStart(const UnitTest& unit_test) override;
void OnEnvironmentsTearDownEnd(const UnitTest& /*unit_test*/) override {}
void OnTestIterationEnd(const UnitTest& unit_test, int iteration) override;
void OnTestProgramEnd(const UnitTest& /*unit_test*/) override {}
private:
static void PrintFailedTests(const UnitTest& unit_test);
static void PrintFailedTestSuites(const UnitTest& unit_test);
static void PrintSkippedTests(const UnitTest& unit_test);
};
// Fired before each iteration of tests starts.
void PrettyUnitTestResultPrinter::OnTestIterationStart(
const UnitTest& unit_test, int iteration) {
if (GTEST_FLAG_GET(repeat) != 1)
printf("\nRepeating all tests (iteration %d) . . .\n\n", iteration + 1);
std::string f = GTEST_FLAG_GET(filter);
const char* const filter = f.c_str();
// Prints the filter if it's not *. This reminds the user that some
// tests may be skipped.
if (!String::CStringEquals(filter, kUniversalFilter)) {
ColoredPrintf(GTestColor::kYellow, "Note: %s filter = %s\n", GTEST_NAME_,
filter);
}
if (internal::ShouldShard(kTestTotalShards, kTestShardIndex, false)) {
const int32_t shard_index = Int32FromEnvOrDie(kTestShardIndex, -1);
ColoredPrintf(GTestColor::kYellow, "Note: This is test shard %d of %s.\n",
static_cast<int>(shard_index) + 1,
internal::posix::GetEnv(kTestTotalShards));
}
if (GTEST_FLAG_GET(shuffle)) {
ColoredPrintf(GTestColor::kYellow,
"Note: Randomizing tests' orders with a seed of %d .\n",
unit_test.random_seed());
}
ColoredPrintf(GTestColor::kGreen, "[==========] ");
printf("Running %s from %s.\n",
FormatTestCount(unit_test.test_to_run_count()).c_str(),
FormatTestSuiteCount(unit_test.test_suite_to_run_count()).c_str());
fflush(stdout);
}
void PrettyUnitTestResultPrinter::OnEnvironmentsSetUpStart(
const UnitTest& /*unit_test*/) {
ColoredPrintf(GTestColor::kGreen, "[----------] ");
printf("Global test environment set-up.\n");
fflush(stdout);
}
#ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
void PrettyUnitTestResultPrinter::OnTestCaseStart(const TestCase& test_case) {
const std::string counts =
FormatCountableNoun(test_case.test_to_run_count(), "test", "tests");
ColoredPrintf(GTestColor::kGreen, "[----------] ");
printf("%s from %s", counts.c_str(), test_case.name());
if (test_case.type_param() == nullptr) {
printf("\n");
} else {
printf(", where %s = %s\n", kTypeParamLabel, test_case.type_param());
}
fflush(stdout);
}
#else
void PrettyUnitTestResultPrinter::OnTestSuiteStart(
const TestSuite& test_suite) {
const std::string counts =
FormatCountableNoun(test_suite.test_to_run_count(), "test", "tests");
ColoredPrintf(GTestColor::kGreen, "[----------] ");
printf("%s from %s", counts.c_str(), test_suite.name());
if (test_suite.type_param() == nullptr) {
printf("\n");
} else {
printf(", where %s = %s\n", kTypeParamLabel, test_suite.type_param());
}
fflush(stdout);
}
#endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_
void PrettyUnitTestResultPrinter::OnTestStart(const TestInfo& test_info) {
ColoredPrintf(GTestColor::kGreen, "[ RUN ] ");
PrintTestName(test_info.test_suite_name(), test_info.name());
printf("\n");
fflush(stdout);
}
void PrettyUnitTestResultPrinter::OnTestDisabled(const TestInfo& test_info) {
ColoredPrintf(GTestColor::kYellow, "[ DISABLED ] ");
PrintTestName(test_info.test_suite_name(), test_info.name());
printf("\n");
fflush(stdout);
}
// Called after an assertion failure.
void PrettyUnitTestResultPrinter::OnTestPartResult(
const TestPartResult& result) {
switch (result.type()) {
// If the test part succeeded, we don't need to do anything.
case TestPartResult::kSuccess:
return;
default:
// Print failure message from the assertion
// (e.g. expected this and got that).
PrintTestPartResult(result);
fflush(stdout);
}
}
void PrettyUnitTestResultPrinter::OnTestEnd(const TestInfo& test_info) {
if (test_info.result()->Passed()) {
ColoredPrintf(GTestColor::kGreen, "[ OK ] ");
} else if (test_info.result()->Skipped()) {
ColoredPrintf(GTestColor::kGreen, "[ SKIPPED ] ");
} else {
ColoredPrintf(GTestColor::kRed, "[ FAILED ] ");
}
PrintTestName(test_info.test_suite_name(), test_info.name());
if (test_info.result()->Failed()) PrintFullTestCommentIfPresent(test_info);
if (GTEST_FLAG_GET(print_time)) {
printf(" (%s ms)\n",
internal::StreamableToString(test_info.result()->elapsed_time())
.c_str());
} else {
printf("\n");
}
fflush(stdout);
}
#ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
void PrettyUnitTestResultPrinter::OnTestCaseEnd(const TestCase& test_case) {
if (!GTEST_FLAG_GET(print_time)) return;
const std::string counts =
FormatCountableNoun(test_case.test_to_run_count(), "test", "tests");
ColoredPrintf(GTestColor::kGreen, "[----------] ");
printf("%s from %s (%s ms total)\n\n", counts.c_str(), test_case.name(),
internal::StreamableToString(test_case.elapsed_time()).c_str());
fflush(stdout);
}
#else
void PrettyUnitTestResultPrinter::OnTestSuiteEnd(const TestSuite& test_suite) {
if (!GTEST_FLAG_GET(print_time)) return;
const std::string counts =
FormatCountableNoun(test_suite.test_to_run_count(), "test", "tests");
ColoredPrintf(GTestColor::kGreen, "[----------] ");
printf("%s from %s (%s ms total)\n\n", counts.c_str(), test_suite.name(),
internal::StreamableToString(test_suite.elapsed_time()).c_str());
fflush(stdout);
}
#endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_
void PrettyUnitTestResultPrinter::OnEnvironmentsTearDownStart(
const UnitTest& /*unit_test*/) {
ColoredPrintf(GTestColor::kGreen, "[----------] ");
printf("Global test environment tear-down\n");
fflush(stdout);
}
// Internal helper for printing the list of failed tests.
void PrettyUnitTestResultPrinter::PrintFailedTests(const UnitTest& unit_test) {
const int failed_test_count = unit_test.failed_test_count();
ColoredPrintf(GTestColor::kRed, "[ FAILED ] ");
printf("%s, listed below:\n", FormatTestCount(failed_test_count).c_str());
for (int i = 0; i < unit_test.total_test_suite_count(); ++i) {
const TestSuite& test_suite = *unit_test.GetTestSuite(i);
if (!test_suite.should_run() || (test_suite.failed_test_count() == 0)) {
continue;
}
for (int j = 0; j < test_suite.total_test_count(); ++j) {
const TestInfo& test_info = *test_suite.GetTestInfo(j);
if (!test_info.should_run() || !test_info.result()->Failed()) {
continue;
}
ColoredPrintf(GTestColor::kRed, "[ FAILED ] ");
printf("%s.%s", test_suite.name(), test_info.name());
PrintFullTestCommentIfPresent(test_info);
printf("\n");
}
}
printf("\n%2d FAILED %s\n", failed_test_count,
failed_test_count == 1 ? "TEST" : "TESTS");
}
// Internal helper for printing the list of test suite failures not covered by
// PrintFailedTests.
void PrettyUnitTestResultPrinter::PrintFailedTestSuites(
const UnitTest& unit_test) {
int suite_failure_count = 0;
for (int i = 0; i < unit_test.total_test_suite_count(); ++i) {
const TestSuite& test_suite = *unit_test.GetTestSuite(i);
if (!test_suite.should_run()) {
continue;
}
if (test_suite.ad_hoc_test_result().Failed()) {
ColoredPrintf(GTestColor::kRed, "[ FAILED ] ");
printf("%s: SetUpTestSuite or TearDownTestSuite\n", test_suite.name());
++suite_failure_count;
}
}
if (suite_failure_count > 0) {
printf("\n%2d FAILED TEST %s\n", suite_failure_count,
suite_failure_count == 1 ? "SUITE" : "SUITES");
}
}
// Internal helper for printing the list of skipped tests.
void PrettyUnitTestResultPrinter::PrintSkippedTests(const UnitTest& unit_test) {
const int skipped_test_count = unit_test.skipped_test_count();
if (skipped_test_count == 0) {
return;
}
for (int i = 0; i < unit_test.total_test_suite_count(); ++i) {
const TestSuite& test_suite = *unit_test.GetTestSuite(i);
if (!test_suite.should_run() || (test_suite.skipped_test_count() == 0)) {
continue;
}
for (int j = 0; j < test_suite.total_test_count(); ++j) {
const TestInfo& test_info = *test_suite.GetTestInfo(j);
if (!test_info.should_run() || !test_info.result()->Skipped()) {
continue;
}
ColoredPrintf(GTestColor::kGreen, "[ SKIPPED ] ");
printf("%s.%s", test_suite.name(), test_info.name());
printf("\n");
}
}
}
void PrettyUnitTestResultPrinter::OnTestIterationEnd(const UnitTest& unit_test,
int /*iteration*/) {
ColoredPrintf(GTestColor::kGreen, "[==========] ");
printf("%s from %s ran.",
FormatTestCount(unit_test.test_to_run_count()).c_str(),
FormatTestSuiteCount(unit_test.test_suite_to_run_count()).c_str());
if (GTEST_FLAG_GET(print_time)) {
printf(" (%s ms total)",
internal::StreamableToString(unit_test.elapsed_time()).c_str());
}
printf("\n");
ColoredPrintf(GTestColor::kGreen, "[ PASSED ] ");
printf("%s.\n", FormatTestCount(unit_test.successful_test_count()).c_str());
const int skipped_test_count = unit_test.skipped_test_count();
if (skipped_test_count > 0) {
ColoredPrintf(GTestColor::kGreen, "[ SKIPPED ] ");
printf("%s, listed below:\n", FormatTestCount(skipped_test_count).c_str());
PrintSkippedTests(unit_test);
}
if (!unit_test.Passed()) {
PrintFailedTests(unit_test);
PrintFailedTestSuites(unit_test);
}
int num_disabled = unit_test.reportable_disabled_test_count();
if (num_disabled && !GTEST_FLAG_GET(also_run_disabled_tests)) {
if (unit_test.Passed()) {
printf("\n"); // Add a spacer if no FAILURE banner is displayed.
}
ColoredPrintf(GTestColor::kYellow, " YOU HAVE %d DISABLED %s\n\n",
num_disabled, num_disabled == 1 ? "TEST" : "TESTS");
}
// Ensure that Google Test output is printed before, e.g., heapchecker output.
fflush(stdout);
}
// End PrettyUnitTestResultPrinter
// This class implements the TestEventListener interface.
//
// Class BriefUnitTestResultPrinter is copyable.
class BriefUnitTestResultPrinter : public TestEventListener {
public:
BriefUnitTestResultPrinter() {}
static void PrintTestName(const char* test_suite, const char* test) {
printf("%s.%s", test_suite, test);
}
// The following methods override what's in the TestEventListener class.
void OnTestProgramStart(const UnitTest& /*unit_test*/) override {}
void OnTestIterationStart(const UnitTest& /*unit_test*/,
int /*iteration*/) override {}
void OnEnvironmentsSetUpStart(const UnitTest& /*unit_test*/) override {}
void OnEnvironmentsSetUpEnd(const UnitTest& /*unit_test*/) override {}
#ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
void OnTestCaseStart(const TestCase& /*test_case*/) override {}
#else
void OnTestSuiteStart(const TestSuite& /*test_suite*/) override {}
#endif // OnTestCaseStart
void OnTestStart(const TestInfo& /*test_info*/) override {}
void OnTestDisabled(const TestInfo& /*test_info*/) override {}
void OnTestPartResult(const TestPartResult& result) override;
void OnTestEnd(const TestInfo& test_info) override;
#ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
void OnTestCaseEnd(const TestCase& /*test_case*/) override {}
#else
void OnTestSuiteEnd(const TestSuite& /*test_suite*/) override {}
#endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_
void OnEnvironmentsTearDownStart(const UnitTest& /*unit_test*/) override {}
void OnEnvironmentsTearDownEnd(const UnitTest& /*unit_test*/) override {}
void OnTestIterationEnd(const UnitTest& unit_test, int iteration) override;
void OnTestProgramEnd(const UnitTest& /*unit_test*/) override {}
};
// Called after an assertion failure.
void BriefUnitTestResultPrinter::OnTestPartResult(
const TestPartResult& result) {
switch (result.type()) {
// If the test part succeeded, we don't need to do anything.
case TestPartResult::kSuccess:
return;
default:
// Print failure message from the assertion
// (e.g. expected this and got that).
PrintTestPartResult(result);
fflush(stdout);
}
}
void BriefUnitTestResultPrinter::OnTestEnd(const TestInfo& test_info) {
if (test_info.result()->Failed()) {
ColoredPrintf(GTestColor::kRed, "[ FAILED ] ");
PrintTestName(test_info.test_suite_name(), test_info.name());
PrintFullTestCommentIfPresent(test_info);
if (GTEST_FLAG_GET(print_time)) {
printf(" (%s ms)\n",
internal::StreamableToString(test_info.result()->elapsed_time())
.c_str());
} else {
printf("\n");
}
fflush(stdout);
}
}
void BriefUnitTestResultPrinter::OnTestIterationEnd(const UnitTest& unit_test,
int /*iteration*/) {
ColoredPrintf(GTestColor::kGreen, "[==========] ");
printf("%s from %s ran.",
FormatTestCount(unit_test.test_to_run_count()).c_str(),
FormatTestSuiteCount(unit_test.test_suite_to_run_count()).c_str());
if (GTEST_FLAG_GET(print_time)) {
printf(" (%s ms total)",
internal::StreamableToString(unit_test.elapsed_time()).c_str());
}
printf("\n");
ColoredPrintf(GTestColor::kGreen, "[ PASSED ] ");
printf("%s.\n", FormatTestCount(unit_test.successful_test_count()).c_str());
const int skipped_test_count = unit_test.skipped_test_count();
if (skipped_test_count > 0) {
ColoredPrintf(GTestColor::kGreen, "[ SKIPPED ] ");
printf("%s.\n", FormatTestCount(skipped_test_count).c_str());
}
int num_disabled = unit_test.reportable_disabled_test_count();
if (num_disabled && !GTEST_FLAG_GET(also_run_disabled_tests)) {
if (unit_test.Passed()) {
printf("\n"); // Add a spacer if no FAILURE banner is displayed.
}
ColoredPrintf(GTestColor::kYellow, " YOU HAVE %d DISABLED %s\n\n",
num_disabled, num_disabled == 1 ? "TEST" : "TESTS");
}
// Ensure that Google Test output is printed before, e.g., heapchecker output.
fflush(stdout);
}
// End BriefUnitTestResultPrinter
// class TestEventRepeater
//
// This class forwards events to other event listeners.
class TestEventRepeater : public TestEventListener {
public:
TestEventRepeater() : forwarding_enabled_(true) {}
~TestEventRepeater() override;
void Append(TestEventListener* listener);
TestEventListener* Release(TestEventListener* listener);
// Controls whether events will be forwarded to listeners_. Set to false
// in death test child processes.
bool forwarding_enabled() const { return forwarding_enabled_; }
void set_forwarding_enabled(bool enable) { forwarding_enabled_ = enable; }
void OnTestProgramStart(const UnitTest& unit_test) override;
void OnTestIterationStart(const UnitTest& unit_test, int iteration) override;
void OnEnvironmentsSetUpStart(const UnitTest& unit_test) override;
void OnEnvironmentsSetUpEnd(const UnitTest& unit_test) override;
// Legacy API is deprecated but still available
#ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
void OnTestCaseStart(const TestSuite& parameter) override;
#endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_
void OnTestSuiteStart(const TestSuite& parameter) override;
void OnTestStart(const TestInfo& test_info) override;
void OnTestDisabled(const TestInfo& test_info) override;
void OnTestPartResult(const TestPartResult& result) override;
void OnTestEnd(const TestInfo& test_info) override;
// Legacy API is deprecated but still available
#ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
void OnTestCaseEnd(const TestCase& parameter) override;
#endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_
void OnTestSuiteEnd(const TestSuite& parameter) override;
void OnEnvironmentsTearDownStart(const UnitTest& unit_test) override;
void OnEnvironmentsTearDownEnd(const UnitTest& unit_test) override;
void OnTestIterationEnd(const UnitTest& unit_test, int iteration) override;
void OnTestProgramEnd(const UnitTest& unit_test) override;
private:
// Controls whether events will be forwarded to listeners_. Set to false
// in death test child processes.
bool forwarding_enabled_;
// The list of listeners that receive events.
std::vector<TestEventListener*> listeners_;
TestEventRepeater(const TestEventRepeater&) = delete;
TestEventRepeater& operator=(const TestEventRepeater&) = delete;
};
TestEventRepeater::~TestEventRepeater() {
ForEach(listeners_, Delete<TestEventListener>);
}
void TestEventRepeater::Append(TestEventListener* listener) {
listeners_.push_back(listener);
}
TestEventListener* TestEventRepeater::Release(TestEventListener* listener) {
for (size_t i = 0; i < listeners_.size(); ++i) {
if (listeners_[i] == listener) {
listeners_.erase(listeners_.begin() + static_cast<int>(i));
return listener;
}
}
return nullptr;
}
// Since most methods are very similar, use macros to reduce boilerplate.
// This defines a member that forwards the call to all listeners.
#define GTEST_REPEATER_METHOD_(Name, Type) \
void TestEventRepeater::Name(const Type& parameter) { \
if (forwarding_enabled_) { \
for (size_t i = 0; i < listeners_.size(); i++) { \
listeners_[i]->Name(parameter); \
} \
} \
}
// This defines a member that forwards the call to all listeners in reverse
// order.
#define GTEST_REVERSE_REPEATER_METHOD_(Name, Type) \
void TestEventRepeater::Name(const Type& parameter) { \
if (forwarding_enabled_) { \
for (size_t i = listeners_.size(); i != 0; i--) { \
listeners_[i - 1]->Name(parameter); \
} \
} \
}
GTEST_REPEATER_METHOD_(OnTestProgramStart, UnitTest)
GTEST_REPEATER_METHOD_(OnEnvironmentsSetUpStart, UnitTest)
// Legacy API is deprecated but still available
#ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
GTEST_REPEATER_METHOD_(OnTestCaseStart, TestSuite)
#endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_
GTEST_REPEATER_METHOD_(OnTestSuiteStart, TestSuite)
GTEST_REPEATER_METHOD_(OnTestStart, TestInfo)
GTEST_REPEATER_METHOD_(OnTestDisabled, TestInfo)
GTEST_REPEATER_METHOD_(OnTestPartResult, TestPartResult)
GTEST_REPEATER_METHOD_(OnEnvironmentsTearDownStart, UnitTest)
GTEST_REVERSE_REPEATER_METHOD_(OnEnvironmentsSetUpEnd, UnitTest)
GTEST_REVERSE_REPEATER_METHOD_(OnEnvironmentsTearDownEnd, UnitTest)
GTEST_REVERSE_REPEATER_METHOD_(OnTestEnd, TestInfo)
// Legacy API is deprecated but still available
#ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
GTEST_REVERSE_REPEATER_METHOD_(OnTestCaseEnd, TestSuite)
#endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_
GTEST_REVERSE_REPEATER_METHOD_(OnTestSuiteEnd, TestSuite)
GTEST_REVERSE_REPEATER_METHOD_(OnTestProgramEnd, UnitTest)
#undef GTEST_REPEATER_METHOD_
#undef GTEST_REVERSE_REPEATER_METHOD_
void TestEventRepeater::OnTestIterationStart(const UnitTest& unit_test,
int iteration) {
if (forwarding_enabled_) {
for (size_t i = 0; i < listeners_.size(); i++) {
listeners_[i]->OnTestIterationStart(unit_test, iteration);
}
}
}
void TestEventRepeater::OnTestIterationEnd(const UnitTest& unit_test,
int iteration) {
if (forwarding_enabled_) {
for (size_t i = listeners_.size(); i > 0; i--) {
listeners_[i - 1]->OnTestIterationEnd(unit_test, iteration);
}
}
}
// End TestEventRepeater
// This class generates an XML output file.
class XmlUnitTestResultPrinter : public EmptyTestEventListener {
public:
explicit XmlUnitTestResultPrinter(const char* output_file);
void OnTestIterationEnd(const UnitTest& unit_test, int iteration) override;
void ListTestsMatchingFilter(const std::vector<TestSuite*>& test_suites);
// Prints an XML summary of all unit tests.
static void PrintXmlTestsList(std::ostream* stream,
const std::vector<TestSuite*>& test_suites);
private:
// Is c a whitespace character that is normalized to a space character
// when it appears in an XML attribute value?
static bool IsNormalizableWhitespace(unsigned char c) {
return c == '\t' || c == '\n' || c == '\r';
}
// May c appear in a well-formed XML document?
// https://www.w3.org/TR/REC-xml/#charsets
static bool IsValidXmlCharacter(unsigned char c) {
return IsNormalizableWhitespace(c) || c >= 0x20;
}
// Returns an XML-escaped copy of the input string str. If
// is_attribute is true, the text is meant to appear as an attribute
// value, and normalizable whitespace is preserved by replacing it
// with character references.
static std::string EscapeXml(const std::string& str, bool is_attribute);
// Returns the given string with all characters invalid in XML removed.
static std::string RemoveInvalidXmlCharacters(const std::string& str);
// Convenience wrapper around EscapeXml when str is an attribute value.
static std::string EscapeXmlAttribute(const std::string& str) {
return EscapeXml(str, true);
}
// Convenience wrapper around EscapeXml when str is not an attribute value.
static std::string EscapeXmlText(const char* str) {
return EscapeXml(str, false);
}
// Verifies that the given attribute belongs to the given element and
// streams the attribute as XML.
static void OutputXmlAttribute(std::ostream* stream,
const std::string& element_name,
const std::string& name,
const std::string& value);
// Streams an XML CDATA section, escaping invalid CDATA sequences as needed.
static void OutputXmlCDataSection(::std::ostream* stream, const char* data);
// Streams a test suite XML stanza containing the given test result.
//
// Requires: result.Failed()
static void OutputXmlTestSuiteForTestResult(::std::ostream* stream,
const TestResult& result);
// Streams an XML representation of a TestResult object.
static void OutputXmlTestResult(::std::ostream* stream,
const TestResult& result);
// Streams an XML representation of a TestInfo object.
static void OutputXmlTestInfo(::std::ostream* stream,
const char* test_suite_name,
const TestInfo& test_info);
// Prints an XML representation of a TestSuite object
static void PrintXmlTestSuite(::std::ostream* stream,
const TestSuite& test_suite);
// Prints an XML summary of unit_test to output stream out.
static void PrintXmlUnitTest(::std::ostream* stream,
const UnitTest& unit_test);
// Produces a string representing the test properties in a result as space
// delimited XML attributes based on the property key="value" pairs.
// When the std::string is not empty, it includes a space at the beginning,
// to delimit this attribute from prior attributes.
static std::string TestPropertiesAsXmlAttributes(const TestResult& result);
// Streams an XML representation of the test properties of a TestResult
// object.
static void OutputXmlTestProperties(std::ostream* stream,
const TestResult& result);
// The output file.
const std::string output_file_;
XmlUnitTestResultPrinter(const XmlUnitTestResultPrinter&) = delete;
XmlUnitTestResultPrinter& operator=(const XmlUnitTestResultPrinter&) = delete;
};
// Creates a new XmlUnitTestResultPrinter.
XmlUnitTestResultPrinter::XmlUnitTestResultPrinter(const char* output_file)
: output_file_(output_file) {
if (output_file_.empty()) {
GTEST_LOG_(FATAL) << "XML output file may not be null";
}
}
// Called after the unit test ends.
void XmlUnitTestResultPrinter::OnTestIterationEnd(const UnitTest& unit_test,
int /*iteration*/) {
FILE* xmlout = OpenFileForWriting(output_file_);
std::stringstream stream;
PrintXmlUnitTest(&stream, unit_test);
fprintf(xmlout, "%s", StringStreamToString(&stream).c_str());
fclose(xmlout);
}
void XmlUnitTestResultPrinter::ListTestsMatchingFilter(
const std::vector<TestSuite*>& test_suites) {
FILE* xmlout = OpenFileForWriting(output_file_);
std::stringstream stream;
PrintXmlTestsList(&stream, test_suites);
fprintf(xmlout, "%s", StringStreamToString(&stream).c_str());
fclose(xmlout);
}
// Returns an XML-escaped copy of the input string str. If is_attribute
// is true, the text is meant to appear as an attribute value, and
// normalizable whitespace is preserved by replacing it with character
// references.
//
// Invalid XML characters in str, if any, are stripped from the output.
// It is expected that most, if not all, of the text processed by this
// module will consist of ordinary English text.
// If this module is ever modified to produce version 1.1 XML output,
// most invalid characters can be retained using character references.
std::string XmlUnitTestResultPrinter::EscapeXml(const std::string& str,
bool is_attribute) {
Message m;
for (size_t i = 0; i < str.size(); ++i) {
const char ch = str[i];
switch (ch) {
case '<':
m << "&lt;";
break;
case '>':
m << "&gt;";
break;
case '&':
m << "&amp;";
break;
case '\'':
if (is_attribute)
m << "&apos;";
else
m << '\'';
break;
case '"':
if (is_attribute)
m << "&quot;";
else
m << '"';
break;
default:
if (IsValidXmlCharacter(static_cast<unsigned char>(ch))) {
if (is_attribute &&
IsNormalizableWhitespace(static_cast<unsigned char>(ch)))
m << "&#x" << String::FormatByte(static_cast<unsigned char>(ch))
<< ";";
else
m << ch;
}
break;
}
}
return m.GetString();
}
// Returns the given string with all characters invalid in XML removed.
// Currently invalid characters are dropped from the string. An
// alternative is to replace them with certain characters such as . or ?.
std::string XmlUnitTestResultPrinter::RemoveInvalidXmlCharacters(
const std::string& str) {
std::string output;
output.reserve(str.size());
for (std::string::const_iterator it = str.begin(); it != str.end(); ++it)
if (IsValidXmlCharacter(static_cast<unsigned char>(*it)))
output.push_back(*it);
return output;
}
// The following routines generate an XML representation of a UnitTest
// object.
//
// This is how Google Test concepts map to the DTD:
//
// <testsuites name="AllTests"> <-- corresponds to a UnitTest object
// <testsuite name="testcase-name"> <-- corresponds to a TestSuite object
// <testcase name="test-name"> <-- corresponds to a TestInfo object
// <failure message="...">...</failure>
// <failure message="...">...</failure>
// <failure message="...">...</failure>
// <-- individual assertion failures
// </testcase>
// </testsuite>
// </testsuites>
// Formats the given time in milliseconds as seconds.
std::string FormatTimeInMillisAsSeconds(TimeInMillis ms) {
::std::stringstream ss;
ss << (static_cast<double>(ms) * 1e-3);
return ss.str();
}
static bool PortableLocaltime(time_t seconds, struct tm* out) {
#if defined(_MSC_VER)
return localtime_s(out, &seconds) == 0;
#elif defined(__MINGW32__) || defined(__MINGW64__)
// MINGW <time.h> provides neither localtime_r nor localtime_s, but uses
// Windows' localtime(), which has a thread-local tm buffer.
struct tm* tm_ptr = localtime(&seconds); // NOLINT
if (tm_ptr == nullptr) return false;
*out = *tm_ptr;
return true;
#elif defined(__STDC_LIB_EXT1__)
// Uses localtime_s when available as localtime_r is only available from
// C23 standard.
return localtime_s(&seconds, out) != nullptr;
#else
return localtime_r(&seconds, out) != nullptr;
#endif
}
// Converts the given epoch time in milliseconds to a date string in the ISO
// 8601 format, without the timezone information.
std::string FormatEpochTimeInMillisAsIso8601(TimeInMillis ms) {
struct tm time_struct;
if (!PortableLocaltime(static_cast<time_t>(ms / 1000), &time_struct))
return "";
// YYYY-MM-DDThh:mm:ss.sss
return StreamableToString(time_struct.tm_year + 1900) + "-" +
String::FormatIntWidth2(time_struct.tm_mon + 1) + "-" +
String::FormatIntWidth2(time_struct.tm_mday) + "T" +
String::FormatIntWidth2(time_struct.tm_hour) + ":" +
String::FormatIntWidth2(time_struct.tm_min) + ":" +
String::FormatIntWidth2(time_struct.tm_sec) + "." +
String::FormatIntWidthN(static_cast<int>(ms % 1000), 3);
}
// Streams an XML CDATA section, escaping invalid CDATA sequences as needed.
void XmlUnitTestResultPrinter::OutputXmlCDataSection(::std::ostream* stream,
const char* data) {
const char* segment = data;
*stream << "<![CDATA[";
for (;;) {
const char* const next_segment = strstr(segment, "]]>");
if (next_segment != nullptr) {
stream->write(segment,
static_cast<std::streamsize>(next_segment - segment));
*stream << "]]>]]&gt;<![CDATA[";
segment = next_segment + strlen("]]>");
} else {
*stream << segment;
break;
}
}
*stream << "]]>";
}
void XmlUnitTestResultPrinter::OutputXmlAttribute(
std::ostream* stream, const std::string& element_name,
const std::string& name, const std::string& value) {
const std::vector<std::string>& allowed_names =
GetReservedOutputAttributesForElement(element_name);
GTEST_CHECK_(std::find(allowed_names.begin(), allowed_names.end(), name) !=
allowed_names.end())
<< "Attribute " << name << " is not allowed for element <" << element_name
<< ">.";
*stream << " " << name << "=\"" << EscapeXmlAttribute(value) << "\"";
}
// Streams a test suite XML stanza containing the given test result.
void XmlUnitTestResultPrinter::OutputXmlTestSuiteForTestResult(
::std::ostream* stream, const TestResult& result) {
// Output the boilerplate for a minimal test suite with one test.
*stream << " <testsuite";
OutputXmlAttribute(stream, "testsuite", "name", "NonTestSuiteFailure");
OutputXmlAttribute(stream, "testsuite", "tests", "1");
OutputXmlAttribute(stream, "testsuite", "failures", "1");
OutputXmlAttribute(stream, "testsuite", "disabled", "0");
OutputXmlAttribute(stream, "testsuite", "skipped", "0");
OutputXmlAttribute(stream, "testsuite", "errors", "0");
OutputXmlAttribute(stream, "testsuite", "time",
FormatTimeInMillisAsSeconds(result.elapsed_time()));
OutputXmlAttribute(
stream, "testsuite", "timestamp",
FormatEpochTimeInMillisAsIso8601(result.start_timestamp()));
*stream << ">";
// Output the boilerplate for a minimal test case with a single test.
*stream << " <testcase";
OutputXmlAttribute(stream, "testcase", "name", "");
OutputXmlAttribute(stream, "testcase", "status", "run");
OutputXmlAttribute(stream, "testcase", "result", "completed");
OutputXmlAttribute(stream, "testcase", "classname", "");
OutputXmlAttribute(stream, "testcase", "time",
FormatTimeInMillisAsSeconds(result.elapsed_time()));
OutputXmlAttribute(
stream, "testcase", "timestamp",
FormatEpochTimeInMillisAsIso8601(result.start_timestamp()));
// Output the actual test result.
OutputXmlTestResult(stream, result);
// Complete the test suite.
*stream << " </testsuite>\n";
}
// Prints an XML representation of a TestInfo object.
void XmlUnitTestResultPrinter::OutputXmlTestInfo(::std::ostream* stream,
const char* test_suite_name,
const TestInfo& test_info) {
const TestResult& result = *test_info.result();
const std::string kTestsuite = "testcase";
if (test_info.is_in_another_shard()) {
return;
}
*stream << " <testcase";
OutputXmlAttribute(stream, kTestsuite, "name", test_info.name());
if (test_info.value_param() != nullptr) {
OutputXmlAttribute(stream, kTestsuite, "value_param",
test_info.value_param());
}
if (test_info.type_param() != nullptr) {
OutputXmlAttribute(stream, kTestsuite, "type_param",
test_info.type_param());
}
OutputXmlAttribute(stream, kTestsuite, "file", test_info.file());
OutputXmlAttribute(stream, kTestsuite, "line",
StreamableToString(test_info.line()));
if (GTEST_FLAG_GET(list_tests)) {
*stream << " />\n";
return;
}
OutputXmlAttribute(stream, kTestsuite, "status",
test_info.should_run() ? "run" : "notrun");
OutputXmlAttribute(stream, kTestsuite, "result",
test_info.should_run()
? (result.Skipped() ? "skipped" : "completed")
: "suppressed");
OutputXmlAttribute(stream, kTestsuite, "time",
FormatTimeInMillisAsSeconds(result.elapsed_time()));
OutputXmlAttribute(
stream, kTestsuite, "timestamp",
FormatEpochTimeInMillisAsIso8601(result.start_timestamp()));
OutputXmlAttribute(stream, kTestsuite, "classname", test_suite_name);
OutputXmlTestResult(stream, result);
}
void XmlUnitTestResultPrinter::OutputXmlTestResult(::std::ostream* stream,
const TestResult& result) {
int failures = 0;
int skips = 0;
for (int i = 0; i < result.total_part_count(); ++i) {
const TestPartResult& part = result.GetTestPartResult(i);
if (part.failed()) {
if (++failures == 1 && skips == 0) {
*stream << ">\n";
}
const std::string location =
internal::FormatCompilerIndependentFileLocation(part.file_name(),
part.line_number());
const std::string summary = location + "\n" + part.summary();
*stream << " <failure message=\"" << EscapeXmlAttribute(summary)
<< "\" type=\"\">";
const std::string detail = location + "\n" + part.message();
OutputXmlCDataSection(stream, RemoveInvalidXmlCharacters(detail).c_str());
*stream << "</failure>\n";
} else if (part.skipped()) {
if (++skips == 1 && failures == 0) {
*stream << ">\n";
}
const std::string location =
internal::FormatCompilerIndependentFileLocation(part.file_name(),
part.line_number());
const std::string summary = location + "\n" + part.summary();
*stream << " <skipped message=\""
<< EscapeXmlAttribute(summary.c_str()) << "\">";
const std::string detail = location + "\n" + part.message();
OutputXmlCDataSection(stream, RemoveInvalidXmlCharacters(detail).c_str());
*stream << "</skipped>\n";
}
}
if (failures == 0 && skips == 0 && result.test_property_count() == 0) {
*stream << " />\n";
} else {
if (failures == 0 && skips == 0) {
*stream << ">\n";
}
OutputXmlTestProperties(stream, result);
*stream << " </testcase>\n";
}
}
// Prints an XML representation of a TestSuite object
void XmlUnitTestResultPrinter::PrintXmlTestSuite(std::ostream* stream,
const TestSuite& test_suite) {
const std::string kTestsuite = "testsuite";
*stream << " <" << kTestsuite;
OutputXmlAttribute(stream, kTestsuite, "name", test_suite.name());
OutputXmlAttribute(stream, kTestsuite, "tests",
StreamableToString(test_suite.reportable_test_count()));
if (!GTEST_FLAG_GET(list_tests)) {
OutputXmlAttribute(stream, kTestsuite, "failures",
StreamableToString(test_suite.failed_test_count()));
OutputXmlAttribute(
stream, kTestsuite, "disabled",
StreamableToString(test_suite.reportable_disabled_test_count()));
OutputXmlAttribute(stream, kTestsuite, "skipped",
StreamableToString(test_suite.skipped_test_count()));
OutputXmlAttribute(stream, kTestsuite, "errors", "0");
OutputXmlAttribute(stream, kTestsuite, "time",
FormatTimeInMillisAsSeconds(test_suite.elapsed_time()));
OutputXmlAttribute(
stream, kTestsuite, "timestamp",
FormatEpochTimeInMillisAsIso8601(test_suite.start_timestamp()));
*stream << TestPropertiesAsXmlAttributes(test_suite.ad_hoc_test_result());
}
*stream << ">\n";
for (int i = 0; i < test_suite.total_test_count(); ++i) {
if (test_suite.GetTestInfo(i)->is_reportable())
OutputXmlTestInfo(stream, test_suite.name(), *test_suite.GetTestInfo(i));
}
*stream << " </" << kTestsuite << ">\n";
}
// Prints an XML summary of unit_test to output stream out.
void XmlUnitTestResultPrinter::PrintXmlUnitTest(std::ostream* stream,
const UnitTest& unit_test) {
const std::string kTestsuites = "testsuites";
*stream << "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n";
*stream << "<" << kTestsuites;
OutputXmlAttribute(stream, kTestsuites, "tests",
StreamableToString(unit_test.reportable_test_count()));
OutputXmlAttribute(stream, kTestsuites, "failures",
StreamableToString(unit_test.failed_test_count()));
OutputXmlAttribute(
stream, kTestsuites, "disabled",
StreamableToString(unit_test.reportable_disabled_test_count()));
OutputXmlAttribute(stream, kTestsuites, "errors", "0");
OutputXmlAttribute(stream, kTestsuites, "time",
FormatTimeInMillisAsSeconds(unit_test.elapsed_time()));
OutputXmlAttribute(
stream, kTestsuites, "timestamp",
FormatEpochTimeInMillisAsIso8601(unit_test.start_timestamp()));
if (GTEST_FLAG_GET(shuffle)) {
OutputXmlAttribute(stream, kTestsuites, "random_seed",
StreamableToString(unit_test.random_seed()));
}
*stream << TestPropertiesAsXmlAttributes(unit_test.ad_hoc_test_result());
OutputXmlAttribute(stream, kTestsuites, "name", "AllTests");
*stream << ">\n";
for (int i = 0; i < unit_test.total_test_suite_count(); ++i) {
if (unit_test.GetTestSuite(i)->reportable_test_count() > 0)
PrintXmlTestSuite(stream, *unit_test.GetTestSuite(i));
}
// If there was a test failure outside of one of the test suites (like in a
// test environment) include that in the output.
if (unit_test.ad_hoc_test_result().Failed()) {
OutputXmlTestSuiteForTestResult(stream, unit_test.ad_hoc_test_result());
}
*stream << "</" << kTestsuites << ">\n";
}
void XmlUnitTestResultPrinter::PrintXmlTestsList(
std::ostream* stream, const std::vector<TestSuite*>& test_suites) {
const std::string kTestsuites = "testsuites";
*stream << "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n";
*stream << "<" << kTestsuites;
int total_tests = 0;
for (auto test_suite : test_suites) {
total_tests += test_suite->total_test_count();
}
OutputXmlAttribute(stream, kTestsuites, "tests",
StreamableToString(total_tests));
OutputXmlAttribute(stream, kTestsuites, "name", "AllTests");
*stream << ">\n";
for (auto test_suite : test_suites) {
PrintXmlTestSuite(stream, *test_suite);
}
*stream << "</" << kTestsuites << ">\n";
}
// Produces a string representing the test properties in a result as space
// delimited XML attributes based on the property key="value" pairs.
std::string XmlUnitTestResultPrinter::TestPropertiesAsXmlAttributes(
const TestResult& result) {
Message attributes;
for (int i = 0; i < result.test_property_count(); ++i) {
const TestProperty& property = result.GetTestProperty(i);
attributes << " " << property.key() << "="
<< "\"" << EscapeXmlAttribute(property.value()) << "\"";
}
return attributes.GetString();
}
void XmlUnitTestResultPrinter::OutputXmlTestProperties(
std::ostream* stream, const TestResult& result) {
const std::string kProperties = "properties";
const std::string kProperty = "property";
if (result.test_property_count() <= 0) {
return;
}
*stream << " <" << kProperties << ">\n";
for (int i = 0; i < result.test_property_count(); ++i) {
const TestProperty& property = result.GetTestProperty(i);
*stream << " <" << kProperty;
*stream << " name=\"" << EscapeXmlAttribute(property.key()) << "\"";
*stream << " value=\"" << EscapeXmlAttribute(property.value()) << "\"";
*stream << "/>\n";
}
*stream << " </" << kProperties << ">\n";
}
// End XmlUnitTestResultPrinter
// This class generates an JSON output file.
class JsonUnitTestResultPrinter : public EmptyTestEventListener {
public:
explicit JsonUnitTestResultPrinter(const char* output_file);
void OnTestIterationEnd(const UnitTest& unit_test, int iteration) override;
// Prints an JSON summary of all unit tests.
static void PrintJsonTestList(::std::ostream* stream,
const std::vector<TestSuite*>& test_suites);
private:
// Returns an JSON-escaped copy of the input string str.
static std::string EscapeJson(const std::string& str);
//// Verifies that the given attribute belongs to the given element and
//// streams the attribute as JSON.
static void OutputJsonKey(std::ostream* stream,
const std::string& element_name,
const std::string& name, const std::string& value,
const std::string& indent, bool comma = true);
static void OutputJsonKey(std::ostream* stream,
const std::string& element_name,
const std::string& name, int value,
const std::string& indent, bool comma = true);
// Streams a test suite JSON stanza containing the given test result.
//
// Requires: result.Failed()
static void OutputJsonTestSuiteForTestResult(::std::ostream* stream,
const TestResult& result);
// Streams a JSON representation of a TestResult object.
static void OutputJsonTestResult(::std::ostream* stream,
const TestResult& result);
// Streams a JSON representation of a TestInfo object.
static void OutputJsonTestInfo(::std::ostream* stream,
const char* test_suite_name,
const TestInfo& test_info);
// Prints a JSON representation of a TestSuite object
static void PrintJsonTestSuite(::std::ostream* stream,
const TestSuite& test_suite);
// Prints a JSON summary of unit_test to output stream out.
static void PrintJsonUnitTest(::std::ostream* stream,
const UnitTest& unit_test);
// Produces a string representing the test properties in a result as
// a JSON dictionary.
static std::string TestPropertiesAsJson(const TestResult& result,
const std::string& indent);
// The output file.
const std::string output_file_;
JsonUnitTestResultPrinter(const JsonUnitTestResultPrinter&) = delete;
JsonUnitTestResultPrinter& operator=(const JsonUnitTestResultPrinter&) =
delete;
};
// Creates a new JsonUnitTestResultPrinter.
JsonUnitTestResultPrinter::JsonUnitTestResultPrinter(const char* output_file)
: output_file_(output_file) {
if (output_file_.empty()) {
GTEST_LOG_(FATAL) << "JSON output file may not be null";
}
}
void JsonUnitTestResultPrinter::OnTestIterationEnd(const UnitTest& unit_test,
int /*iteration*/) {
FILE* jsonout = OpenFileForWriting(output_file_);
std::stringstream stream;
PrintJsonUnitTest(&stream, unit_test);
fprintf(jsonout, "%s", StringStreamToString(&stream).c_str());
fclose(jsonout);
}
// Returns an JSON-escaped copy of the input string str.
std::string JsonUnitTestResultPrinter::EscapeJson(const std::string& str) {
Message m;
for (size_t i = 0; i < str.size(); ++i) {
const char ch = str[i];
switch (ch) {
case '\\':
case '"':
case '/':
m << '\\' << ch;
break;
case '\b':
m << "\\b";
break;
case '\t':
m << "\\t";
break;
case '\n':
m << "\\n";
break;
case '\f':
m << "\\f";
break;
case '\r':
m << "\\r";
break;
default:
if (ch < ' ') {
m << "\\u00" << String::FormatByte(static_cast<unsigned char>(ch));
} else {
m << ch;
}
break;
}
}
return m.GetString();
}
// The following routines generate an JSON representation of a UnitTest
// object.
// Formats the given time in milliseconds as seconds.
static std::string FormatTimeInMillisAsDuration(TimeInMillis ms) {
::std::stringstream ss;
ss << (static_cast<double>(ms) * 1e-3) << "s";
return ss.str();
}
// Converts the given epoch time in milliseconds to a date string in the
// RFC3339 format, without the timezone information.
static std::string FormatEpochTimeInMillisAsRFC3339(TimeInMillis ms) {
struct tm time_struct;
if (!PortableLocaltime(static_cast<time_t>(ms / 1000), &time_struct))
return "";
// YYYY-MM-DDThh:mm:ss
return StreamableToString(time_struct.tm_year + 1900) + "-" +
String::FormatIntWidth2(time_struct.tm_mon + 1) + "-" +
String::FormatIntWidth2(time_struct.tm_mday) + "T" +
String::FormatIntWidth2(time_struct.tm_hour) + ":" +
String::FormatIntWidth2(time_struct.tm_min) + ":" +
String::FormatIntWidth2(time_struct.tm_sec) + "Z";
}
static inline std::string Indent(size_t width) {
return std::string(width, ' ');
}
void JsonUnitTestResultPrinter::OutputJsonKey(std::ostream* stream,
const std::string& element_name,
const std::string& name,
const std::string& value,
const std::string& indent,
bool comma) {
const std::vector<std::string>& allowed_names =
GetReservedOutputAttributesForElement(element_name);
GTEST_CHECK_(std::find(allowed_names.begin(), allowed_names.end(), name) !=
allowed_names.end())
<< "Key \"" << name << "\" is not allowed for value \"" << element_name
<< "\".";
*stream << indent << "\"" << name << "\": \"" << EscapeJson(value) << "\"";
if (comma) *stream << ",\n";
}
void JsonUnitTestResultPrinter::OutputJsonKey(
std::ostream* stream, const std::string& element_name,
const std::string& name, int value, const std::string& indent, bool comma) {
const std::vector<std::string>& allowed_names =
GetReservedOutputAttributesForElement(element_name);
GTEST_CHECK_(std::find(allowed_names.begin(), allowed_names.end(), name) !=
allowed_names.end())
<< "Key \"" << name << "\" is not allowed for value \"" << element_name
<< "\".";
*stream << indent << "\"" << name << "\": " << StreamableToString(value);
if (comma) *stream << ",\n";
}
// Streams a test suite JSON stanza containing the given test result.
void JsonUnitTestResultPrinter::OutputJsonTestSuiteForTestResult(
::std::ostream* stream, const TestResult& result) {
// Output the boilerplate for a new test suite.
*stream << Indent(4) << "{\n";
OutputJsonKey(stream, "testsuite", "name", "NonTestSuiteFailure", Indent(6));
OutputJsonKey(stream, "testsuite", "tests", 1, Indent(6));
if (!GTEST_FLAG_GET(list_tests)) {
OutputJsonKey(stream, "testsuite", "failures", 1, Indent(6));
OutputJsonKey(stream, "testsuite", "disabled", 0, Indent(6));
OutputJsonKey(stream, "testsuite", "skipped", 0, Indent(6));
OutputJsonKey(stream, "testsuite", "errors", 0, Indent(6));
OutputJsonKey(stream, "testsuite", "time",
FormatTimeInMillisAsDuration(result.elapsed_time()),
Indent(6));
OutputJsonKey(stream, "testsuite", "timestamp",
FormatEpochTimeInMillisAsRFC3339(result.start_timestamp()),
Indent(6));
}
*stream << Indent(6) << "\"testsuite\": [\n";
// Output the boilerplate for a new test case.
*stream << Indent(8) << "{\n";
OutputJsonKey(stream, "testcase", "name", "", Indent(10));
OutputJsonKey(stream, "testcase", "status", "RUN", Indent(10));
OutputJsonKey(stream, "testcase", "result", "COMPLETED", Indent(10));
OutputJsonKey(stream, "testcase", "timestamp",
FormatEpochTimeInMillisAsRFC3339(result.start_timestamp()),
Indent(10));
OutputJsonKey(stream, "testcase", "time",
FormatTimeInMillisAsDuration(result.elapsed_time()),
Indent(10));
OutputJsonKey(stream, "testcase", "classname", "", Indent(10), false);
*stream << TestPropertiesAsJson(result, Indent(10));
// Output the actual test result.
OutputJsonTestResult(stream, result);
// Finish the test suite.
*stream << "\n" << Indent(6) << "]\n" << Indent(4) << "}";
}
// Prints a JSON representation of a TestInfo object.
void JsonUnitTestResultPrinter::OutputJsonTestInfo(::std::ostream* stream,
const char* test_suite_name,
const TestInfo& test_info) {
const TestResult& result = *test_info.result();
const std::string kTestsuite = "testcase";
const std::string kIndent = Indent(10);
*stream << Indent(8) << "{\n";
OutputJsonKey(stream, kTestsuite, "name", test_info.name(), kIndent);
if (test_info.value_param() != nullptr) {
OutputJsonKey(stream, kTestsuite, "value_param", test_info.value_param(),
kIndent);
}
if (test_info.type_param() != nullptr) {
OutputJsonKey(stream, kTestsuite, "type_param", test_info.type_param(),
kIndent);
}
OutputJsonKey(stream, kTestsuite, "file", test_info.file(), kIndent);
OutputJsonKey(stream, kTestsuite, "line", test_info.line(), kIndent, false);
if (GTEST_FLAG_GET(list_tests)) {
*stream << "\n" << Indent(8) << "}";
return;
} else {
*stream << ",\n";
}
OutputJsonKey(stream, kTestsuite, "status",
test_info.should_run() ? "RUN" : "NOTRUN", kIndent);
OutputJsonKey(stream, kTestsuite, "result",
test_info.should_run()
? (result.Skipped() ? "SKIPPED" : "COMPLETED")
: "SUPPRESSED",
kIndent);
OutputJsonKey(stream, kTestsuite, "timestamp",
FormatEpochTimeInMillisAsRFC3339(result.start_timestamp()),
kIndent);
OutputJsonKey(stream, kTestsuite, "time",
FormatTimeInMillisAsDuration(result.elapsed_time()), kIndent);
OutputJsonKey(stream, kTestsuite, "classname", test_suite_name, kIndent,
false);
*stream << TestPropertiesAsJson(result, kIndent);
OutputJsonTestResult(stream, result);
}
void JsonUnitTestResultPrinter::OutputJsonTestResult(::std::ostream* stream,
const TestResult& result) {
const std::string kIndent = Indent(10);
int failures = 0;
for (int i = 0; i < result.total_part_count(); ++i) {
const TestPartResult& part = result.GetTestPartResult(i);
if (part.failed()) {
*stream << ",\n";
if (++failures == 1) {
*stream << kIndent << "\""
<< "failures"
<< "\": [\n";
}
const std::string location =
internal::FormatCompilerIndependentFileLocation(part.file_name(),
part.line_number());
const std::string message = EscapeJson(location + "\n" + part.message());
*stream << kIndent << " {\n"
<< kIndent << " \"failure\": \"" << message << "\",\n"
<< kIndent << " \"type\": \"\"\n"
<< kIndent << " }";
}
}
if (failures > 0) *stream << "\n" << kIndent << "]";
*stream << "\n" << Indent(8) << "}";
}
// Prints an JSON representation of a TestSuite object
void JsonUnitTestResultPrinter::PrintJsonTestSuite(
std::ostream* stream, const TestSuite& test_suite) {
const std::string kTestsuite = "testsuite";
const std::string kIndent = Indent(6);
*stream << Indent(4) << "{\n";
OutputJsonKey(stream, kTestsuite, "name", test_suite.name(), kIndent);
OutputJsonKey(stream, kTestsuite, "tests", test_suite.reportable_test_count(),
kIndent);
if (!GTEST_FLAG_GET(list_tests)) {
OutputJsonKey(stream, kTestsuite, "failures",
test_suite.failed_test_count(), kIndent);
OutputJsonKey(stream, kTestsuite, "disabled",
test_suite.reportable_disabled_test_count(), kIndent);
OutputJsonKey(stream, kTestsuite, "errors", 0, kIndent);
OutputJsonKey(
stream, kTestsuite, "timestamp",
FormatEpochTimeInMillisAsRFC3339(test_suite.start_timestamp()),
kIndent);
OutputJsonKey(stream, kTestsuite, "time",
FormatTimeInMillisAsDuration(test_suite.elapsed_time()),
kIndent, false);
*stream << TestPropertiesAsJson(test_suite.ad_hoc_test_result(), kIndent)
<< ",\n";
}
*stream << kIndent << "\"" << kTestsuite << "\": [\n";
bool comma = false;
for (int i = 0; i < test_suite.total_test_count(); ++i) {
if (test_suite.GetTestInfo(i)->is_reportable()) {
if (comma) {
*stream << ",\n";
} else {
comma = true;
}
OutputJsonTestInfo(stream, test_suite.name(), *test_suite.GetTestInfo(i));
}
}
*stream << "\n" << kIndent << "]\n" << Indent(4) << "}";
}
// Prints a JSON summary of unit_test to output stream out.
void JsonUnitTestResultPrinter::PrintJsonUnitTest(std::ostream* stream,
const UnitTest& unit_test) {
const std::string kTestsuites = "testsuites";
const std::string kIndent = Indent(2);
*stream << "{\n";
OutputJsonKey(stream, kTestsuites, "tests", unit_test.reportable_test_count(),
kIndent);
OutputJsonKey(stream, kTestsuites, "failures", unit_test.failed_test_count(),
kIndent);
OutputJsonKey(stream, kTestsuites, "disabled",
unit_test.reportable_disabled_test_count(), kIndent);
OutputJsonKey(stream, kTestsuites, "errors", 0, kIndent);
if (GTEST_FLAG_GET(shuffle)) {
OutputJsonKey(stream, kTestsuites, "random_seed", unit_test.random_seed(),
kIndent);
}
OutputJsonKey(stream, kTestsuites, "timestamp",
FormatEpochTimeInMillisAsRFC3339(unit_test.start_timestamp()),
kIndent);
OutputJsonKey(stream, kTestsuites, "time",
FormatTimeInMillisAsDuration(unit_test.elapsed_time()), kIndent,
false);
*stream << TestPropertiesAsJson(unit_test.ad_hoc_test_result(), kIndent)
<< ",\n";
OutputJsonKey(stream, kTestsuites, "name", "AllTests", kIndent);
*stream << kIndent << "\"" << kTestsuites << "\": [\n";
bool comma = false;
for (int i = 0; i < unit_test.total_test_suite_count(); ++i) {
if (unit_test.GetTestSuite(i)->reportable_test_count() > 0) {
if (comma) {
*stream << ",\n";
} else {
comma = true;
}
PrintJsonTestSuite(stream, *unit_test.GetTestSuite(i));
}
}
// If there was a test failure outside of one of the test suites (like in a
// test environment) include that in the output.
if (unit_test.ad_hoc_test_result().Failed()) {
OutputJsonTestSuiteForTestResult(stream, unit_test.ad_hoc_test_result());
}
*stream << "\n"
<< kIndent << "]\n"
<< "}\n";
}
void JsonUnitTestResultPrinter::PrintJsonTestList(
std::ostream* stream, const std::vector<TestSuite*>& test_suites) {
const std::string kTestsuites = "testsuites";
const std::string kIndent = Indent(2);
*stream << "{\n";
int total_tests = 0;
for (auto test_suite : test_suites) {
total_tests += test_suite->total_test_count();
}
OutputJsonKey(stream, kTestsuites, "tests", total_tests, kIndent);
OutputJsonKey(stream, kTestsuites, "name", "AllTests", kIndent);
*stream << kIndent << "\"" << kTestsuites << "\": [\n";
for (size_t i = 0; i < test_suites.size(); ++i) {
if (i != 0) {
*stream << ",\n";
}
PrintJsonTestSuite(stream, *test_suites[i]);
}
*stream << "\n"
<< kIndent << "]\n"
<< "}\n";
}
// Produces a string representing the test properties in a result as
// a JSON dictionary.
std::string JsonUnitTestResultPrinter::TestPropertiesAsJson(
const TestResult& result, const std::string& indent) {
Message attributes;
for (int i = 0; i < result.test_property_count(); ++i) {
const TestProperty& property = result.GetTestProperty(i);
attributes << ",\n"
<< indent << "\"" << property.key() << "\": "
<< "\"" << EscapeJson(property.value()) << "\"";
}
return attributes.GetString();
}
// End JsonUnitTestResultPrinter
#if GTEST_CAN_STREAM_RESULTS_
// Checks if str contains '=', '&', '%' or '\n' characters. If yes,
// replaces them by "%xx" where xx is their hexadecimal value. For
// example, replaces "=" with "%3D". This algorithm is O(strlen(str))
// in both time and space -- important as the input str may contain an
// arbitrarily long test failure message and stack trace.
std::string StreamingListener::UrlEncode(const char* str) {
std::string result;
result.reserve(strlen(str) + 1);
for (char ch = *str; ch != '\0'; ch = *++str) {
switch (ch) {
case '%':
case '=':
case '&':
case '\n':
result.append("%" + String::FormatByte(static_cast<unsigned char>(ch)));
break;
default:
result.push_back(ch);
break;
}
}
return result;
}
void StreamingListener::SocketWriter::MakeConnection() {
GTEST_CHECK_(sockfd_ == -1)
<< "MakeConnection() can't be called when there is already a connection.";
addrinfo hints;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC; // To allow both IPv4 and IPv6 addresses.
hints.ai_socktype = SOCK_STREAM;
addrinfo* servinfo = nullptr;
// Use the getaddrinfo() to get a linked list of IP addresses for
// the given host name.
const int error_num =
getaddrinfo(host_name_.c_str(), port_num_.c_str(), &hints, &servinfo);
if (error_num != 0) {
GTEST_LOG_(WARNING) << "stream_result_to: getaddrinfo() failed: "
<< gai_strerror(error_num);
}
// Loop through all the results and connect to the first we can.
for (addrinfo* cur_addr = servinfo; sockfd_ == -1 && cur_addr != nullptr;
cur_addr = cur_addr->ai_next) {
sockfd_ = socket(cur_addr->ai_family, cur_addr->ai_socktype,
cur_addr->ai_protocol);
if (sockfd_ != -1) {
// Connect the client socket to the server socket.
if (connect(sockfd_, cur_addr->ai_addr, cur_addr->ai_addrlen) == -1) {
close(sockfd_);
sockfd_ = -1;
}
}
}
freeaddrinfo(servinfo); // all done with this structure
if (sockfd_ == -1) {
GTEST_LOG_(WARNING) << "stream_result_to: failed to connect to "
<< host_name_ << ":" << port_num_;
}
}
// End of class Streaming Listener
#endif // GTEST_CAN_STREAM_RESULTS__
// class OsStackTraceGetter
const char* const OsStackTraceGetterInterface::kElidedFramesMarker =
"... " GTEST_NAME_ " internal frames ...";
std::string OsStackTraceGetter::CurrentStackTrace(int max_depth, int skip_count)
GTEST_LOCK_EXCLUDED_(mutex_) {
#if GTEST_HAS_ABSL
std::string result;
if (max_depth <= 0) {
return result;
}
max_depth = std::min(max_depth, kMaxStackTraceDepth);
std::vector<void*> raw_stack(max_depth);
// Skips the frames requested by the caller, plus this function.
const int raw_stack_size =
absl::GetStackTrace(&raw_stack[0], max_depth, skip_count + 1);
void* caller_frame = nullptr;
{
MutexLock lock(&mutex_);
caller_frame = caller_frame_;
}
for (int i = 0; i < raw_stack_size; ++i) {
if (raw_stack[i] == caller_frame &&
!GTEST_FLAG_GET(show_internal_stack_frames)) {
// Add a marker to the trace and stop adding frames.
absl::StrAppend(&result, kElidedFramesMarker, "\n");
break;
}
char tmp[1024];
const char* symbol = "(unknown)";
if (absl::Symbolize(raw_stack[i], tmp, sizeof(tmp))) {
symbol = tmp;
}
char line[1024];
snprintf(line, sizeof(line), " %p: %s\n", raw_stack[i], symbol);
result += line;
}
return result;
#else // !GTEST_HAS_ABSL
static_cast<void>(max_depth);
static_cast<void>(skip_count);
return "";
#endif // GTEST_HAS_ABSL
}
void OsStackTraceGetter::UponLeavingGTest() GTEST_LOCK_EXCLUDED_(mutex_) {
#if GTEST_HAS_ABSL
void* caller_frame = nullptr;
if (absl::GetStackTrace(&caller_frame, 1, 3) <= 0) {
caller_frame = nullptr;
}
MutexLock lock(&mutex_);
caller_frame_ = caller_frame;
#endif // GTEST_HAS_ABSL
}
// A helper class that creates the premature-exit file in its
// constructor and deletes the file in its destructor.
class ScopedPrematureExitFile {
public:
explicit ScopedPrematureExitFile(const char* premature_exit_filepath)
: premature_exit_filepath_(
premature_exit_filepath ? premature_exit_filepath : "") {
// If a path to the premature-exit file is specified...
if (!premature_exit_filepath_.empty()) {
// create the file with a single "0" character in it. I/O
// errors are ignored as there's nothing better we can do and we
// don't want to fail the test because of this.
FILE* pfile = posix::FOpen(premature_exit_filepath_.c_str(), "w");
fwrite("0", 1, 1, pfile);
fclose(pfile);
}
}
~ScopedPrematureExitFile() {
#if !defined GTEST_OS_ESP8266
if (!premature_exit_filepath_.empty()) {
int retval = remove(premature_exit_filepath_.c_str());
if (retval) {
GTEST_LOG_(ERROR) << "Failed to remove premature exit filepath \""
<< premature_exit_filepath_ << "\" with error "
<< retval;
}
}
#endif
}
private:
const std::string premature_exit_filepath_;
ScopedPrematureExitFile(const ScopedPrematureExitFile&) = delete;
ScopedPrematureExitFile& operator=(const ScopedPrematureExitFile&) = delete;
};
} // namespace internal
// class TestEventListeners
TestEventListeners::TestEventListeners()
: repeater_(new internal::TestEventRepeater()),
default_result_printer_(nullptr),
default_xml_generator_(nullptr) {}
TestEventListeners::~TestEventListeners() { delete repeater_; }
// Returns the standard listener responsible for the default console
// output. Can be removed from the listeners list to shut down default
// console output. Note that removing this object from the listener list
// with Release transfers its ownership to the user.
void TestEventListeners::Append(TestEventListener* listener) {
repeater_->Append(listener);
}
// Removes the given event listener from the list and returns it. It then
// becomes the caller's responsibility to delete the listener. Returns
// NULL if the listener is not found in the list.
TestEventListener* TestEventListeners::Release(TestEventListener* listener) {
if (listener == default_result_printer_)
default_result_printer_ = nullptr;
else if (listener == default_xml_generator_)
default_xml_generator_ = nullptr;
return repeater_->Release(listener);
}
// Returns repeater that broadcasts the TestEventListener events to all
// subscribers.
TestEventListener* TestEventListeners::repeater() { return repeater_; }
// Sets the default_result_printer attribute to the provided listener.
// The listener is also added to the listener list and previous
// default_result_printer is removed from it and deleted. The listener can
// also be NULL in which case it will not be added to the list. Does
// nothing if the previous and the current listener objects are the same.
void TestEventListeners::SetDefaultResultPrinter(TestEventListener* listener) {
if (default_result_printer_ != listener) {
// It is an error to pass this method a listener that is already in the
// list.
delete Release(default_result_printer_);
default_result_printer_ = listener;
if (listener != nullptr) Append(listener);
}
}
// Sets the default_xml_generator attribute to the provided listener. The
// listener is also added to the listener list and previous
// default_xml_generator is removed from it and deleted. The listener can
// also be NULL in which case it will not be added to the list. Does
// nothing if the previous and the current listener objects are the same.
void TestEventListeners::SetDefaultXmlGenerator(TestEventListener* listener) {
if (default_xml_generator_ != listener) {
// It is an error to pass this method a listener that is already in the
// list.
delete Release(default_xml_generator_);
default_xml_generator_ = listener;
if (listener != nullptr) Append(listener);
}
}
// Controls whether events will be forwarded by the repeater to the
// listeners in the list.
bool TestEventListeners::EventForwardingEnabled() const {
return repeater_->forwarding_enabled();
}
void TestEventListeners::SuppressEventForwarding() {
repeater_->set_forwarding_enabled(false);
}
// class UnitTest
// Gets the singleton UnitTest object. The first time this method is
// called, a UnitTest object is constructed and returned. Consecutive
// calls will return the same object.
//
// We don't protect this under mutex_ as a user is not supposed to
// call this before main() starts, from which point on the return
// value will never change.
UnitTest* UnitTest::GetInstance() {
// CodeGear C++Builder insists on a public destructor for the
// default implementation. Use this implementation to keep good OO
// design with private destructor.
#if defined(__BORLANDC__)
static UnitTest* const instance = new UnitTest;
return instance;
#else
static UnitTest instance;
return &instance;
#endif // defined(__BORLANDC__)
}
// Gets the number of successful test suites.
int UnitTest::successful_test_suite_count() const {
return impl()->successful_test_suite_count();
}
// Gets the number of failed test suites.
int UnitTest::failed_test_suite_count() const {
return impl()->failed_test_suite_count();
}
// Gets the number of all test suites.
int UnitTest::total_test_suite_count() const {
return impl()->total_test_suite_count();
}
// Gets the number of all test suites that contain at least one test
// that should run.
int UnitTest::test_suite_to_run_count() const {
return impl()->test_suite_to_run_count();
}
// Legacy API is deprecated but still available
#ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
int UnitTest::successful_test_case_count() const {
return impl()->successful_test_suite_count();
}
int UnitTest::failed_test_case_count() const {
return impl()->failed_test_suite_count();
}
int UnitTest::total_test_case_count() const {
return impl()->total_test_suite_count();
}
int UnitTest::test_case_to_run_count() const {
return impl()->test_suite_to_run_count();
}
#endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_
// Gets the number of successful tests.
int UnitTest::successful_test_count() const {
return impl()->successful_test_count();
}
// Gets the number of skipped tests.
int UnitTest::skipped_test_count() const {
return impl()->skipped_test_count();
}
// Gets the number of failed tests.
int UnitTest::failed_test_count() const { return impl()->failed_test_count(); }
// Gets the number of disabled tests that will be reported in the XML report.
int UnitTest::reportable_disabled_test_count() const {
return impl()->reportable_disabled_test_count();
}
// Gets the number of disabled tests.
int UnitTest::disabled_test_count() const {
return impl()->disabled_test_count();
}
// Gets the number of tests to be printed in the XML report.
int UnitTest::reportable_test_count() const {
return impl()->reportable_test_count();
}
// Gets the number of all tests.
int UnitTest::total_test_count() const { return impl()->total_test_count(); }
// Gets the number of tests that should run.
int UnitTest::test_to_run_count() const { return impl()->test_to_run_count(); }
// Gets the time of the test program start, in ms from the start of the
// UNIX epoch.
internal::TimeInMillis UnitTest::start_timestamp() const {
return impl()->start_timestamp();
}
// Gets the elapsed time, in milliseconds.
internal::TimeInMillis UnitTest::elapsed_time() const {
return impl()->elapsed_time();
}
// Returns true if and only if the unit test passed (i.e. all test suites
// passed).
bool UnitTest::Passed() const { return impl()->Passed(); }
// Returns true if and only if the unit test failed (i.e. some test suite
// failed or something outside of all tests failed).
bool UnitTest::Failed() const { return impl()->Failed(); }
// Gets the i-th test suite among all the test suites. i can range from 0 to
// total_test_suite_count() - 1. If i is not in that range, returns NULL.
const TestSuite* UnitTest::GetTestSuite(int i) const {
return impl()->GetTestSuite(i);
}
// Legacy API is deprecated but still available
#ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
const TestCase* UnitTest::GetTestCase(int i) const {
return impl()->GetTestCase(i);
}
#endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_
// Returns the TestResult containing information on test failures and
// properties logged outside of individual test suites.
const TestResult& UnitTest::ad_hoc_test_result() const {
return *impl()->ad_hoc_test_result();
}
// Gets the i-th test suite among all the test suites. i can range from 0 to
// total_test_suite_count() - 1. If i is not in that range, returns NULL.
TestSuite* UnitTest::GetMutableTestSuite(int i) {
return impl()->GetMutableSuiteCase(i);
}
// Returns the list of event listeners that can be used to track events
// inside Google Test.
TestEventListeners& UnitTest::listeners() { return *impl()->listeners(); }
// Registers and returns a global test environment. When a test
// program is run, all global test environments will be set-up in the
// order they were registered. After all tests in the program have
// finished, all global test environments will be torn-down in the
// *reverse* order they were registered.
//
// The UnitTest object takes ownership of the given environment.
//
// We don't protect this under mutex_, as we only support calling it
// from the main thread.
Environment* UnitTest::AddEnvironment(Environment* env) {
if (env == nullptr) {
return nullptr;
}
impl_->environments().push_back(env);
return env;
}
// Adds a TestPartResult to the current TestResult object. All Google Test
// assertion macros (e.g. ASSERT_TRUE, EXPECT_EQ, etc) eventually call
// this to report their results. The user code should use the
// assertion macros instead of calling this directly.
void UnitTest::AddTestPartResult(TestPartResult::Type result_type,
const char* file_name, int line_number,
const std::string& message,
const std::string& os_stack_trace)
GTEST_LOCK_EXCLUDED_(mutex_) {
Message msg;
msg << message;
internal::MutexLock lock(&mutex_);
if (impl_->gtest_trace_stack().size() > 0) {
msg << "\n" << GTEST_NAME_ << " trace:";
for (size_t i = impl_->gtest_trace_stack().size(); i > 0; --i) {
const internal::TraceInfo& trace = impl_->gtest_trace_stack()[i - 1];
msg << "\n"
<< internal::FormatFileLocation(trace.file, trace.line) << " "
<< trace.message;
}
}
if (os_stack_trace.c_str() != nullptr && !os_stack_trace.empty()) {
msg << internal::kStackTraceMarker << os_stack_trace;
}
const TestPartResult result = TestPartResult(
result_type, file_name, line_number, msg.GetString().c_str());
impl_->GetTestPartResultReporterForCurrentThread()->ReportTestPartResult(
result);
if (result_type != TestPartResult::kSuccess &&
result_type != TestPartResult::kSkip) {
// gtest_break_on_failure takes precedence over
// gtest_throw_on_failure. This allows a user to set the latter
// in the code (perhaps in order to use Google Test assertions
// with another testing framework) and specify the former on the
// command line for debugging.
if (GTEST_FLAG_GET(break_on_failure)) {
#if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_PHONE && !GTEST_OS_WINDOWS_RT
// Using DebugBreak on Windows allows gtest to still break into a debugger
// when a failure happens and both the --gtest_break_on_failure and
// the --gtest_catch_exceptions flags are specified.
DebugBreak();
#elif (!defined(__native_client__)) && \
((defined(__clang__) || defined(__GNUC__)) && \
(defined(__x86_64__) || defined(__i386__)))
// with clang/gcc we can achieve the same effect on x86 by invoking int3
asm("int3");
#else
// Dereference nullptr through a volatile pointer to prevent the compiler
// from removing. We use this rather than abort() or __builtin_trap() for
// portability: some debuggers don't correctly trap abort().
*static_cast<volatile int*>(nullptr) = 1;
#endif // GTEST_OS_WINDOWS
} else if (GTEST_FLAG_GET(throw_on_failure)) {
#if GTEST_HAS_EXCEPTIONS
throw internal::GoogleTestFailureException(result);
#else
// We cannot call abort() as it generates a pop-up in debug mode
// that cannot be suppressed in VC 7.1 or below.
exit(1);
#endif
}
}
}
// Adds a TestProperty to the current TestResult object when invoked from
// inside a test, to current TestSuite's ad_hoc_test_result_ when invoked
// from SetUpTestSuite or TearDownTestSuite, or to the global property set
// when invoked elsewhere. If the result already contains a property with
// the same key, the value will be updated.
void UnitTest::RecordProperty(const std::string& key,
const std::string& value) {
impl_->RecordProperty(TestProperty(key, value));
}
// Runs all tests in this UnitTest object and prints the result.
// Returns 0 if successful, or 1 otherwise.
//
// We don't protect this under mutex_, as we only support calling it
// from the main thread.
int UnitTest::Run() {
const bool in_death_test_child_process =
GTEST_FLAG_GET(internal_run_death_test).length() > 0;
// Google Test implements this protocol for catching that a test
// program exits before returning control to Google Test:
//
// 1. Upon start, Google Test creates a file whose absolute path
// is specified by the environment variable
// TEST_PREMATURE_EXIT_FILE.
// 2. When Google Test has finished its work, it deletes the file.
//
// This allows a test runner to set TEST_PREMATURE_EXIT_FILE before
// running a Google-Test-based test program and check the existence
// of the file at the end of the test execution to see if it has
// exited prematurely.
// If we are in the child process of a death test, don't
// create/delete the premature exit file, as doing so is unnecessary
// and will confuse the parent process. Otherwise, create/delete
// the file upon entering/leaving this function. If the program
// somehow exits before this function has a chance to return, the
// premature-exit file will be left undeleted, causing a test runner
// that understands the premature-exit-file protocol to report the
// test as having failed.
const internal::ScopedPrematureExitFile premature_exit_file(
in_death_test_child_process
? nullptr
: internal::posix::GetEnv("TEST_PREMATURE_EXIT_FILE"));
// Captures the value of GTEST_FLAG(catch_exceptions). This value will be
// used for the duration of the program.
impl()->set_catch_exceptions(GTEST_FLAG_GET(catch_exceptions));
#if GTEST_OS_WINDOWS
// Either the user wants Google Test to catch exceptions thrown by the
// tests or this is executing in the context of death test child
// process. In either case the user does not want to see pop-up dialogs
// about crashes - they are expected.
if (impl()->catch_exceptions() || in_death_test_child_process) {
#if !GTEST_OS_WINDOWS_MOBILE && !GTEST_OS_WINDOWS_PHONE && !GTEST_OS_WINDOWS_RT
// SetErrorMode doesn't exist on CE.
SetErrorMode(SEM_FAILCRITICALERRORS | SEM_NOALIGNMENTFAULTEXCEPT |
SEM_NOGPFAULTERRORBOX | SEM_NOOPENFILEERRORBOX);
#endif // !GTEST_OS_WINDOWS_MOBILE
#if (defined(_MSC_VER) || GTEST_OS_WINDOWS_MINGW) && !GTEST_OS_WINDOWS_MOBILE
// Death test children can be terminated with _abort(). On Windows,
// _abort() can show a dialog with a warning message. This forces the
// abort message to go to stderr instead.
_set_error_mode(_OUT_TO_STDERR);
#endif
#if defined(_MSC_VER) && !GTEST_OS_WINDOWS_MOBILE
// In the debug version, Visual Studio pops up a separate dialog
// offering a choice to debug the aborted program. We need to suppress
// this dialog or it will pop up for every EXPECT/ASSERT_DEATH statement
// executed. Google Test will notify the user of any unexpected
// failure via stderr.
if (!GTEST_FLAG_GET(break_on_failure))
_set_abort_behavior(
0x0, // Clear the following flags:
_WRITE_ABORT_MSG | _CALL_REPORTFAULT); // pop-up window, core dump.
// In debug mode, the Windows CRT can crash with an assertion over invalid
// input (e.g. passing an invalid file descriptor). The default handling
// for these assertions is to pop up a dialog and wait for user input.
// Instead ask the CRT to dump such assertions to stderr non-interactively.
if (!IsDebuggerPresent()) {
(void)_CrtSetReportMode(_CRT_ASSERT,
_CRTDBG_MODE_FILE | _CRTDBG_MODE_DEBUG);
(void)_CrtSetReportFile(_CRT_ASSERT, _CRTDBG_FILE_STDERR);
}
#endif
}
#endif // GTEST_OS_WINDOWS
return internal::HandleExceptionsInMethodIfSupported(
impl(), &internal::UnitTestImpl::RunAllTests,
"auxiliary test code (environments or event listeners)")
? 0
: 1;
}
// Returns the working directory when the first TEST() or TEST_F() was
// executed.
const char* UnitTest::original_working_dir() const {
return impl_->original_working_dir_.c_str();
}
// Returns the TestSuite object for the test that's currently running,
// or NULL if no test is running.
const TestSuite* UnitTest::current_test_suite() const
GTEST_LOCK_EXCLUDED_(mutex_) {
internal::MutexLock lock(&mutex_);
return impl_->current_test_suite();
}
// Legacy API is still available but deprecated
#ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
const TestCase* UnitTest::current_test_case() const
GTEST_LOCK_EXCLUDED_(mutex_) {
internal::MutexLock lock(&mutex_);
return impl_->current_test_suite();
}
#endif
// Returns the TestInfo object for the test that's currently running,
// or NULL if no test is running.
const TestInfo* UnitTest::current_test_info() const
GTEST_LOCK_EXCLUDED_(mutex_) {
internal::MutexLock lock(&mutex_);
return impl_->current_test_info();
}
// Returns the random seed used at the start of the current test run.
int UnitTest::random_seed() const { return impl_->random_seed(); }
// Returns ParameterizedTestSuiteRegistry object used to keep track of
// value-parameterized tests and instantiate and register them.
internal::ParameterizedTestSuiteRegistry&
UnitTest::parameterized_test_registry() GTEST_LOCK_EXCLUDED_(mutex_) {
return impl_->parameterized_test_registry();
}
// Creates an empty UnitTest.
UnitTest::UnitTest() { impl_ = new internal::UnitTestImpl(this); }
// Destructor of UnitTest.
UnitTest::~UnitTest() { delete impl_; }
// Pushes a trace defined by SCOPED_TRACE() on to the per-thread
// Google Test trace stack.
void UnitTest::PushGTestTrace(const internal::TraceInfo& trace)
GTEST_LOCK_EXCLUDED_(mutex_) {
internal::MutexLock lock(&mutex_);
impl_->gtest_trace_stack().push_back(trace);
}
// Pops a trace from the per-thread Google Test trace stack.
void UnitTest::PopGTestTrace() GTEST_LOCK_EXCLUDED_(mutex_) {
internal::MutexLock lock(&mutex_);
impl_->gtest_trace_stack().pop_back();
}
namespace internal {
UnitTestImpl::UnitTestImpl(UnitTest* parent)
: parent_(parent),
GTEST_DISABLE_MSC_WARNINGS_PUSH_(4355 /* using this in initializer */)
default_global_test_part_result_reporter_(this),
default_per_thread_test_part_result_reporter_(this),
GTEST_DISABLE_MSC_WARNINGS_POP_() global_test_part_result_repoter_(
&default_global_test_part_result_reporter_),
per_thread_test_part_result_reporter_(
&default_per_thread_test_part_result_reporter_),
parameterized_test_registry_(),
parameterized_tests_registered_(false),
last_death_test_suite_(-1),
current_test_suite_(nullptr),
current_test_info_(nullptr),
ad_hoc_test_result_(),
os_stack_trace_getter_(nullptr),
post_flag_parse_init_performed_(false),
random_seed_(0), // Will be overridden by the flag before first use.
random_(0), // Will be reseeded before first use.
start_timestamp_(0),
elapsed_time_(0),
#if GTEST_HAS_DEATH_TEST
death_test_factory_(new DefaultDeathTestFactory),
#endif
// Will be overridden by the flag before first use.
catch_exceptions_(false) {
listeners()->SetDefaultResultPrinter(new PrettyUnitTestResultPrinter);
}
UnitTestImpl::~UnitTestImpl() {
// Deletes every TestSuite.
ForEach(test_suites_, internal::Delete<TestSuite>);
// Deletes every Environment.
ForEach(environments_, internal::Delete<Environment>);
delete os_stack_trace_getter_;
}
// Adds a TestProperty to the current TestResult object when invoked in a
// context of a test, to current test suite's ad_hoc_test_result when invoke
// from SetUpTestSuite/TearDownTestSuite, or to the global property set
// otherwise. If the result already contains a property with the same key,
// the value will be updated.
void UnitTestImpl::RecordProperty(const TestProperty& test_property) {
std::string xml_element;
TestResult* test_result; // TestResult appropriate for property recording.
if (current_test_info_ != nullptr) {
xml_element = "testcase";
test_result = &(current_test_info_->result_);
} else if (current_test_suite_ != nullptr) {
xml_element = "testsuite";
test_result = &(current_test_suite_->ad_hoc_test_result_);
} else {
xml_element = "testsuites";
test_result = &ad_hoc_test_result_;
}
test_result->RecordProperty(xml_element, test_property);
}
#if GTEST_HAS_DEATH_TEST
// Disables event forwarding if the control is currently in a death test
// subprocess. Must not be called before InitGoogleTest.
void UnitTestImpl::SuppressTestEventsIfInSubprocess() {
if (internal_run_death_test_flag_.get() != nullptr)
listeners()->SuppressEventForwarding();
}
#endif // GTEST_HAS_DEATH_TEST
// Initializes event listeners performing XML output as specified by
// UnitTestOptions. Must not be called before InitGoogleTest.
void UnitTestImpl::ConfigureXmlOutput() {
const std::string& output_format = UnitTestOptions::GetOutputFormat();
if (output_format == "xml") {
listeners()->SetDefaultXmlGenerator(new XmlUnitTestResultPrinter(
UnitTestOptions::GetAbsolutePathToOutputFile().c_str()));
} else if (output_format == "json") {
listeners()->SetDefaultXmlGenerator(new JsonUnitTestResultPrinter(
UnitTestOptions::GetAbsolutePathToOutputFile().c_str()));
} else if (output_format != "") {
GTEST_LOG_(WARNING) << "WARNING: unrecognized output format \""
<< output_format << "\" ignored.";
}
}
#if GTEST_CAN_STREAM_RESULTS_
// Initializes event listeners for streaming test results in string form.
// Must not be called before InitGoogleTest.
void UnitTestImpl::ConfigureStreamingOutput() {
const std::string& target = GTEST_FLAG_GET(stream_result_to);
if (!target.empty()) {
const size_t pos = target.find(':');
if (pos != std::string::npos) {
listeners()->Append(
new StreamingListener(target.substr(0, pos), target.substr(pos + 1)));
} else {
GTEST_LOG_(WARNING) << "unrecognized streaming target \"" << target
<< "\" ignored.";
}
}
}
#endif // GTEST_CAN_STREAM_RESULTS_
// Performs initialization dependent upon flag values obtained in
// ParseGoogleTestFlagsOnly. Is called from InitGoogleTest after the call to
// ParseGoogleTestFlagsOnly. In case a user neglects to call InitGoogleTest
// this function is also called from RunAllTests. Since this function can be
// called more than once, it has to be idempotent.
void UnitTestImpl::PostFlagParsingInit() {
// Ensures that this function does not execute more than once.
if (!post_flag_parse_init_performed_) {
post_flag_parse_init_performed_ = true;
#if defined(GTEST_CUSTOM_TEST_EVENT_LISTENER_)
// Register to send notifications about key process state changes.
listeners()->Append(new GTEST_CUSTOM_TEST_EVENT_LISTENER_());
#endif // defined(GTEST_CUSTOM_TEST_EVENT_LISTENER_)
#if GTEST_HAS_DEATH_TEST
InitDeathTestSubprocessControlInfo();
SuppressTestEventsIfInSubprocess();
#endif // GTEST_HAS_DEATH_TEST
// Registers parameterized tests. This makes parameterized tests
// available to the UnitTest reflection API without running
// RUN_ALL_TESTS.
RegisterParameterizedTests();
// Configures listeners for XML output. This makes it possible for users
// to shut down the default XML output before invoking RUN_ALL_TESTS.
ConfigureXmlOutput();
if (GTEST_FLAG_GET(brief)) {
listeners()->SetDefaultResultPrinter(new BriefUnitTestResultPrinter);
}
#if GTEST_CAN_STREAM_RESULTS_
// Configures listeners for streaming test results to the specified server.
ConfigureStreamingOutput();
#endif // GTEST_CAN_STREAM_RESULTS_
#if GTEST_HAS_ABSL
if (GTEST_FLAG_GET(install_failure_signal_handler)) {
absl::FailureSignalHandlerOptions options;
absl::InstallFailureSignalHandler(options);
}
#endif // GTEST_HAS_ABSL
}
}
// A predicate that checks the name of a TestSuite against a known
// value.
//
// This is used for implementation of the UnitTest class only. We put
// it in the anonymous namespace to prevent polluting the outer
// namespace.
//
// TestSuiteNameIs is copyable.
class TestSuiteNameIs {
public:
// Constructor.
explicit TestSuiteNameIs(const std::string& name) : name_(name) {}
// Returns true if and only if the name of test_suite matches name_.
bool operator()(const TestSuite* test_suite) const {
return test_suite != nullptr &&
strcmp(test_suite->name(), name_.c_str()) == 0;
}
private:
std::string name_;
};
// Finds and returns a TestSuite with the given name. If one doesn't
// exist, creates one and returns it. It's the CALLER'S
// RESPONSIBILITY to ensure that this function is only called WHEN THE
// TESTS ARE NOT SHUFFLED.
//
// Arguments:
//
// test_suite_name: name of the test suite
// type_param: the name of the test suite's type parameter, or NULL if
// this is not a typed or a type-parameterized test suite.
// set_up_tc: pointer to the function that sets up the test suite
// tear_down_tc: pointer to the function that tears down the test suite
TestSuite* UnitTestImpl::GetTestSuite(
const char* test_suite_name, const char* type_param,
internal::SetUpTestSuiteFunc set_up_tc,
internal::TearDownTestSuiteFunc tear_down_tc) {
// Can we find a TestSuite with the given name?
const auto test_suite =
std::find_if(test_suites_.rbegin(), test_suites_.rend(),
TestSuiteNameIs(test_suite_name));
if (test_suite != test_suites_.rend()) return *test_suite;
// No. Let's create one.
auto* const new_test_suite =
new TestSuite(test_suite_name, type_param, set_up_tc, tear_down_tc);
const UnitTestFilter death_test_suite_filter(kDeathTestSuiteFilter);
// Is this a death test suite?
if (death_test_suite_filter.MatchesName(test_suite_name)) {
// Yes. Inserts the test suite after the last death test suite
// defined so far. This only works when the test suites haven't
// been shuffled. Otherwise we may end up running a death test
// after a non-death test.
++last_death_test_suite_;
test_suites_.insert(test_suites_.begin() + last_death_test_suite_,
new_test_suite);
} else {
// No. Appends to the end of the list.
test_suites_.push_back(new_test_suite);
}
test_suite_indices_.push_back(static_cast<int>(test_suite_indices_.size()));
return new_test_suite;
}
// Helpers for setting up / tearing down the given environment. They
// are for use in the ForEach() function.
static void SetUpEnvironment(Environment* env) { env->SetUp(); }
static void TearDownEnvironment(Environment* env) { env->TearDown(); }
// Runs all tests in this UnitTest object, prints the result, and
// returns true if all tests are successful. If any exception is
// thrown during a test, the test is considered to be failed, but the
// rest of the tests will still be run.
//
// When parameterized tests are enabled, it expands and registers
// parameterized tests first in RegisterParameterizedTests().
// All other functions called from RunAllTests() may safely assume that
// parameterized tests are ready to be counted and run.
bool UnitTestImpl::RunAllTests() {
// True if and only if Google Test is initialized before RUN_ALL_TESTS() is
// called.
const bool gtest_is_initialized_before_run_all_tests = GTestIsInitialized();
// Do not run any test if the --help flag was specified.
if (g_help_flag) return true;
// Repeats the call to the post-flag parsing initialization in case the
// user didn't call InitGoogleTest.
PostFlagParsingInit();
// Even if sharding is not on, test runners may want to use the
// GTEST_SHARD_STATUS_FILE to query whether the test supports the sharding
// protocol.
internal::WriteToShardStatusFileIfNeeded();
// True if and only if we are in a subprocess for running a thread-safe-style
// death test.
bool in_subprocess_for_death_test = false;
#if GTEST_HAS_DEATH_TEST
in_subprocess_for_death_test =
(internal_run_death_test_flag_.get() != nullptr);
#if defined(GTEST_EXTRA_DEATH_TEST_CHILD_SETUP_)
if (in_subprocess_for_death_test) {
GTEST_EXTRA_DEATH_TEST_CHILD_SETUP_();
}
#endif // defined(GTEST_EXTRA_DEATH_TEST_CHILD_SETUP_)
#endif // GTEST_HAS_DEATH_TEST
const bool should_shard = ShouldShard(kTestTotalShards, kTestShardIndex,
in_subprocess_for_death_test);
// Compares the full test names with the filter to decide which
// tests to run.
const bool has_tests_to_run =
FilterTests(should_shard ? HONOR_SHARDING_PROTOCOL
: IGNORE_SHARDING_PROTOCOL) > 0;
// Lists the tests and exits if the --gtest_list_tests flag was specified.
if (GTEST_FLAG_GET(list_tests)) {
// This must be called *after* FilterTests() has been called.
ListTestsMatchingFilter();
return true;
}
random_seed_ = GetRandomSeedFromFlag(GTEST_FLAG_GET(random_seed));
// True if and only if at least one test has failed.
bool failed = false;
TestEventListener* repeater = listeners()->repeater();
start_timestamp_ = GetTimeInMillis();
repeater->OnTestProgramStart(*parent_);
// How many times to repeat the tests? We don't want to repeat them
// when we are inside the subprocess of a death test.
const int repeat = in_subprocess_for_death_test ? 1 : GTEST_FLAG_GET(repeat);
// Repeats forever if the repeat count is negative.
const bool gtest_repeat_forever = repeat < 0;
// Should test environments be set up and torn down for each repeat, or only
// set up on the first and torn down on the last iteration? If there is no
// "last" iteration because the tests will repeat forever, always recreate the
// environments to avoid leaks in case one of the environments is using
// resources that are external to this process. Without this check there would
// be no way to clean up those external resources automatically.
const bool recreate_environments_when_repeating =
GTEST_FLAG_GET(recreate_environments_when_repeating) ||
gtest_repeat_forever;
for (int i = 0; gtest_repeat_forever || i != repeat; i++) {
// We want to preserve failures generated by ad-hoc test
// assertions executed before RUN_ALL_TESTS().
ClearNonAdHocTestResult();
Timer timer;
// Shuffles test suites and tests if requested.
if (has_tests_to_run && GTEST_FLAG_GET(shuffle)) {
random()->Reseed(static_cast<uint32_t>(random_seed_));
// This should be done before calling OnTestIterationStart(),
// such that a test event listener can see the actual test order
// in the event.
ShuffleTests();
}
// Tells the unit test event listeners that the tests are about to start.
repeater->OnTestIterationStart(*parent_, i);
// Runs each test suite if there is at least one test to run.
if (has_tests_to_run) {
// Sets up all environments beforehand. If test environments aren't
// recreated for each iteration, only do so on the first iteration.
if (i == 0 || recreate_environments_when_repeating) {
repeater->OnEnvironmentsSetUpStart(*parent_);
ForEach(environments_, SetUpEnvironment);
repeater->OnEnvironmentsSetUpEnd(*parent_);
}
// Runs the tests only if there was no fatal failure or skip triggered
// during global set-up.
if (Test::IsSkipped()) {
// Emit diagnostics when global set-up calls skip, as it will not be
// emitted by default.
TestResult& test_result =
*internal::GetUnitTestImpl()->current_test_result();
for (int j = 0; j < test_result.total_part_count(); ++j) {
const TestPartResult& test_part_result =
test_result.GetTestPartResult(j);
if (test_part_result.type() == TestPartResult::kSkip) {
const std::string& result = test_part_result.message();
printf("%s\n", result.c_str());
}
}
fflush(stdout);
} else if (!Test::HasFatalFailure()) {
for (int test_index = 0; test_index < total_test_suite_count();
test_index++) {
GetMutableSuiteCase(test_index)->Run();
if (GTEST_FLAG_GET(fail_fast) &&
GetMutableSuiteCase(test_index)->Failed()) {
for (int j = test_index + 1; j < total_test_suite_count(); j++) {
GetMutableSuiteCase(j)->Skip();
}
break;
}
}
} else if (Test::HasFatalFailure()) {
// If there was a fatal failure during the global setup then we know we
// aren't going to run any tests. Explicitly mark all of the tests as
// skipped to make this obvious in the output.
for (int test_index = 0; test_index < total_test_suite_count();
test_index++) {
GetMutableSuiteCase(test_index)->Skip();
}
}
// Tears down all environments in reverse order afterwards. If test
// environments aren't recreated for each iteration, only do so on the
// last iteration.
if (i == repeat - 1 || recreate_environments_when_repeating) {
repeater->OnEnvironmentsTearDownStart(*parent_);
std::for_each(environments_.rbegin(), environments_.rend(),
TearDownEnvironment);
repeater->OnEnvironmentsTearDownEnd(*parent_);
}
}
elapsed_time_ = timer.Elapsed();
// Tells the unit test event listener that the tests have just finished.
repeater->OnTestIterationEnd(*parent_, i);
// Gets the result and clears it.
if (!Passed()) {
failed = true;
}
// Restores the original test order after the iteration. This
// allows the user to quickly repro a failure that happens in the
// N-th iteration without repeating the first (N - 1) iterations.
// This is not enclosed in "if (GTEST_FLAG(shuffle)) { ... }", in
// case the user somehow changes the value of the flag somewhere
// (it's always safe to unshuffle the tests).
UnshuffleTests();
if (GTEST_FLAG_GET(shuffle)) {
// Picks a new random seed for each iteration.
random_seed_ = GetNextRandomSeed(random_seed_);
}
}
repeater->OnTestProgramEnd(*parent_);
if (!gtest_is_initialized_before_run_all_tests) {
ColoredPrintf(
GTestColor::kRed,
"\nIMPORTANT NOTICE - DO NOT IGNORE:\n"
"This test program did NOT call " GTEST_INIT_GOOGLE_TEST_NAME_
"() before calling RUN_ALL_TESTS(). This is INVALID. Soon " GTEST_NAME_
" will start to enforce the valid usage. "
"Please fix it ASAP, or IT WILL START TO FAIL.\n"); // NOLINT
#if GTEST_FOR_GOOGLE_
ColoredPrintf(GTestColor::kRed,
"For more details, see http://wiki/Main/ValidGUnitMain.\n");
#endif // GTEST_FOR_GOOGLE_
}
return !failed;
}
// Reads the GTEST_SHARD_STATUS_FILE environment variable, and creates the file
// if the variable is present. If a file already exists at this location, this
// function will write over it. If the variable is present, but the file cannot
// be created, prints an error and exits.
void WriteToShardStatusFileIfNeeded() {
const char* const test_shard_file = posix::GetEnv(kTestShardStatusFile);
if (test_shard_file != nullptr) {
FILE* const file = posix::FOpen(test_shard_file, "w");
if (file == nullptr) {
ColoredPrintf(GTestColor::kRed,
"Could not write to the test shard status file \"%s\" "
"specified by the %s environment variable.\n",
test_shard_file, kTestShardStatusFile);
fflush(stdout);
exit(EXIT_FAILURE);
}
fclose(file);
}
}
// Checks whether sharding is enabled by examining the relevant
// environment variable values. If the variables are present,
// but inconsistent (i.e., shard_index >= total_shards), prints
// an error and exits. If in_subprocess_for_death_test, sharding is
// disabled because it must only be applied to the original test
// process. Otherwise, we could filter out death tests we intended to execute.
bool ShouldShard(const char* total_shards_env, const char* shard_index_env,
bool in_subprocess_for_death_test) {
if (in_subprocess_for_death_test) {
return false;
}
const int32_t total_shards = Int32FromEnvOrDie(total_shards_env, -1);
const int32_t shard_index = Int32FromEnvOrDie(shard_index_env, -1);
if (total_shards == -1 && shard_index == -1) {
return false;
} else if (total_shards == -1 && shard_index != -1) {
const Message msg = Message() << "Invalid environment variables: you have "
<< kTestShardIndex << " = " << shard_index
<< ", but have left " << kTestTotalShards
<< " unset.\n";
ColoredPrintf(GTestColor::kRed, "%s", msg.GetString().c_str());
fflush(stdout);
exit(EXIT_FAILURE);
} else if (total_shards != -1 && shard_index == -1) {
const Message msg = Message()
<< "Invalid environment variables: you have "
<< kTestTotalShards << " = " << total_shards
<< ", but have left " << kTestShardIndex << " unset.\n";
ColoredPrintf(GTestColor::kRed, "%s", msg.GetString().c_str());
fflush(stdout);
exit(EXIT_FAILURE);
} else if (shard_index < 0 || shard_index >= total_shards) {
const Message msg =
Message() << "Invalid environment variables: we require 0 <= "
<< kTestShardIndex << " < " << kTestTotalShards
<< ", but you have " << kTestShardIndex << "=" << shard_index
<< ", " << kTestTotalShards << "=" << total_shards << ".\n";
ColoredPrintf(GTestColor::kRed, "%s", msg.GetString().c_str());
fflush(stdout);
exit(EXIT_FAILURE);
}
return total_shards > 1;
}
// Parses the environment variable var as an Int32. If it is unset,
// returns default_val. If it is not an Int32, prints an error
// and aborts.
int32_t Int32FromEnvOrDie(const char* var, int32_t default_val) {
const char* str_val = posix::GetEnv(var);
if (str_val == nullptr) {
return default_val;
}
int32_t result;
if (!ParseInt32(Message() << "The value of environment variable " << var,
str_val, &result)) {
exit(EXIT_FAILURE);
}
return result;
}
// Given the total number of shards, the shard index, and the test id,
// returns true if and only if the test should be run on this shard. The test id
// is some arbitrary but unique non-negative integer assigned to each test
// method. Assumes that 0 <= shard_index < total_shards.
bool ShouldRunTestOnShard(int total_shards, int shard_index, int test_id) {
return (test_id % total_shards) == shard_index;
}
// Compares the name of each test with the user-specified filter to
// decide whether the test should be run, then records the result in
// each TestSuite and TestInfo object.
// If shard_tests == true, further filters tests based on sharding
// variables in the environment - see
// https://github.com/google/googletest/blob/master/googletest/docs/advanced.md
// . Returns the number of tests that should run.
int UnitTestImpl::FilterTests(ReactionToSharding shard_tests) {
const int32_t total_shards = shard_tests == HONOR_SHARDING_PROTOCOL
? Int32FromEnvOrDie(kTestTotalShards, -1)
: -1;
const int32_t shard_index = shard_tests == HONOR_SHARDING_PROTOCOL
? Int32FromEnvOrDie(kTestShardIndex, -1)
: -1;
const PositiveAndNegativeUnitTestFilter gtest_flag_filter(
GTEST_FLAG_GET(filter));
const UnitTestFilter disable_test_filter(kDisableTestFilter);
// num_runnable_tests are the number of tests that will
// run across all shards (i.e., match filter and are not disabled).
// num_selected_tests are the number of tests to be run on
// this shard.
int num_runnable_tests = 0;
int num_selected_tests = 0;
for (auto* test_suite : test_suites_) {
const std::string& test_suite_name = test_suite->name();
test_suite->set_should_run(false);
for (size_t j = 0; j < test_suite->test_info_list().size(); j++) {
TestInfo* const test_info = test_suite->test_info_list()[j];
const std::string test_name(test_info->name());
// A test is disabled if test suite name or test name matches
// kDisableTestFilter.
const bool is_disabled =
disable_test_filter.MatchesName(test_suite_name) ||
disable_test_filter.MatchesName(test_name);
test_info->is_disabled_ = is_disabled;
const bool matches_filter =
gtest_flag_filter.MatchesTest(test_suite_name, test_name);
test_info->matches_filter_ = matches_filter;
const bool is_runnable =
(GTEST_FLAG_GET(also_run_disabled_tests) || !is_disabled) &&
matches_filter;
const bool is_in_another_shard =
shard_tests != IGNORE_SHARDING_PROTOCOL &&
!ShouldRunTestOnShard(total_shards, shard_index, num_runnable_tests);
test_info->is_in_another_shard_ = is_in_another_shard;
const bool is_selected = is_runnable && !is_in_another_shard;
num_runnable_tests += is_runnable;
num_selected_tests += is_selected;
test_info->should_run_ = is_selected;
test_suite->set_should_run(test_suite->should_run() || is_selected);
}
}
return num_selected_tests;
}
// Prints the given C-string on a single line by replacing all '\n'
// characters with string "\\n". If the output takes more than
// max_length characters, only prints the first max_length characters
// and "...".
static void PrintOnOneLine(const char* str, int max_length) {
if (str != nullptr) {
for (int i = 0; *str != '\0'; ++str) {
if (i >= max_length) {
printf("...");
break;
}
if (*str == '\n') {
printf("\\n");
i += 2;
} else {
printf("%c", *str);
++i;
}
}
}
}
// Prints the names of the tests matching the user-specified filter flag.
void UnitTestImpl::ListTestsMatchingFilter() {
// Print at most this many characters for each type/value parameter.
const int kMaxParamLength = 250;
for (auto* test_suite : test_suites_) {
bool printed_test_suite_name = false;
for (size_t j = 0; j < test_suite->test_info_list().size(); j++) {
const TestInfo* const test_info = test_suite->test_info_list()[j];
if (test_info->matches_filter_) {
if (!printed_test_suite_name) {
printed_test_suite_name = true;
printf("%s.", test_suite->name());
if (test_suite->type_param() != nullptr) {
printf(" # %s = ", kTypeParamLabel);
// We print the type parameter on a single line to make
// the output easy to parse by a program.
PrintOnOneLine(test_suite->type_param(), kMaxParamLength);
}
printf("\n");
}
printf(" %s", test_info->name());
if (test_info->value_param() != nullptr) {
printf(" # %s = ", kValueParamLabel);
// We print the value parameter on a single line to make the
// output easy to parse by a program.
PrintOnOneLine(test_info->value_param(), kMaxParamLength);
}
printf("\n");
}
}
}
fflush(stdout);
const std::string& output_format = UnitTestOptions::GetOutputFormat();
if (output_format == "xml" || output_format == "json") {
FILE* fileout = OpenFileForWriting(
UnitTestOptions::GetAbsolutePathToOutputFile().c_str());
std::stringstream stream;
if (output_format == "xml") {
XmlUnitTestResultPrinter(
UnitTestOptions::GetAbsolutePathToOutputFile().c_str())
.PrintXmlTestsList(&stream, test_suites_);
} else if (output_format == "json") {
JsonUnitTestResultPrinter(
UnitTestOptions::GetAbsolutePathToOutputFile().c_str())
.PrintJsonTestList(&stream, test_suites_);
}
fprintf(fileout, "%s", StringStreamToString(&stream).c_str());
fclose(fileout);
}
}
// Sets the OS stack trace getter.
//
// Does nothing if the input and the current OS stack trace getter are
// the same; otherwise, deletes the old getter and makes the input the
// current getter.
void UnitTestImpl::set_os_stack_trace_getter(
OsStackTraceGetterInterface* getter) {
if (os_stack_trace_getter_ != getter) {
delete os_stack_trace_getter_;
os_stack_trace_getter_ = getter;
}
}
// Returns the current OS stack trace getter if it is not NULL;
// otherwise, creates an OsStackTraceGetter, makes it the current
// getter, and returns it.
OsStackTraceGetterInterface* UnitTestImpl::os_stack_trace_getter() {
if (os_stack_trace_getter_ == nullptr) {
#ifdef GTEST_OS_STACK_TRACE_GETTER_
os_stack_trace_getter_ = new GTEST_OS_STACK_TRACE_GETTER_;
#else
os_stack_trace_getter_ = new OsStackTraceGetter;
#endif // GTEST_OS_STACK_TRACE_GETTER_
}
return os_stack_trace_getter_;
}
// Returns the most specific TestResult currently running.
TestResult* UnitTestImpl::current_test_result() {
if (current_test_info_ != nullptr) {
return &current_test_info_->result_;
}
if (current_test_suite_ != nullptr) {
return &current_test_suite_->ad_hoc_test_result_;
}
return &ad_hoc_test_result_;
}
// Shuffles all test suites, and the tests within each test suite,
// making sure that death tests are still run first.
void UnitTestImpl::ShuffleTests() {
// Shuffles the death test suites.
ShuffleRange(random(), 0, last_death_test_suite_ + 1, &test_suite_indices_);
// Shuffles the non-death test suites.
ShuffleRange(random(), last_death_test_suite_ + 1,
static_cast<int>(test_suites_.size()), &test_suite_indices_);
// Shuffles the tests inside each test suite.
for (auto& test_suite : test_suites_) {
test_suite->ShuffleTests(random());
}
}
// Restores the test suites and tests to their order before the first shuffle.
void UnitTestImpl::UnshuffleTests() {
for (size_t i = 0; i < test_suites_.size(); i++) {
// Unshuffles the tests in each test suite.
test_suites_[i]->UnshuffleTests();
// Resets the index of each test suite.
test_suite_indices_[i] = static_cast<int>(i);
}
}
// Returns the current OS stack trace as an std::string.
//
// The maximum number of stack frames to be included is specified by
// the gtest_stack_trace_depth flag. The skip_count parameter
// specifies the number of top frames to be skipped, which doesn't
// count against the number of frames to be included.
//
// For example, if Foo() calls Bar(), which in turn calls
// GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
// the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
GTEST_NO_INLINE_ GTEST_NO_TAIL_CALL_ std::string
GetCurrentOsStackTraceExceptTop(UnitTest* /*unit_test*/, int skip_count) {
// We pass skip_count + 1 to skip this wrapper function in addition
// to what the user really wants to skip.
return GetUnitTestImpl()->CurrentOsStackTraceExceptTop(skip_count + 1);
}
// Used by the GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_ macro to
// suppress unreachable code warnings.
namespace {
class ClassUniqueToAlwaysTrue {};
} // namespace
bool IsTrue(bool condition) { return condition; }
bool AlwaysTrue() {
#if GTEST_HAS_EXCEPTIONS
// This condition is always false so AlwaysTrue() never actually throws,
// but it makes the compiler think that it may throw.
if (IsTrue(false)) throw ClassUniqueToAlwaysTrue();
#endif // GTEST_HAS_EXCEPTIONS
return true;
}
// If *pstr starts with the given prefix, modifies *pstr to be right
// past the prefix and returns true; otherwise leaves *pstr unchanged
// and returns false. None of pstr, *pstr, and prefix can be NULL.
bool SkipPrefix(const char* prefix, const char** pstr) {
const size_t prefix_len = strlen(prefix);
if (strncmp(*pstr, prefix, prefix_len) == 0) {
*pstr += prefix_len;
return true;
}
return false;
}
// Parses a string as a command line flag. The string should have
// the format "--flag=value". When def_optional is true, the "=value"
// part can be omitted.
//
// Returns the value of the flag, or NULL if the parsing failed.
static const char* ParseFlagValue(const char* str, const char* flag_name,
bool def_optional) {
// str and flag must not be NULL.
if (str == nullptr || flag_name == nullptr) return nullptr;
// The flag must start with "--" followed by GTEST_FLAG_PREFIX_.
const std::string flag_str =
std::string("--") + GTEST_FLAG_PREFIX_ + flag_name;
const size_t flag_len = flag_str.length();
if (strncmp(str, flag_str.c_str(), flag_len) != 0) return nullptr;
// Skips the flag name.
const char* flag_end = str + flag_len;
// When def_optional is true, it's OK to not have a "=value" part.
if (def_optional && (flag_end[0] == '\0')) {
return flag_end;
}
// If def_optional is true and there are more characters after the
// flag name, or if def_optional is false, there must be a '=' after
// the flag name.
if (flag_end[0] != '=') return nullptr;
// Returns the string after "=".
return flag_end + 1;
}
// Parses a string for a bool flag, in the form of either
// "--flag=value" or "--flag".
//
// In the former case, the value is taken as true as long as it does
// not start with '0', 'f', or 'F'.
//
// In the latter case, the value is taken as true.
//
// On success, stores the value of the flag in *value, and returns
// true. On failure, returns false without changing *value.
static bool ParseFlag(const char* str, const char* flag_name, bool* value) {
// Gets the value of the flag as a string.
const char* const value_str = ParseFlagValue(str, flag_name, true);
// Aborts if the parsing failed.
if (value_str == nullptr) return false;
// Converts the string value to a bool.
*value = !(*value_str == '0' || *value_str == 'f' || *value_str == 'F');
return true;
}
// Parses a string for an int32_t flag, in the form of "--flag=value".
//
// On success, stores the value of the flag in *value, and returns
// true. On failure, returns false without changing *value.
bool ParseFlag(const char* str, const char* flag_name, int32_t* value) {
// Gets the value of the flag as a string.
const char* const value_str = ParseFlagValue(str, flag_name, false);
// Aborts if the parsing failed.
if (value_str == nullptr) return false;
// Sets *value to the value of the flag.
return ParseInt32(Message() << "The value of flag --" << flag_name, value_str,
value);
}
// Parses a string for a string flag, in the form of "--flag=value".
//
// On success, stores the value of the flag in *value, and returns
// true. On failure, returns false without changing *value.
template <typename String>
static bool ParseFlag(const char* str, const char* flag_name, String* value) {
// Gets the value of the flag as a string.
const char* const value_str = ParseFlagValue(str, flag_name, false);
// Aborts if the parsing failed.
if (value_str == nullptr) return false;
// Sets *value to the value of the flag.
*value = value_str;
return true;
}
// Determines whether a string has a prefix that Google Test uses for its
// flags, i.e., starts with GTEST_FLAG_PREFIX_ or GTEST_FLAG_PREFIX_DASH_.
// If Google Test detects that a command line flag has its prefix but is not
// recognized, it will print its help message. Flags starting with
// GTEST_INTERNAL_PREFIX_ followed by "internal_" are considered Google Test
// internal flags and do not trigger the help message.
static bool HasGoogleTestFlagPrefix(const char* str) {
return (SkipPrefix("--", &str) || SkipPrefix("-", &str) ||
SkipPrefix("/", &str)) &&
!SkipPrefix(GTEST_FLAG_PREFIX_ "internal_", &str) &&
(SkipPrefix(GTEST_FLAG_PREFIX_, &str) ||
SkipPrefix(GTEST_FLAG_PREFIX_DASH_, &str));
}
// Prints a string containing code-encoded text. The following escape
// sequences can be used in the string to control the text color:
//
// @@ prints a single '@' character.
// @R changes the color to red.
// @G changes the color to green.
// @Y changes the color to yellow.
// @D changes to the default terminal text color.
//
static void PrintColorEncoded(const char* str) {
GTestColor color = GTestColor::kDefault; // The current color.
// Conceptually, we split the string into segments divided by escape
// sequences. Then we print one segment at a time. At the end of
// each iteration, the str pointer advances to the beginning of the
// next segment.
for (;;) {
const char* p = strchr(str, '@');
if (p == nullptr) {
ColoredPrintf(color, "%s", str);
return;
}
ColoredPrintf(color, "%s", std::string(str, p).c_str());
const char ch = p[1];
str = p + 2;
if (ch == '@') {
ColoredPrintf(color, "@");
} else if (ch == 'D') {
color = GTestColor::kDefault;
} else if (ch == 'R') {
color = GTestColor::kRed;
} else if (ch == 'G') {
color = GTestColor::kGreen;
} else if (ch == 'Y') {
color = GTestColor::kYellow;
} else {
--str;
}
}
}
static const char kColorEncodedHelpMessage[] =
"This program contains tests written using " GTEST_NAME_
". You can use the\n"
"following command line flags to control its behavior:\n"
"\n"
"Test Selection:\n"
" @G--" GTEST_FLAG_PREFIX_
"list_tests@D\n"
" List the names of all tests instead of running them. The name of\n"
" TEST(Foo, Bar) is \"Foo.Bar\".\n"
" @G--" GTEST_FLAG_PREFIX_
"filter=@YPOSITIVE_PATTERNS"
"[@G-@YNEGATIVE_PATTERNS]@D\n"
" Run only the tests whose name matches one of the positive patterns "
"but\n"
" none of the negative patterns. '?' matches any single character; "
"'*'\n"
" matches any substring; ':' separates two patterns.\n"
" @G--" GTEST_FLAG_PREFIX_
"also_run_disabled_tests@D\n"
" Run all disabled tests too.\n"
"\n"
"Test Execution:\n"
" @G--" GTEST_FLAG_PREFIX_
"repeat=@Y[COUNT]@D\n"
" Run the tests repeatedly; use a negative count to repeat forever.\n"
" @G--" GTEST_FLAG_PREFIX_
"shuffle@D\n"
" Randomize tests' orders on every iteration.\n"
" @G--" GTEST_FLAG_PREFIX_
"random_seed=@Y[NUMBER]@D\n"
" Random number seed to use for shuffling test orders (between 1 and\n"
" 99999, or 0 to use a seed based on the current time).\n"
" @G--" GTEST_FLAG_PREFIX_
"recreate_environments_when_repeating@D\n"
" Sets up and tears down the global test environment on each repeat\n"
" of the test.\n"
"\n"
"Test Output:\n"
" @G--" GTEST_FLAG_PREFIX_
"color=@Y(@Gyes@Y|@Gno@Y|@Gauto@Y)@D\n"
" Enable/disable colored output. The default is @Gauto@D.\n"
" @G--" GTEST_FLAG_PREFIX_
"brief=1@D\n"
" Only print test failures.\n"
" @G--" GTEST_FLAG_PREFIX_
"print_time=0@D\n"
" Don't print the elapsed time of each test.\n"
" @G--" GTEST_FLAG_PREFIX_
"output=@Y(@Gjson@Y|@Gxml@Y)[@G:@YDIRECTORY_PATH@G" GTEST_PATH_SEP_
"@Y|@G:@YFILE_PATH]@D\n"
" Generate a JSON or XML report in the given directory or with the "
"given\n"
" file name. @YFILE_PATH@D defaults to @Gtest_detail.xml@D.\n"
#if GTEST_CAN_STREAM_RESULTS_
" @G--" GTEST_FLAG_PREFIX_
"stream_result_to=@YHOST@G:@YPORT@D\n"
" Stream test results to the given server.\n"
#endif // GTEST_CAN_STREAM_RESULTS_
"\n"
"Assertion Behavior:\n"
#if GTEST_HAS_DEATH_TEST && !GTEST_OS_WINDOWS
" @G--" GTEST_FLAG_PREFIX_
"death_test_style=@Y(@Gfast@Y|@Gthreadsafe@Y)@D\n"
" Set the default death test style.\n"
#endif // GTEST_HAS_DEATH_TEST && !GTEST_OS_WINDOWS
" @G--" GTEST_FLAG_PREFIX_
"break_on_failure@D\n"
" Turn assertion failures into debugger break-points.\n"
" @G--" GTEST_FLAG_PREFIX_
"throw_on_failure@D\n"
" Turn assertion failures into C++ exceptions for use by an external\n"
" test framework.\n"
" @G--" GTEST_FLAG_PREFIX_
"catch_exceptions=0@D\n"
" Do not report exceptions as test failures. Instead, allow them\n"
" to crash the program or throw a pop-up (on Windows).\n"
"\n"
"Except for @G--" GTEST_FLAG_PREFIX_
"list_tests@D, you can alternatively set "
"the corresponding\n"
"environment variable of a flag (all letters in upper-case). For example, "
"to\n"
"disable colored text output, you can either specify "
"@G--" GTEST_FLAG_PREFIX_
"color=no@D or set\n"
"the @G" GTEST_FLAG_PREFIX_UPPER_
"COLOR@D environment variable to @Gno@D.\n"
"\n"
"For more information, please read the " GTEST_NAME_
" documentation at\n"
"@G" GTEST_PROJECT_URL_ "@D. If you find a bug in " GTEST_NAME_
"\n"
"(not one in your own code or tests), please report it to\n"
"@G<" GTEST_DEV_EMAIL_ ">@D.\n";
static bool ParseGoogleTestFlag(const char* const arg) {
#define GTEST_INTERNAL_PARSE_FLAG(flag_name) \
do { \
auto value = GTEST_FLAG_GET(flag_name); \
if (ParseFlag(arg, #flag_name, &value)) { \
GTEST_FLAG_SET(flag_name, value); \
return true; \
} \
} while (false)
GTEST_INTERNAL_PARSE_FLAG(also_run_disabled_tests);
GTEST_INTERNAL_PARSE_FLAG(break_on_failure);
GTEST_INTERNAL_PARSE_FLAG(catch_exceptions);
GTEST_INTERNAL_PARSE_FLAG(color);
GTEST_INTERNAL_PARSE_FLAG(death_test_style);
GTEST_INTERNAL_PARSE_FLAG(death_test_use_fork);
GTEST_INTERNAL_PARSE_FLAG(fail_fast);
GTEST_INTERNAL_PARSE_FLAG(filter);
GTEST_INTERNAL_PARSE_FLAG(internal_run_death_test);
GTEST_INTERNAL_PARSE_FLAG(list_tests);
GTEST_INTERNAL_PARSE_FLAG(output);
GTEST_INTERNAL_PARSE_FLAG(brief);
GTEST_INTERNAL_PARSE_FLAG(print_time);
GTEST_INTERNAL_PARSE_FLAG(print_utf8);
GTEST_INTERNAL_PARSE_FLAG(random_seed);
GTEST_INTERNAL_PARSE_FLAG(repeat);
GTEST_INTERNAL_PARSE_FLAG(recreate_environments_when_repeating);
GTEST_INTERNAL_PARSE_FLAG(shuffle);
GTEST_INTERNAL_PARSE_FLAG(stack_trace_depth);
GTEST_INTERNAL_PARSE_FLAG(stream_result_to);
GTEST_INTERNAL_PARSE_FLAG(throw_on_failure);
return false;
}
#if GTEST_USE_OWN_FLAGFILE_FLAG_
static void LoadFlagsFromFile(const std::string& path) {
FILE* flagfile = posix::FOpen(path.c_str(), "r");
if (!flagfile) {
GTEST_LOG_(FATAL) << "Unable to open file \"" << GTEST_FLAG_GET(flagfile)
<< "\"";
}
std::string contents(ReadEntireFile(flagfile));
posix::FClose(flagfile);
std::vector<std::string> lines;
SplitString(contents, '\n', &lines);
for (size_t i = 0; i < lines.size(); ++i) {
if (lines[i].empty()) continue;
if (!ParseGoogleTestFlag(lines[i].c_str())) g_help_flag = true;
}
}
#endif // GTEST_USE_OWN_FLAGFILE_FLAG_
// Parses the command line for Google Test flags, without initializing
// other parts of Google Test. The type parameter CharType can be
// instantiated to either char or wchar_t.
template <typename CharType>
void ParseGoogleTestFlagsOnlyImpl(int* argc, CharType** argv) {
std::string flagfile_value;
for (int i = 1; i < *argc; i++) {
const std::string arg_string = StreamableToString(argv[i]);
const char* const arg = arg_string.c_str();
using internal::ParseFlag;
bool remove_flag = false;
if (ParseGoogleTestFlag(arg)) {
remove_flag = true;
#if GTEST_USE_OWN_FLAGFILE_FLAG_
} else if (ParseFlag(arg, "flagfile", &flagfile_value)) {
GTEST_FLAG_SET(flagfile, flagfile_value);
LoadFlagsFromFile(flagfile_value);
remove_flag = true;
#endif // GTEST_USE_OWN_FLAGFILE_FLAG_
} else if (arg_string == "--help" || HasGoogleTestFlagPrefix(arg)) {
// Both help flag and unrecognized Google Test flags (excluding
// internal ones) trigger help display.
g_help_flag = true;
}
if (remove_flag) {
// Shift the remainder of the argv list left by one. Note
// that argv has (*argc + 1) elements, the last one always being
// NULL. The following loop moves the trailing NULL element as
// well.
for (int j = i; j != *argc; j++) {
argv[j] = argv[j + 1];
}
// Decrements the argument count.
(*argc)--;
// We also need to decrement the iterator as we just removed
// an element.
i--;
}
}
if (g_help_flag) {
// We print the help here instead of in RUN_ALL_TESTS(), as the
// latter may not be called at all if the user is using Google
// Test with another testing framework.
PrintColorEncoded(kColorEncodedHelpMessage);
}
}
// Parses the command line for Google Test flags, without initializing
// other parts of Google Test.
void ParseGoogleTestFlagsOnly(int* argc, char** argv) {
#if GTEST_HAS_ABSL
if (*argc > 0) {
// absl::ParseCommandLine() requires *argc > 0.
auto positional_args = absl::flags_internal::ParseCommandLineImpl(
*argc, argv, absl::flags_internal::ArgvListAction::kRemoveParsedArgs,
absl::flags_internal::UsageFlagsAction::kHandleUsage,
absl::flags_internal::OnUndefinedFlag::kReportUndefined);
// Any command-line positional arguments not part of any command-line flag
// (or arguments to a flag) are copied back out to argv, with the program
// invocation name at position 0, and argc is resized. This includes
// positional arguments after the flag-terminating delimiter '--'.
// See https://abseil.io/docs/cpp/guides/flags.
std::copy(positional_args.begin(), positional_args.end(), argv);
if (static_cast<int>(positional_args.size()) < *argc) {
argv[positional_args.size()] = nullptr;
*argc = static_cast<int>(positional_args.size());
}
}
#else
ParseGoogleTestFlagsOnlyImpl(argc, argv);
#endif
// Fix the value of *_NSGetArgc() on macOS, but if and only if
// *_NSGetArgv() == argv
// Only applicable to char** version of argv
#if GTEST_OS_MAC
#ifndef GTEST_OS_IOS
if (*_NSGetArgv() == argv) {
*_NSGetArgc() = *argc;
}
#endif
#endif
}
void ParseGoogleTestFlagsOnly(int* argc, wchar_t** argv) {
ParseGoogleTestFlagsOnlyImpl(argc, argv);
}
// The internal implementation of InitGoogleTest().
//
// The type parameter CharType can be instantiated to either char or
// wchar_t.
template <typename CharType>
void InitGoogleTestImpl(int* argc, CharType** argv) {
// We don't want to run the initialization code twice.
if (GTestIsInitialized()) return;
if (*argc <= 0) return;
g_argvs.clear();
for (int i = 0; i != *argc; i++) {
g_argvs.push_back(StreamableToString(argv[i]));
}
#if GTEST_HAS_ABSL
absl::InitializeSymbolizer(g_argvs[0].c_str());
// When using the Abseil Flags library, set the program usage message to the
// help message, but remove the color-encoding from the message first.
absl::SetProgramUsageMessage(absl::StrReplaceAll(
kColorEncodedHelpMessage,
{{"@D", ""}, {"@R", ""}, {"@G", ""}, {"@Y", ""}, {"@@", "@"}}));
#endif // GTEST_HAS_ABSL
ParseGoogleTestFlagsOnly(argc, argv);
GetUnitTestImpl()->PostFlagParsingInit();
}
} // namespace internal
// Initializes Google Test. This must be called before calling
// RUN_ALL_TESTS(). In particular, it parses a command line for the
// flags that Google Test recognizes. Whenever a Google Test flag is
// seen, it is removed from argv, and *argc is decremented.
//
// No value is returned. Instead, the Google Test flag variables are
// updated.
//
// Calling the function for the second time has no user-visible effect.
void InitGoogleTest(int* argc, char** argv) {
#if defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_)
GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_(argc, argv);
#else // defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_)
internal::InitGoogleTestImpl(argc, argv);
#endif // defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_)
}
// This overloaded version can be used in Windows programs compiled in
// UNICODE mode.
void InitGoogleTest(int* argc, wchar_t** argv) {
#if defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_)
GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_(argc, argv);
#else // defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_)
internal::InitGoogleTestImpl(argc, argv);
#endif // defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_)
}
// This overloaded version can be used on Arduino/embedded platforms where
// there is no argc/argv.
void InitGoogleTest() {
// Since Arduino doesn't have a command line, fake out the argc/argv arguments
int argc = 1;
const auto arg0 = "dummy";
char* argv0 = const_cast<char*>(arg0);
char** argv = &argv0;
#if defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_)
GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_(&argc, argv);
#else // defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_)
internal::InitGoogleTestImpl(&argc, argv);
#endif // defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_)
}
#if !defined(GTEST_CUSTOM_TEMPDIR_FUNCTION_)
// Return value of first environment variable that is set and contains
// a non-empty string. If there are none, return the "fallback" string.
// Since we like the temporary directory to have a directory separator suffix,
// add it if not provided in the environment variable value.
static std::string GetTempDirFromEnv(
std::initializer_list<const char*> environment_variables,
const char* fallback, char separator) {
for (const char* variable_name : environment_variables) {
const char* value = internal::posix::GetEnv(variable_name);
if (value != nullptr && value[0] != '\0') {
if (value[strlen(value) - 1] != separator) {
return std::string(value).append(1, separator);
}
return value;
}
}
return fallback;
}
#endif
std::string TempDir() {
#if defined(GTEST_CUSTOM_TEMPDIR_FUNCTION_)
return GTEST_CUSTOM_TEMPDIR_FUNCTION_();
#elif GTEST_OS_WINDOWS || GTEST_OS_WINDOWS_MOBILE
return GetTempDirFromEnv({"TEST_TMPDIR", "TEMP"}, "\\temp\\", '\\');
#elif GTEST_OS_LINUX_ANDROID
return GetTempDirFromEnv({"TEST_TMPDIR", "TMPDIR"}, "/data/local/tmp/", '/');
#else
return GetTempDirFromEnv({"TEST_TMPDIR", "TMPDIR"}, "/tmp/", '/');
#endif
}
// Class ScopedTrace
// Pushes the given source file location and message onto a per-thread
// trace stack maintained by Google Test.
void ScopedTrace::PushTrace(const char* file, int line, std::string message) {
internal::TraceInfo trace;
trace.file = file;
trace.line = line;
trace.message.swap(message);
UnitTest::GetInstance()->PushGTestTrace(trace);
}
// Pops the info pushed by the c'tor.
ScopedTrace::~ScopedTrace() GTEST_LOCK_EXCLUDED_(&UnitTest::mutex_) {
UnitTest::GetInstance()->PopGTestTrace();
}
} // namespace testing