assimp/code/X/XFileImporter.cpp

697 lines
30 KiB
C++

/*
---------------------------------------------------------------------------
Open Asset Import Library (assimp)
---------------------------------------------------------------------------
Copyright (c) 2006-2020, assimp team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the following
conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the assimp team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the assimp team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------
*/
/** @file XFileImporter.cpp
* @brief Implementation of the XFile importer class
*/
#ifndef ASSIMP_BUILD_NO_X_IMPORTER
#include "X/XFileImporter.h"
#include "X/XFileParser.h"
#include "PostProcessing/ConvertToLHProcess.h"
#include <assimp/TinyFormatter.h>
#include <assimp/Defines.h>
#include <assimp/IOSystem.hpp>
#include <assimp/scene.h>
#include <assimp/DefaultLogger.hpp>
#include <assimp/importerdesc.h>
#include <cctype>
#include <memory>
using namespace Assimp;
using namespace Assimp::Formatter;
static const aiImporterDesc desc = {
"Direct3D XFile Importer",
"",
"",
"",
aiImporterFlags_SupportTextFlavour | aiImporterFlags_SupportBinaryFlavour | aiImporterFlags_SupportCompressedFlavour,
1,
3,
1,
5,
"x"
};
// ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer
XFileImporter::XFileImporter()
: mBuffer() {
// empty
}
// ------------------------------------------------------------------------------------------------
// Destructor, private as well
XFileImporter::~XFileImporter() {
// empty
}
// ------------------------------------------------------------------------------------------------
// Returns whether the class can handle the format of the given file.
bool XFileImporter::CanRead( const std::string& pFile, IOSystem* pIOHandler, bool checkSig) const {
std::string extension = GetExtension(pFile);
if(extension == "x") {
return true;
}
if (!extension.length() || checkSig) {
uint32_t token[1];
token[0] = AI_MAKE_MAGIC("xof ");
return CheckMagicToken(pIOHandler,pFile,token,1,0);
}
return false;
}
// ------------------------------------------------------------------------------------------------
// Get file extension list
const aiImporterDesc* XFileImporter::GetInfo () const {
return &desc;
}
// ------------------------------------------------------------------------------------------------
// Imports the given file into the given scene structure.
void XFileImporter::InternReadFile( const std::string& pFile, aiScene* pScene, IOSystem* pIOHandler) {
// read file into memory
std::unique_ptr<IOStream> file( pIOHandler->Open( pFile));
if ( file.get() == NULL ) {
throw DeadlyImportError( "Failed to open file " + pFile + "." );
}
static const size_t MinSize = 16;
size_t fileSize = file->FileSize();
if ( fileSize < MinSize ) {
throw DeadlyImportError( "XFile is too small." );
}
// in the hope that binary files will never start with a BOM ...
mBuffer.resize( fileSize + 1);
file->Read( &mBuffer.front(), 1, fileSize);
ConvertToUTF8(mBuffer);
// parse the file into a temporary representation
XFileParser parser( mBuffer);
// and create the proper return structures out of it
CreateDataRepresentationFromImport( pScene, parser.GetImportedData());
// if nothing came from it, report it as error
if ( !pScene->mRootNode ) {
throw DeadlyImportError( "XFile is ill-formatted - no content imported." );
}
}
// ------------------------------------------------------------------------------------------------
// Constructs the return data structure out of the imported data.
void XFileImporter::CreateDataRepresentationFromImport( aiScene* pScene, XFile::Scene* pData)
{
// Read the global materials first so that meshes referring to them can find them later
ConvertMaterials( pScene, pData->mGlobalMaterials);
// copy nodes, extracting meshes and materials on the way
pScene->mRootNode = CreateNodes( pScene, nullptr, pData->mRootNode);
// extract animations
CreateAnimations( pScene, pData);
// read the global meshes that were stored outside of any node
if( !pData->mGlobalMeshes.empty() ) {
// create a root node to hold them if there isn't any, yet
if( pScene->mRootNode == nullptr ) {
pScene->mRootNode = new aiNode;
pScene->mRootNode->mName.Set( "$dummy_node");
}
// convert all global meshes and store them in the root node.
// If there was one before, the global meshes now suddenly have its transformation matrix...
// Don't know what to do there, I don't want to insert another node under the present root node
// just to avoid this.
CreateMeshes( pScene, pScene->mRootNode, pData->mGlobalMeshes);
}
if (!pScene->mRootNode) {
throw DeadlyImportError( "No root node" );
}
// Convert everything to OpenGL space... it's the same operation as the conversion back, so we can reuse the step directly
MakeLeftHandedProcess convertProcess;
convertProcess.Execute( pScene);
FlipWindingOrderProcess flipper;
flipper.Execute(pScene);
// finally: create a dummy material if not material was imported
if( pScene->mNumMaterials == 0) {
pScene->mNumMaterials = 1;
// create the Material
aiMaterial* mat = new aiMaterial;
int shadeMode = (int) aiShadingMode_Gouraud;
mat->AddProperty<int>( &shadeMode, 1, AI_MATKEY_SHADING_MODEL);
// material colours
int specExp = 1;
aiColor3D clr = aiColor3D( 0, 0, 0);
mat->AddProperty( &clr, 1, AI_MATKEY_COLOR_EMISSIVE);
mat->AddProperty( &clr, 1, AI_MATKEY_COLOR_SPECULAR);
clr = aiColor3D( 0.5f, 0.5f, 0.5f);
mat->AddProperty( &clr, 1, AI_MATKEY_COLOR_DIFFUSE);
mat->AddProperty( &specExp, 1, AI_MATKEY_SHININESS);
pScene->mMaterials = new aiMaterial*[1];
pScene->mMaterials[0] = mat;
}
}
// ------------------------------------------------------------------------------------------------
// Recursively creates scene nodes from the imported hierarchy.
aiNode* XFileImporter::CreateNodes( aiScene* pScene, aiNode* pParent, const XFile::Node* pNode) {
if ( !pNode ) {
return nullptr;
}
// create node
aiNode* node = new aiNode;
node->mName.length = (ai_uint32)pNode->mName.length();
node->mParent = pParent;
memcpy( node->mName.data, pNode->mName.c_str(), pNode->mName.length());
node->mName.data[node->mName.length] = 0;
node->mTransformation = pNode->mTrafoMatrix;
// convert meshes from the source node
CreateMeshes( pScene, node, pNode->mMeshes);
// handle childs
if( !pNode->mChildren.empty() ) {
node->mNumChildren = (unsigned int)pNode->mChildren.size();
node->mChildren = new aiNode* [node->mNumChildren];
for ( unsigned int a = 0; a < pNode->mChildren.size(); ++a ) {
node->mChildren[ a ] = CreateNodes( pScene, node, pNode->mChildren[ a ] );
}
}
return node;
}
// ------------------------------------------------------------------------------------------------
// Creates the meshes for the given node.
void XFileImporter::CreateMeshes( aiScene* pScene, aiNode* pNode, const std::vector<XFile::Mesh*>& pMeshes) {
if (pMeshes.empty()) {
return;
}
// create a mesh for each mesh-material combination in the source node
std::vector<aiMesh*> meshes;
for( unsigned int a = 0; a < pMeshes.size(); ++a ) {
XFile::Mesh* sourceMesh = pMeshes[a];
if ( nullptr == sourceMesh ) {
continue;
}
// first convert its materials so that we can find them with their index afterwards
ConvertMaterials( pScene, sourceMesh->mMaterials);
unsigned int numMaterials = std::max( (unsigned int)sourceMesh->mMaterials.size(), 1u);
for( unsigned int b = 0; b < numMaterials; ++b ) {
// collect the faces belonging to this material
std::vector<unsigned int> faces;
unsigned int numVertices = 0;
if( !sourceMesh->mFaceMaterials.empty() ) {
// if there is a per-face material defined, select the faces with the corresponding material
for( unsigned int c = 0; c < sourceMesh->mFaceMaterials.size(); ++c ) {
if( sourceMesh->mFaceMaterials[c] == b) {
faces.push_back( c);
numVertices += (unsigned int)sourceMesh->mPosFaces[c].mIndices.size();
}
}
} else {
// if there is no per-face material, place everything into one mesh
for( unsigned int c = 0; c < sourceMesh->mPosFaces.size(); ++c ) {
faces.push_back( c);
numVertices += (unsigned int)sourceMesh->mPosFaces[c].mIndices.size();
}
}
// no faces/vertices using this material? strange...
if ( numVertices == 0 ) {
continue;
}
// create a submesh using this material
aiMesh* mesh = new aiMesh;
meshes.push_back( mesh);
// find the material in the scene's material list. Either own material
// or referenced material, it should already have a valid index
if( !sourceMesh->mFaceMaterials.empty() ) {
mesh->mMaterialIndex = static_cast<unsigned int>(sourceMesh->mMaterials[b].sceneIndex);
} else {
mesh->mMaterialIndex = 0;
}
// Create properly sized data arrays in the mesh. We store unique vertices per face,
// as specified
mesh->mNumVertices = numVertices;
mesh->mVertices = new aiVector3D[numVertices];
mesh->mNumFaces = (unsigned int)faces.size();
mesh->mFaces = new aiFace[mesh->mNumFaces];
// name
mesh->mName.Set(sourceMesh->mName);
// normals?
if ( sourceMesh->mNormals.size() > 0 ) {
mesh->mNormals = new aiVector3D[ numVertices ];
}
// texture coords
for( unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++c ) {
if ( !sourceMesh->mTexCoords[ c ].empty() ) {
mesh->mTextureCoords[ c ] = new aiVector3D[ numVertices ];
}
}
// vertex colors
for( unsigned int c = 0; c < AI_MAX_NUMBER_OF_COLOR_SETS; ++c ) {
if ( !sourceMesh->mColors[ c ].empty() ) {
mesh->mColors[ c ] = new aiColor4D[ numVertices ];
}
}
// now collect the vertex data of all data streams present in the imported mesh
unsigned int newIndex( 0 );
std::vector<unsigned int> orgPoints; // from which original point each new vertex stems
orgPoints.resize( numVertices, 0);
for( unsigned int c = 0; c < faces.size(); ++c ) {
unsigned int f = faces[c]; // index of the source face
const XFile::Face& pf = sourceMesh->mPosFaces[f]; // position source face
// create face. either triangle or triangle fan depending on the index count
aiFace& df = mesh->mFaces[c]; // destination face
df.mNumIndices = (unsigned int)pf.mIndices.size();
df.mIndices = new unsigned int[ df.mNumIndices];
// collect vertex data for indices of this face
for( unsigned int d = 0; d < df.mNumIndices; ++d ) {
df.mIndices[ d ] = newIndex;
const unsigned int newIdx( pf.mIndices[ d ] );
if ( newIdx > sourceMesh->mPositions.size() ) {
continue;
}
orgPoints[newIndex] = pf.mIndices[d];
// Position
mesh->mVertices[newIndex] = sourceMesh->mPositions[pf.mIndices[d]];
// Normal, if present
if ( mesh->HasNormals() ) {
if ( sourceMesh->mNormFaces[ f ].mIndices.size() > d ) {
const size_t idx( sourceMesh->mNormFaces[ f ].mIndices[ d ] );
mesh->mNormals[ newIndex ] = sourceMesh->mNormals[ idx ];
}
}
// texture coord sets
for( unsigned int e = 0; e < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++e ) {
if( mesh->HasTextureCoords( e)) {
aiVector2D tex = sourceMesh->mTexCoords[e][pf.mIndices[d]];
mesh->mTextureCoords[e][newIndex] = aiVector3D( tex.x, 1.0f - tex.y, 0.0f);
}
}
// vertex color sets
for ( unsigned int e = 0; e < AI_MAX_NUMBER_OF_COLOR_SETS; ++e ) {
if ( mesh->HasVertexColors( e ) ) {
mesh->mColors[ e ][ newIndex ] = sourceMesh->mColors[ e ][ pf.mIndices[ d ] ];
}
}
newIndex++;
}
}
// there should be as much new vertices as we calculated before
ai_assert( newIndex == numVertices);
// convert all bones of the source mesh which influence vertices in this newly created mesh
const std::vector<XFile::Bone>& bones = sourceMesh->mBones;
std::vector<aiBone*> newBones;
for( unsigned int c = 0; c < bones.size(); ++c ) {
const XFile::Bone& obone = bones[c];
// set up a vertex-linear array of the weights for quick searching if a bone influences a vertex
std::vector<ai_real> oldWeights( sourceMesh->mPositions.size(), 0.0);
for ( unsigned int d = 0; d < obone.mWeights.size(); ++d ) {
oldWeights[ obone.mWeights[ d ].mVertex ] = obone.mWeights[ d ].mWeight;
}
// collect all vertex weights that influence a vertex in the new mesh
std::vector<aiVertexWeight> newWeights;
newWeights.reserve( numVertices);
for( unsigned int d = 0; d < orgPoints.size(); ++d ) {
// does the new vertex stem from an old vertex which was influenced by this bone?
ai_real w = oldWeights[orgPoints[d]];
if ( w > 0.0 ) {
newWeights.push_back( aiVertexWeight( d, w ) );
}
}
// if the bone has no weights in the newly created mesh, ignore it
if ( newWeights.empty() ) {
continue;
}
// create
aiBone* nbone = new aiBone;
newBones.push_back( nbone);
// copy name and matrix
nbone->mName.Set( obone.mName);
nbone->mOffsetMatrix = obone.mOffsetMatrix;
nbone->mNumWeights = (unsigned int)newWeights.size();
nbone->mWeights = new aiVertexWeight[nbone->mNumWeights];
for ( unsigned int d = 0; d < newWeights.size(); ++d ) {
nbone->mWeights[ d ] = newWeights[ d ];
}
}
// store the bones in the mesh
mesh->mNumBones = (unsigned int)newBones.size();
if( !newBones.empty()) {
mesh->mBones = new aiBone*[mesh->mNumBones];
std::copy( newBones.begin(), newBones.end(), mesh->mBones);
}
}
}
// reallocate scene mesh array to be large enough
aiMesh** prevArray = pScene->mMeshes;
pScene->mMeshes = new aiMesh*[pScene->mNumMeshes + meshes.size()];
if( prevArray) {
memcpy( pScene->mMeshes, prevArray, pScene->mNumMeshes * sizeof( aiMesh*));
delete [] prevArray;
}
// allocate mesh index array in the node
pNode->mNumMeshes = (unsigned int)meshes.size();
pNode->mMeshes = new unsigned int[pNode->mNumMeshes];
// store all meshes in the mesh library of the scene and store their indices in the node
for( unsigned int a = 0; a < meshes.size(); a++) {
pScene->mMeshes[pScene->mNumMeshes] = meshes[a];
pNode->mMeshes[a] = pScene->mNumMeshes;
pScene->mNumMeshes++;
}
}
// ------------------------------------------------------------------------------------------------
// Converts the animations from the given imported data and creates them in the scene.
void XFileImporter::CreateAnimations( aiScene* pScene, const XFile::Scene* pData) {
std::vector<aiAnimation*> newAnims;
for( unsigned int a = 0; a < pData->mAnims.size(); ++a ) {
const XFile::Animation* anim = pData->mAnims[a];
// some exporters mock me with empty animation tags.
if ( anim->mAnims.empty() ) {
continue;
}
// create a new animation to hold the data
aiAnimation* nanim = new aiAnimation;
newAnims.push_back( nanim);
nanim->mName.Set( anim->mName);
// duration will be determined by the maximum length
nanim->mDuration = 0;
nanim->mTicksPerSecond = pData->mAnimTicksPerSecond;
nanim->mNumChannels = (unsigned int)anim->mAnims.size();
nanim->mChannels = new aiNodeAnim*[nanim->mNumChannels];
for( unsigned int b = 0; b < anim->mAnims.size(); ++b ) {
const XFile::AnimBone* bone = anim->mAnims[b];
aiNodeAnim* nbone = new aiNodeAnim;
nbone->mNodeName.Set( bone->mBoneName);
nanim->mChannels[b] = nbone;
// key-frames are given as combined transformation matrix keys
if( !bone->mTrafoKeys.empty() )
{
nbone->mNumPositionKeys = (unsigned int)bone->mTrafoKeys.size();
nbone->mPositionKeys = new aiVectorKey[nbone->mNumPositionKeys];
nbone->mNumRotationKeys = (unsigned int)bone->mTrafoKeys.size();
nbone->mRotationKeys = new aiQuatKey[nbone->mNumRotationKeys];
nbone->mNumScalingKeys = (unsigned int)bone->mTrafoKeys.size();
nbone->mScalingKeys = new aiVectorKey[nbone->mNumScalingKeys];
for( unsigned int c = 0; c < bone->mTrafoKeys.size(); ++c) {
// deconstruct each matrix into separate position, rotation and scaling
double time = bone->mTrafoKeys[c].mTime;
aiMatrix4x4 trafo = bone->mTrafoKeys[c].mMatrix;
// extract position
aiVector3D pos( trafo.a4, trafo.b4, trafo.c4);
nbone->mPositionKeys[c].mTime = time;
nbone->mPositionKeys[c].mValue = pos;
// extract scaling
aiVector3D scale;
scale.x = aiVector3D( trafo.a1, trafo.b1, trafo.c1).Length();
scale.y = aiVector3D( trafo.a2, trafo.b2, trafo.c2).Length();
scale.z = aiVector3D( trafo.a3, trafo.b3, trafo.c3).Length();
nbone->mScalingKeys[c].mTime = time;
nbone->mScalingKeys[c].mValue = scale;
// reconstruct rotation matrix without scaling
aiMatrix3x3 rotmat(
trafo.a1 / scale.x, trafo.a2 / scale.y, trafo.a3 / scale.z,
trafo.b1 / scale.x, trafo.b2 / scale.y, trafo.b3 / scale.z,
trafo.c1 / scale.x, trafo.c2 / scale.y, trafo.c3 / scale.z);
// and convert it into a quaternion
nbone->mRotationKeys[c].mTime = time;
nbone->mRotationKeys[c].mValue = aiQuaternion( rotmat);
}
// longest lasting key sequence determines duration
nanim->mDuration = std::max( nanim->mDuration, bone->mTrafoKeys.back().mTime);
} else {
// separate key sequences for position, rotation, scaling
nbone->mNumPositionKeys = (unsigned int)bone->mPosKeys.size();
nbone->mPositionKeys = new aiVectorKey[nbone->mNumPositionKeys];
for( unsigned int c = 0; c < nbone->mNumPositionKeys; ++c ) {
aiVector3D pos = bone->mPosKeys[c].mValue;
nbone->mPositionKeys[c].mTime = bone->mPosKeys[c].mTime;
nbone->mPositionKeys[c].mValue = pos;
}
// rotation
nbone->mNumRotationKeys = (unsigned int)bone->mRotKeys.size();
nbone->mRotationKeys = new aiQuatKey[nbone->mNumRotationKeys];
for( unsigned int c = 0; c < nbone->mNumRotationKeys; ++c ) {
aiMatrix3x3 rotmat = bone->mRotKeys[c].mValue.GetMatrix();
nbone->mRotationKeys[c].mTime = bone->mRotKeys[c].mTime;
nbone->mRotationKeys[c].mValue = aiQuaternion( rotmat);
nbone->mRotationKeys[c].mValue.w *= -1.0f; // needs quat inversion
}
// scaling
nbone->mNumScalingKeys = (unsigned int)bone->mScaleKeys.size();
nbone->mScalingKeys = new aiVectorKey[nbone->mNumScalingKeys];
for( unsigned int c = 0; c < nbone->mNumScalingKeys; c++)
nbone->mScalingKeys[c] = bone->mScaleKeys[c];
// longest lasting key sequence determines duration
if( bone->mPosKeys.size() > 0)
nanim->mDuration = std::max( nanim->mDuration, bone->mPosKeys.back().mTime);
if( bone->mRotKeys.size() > 0)
nanim->mDuration = std::max( nanim->mDuration, bone->mRotKeys.back().mTime);
if( bone->mScaleKeys.size() > 0)
nanim->mDuration = std::max( nanim->mDuration, bone->mScaleKeys.back().mTime);
}
}
}
// store all converted animations in the scene
if( newAnims.size() > 0)
{
pScene->mNumAnimations = (unsigned int)newAnims.size();
pScene->mAnimations = new aiAnimation* [pScene->mNumAnimations];
for( unsigned int a = 0; a < newAnims.size(); a++)
pScene->mAnimations[a] = newAnims[a];
}
}
// ------------------------------------------------------------------------------------------------
// Converts all materials in the given array and stores them in the scene's material list.
void XFileImporter::ConvertMaterials( aiScene* pScene, std::vector<XFile::Material>& pMaterials)
{
// count the non-referrer materials in the array
unsigned int numNewMaterials( 0 );
for ( unsigned int a = 0; a < pMaterials.size(); ++a ) {
if ( !pMaterials[ a ].mIsReference ) {
++numNewMaterials;
}
}
// resize the scene's material list to offer enough space for the new materials
if( numNewMaterials > 0 ) {
aiMaterial** prevMats = pScene->mMaterials;
pScene->mMaterials = new aiMaterial*[pScene->mNumMaterials + numNewMaterials];
if( nullptr != prevMats) {
::memcpy( pScene->mMaterials, prevMats, pScene->mNumMaterials * sizeof( aiMaterial*));
delete [] prevMats;
}
}
// convert all the materials given in the array
for( unsigned int a = 0; a < pMaterials.size(); ++a ) {
XFile::Material& oldMat = pMaterials[a];
if( oldMat.mIsReference) {
// find the material it refers to by name, and store its index
for( size_t a = 0; a < pScene->mNumMaterials; ++a ) {
aiString name;
pScene->mMaterials[a]->Get( AI_MATKEY_NAME, name);
if( strcmp( name.C_Str(), oldMat.mName.data()) == 0 ) {
oldMat.sceneIndex = a;
break;
}
}
if( oldMat.sceneIndex == SIZE_MAX ) {
ASSIMP_LOG_WARN_F( "Could not resolve global material reference \"", oldMat.mName, "\"" );
oldMat.sceneIndex = 0;
}
continue;
}
aiMaterial* mat = new aiMaterial;
aiString name;
name.Set( oldMat.mName);
mat->AddProperty( &name, AI_MATKEY_NAME);
// Shading model: hard-coded to PHONG, there is no such information in an XFile
// FIX (aramis): If the specular exponent is 0, use gouraud shading. This is a bugfix
// for some models in the SDK (e.g. good old tiny.x)
int shadeMode = (int)oldMat.mSpecularExponent == 0.0f
? aiShadingMode_Gouraud : aiShadingMode_Phong;
mat->AddProperty<int>( &shadeMode, 1, AI_MATKEY_SHADING_MODEL);
// material colours
// Unclear: there's no ambient colour, but emissive. What to put for ambient?
// Probably nothing at all, let the user select a suitable default.
mat->AddProperty( &oldMat.mEmissive, 1, AI_MATKEY_COLOR_EMISSIVE);
mat->AddProperty( &oldMat.mDiffuse, 1, AI_MATKEY_COLOR_DIFFUSE);
mat->AddProperty( &oldMat.mSpecular, 1, AI_MATKEY_COLOR_SPECULAR);
mat->AddProperty( &oldMat.mSpecularExponent, 1, AI_MATKEY_SHININESS);
// texture, if there is one
if (1 == oldMat.mTextures.size() ) {
const XFile::TexEntry& otex = oldMat.mTextures.back();
if (otex.mName.length()) {
// if there is only one texture assume it contains the diffuse color
aiString tex( otex.mName);
if ( otex.mIsNormalMap ) {
mat->AddProperty( &tex, AI_MATKEY_TEXTURE_NORMALS( 0 ) );
} else {
mat->AddProperty( &tex, AI_MATKEY_TEXTURE_DIFFUSE( 0 ) );
}
}
} else {
// Otherwise ... try to search for typical strings in the
// texture's file name like 'bump' or 'diffuse'
unsigned int iHM = 0,iNM = 0,iDM = 0,iSM = 0,iAM = 0,iEM = 0;
for( unsigned int b = 0; b < oldMat.mTextures.size(); ++b ) {
const XFile::TexEntry& otex = oldMat.mTextures[b];
std::string sz = otex.mName;
if ( !sz.length() ) {
continue;
}
// find the file name
std::string::size_type s = sz.find_last_of("\\/");
if ( std::string::npos == s ) {
s = 0;
}
// cut off the file extension
std::string::size_type sExt = sz.find_last_of('.');
if (std::string::npos != sExt){
sz[sExt] = '\0';
}
// convert to lower case for easier comparison
for ( unsigned int c = 0; c < sz.length(); ++c ) {
if ( isalpha( sz[ c ] ) ) {
sz[ c ] = tolower( sz[ c ] );
}
}
// Place texture filename property under the corresponding name
aiString tex( oldMat.mTextures[b].mName);
// bump map
if (std::string::npos != sz.find("bump", s) || std::string::npos != sz.find("height", s)) {
mat->AddProperty( &tex, AI_MATKEY_TEXTURE_HEIGHT(iHM++));
} else if (otex.mIsNormalMap || std::string::npos != sz.find( "normal", s) || std::string::npos != sz.find("nm", s)) {
mat->AddProperty( &tex, AI_MATKEY_TEXTURE_NORMALS(iNM++));
} else if (std::string::npos != sz.find( "spec", s) || std::string::npos != sz.find( "glanz", s)) {
mat->AddProperty( &tex, AI_MATKEY_TEXTURE_SPECULAR(iSM++));
} else if (std::string::npos != sz.find( "ambi", s) || std::string::npos != sz.find( "env", s)) {
mat->AddProperty( &tex, AI_MATKEY_TEXTURE_AMBIENT(iAM++));
} else if (std::string::npos != sz.find( "emissive", s) || std::string::npos != sz.find( "self", s)) {
mat->AddProperty( &tex, AI_MATKEY_TEXTURE_EMISSIVE(iEM++));
} else {
// Assume it is a diffuse texture
mat->AddProperty( &tex, AI_MATKEY_TEXTURE_DIFFUSE(iDM++));
}
}
}
pScene->mMaterials[pScene->mNumMaterials] = mat;
oldMat.sceneIndex = pScene->mNumMaterials;
pScene->mNumMaterials++;
}
}
#endif // !! ASSIMP_BUILD_NO_X_IMPORTER