2681 lines
83 KiB
C++
2681 lines
83 KiB
C++
/*
|
|
Open Asset Import Library (assimp)
|
|
----------------------------------------------------------------------
|
|
|
|
Copyright (c) 2006-2010, assimp team
|
|
All rights reserved.
|
|
|
|
Redistribution and use of this software in source and binary forms,
|
|
with or without modification, are permitted provided that the
|
|
following conditions are met:
|
|
|
|
* Redistributions of source code must retain the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer in the documentation and/or other
|
|
materials provided with the distribution.
|
|
|
|
* Neither the name of the assimp team, nor the names of its
|
|
contributors may be used to endorse or promote products
|
|
derived from this software without specific prior
|
|
written permission of the assimp team.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
----------------------------------------------------------------------
|
|
*/
|
|
|
|
/** @file IFCGeometry.cpp
|
|
* @brief Geometry conversion and synthesis for IFC
|
|
*/
|
|
|
|
#include "AssimpPCH.h"
|
|
|
|
#ifndef ASSIMP_BUILD_NO_IFC_IMPORTER
|
|
#include "IFCUtil.h"
|
|
#include "PolyTools.h"
|
|
#include "ProcessHelper.h"
|
|
|
|
#include "../contrib/poly2tri/poly2tri/poly2tri.h"
|
|
#include "../contrib/clipper/clipper.hpp"
|
|
|
|
#include <iterator>
|
|
|
|
namespace Assimp {
|
|
namespace IFC {
|
|
|
|
using ClipperLib::ulong64;
|
|
// XXX use full -+ range ...
|
|
const ClipperLib::long64 max_ulong64 = 1518500249; // clipper.cpp / hiRange var
|
|
|
|
//#define to_int64(p) (static_cast<ulong64>( std::max( 0., std::min( static_cast<IfcFloat>((p)), 1.) ) * max_ulong64 ))
|
|
#define to_int64(p) (static_cast<ulong64>(static_cast<IfcFloat>((p) ) * max_ulong64 ))
|
|
#define from_int64(p) (static_cast<IfcFloat>((p)) / max_ulong64)
|
|
#define one_vec (IfcVector2(static_cast<IfcFloat>(1.0),static_cast<IfcFloat>(1.0)))
|
|
|
|
|
|
bool GenerateOpenings(std::vector<TempOpening>& openings,
|
|
const std::vector<IfcVector3>& nors,
|
|
TempMesh& curmesh,
|
|
bool check_intersection = true,
|
|
bool generate_connection_geometry = true);
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
bool ProcessPolyloop(const IfcPolyLoop& loop, TempMesh& meshout, ConversionData& /*conv*/)
|
|
{
|
|
size_t cnt = 0;
|
|
BOOST_FOREACH(const IfcCartesianPoint& c, loop.Polygon) {
|
|
IfcVector3 tmp;
|
|
ConvertCartesianPoint(tmp,c);
|
|
|
|
meshout.verts.push_back(tmp);
|
|
++cnt;
|
|
}
|
|
|
|
meshout.vertcnt.push_back(cnt);
|
|
|
|
// zero- or one- vertex polyloops simply ignored
|
|
if (meshout.vertcnt.back() > 1) {
|
|
return true;
|
|
}
|
|
|
|
if (meshout.vertcnt.back()==1) {
|
|
meshout.vertcnt.pop_back();
|
|
meshout.verts.pop_back();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ProcessPolygonBoundaries(TempMesh& result, const TempMesh& inmesh, size_t master_bounds = (size_t)-1)
|
|
{
|
|
// handle all trivial cases
|
|
if(inmesh.vertcnt.empty()) {
|
|
return;
|
|
}
|
|
if(inmesh.vertcnt.size() == 1) {
|
|
result.Append(inmesh);
|
|
return;
|
|
}
|
|
|
|
ai_assert(std::count(inmesh.vertcnt.begin(), inmesh.vertcnt.end(), 0) == 0);
|
|
|
|
typedef std::vector<unsigned int>::const_iterator face_iter;
|
|
|
|
face_iter begin = inmesh.vertcnt.begin(), end = inmesh.vertcnt.end(), iit;
|
|
std::vector<unsigned int>::const_iterator outer_polygon_it = end;
|
|
|
|
// major task here: given a list of nested polygon boundaries (one of which
|
|
// is the outer contour), reduce the triangulation task arising here to
|
|
// one that can be solved using the "quadrulation" algorithm which we use
|
|
// for pouring windows out of walls. The algorithm does not handle all
|
|
// cases but at least it is numerically stable and gives "nice" triangles.
|
|
|
|
// first compute normals for all polygons using Newell's algorithm
|
|
// do not normalize 'normals', we need the original length for computing the polygon area
|
|
std::vector<IfcVector3> normals;
|
|
inmesh.ComputePolygonNormals(normals,false);
|
|
|
|
// One of the polygons might be a IfcFaceOuterBound (in which case `master_bounds`
|
|
// is its index). Sadly we can't rely on it, the docs say 'At most one of the bounds
|
|
// shall be of the type IfcFaceOuterBound'
|
|
IfcFloat area_outer_polygon = 1e-10f;
|
|
if (master_bounds != (size_t)-1) {
|
|
ai_assert(master_bounds < inmesh.vertcnt.size());
|
|
outer_polygon_it = begin + master_bounds;
|
|
}
|
|
else {
|
|
for(iit = begin; iit != end; iit++) {
|
|
// find the polygon with the largest area and take it as the outer bound.
|
|
IfcVector3& n = normals[std::distance(begin,iit)];
|
|
const IfcFloat area = n.SquareLength();
|
|
if (area > area_outer_polygon) {
|
|
area_outer_polygon = area;
|
|
outer_polygon_it = iit;
|
|
}
|
|
}
|
|
}
|
|
|
|
ai_assert(outer_polygon_it != end);
|
|
|
|
const size_t outer_polygon_size = *outer_polygon_it;
|
|
const IfcVector3& master_normal = normals[std::distance(begin, outer_polygon_it)];
|
|
const IfcVector3& master_normal_norm = IfcVector3(master_normal).Normalize();
|
|
|
|
|
|
// Generate fake openings to meet the interface for the quadrulate
|
|
// algorithm. It boils down to generating small boxes given the
|
|
// inner polygon and the surface normal of the outer contour.
|
|
// It is important that we use the outer contour's normal because
|
|
// this is the plane onto which the quadrulate algorithm will
|
|
// project the entire mesh.
|
|
std::vector<TempOpening> fake_openings;
|
|
fake_openings.reserve(inmesh.vertcnt.size()-1);
|
|
|
|
std::vector<IfcVector3>::const_iterator vit = inmesh.verts.begin(), outer_vit;
|
|
|
|
for(iit = begin; iit != end; vit += *iit++) {
|
|
if (iit == outer_polygon_it) {
|
|
outer_vit = vit;
|
|
continue;
|
|
}
|
|
|
|
// Filter degenerate polygons to keep them from causing trouble later on
|
|
IfcVector3& n = normals[std::distance(begin,iit)];
|
|
const IfcFloat area = n.SquareLength();
|
|
if (area < 1e-5f) {
|
|
IFCImporter::LogWarn("skipping degenerate polygon (ProcessPolygonBoundaries)");
|
|
continue;
|
|
}
|
|
|
|
fake_openings.push_back(TempOpening());
|
|
TempOpening& opening = fake_openings.back();
|
|
|
|
opening.extrusionDir = master_normal;
|
|
opening.solid = NULL;
|
|
|
|
opening.profileMesh = boost::make_shared<TempMesh>();
|
|
opening.profileMesh->verts.reserve(*iit);
|
|
opening.profileMesh->vertcnt.push_back(*iit);
|
|
|
|
std::copy(vit, vit + *iit, std::back_inserter(opening.profileMesh->verts));
|
|
}
|
|
|
|
// fill a mesh with ONLY the main polygon
|
|
TempMesh temp;
|
|
temp.verts.reserve(outer_polygon_size);
|
|
temp.vertcnt.push_back(outer_polygon_size);
|
|
std::copy(outer_vit, outer_vit+outer_polygon_size,
|
|
std::back_inserter(temp.verts));
|
|
|
|
GenerateOpenings(fake_openings, normals, temp, false, false);
|
|
result.Append(temp);
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ProcessConnectedFaceSet(const IfcConnectedFaceSet& fset, TempMesh& result, ConversionData& conv)
|
|
{
|
|
BOOST_FOREACH(const IfcFace& face, fset.CfsFaces) {
|
|
// size_t ob = -1, cnt = 0;
|
|
TempMesh meshout;
|
|
BOOST_FOREACH(const IfcFaceBound& bound, face.Bounds) {
|
|
|
|
if(const IfcPolyLoop* const polyloop = bound.Bound->ToPtr<IfcPolyLoop>()) {
|
|
if(ProcessPolyloop(*polyloop, meshout,conv)) {
|
|
|
|
// The outer boundary is better determined by checking which
|
|
// polygon covers the largest area.
|
|
|
|
//if(bound.ToPtr<IfcFaceOuterBound>()) {
|
|
// ob = cnt;
|
|
//}
|
|
//++cnt;
|
|
|
|
}
|
|
}
|
|
else {
|
|
IFCImporter::LogWarn("skipping unknown IfcFaceBound entity, type is " + bound.Bound->GetClassName());
|
|
continue;
|
|
}
|
|
|
|
// And this, even though it is sometimes TRUE and sometimes FALSE,
|
|
// does not really improve results.
|
|
|
|
/*if(!IsTrue(bound.Orientation)) {
|
|
size_t c = 0;
|
|
BOOST_FOREACH(unsigned int& c, meshout.vertcnt) {
|
|
std::reverse(result.verts.begin() + cnt,result.verts.begin() + cnt + c);
|
|
cnt += c;
|
|
}
|
|
}*/
|
|
}
|
|
ProcessPolygonBoundaries(result, meshout);
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ProcessRevolvedAreaSolid(const IfcRevolvedAreaSolid& solid, TempMesh& result, ConversionData& conv)
|
|
{
|
|
TempMesh meshout;
|
|
|
|
// first read the profile description
|
|
if(!ProcessProfile(*solid.SweptArea,meshout,conv) || meshout.verts.size()<=1) {
|
|
return;
|
|
}
|
|
|
|
IfcVector3 axis, pos;
|
|
ConvertAxisPlacement(axis,pos,solid.Axis);
|
|
|
|
IfcMatrix4 tb0,tb1;
|
|
IfcMatrix4::Translation(pos,tb0);
|
|
IfcMatrix4::Translation(-pos,tb1);
|
|
|
|
const std::vector<IfcVector3>& in = meshout.verts;
|
|
const size_t size=in.size();
|
|
|
|
bool has_area = solid.SweptArea->ProfileType == "AREA" && size>2;
|
|
const IfcFloat max_angle = solid.Angle*conv.angle_scale;
|
|
if(fabs(max_angle) < 1e-3) {
|
|
if(has_area) {
|
|
result = meshout;
|
|
}
|
|
return;
|
|
}
|
|
|
|
const unsigned int cnt_segments = std::max(2u,static_cast<unsigned int>(16 * fabs(max_angle)/AI_MATH_HALF_PI_F));
|
|
const IfcFloat delta = max_angle/cnt_segments;
|
|
|
|
has_area = has_area && fabs(max_angle) < AI_MATH_TWO_PI_F*0.99;
|
|
|
|
result.verts.reserve(size*((cnt_segments+1)*4+(has_area?2:0)));
|
|
result.vertcnt.reserve(size*cnt_segments+2);
|
|
|
|
IfcMatrix4 rot;
|
|
rot = tb0 * IfcMatrix4::Rotation(delta,axis,rot) * tb1;
|
|
|
|
size_t base = 0;
|
|
std::vector<IfcVector3>& out = result.verts;
|
|
|
|
// dummy data to simplify later processing
|
|
for(size_t i = 0; i < size; ++i) {
|
|
out.insert(out.end(),4,in[i]);
|
|
}
|
|
|
|
for(unsigned int seg = 0; seg < cnt_segments; ++seg) {
|
|
for(size_t i = 0; i < size; ++i) {
|
|
const size_t next = (i+1)%size;
|
|
|
|
result.vertcnt.push_back(4);
|
|
const IfcVector3& base_0 = out[base+i*4+3],base_1 = out[base+next*4+3];
|
|
|
|
out.push_back(base_0);
|
|
out.push_back(base_1);
|
|
out.push_back(rot*base_1);
|
|
out.push_back(rot*base_0);
|
|
}
|
|
base += size*4;
|
|
}
|
|
|
|
out.erase(out.begin(),out.begin()+size*4);
|
|
|
|
if(has_area) {
|
|
// leave the triangulation of the profile area to the ear cutting
|
|
// implementation in aiProcess_Triangulate - for now we just
|
|
// feed in two huge polygons.
|
|
base -= size*8;
|
|
for(size_t i = size; i--; ) {
|
|
out.push_back(out[base+i*4+3]);
|
|
}
|
|
for(size_t i = 0; i < size; ++i ) {
|
|
out.push_back(out[i*4]);
|
|
}
|
|
result.vertcnt.push_back(size);
|
|
result.vertcnt.push_back(size);
|
|
}
|
|
|
|
IfcMatrix4 trafo;
|
|
ConvertAxisPlacement(trafo, solid.Position);
|
|
|
|
result.Transform(trafo);
|
|
IFCImporter::LogDebug("generate mesh procedurally by radial extrusion (IfcRevolvedAreaSolid)");
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ProcessSweptDiskSolid(const IfcSweptDiskSolid solid, TempMesh& result, ConversionData& conv)
|
|
{
|
|
const Curve* const curve = Curve::Convert(*solid.Directrix, conv);
|
|
if(!curve) {
|
|
IFCImporter::LogError("failed to convert Directrix curve (IfcSweptDiskSolid)");
|
|
return;
|
|
}
|
|
|
|
const std::vector<IfcVector3>& in = result.verts;
|
|
const size_t size=in.size();
|
|
|
|
const unsigned int cnt_segments = 16;
|
|
const IfcFloat deltaAngle = AI_MATH_TWO_PI/cnt_segments;
|
|
|
|
const size_t samples = curve->EstimateSampleCount(solid.StartParam,solid.EndParam);
|
|
|
|
result.verts.reserve(cnt_segments * samples * 4);
|
|
result.vertcnt.reserve((cnt_segments - 1) * samples);
|
|
|
|
std::vector<IfcVector3> points;
|
|
points.reserve(cnt_segments * samples);
|
|
|
|
TempMesh temp;
|
|
curve->SampleDiscrete(temp,solid.StartParam,solid.EndParam);
|
|
const std::vector<IfcVector3>& curve_points = temp.verts;
|
|
|
|
if(curve_points.empty()) {
|
|
IFCImporter::LogWarn("curve evaluation yielded no points (IfcSweptDiskSolid)");
|
|
return;
|
|
}
|
|
|
|
IfcVector3 current = curve_points[0];
|
|
IfcVector3 previous = current;
|
|
IfcVector3 next;
|
|
|
|
IfcVector3 startvec;
|
|
startvec.x = 1.0f;
|
|
startvec.y = 1.0f;
|
|
startvec.z = 1.0f;
|
|
|
|
unsigned int last_dir = 0;
|
|
|
|
// generate circles at the sweep positions
|
|
for(size_t i = 0; i < samples; ++i) {
|
|
|
|
if(i != samples - 1) {
|
|
next = curve_points[i + 1];
|
|
}
|
|
|
|
// get a direction vector reflecting the approximate curvature (i.e. tangent)
|
|
IfcVector3 d = (current-previous) + (next-previous);
|
|
|
|
d.Normalize();
|
|
|
|
// figure out an arbitrary point q so that (p-q) * d = 0,
|
|
// try to maximize ||(p-q)|| * ||(p_last-q_last)||
|
|
IfcVector3 q;
|
|
bool take_any = false;
|
|
|
|
for (unsigned int i = 0; i < 2; ++i, take_any = true) {
|
|
if ((last_dir == 0 || take_any) && abs(d.x) > 1e-6) {
|
|
q.y = startvec.y;
|
|
q.z = startvec.z;
|
|
q.x = -(d.y * q.y + d.z * q.z) / d.x;
|
|
last_dir = 0;
|
|
break;
|
|
}
|
|
else if ((last_dir == 1 || take_any) && abs(d.y) > 1e-6) {
|
|
q.x = startvec.x;
|
|
q.z = startvec.z;
|
|
q.y = -(d.x * q.x + d.z * q.z) / d.y;
|
|
last_dir = 1;
|
|
break;
|
|
}
|
|
else if ((last_dir == 2 && abs(d.z) > 1e-6) || take_any) {
|
|
q.y = startvec.y;
|
|
q.x = startvec.x;
|
|
q.z = -(d.y * q.y + d.x * q.x) / d.z;
|
|
last_dir = 2;
|
|
break;
|
|
}
|
|
}
|
|
|
|
q *= solid.Radius / q.Length();
|
|
startvec = q;
|
|
|
|
// generate a rotation matrix to rotate q around d
|
|
IfcMatrix4 rot;
|
|
IfcMatrix4::Rotation(deltaAngle,d,rot);
|
|
|
|
for (unsigned int seg = 0; seg < cnt_segments; ++seg, q *= rot ) {
|
|
points.push_back(q + current);
|
|
}
|
|
|
|
previous = current;
|
|
current = next;
|
|
}
|
|
|
|
// make quads
|
|
for(size_t i = 0; i < samples - 1; ++i) {
|
|
|
|
const aiVector3D& this_start = points[ i * cnt_segments ];
|
|
|
|
// locate corresponding point on next sample ring
|
|
unsigned int best_pair_offset = 0;
|
|
float best_distance_squared = 1e10f;
|
|
for (unsigned int seg = 0; seg < cnt_segments; ++seg) {
|
|
const aiVector3D& p = points[ (i+1) * cnt_segments + seg];
|
|
const float l = (p-this_start).SquareLength();
|
|
|
|
if(l < best_distance_squared) {
|
|
best_pair_offset = seg;
|
|
best_distance_squared = l;
|
|
}
|
|
}
|
|
|
|
for (unsigned int seg = 0; seg < cnt_segments; ++seg) {
|
|
|
|
result.verts.push_back(points[ i * cnt_segments + (seg % cnt_segments)]);
|
|
result.verts.push_back(points[ i * cnt_segments + (seg + 1) % cnt_segments]);
|
|
result.verts.push_back(points[ (i+1) * cnt_segments + ((seg + 1 + best_pair_offset) % cnt_segments)]);
|
|
result.verts.push_back(points[ (i+1) * cnt_segments + ((seg + best_pair_offset) % cnt_segments)]);
|
|
|
|
IfcVector3& v1 = *(result.verts.end()-1);
|
|
IfcVector3& v2 = *(result.verts.end()-2);
|
|
IfcVector3& v3 = *(result.verts.end()-3);
|
|
IfcVector3& v4 = *(result.verts.end()-4);
|
|
|
|
if (((v4-v3) ^ (v4-v1)) * (v4 - curve_points[i]) < 0.0f) {
|
|
std::swap(v4, v1);
|
|
std::swap(v3, v2);
|
|
}
|
|
|
|
result.vertcnt.push_back(4);
|
|
}
|
|
}
|
|
|
|
IFCImporter::LogDebug("generate mesh procedurally by sweeping a disk along a curve (IfcSweptDiskSolid)");
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
IfcMatrix3 DerivePlaneCoordinateSpace(const TempMesh& curmesh, bool& ok, IfcFloat* d = NULL)
|
|
{
|
|
const std::vector<IfcVector3>& out = curmesh.verts;
|
|
IfcMatrix3 m;
|
|
|
|
ok = true;
|
|
|
|
const size_t s = out.size();
|
|
assert(curmesh.vertcnt.size() == 1 && curmesh.vertcnt.back() == s);
|
|
|
|
const IfcVector3 any_point = out[s-1];
|
|
IfcVector3 nor;
|
|
|
|
// The input polygon is arbitrarily shaped, therefore we might need some tries
|
|
// until we find a suitable normal. Note that Newells algorithm would give
|
|
// a more robust result, but this variant also gives us a suitable first
|
|
// axis for the 2D coordinate space on the polygon plane, exploiting the
|
|
// fact that the input polygon is nearly always a quad.
|
|
bool done = false;
|
|
size_t base = s-curmesh.vertcnt.back(), i, j;
|
|
for (i = base; !done && i < s-1; !done && ++i) {
|
|
for (j = i+1; j < s; ++j) {
|
|
nor = -((out[i]-any_point)^(out[j]-any_point));
|
|
if(fabs(nor.Length()) > 1e-8f) {
|
|
done = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(!done) {
|
|
ok = false;
|
|
return m;
|
|
}
|
|
|
|
nor.Normalize();
|
|
|
|
IfcVector3 r = (out[i]-any_point);
|
|
r.Normalize();
|
|
|
|
if(d) {
|
|
*d = -any_point * nor;
|
|
}
|
|
|
|
// Reconstruct orthonormal basis
|
|
// XXX use Gram Schmidt for increased robustness
|
|
IfcVector3 u = r ^ nor;
|
|
u.Normalize();
|
|
|
|
m.a1 = r.x;
|
|
m.a2 = r.y;
|
|
m.a3 = r.z;
|
|
|
|
m.b1 = u.x;
|
|
m.b2 = u.y;
|
|
m.b3 = u.z;
|
|
|
|
m.c1 = nor.x;
|
|
m.c2 = nor.y;
|
|
m.c3 = nor.z;
|
|
|
|
return m;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
bool TryAddOpenings_Poly2Tri(const std::vector<TempOpening>& openings,const std::vector<IfcVector3>& nors,
|
|
TempMesh& curmesh)
|
|
{
|
|
IFCImporter::LogWarn("forced to use poly2tri fallback method to generate wall openings");
|
|
std::vector<IfcVector3>& out = curmesh.verts;
|
|
|
|
bool result = false;
|
|
|
|
// Try to derive a solid base plane within the current surface for use as
|
|
// working coordinate system.
|
|
bool ok;
|
|
const IfcMatrix3& m = DerivePlaneCoordinateSpace(curmesh, ok);
|
|
if (!ok) {
|
|
return false;
|
|
}
|
|
|
|
const IfcMatrix3 minv = IfcMatrix3(m).Inverse();
|
|
const IfcVector3& nor = IfcVector3(m.c1, m.c2, m.c3);
|
|
|
|
IfcFloat coord = -1;
|
|
|
|
std::vector<IfcVector2> contour_flat;
|
|
contour_flat.reserve(out.size());
|
|
|
|
IfcVector2 vmin, vmax;
|
|
MinMaxChooser<IfcVector2>()(vmin, vmax);
|
|
|
|
// Move all points into the new coordinate system, collecting min/max verts on the way
|
|
BOOST_FOREACH(IfcVector3& x, out) {
|
|
const IfcVector3 vv = m * x;
|
|
|
|
// keep Z offset in the plane coordinate system. Ignoring precision issues
|
|
// (which are present, of course), this should be the same value for
|
|
// all polygon vertices (assuming the polygon is planar).
|
|
|
|
|
|
// XXX this should be guarded, but we somehow need to pick a suitable
|
|
// epsilon
|
|
// if(coord != -1.0f) {
|
|
// assert(fabs(coord - vv.z) < 1e-3f);
|
|
// }
|
|
|
|
coord = vv.z;
|
|
|
|
vmin = std::min(IfcVector2(vv.x, vv.y), vmin);
|
|
vmax = std::max(IfcVector2(vv.x, vv.y), vmax);
|
|
|
|
contour_flat.push_back(IfcVector2(vv.x,vv.y));
|
|
}
|
|
|
|
// With the current code in DerivePlaneCoordinateSpace,
|
|
// vmin,vmax should always be the 0...1 rectangle (+- numeric inaccuracies)
|
|
// but here we won't rely on this.
|
|
|
|
vmax -= vmin;
|
|
|
|
// If this happens then the projection must have been wrong.
|
|
assert(vmax.Length());
|
|
|
|
ClipperLib::ExPolygons clipped;
|
|
ClipperLib::Polygons holes_union;
|
|
|
|
|
|
IfcVector3 wall_extrusion;
|
|
bool do_connections = false, first = true;
|
|
|
|
try {
|
|
|
|
ClipperLib::Clipper clipper_holes;
|
|
size_t c = 0;
|
|
|
|
BOOST_FOREACH(const TempOpening& t,openings) {
|
|
const IfcVector3& outernor = nors[c++];
|
|
const IfcFloat dot = nor * outernor;
|
|
if (fabs(dot)<1.f-1e-6f) {
|
|
continue;
|
|
}
|
|
|
|
const std::vector<IfcVector3>& va = t.profileMesh->verts;
|
|
if(va.size() <= 2) {
|
|
continue;
|
|
}
|
|
|
|
std::vector<IfcVector2> contour;
|
|
|
|
BOOST_FOREACH(const IfcVector3& xx, t.profileMesh->verts) {
|
|
IfcVector3 vv = m * xx, vv_extr = m * (xx + t.extrusionDir);
|
|
|
|
const bool is_extruded_side = fabs(vv.z - coord) > fabs(vv_extr.z - coord);
|
|
if (first) {
|
|
first = false;
|
|
if (dot > 0.f) {
|
|
do_connections = true;
|
|
wall_extrusion = t.extrusionDir;
|
|
if (is_extruded_side) {
|
|
wall_extrusion = - wall_extrusion;
|
|
}
|
|
}
|
|
}
|
|
|
|
// XXX should not be necessary - but it is. Why? For precision reasons?
|
|
vv = is_extruded_side ? vv_extr : vv;
|
|
contour.push_back(IfcVector2(vv.x,vv.y));
|
|
}
|
|
|
|
ClipperLib::Polygon hole;
|
|
BOOST_FOREACH(IfcVector2& pip, contour) {
|
|
pip.x = (pip.x - vmin.x) / vmax.x;
|
|
pip.y = (pip.y - vmin.y) / vmax.y;
|
|
|
|
hole.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
|
|
}
|
|
|
|
if (!ClipperLib::Orientation(hole)) {
|
|
std::reverse(hole.begin(), hole.end());
|
|
// assert(ClipperLib::Orientation(hole));
|
|
}
|
|
|
|
/*ClipperLib::Polygons pol_temp(1), pol_temp2(1);
|
|
pol_temp[0] = hole;
|
|
|
|
ClipperLib::OffsetPolygons(pol_temp,pol_temp2,5.0);
|
|
hole = pol_temp2[0];*/
|
|
|
|
clipper_holes.AddPolygon(hole,ClipperLib::ptSubject);
|
|
}
|
|
|
|
clipper_holes.Execute(ClipperLib::ctUnion,holes_union,
|
|
ClipperLib::pftNonZero,
|
|
ClipperLib::pftNonZero);
|
|
|
|
if (holes_union.empty()) {
|
|
return false;
|
|
}
|
|
|
|
// Now that we have the big union of all holes, subtract it from the outer contour
|
|
// to obtain the final polygon to feed into the triangulator.
|
|
{
|
|
ClipperLib::Polygon poly;
|
|
BOOST_FOREACH(IfcVector2& pip, contour_flat) {
|
|
pip.x = (pip.x - vmin.x) / vmax.x;
|
|
pip.y = (pip.y - vmin.y) / vmax.y;
|
|
|
|
poly.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
|
|
}
|
|
|
|
if (ClipperLib::Orientation(poly)) {
|
|
std::reverse(poly.begin(), poly.end());
|
|
}
|
|
clipper_holes.Clear();
|
|
clipper_holes.AddPolygon(poly,ClipperLib::ptSubject);
|
|
|
|
clipper_holes.AddPolygons(holes_union,ClipperLib::ptClip);
|
|
clipper_holes.Execute(ClipperLib::ctDifference,clipped,
|
|
ClipperLib::pftNonZero,
|
|
ClipperLib::pftNonZero);
|
|
}
|
|
|
|
}
|
|
catch (const char* sx) {
|
|
IFCImporter::LogError("Ifc: error during polygon clipping, skipping openings for this face: (Clipper: "
|
|
+ std::string(sx) + ")");
|
|
|
|
return false;
|
|
}
|
|
|
|
std::vector<IfcVector3> old_verts;
|
|
std::vector<unsigned int> old_vertcnt;
|
|
|
|
old_verts.swap(curmesh.verts);
|
|
old_vertcnt.swap(curmesh.vertcnt);
|
|
|
|
|
|
// add connection geometry to close the adjacent 'holes' for the openings
|
|
// this should only be done from one side of the wall or the polygons
|
|
// would be emitted twice.
|
|
if (false && do_connections) {
|
|
|
|
std::vector<IfcVector3> tmpvec;
|
|
BOOST_FOREACH(ClipperLib::Polygon& opening, holes_union) {
|
|
|
|
assert(ClipperLib::Orientation(opening));
|
|
|
|
tmpvec.clear();
|
|
|
|
BOOST_FOREACH(ClipperLib::IntPoint& point, opening) {
|
|
|
|
tmpvec.push_back( minv * IfcVector3(
|
|
vmin.x + from_int64(point.X) * vmax.x,
|
|
vmin.y + from_int64(point.Y) * vmax.y,
|
|
coord));
|
|
}
|
|
|
|
for(size_t i = 0, size = tmpvec.size(); i < size; ++i) {
|
|
const size_t next = (i+1)%size;
|
|
|
|
curmesh.vertcnt.push_back(4);
|
|
|
|
const IfcVector3& in_world = tmpvec[i];
|
|
const IfcVector3& next_world = tmpvec[next];
|
|
|
|
// Assumptions: no 'partial' openings, wall thickness roughly the same across the wall
|
|
curmesh.verts.push_back(in_world);
|
|
curmesh.verts.push_back(in_world+wall_extrusion);
|
|
curmesh.verts.push_back(next_world+wall_extrusion);
|
|
curmesh.verts.push_back(next_world);
|
|
}
|
|
}
|
|
}
|
|
|
|
std::vector< std::vector<p2t::Point*> > contours;
|
|
BOOST_FOREACH(ClipperLib::ExPolygon& clip, clipped) {
|
|
|
|
contours.clear();
|
|
|
|
// Build the outer polygon contour line for feeding into poly2tri
|
|
std::vector<p2t::Point*> contour_points;
|
|
BOOST_FOREACH(ClipperLib::IntPoint& point, clip.outer) {
|
|
contour_points.push_back( new p2t::Point(from_int64(point.X), from_int64(point.Y)) );
|
|
}
|
|
|
|
p2t::CDT* cdt ;
|
|
try {
|
|
// Note: this relies on custom modifications in poly2tri to raise runtime_error's
|
|
// instead if assertions. These failures are not debug only, they can actually
|
|
// happen in production use if the input data is broken. An assertion would be
|
|
// inappropriate.
|
|
cdt = new p2t::CDT(contour_points);
|
|
}
|
|
catch(const std::exception& e) {
|
|
IFCImporter::LogError("Ifc: error during polygon triangulation, skipping some openings: (poly2tri: "
|
|
+ std::string(e.what()) + ")");
|
|
continue;
|
|
}
|
|
|
|
|
|
// Build the poly2tri inner contours for all holes we got from ClipperLib
|
|
BOOST_FOREACH(ClipperLib::Polygon& opening, clip.holes) {
|
|
|
|
contours.push_back(std::vector<p2t::Point*>());
|
|
std::vector<p2t::Point*>& contour = contours.back();
|
|
|
|
BOOST_FOREACH(ClipperLib::IntPoint& point, opening) {
|
|
contour.push_back( new p2t::Point(from_int64(point.X), from_int64(point.Y)) );
|
|
}
|
|
|
|
cdt->AddHole(contour);
|
|
}
|
|
|
|
try {
|
|
// Note: See above
|
|
cdt->Triangulate();
|
|
}
|
|
catch(const std::exception& e) {
|
|
IFCImporter::LogError("Ifc: error during polygon triangulation, skipping some openings: (poly2tri: "
|
|
+ std::string(e.what()) + ")");
|
|
continue;
|
|
}
|
|
|
|
const std::vector<p2t::Triangle*>& tris = cdt->GetTriangles();
|
|
|
|
// Collect the triangles we just produced
|
|
BOOST_FOREACH(p2t::Triangle* tri, tris) {
|
|
for(int i = 0; i < 3; ++i) {
|
|
|
|
const IfcVector2& v = IfcVector2(
|
|
static_cast<IfcFloat>( tri->GetPoint(i)->x ),
|
|
static_cast<IfcFloat>( tri->GetPoint(i)->y )
|
|
);
|
|
|
|
assert(v.x <= 1.0 && v.x >= 0.0 && v.y <= 1.0 && v.y >= 0.0);
|
|
const IfcVector3 v3 = minv * IfcVector3(vmin.x + v.x * vmax.x, vmin.y + v.y * vmax.y,coord) ;
|
|
|
|
curmesh.verts.push_back(v3);
|
|
}
|
|
curmesh.vertcnt.push_back(3);
|
|
}
|
|
|
|
result = true;
|
|
}
|
|
|
|
if (!result) {
|
|
// revert -- it's a shame, but better than nothing
|
|
curmesh.verts.insert(curmesh.verts.end(),old_verts.begin(), old_verts.end());
|
|
curmesh.vertcnt.insert(curmesh.vertcnt.end(),old_vertcnt.begin(), old_vertcnt.end());
|
|
|
|
IFCImporter::LogError("Ifc: revert, could not generate openings for this wall");
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
struct DistanceSorter {
|
|
|
|
DistanceSorter(const IfcVector3& base) : base(base) {}
|
|
|
|
bool operator () (const TempOpening& a, const TempOpening& b) const {
|
|
return (a.profileMesh->Center()-base).SquareLength() < (b.profileMesh->Center()-base).SquareLength();
|
|
}
|
|
|
|
IfcVector3 base;
|
|
};
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
struct XYSorter {
|
|
|
|
// sort first by X coordinates, then by Y coordinates
|
|
bool operator () (const IfcVector2&a, const IfcVector2& b) const {
|
|
if (a.x == b.x) {
|
|
return a.y < b.y;
|
|
}
|
|
return a.x < b.x;
|
|
}
|
|
};
|
|
|
|
typedef std::pair< IfcVector2, IfcVector2 > BoundingBox;
|
|
typedef std::map<IfcVector2,size_t,XYSorter> XYSortedField;
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void QuadrifyPart(const IfcVector2& pmin, const IfcVector2& pmax, XYSortedField& field,
|
|
const std::vector< BoundingBox >& bbs,
|
|
std::vector<IfcVector2>& out)
|
|
{
|
|
if (!(pmin.x-pmax.x) || !(pmin.y-pmax.y)) {
|
|
return;
|
|
}
|
|
|
|
IfcFloat xs = 1e10, xe = 1e10;
|
|
bool found = false;
|
|
|
|
// Search along the x-axis until we find an opening
|
|
XYSortedField::iterator start = field.begin();
|
|
for(; start != field.end(); ++start) {
|
|
const BoundingBox& bb = bbs[(*start).second];
|
|
if(bb.first.x >= pmax.x) {
|
|
break;
|
|
}
|
|
|
|
if (bb.second.x > pmin.x && bb.second.y > pmin.y && bb.first.y < pmax.y) {
|
|
xs = bb.first.x;
|
|
xe = bb.second.x;
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!found) {
|
|
// the rectangle [pmin,pend] is opaque, fill it
|
|
out.push_back(pmin);
|
|
out.push_back(IfcVector2(pmin.x,pmax.y));
|
|
out.push_back(pmax);
|
|
out.push_back(IfcVector2(pmax.x,pmin.y));
|
|
return;
|
|
}
|
|
|
|
xs = std::max(pmin.x,xs);
|
|
xe = std::min(pmax.x,xe);
|
|
|
|
// see if there's an offset to fill at the top of our quad
|
|
if (xs - pmin.x) {
|
|
out.push_back(pmin);
|
|
out.push_back(IfcVector2(pmin.x,pmax.y));
|
|
out.push_back(IfcVector2(xs,pmax.y));
|
|
out.push_back(IfcVector2(xs,pmin.y));
|
|
}
|
|
|
|
// search along the y-axis for all openings that overlap xs and our quad
|
|
IfcFloat ylast = pmin.y;
|
|
found = false;
|
|
for(; start != field.end(); ++start) {
|
|
const BoundingBox& bb = bbs[(*start).second];
|
|
if (bb.first.x > xs || bb.first.y >= pmax.y) {
|
|
break;
|
|
}
|
|
|
|
if (bb.second.y > ylast) {
|
|
|
|
found = true;
|
|
const IfcFloat ys = std::max(bb.first.y,pmin.y), ye = std::min(bb.second.y,pmax.y);
|
|
if (ys - ylast > 0.0f) {
|
|
QuadrifyPart( IfcVector2(xs,ylast), IfcVector2(xe,ys) ,field,bbs,out);
|
|
}
|
|
|
|
// the following are the window vertices
|
|
|
|
/*wnd.push_back(IfcVector2(xs,ys));
|
|
wnd.push_back(IfcVector2(xs,ye));
|
|
wnd.push_back(IfcVector2(xe,ye));
|
|
wnd.push_back(IfcVector2(xe,ys));*/
|
|
ylast = ye;
|
|
}
|
|
}
|
|
if (!found) {
|
|
// the rectangle [pmin,pend] is opaque, fill it
|
|
out.push_back(IfcVector2(xs,pmin.y));
|
|
out.push_back(IfcVector2(xs,pmax.y));
|
|
out.push_back(IfcVector2(xe,pmax.y));
|
|
out.push_back(IfcVector2(xe,pmin.y));
|
|
return;
|
|
}
|
|
if (ylast < pmax.y) {
|
|
QuadrifyPart( IfcVector2(xs,ylast), IfcVector2(xe,pmax.y) ,field,bbs,out);
|
|
}
|
|
|
|
// now for the whole rest
|
|
if (pmax.x-xe) {
|
|
QuadrifyPart(IfcVector2(xe,pmin.y), pmax ,field,bbs,out);
|
|
}
|
|
}
|
|
|
|
typedef std::vector<IfcVector2> Contour;
|
|
typedef std::vector<bool> SkipList; // should probably use int for performance reasons
|
|
|
|
struct ProjectedWindowContour
|
|
{
|
|
Contour contour;
|
|
BoundingBox bb;
|
|
SkipList skiplist;
|
|
bool is_rectangular;
|
|
|
|
|
|
ProjectedWindowContour(const Contour& contour, const BoundingBox& bb, bool is_rectangular)
|
|
: contour(contour)
|
|
, bb(bb)
|
|
, is_rectangular(is_rectangular)
|
|
{}
|
|
|
|
|
|
bool IsInvalid() const {
|
|
return contour.empty();
|
|
}
|
|
|
|
void FlagInvalid() {
|
|
contour.clear();
|
|
}
|
|
|
|
void PrepareSkiplist() {
|
|
skiplist.resize(contour.size(),false);
|
|
}
|
|
};
|
|
|
|
typedef std::vector< ProjectedWindowContour > ContourVector;
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
bool BoundingBoxesOverlapping( const BoundingBox &ibb, const BoundingBox &bb )
|
|
{
|
|
// count the '=' case as non-overlapping but as adjacent to each other
|
|
return ibb.first.x < bb.second.x && ibb.second.x > bb.first.x &&
|
|
ibb.first.y < bb.second.y && ibb.second.y > bb.first.y;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
bool IsDuplicateVertex(const IfcVector2& vv, const std::vector<IfcVector2>& temp_contour)
|
|
{
|
|
// sanity check for duplicate vertices
|
|
BOOST_FOREACH(const IfcVector2& cp, temp_contour) {
|
|
if ((cp-vv).SquareLength() < 1e-5f) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ExtractVerticesFromClipper(const ClipperLib::Polygon& poly, std::vector<IfcVector2>& temp_contour,
|
|
bool filter_duplicates = false)
|
|
{
|
|
temp_contour.clear();
|
|
BOOST_FOREACH(const ClipperLib::IntPoint& point, poly) {
|
|
IfcVector2 vv = IfcVector2( from_int64(point.X), from_int64(point.Y));
|
|
vv = std::max(vv,IfcVector2());
|
|
vv = std::min(vv,one_vec);
|
|
|
|
if (!filter_duplicates || !IsDuplicateVertex(vv, temp_contour)) {
|
|
temp_contour.push_back(vv);
|
|
}
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
BoundingBox GetBoundingBox(const ClipperLib::Polygon& poly)
|
|
{
|
|
IfcVector2 newbb_min, newbb_max;
|
|
MinMaxChooser<IfcVector2>()(newbb_min, newbb_max);
|
|
|
|
BOOST_FOREACH(const ClipperLib::IntPoint& point, poly) {
|
|
IfcVector2 vv = IfcVector2( from_int64(point.X), from_int64(point.Y));
|
|
|
|
// sanity rounding
|
|
vv = std::max(vv,IfcVector2());
|
|
vv = std::min(vv,one_vec);
|
|
|
|
newbb_min = std::min(newbb_min,vv);
|
|
newbb_max = std::max(newbb_max,vv);
|
|
}
|
|
return BoundingBox(newbb_min, newbb_max);
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void InsertWindowContours(const ContourVector& contours,
|
|
const std::vector<TempOpening>& openings,
|
|
TempMesh& curmesh)
|
|
{
|
|
// fix windows - we need to insert the real, polygonal shapes into the quadratic holes that we have now
|
|
for(size_t i = 0; i < contours.size();++i) {
|
|
const BoundingBox& bb = contours[i].bb;
|
|
const std::vector<IfcVector2>& contour = contours[i].contour;
|
|
if(contour.empty()) {
|
|
continue;
|
|
}
|
|
|
|
// check if we need to do it at all - many windows just fit perfectly into their quadratic holes,
|
|
// i.e. their contours *are* already their bounding boxes.
|
|
if (contour.size() == 4) {
|
|
std::set<IfcVector2,XYSorter> verts;
|
|
for(size_t n = 0; n < 4; ++n) {
|
|
verts.insert(contour[n]);
|
|
}
|
|
const std::set<IfcVector2,XYSorter>::const_iterator end = verts.end();
|
|
if (verts.find(bb.first)!=end && verts.find(bb.second)!=end
|
|
&& verts.find(IfcVector2(bb.first.x,bb.second.y))!=end
|
|
&& verts.find(IfcVector2(bb.second.x,bb.first.y))!=end
|
|
) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
const IfcFloat diag = (bb.first-bb.second).Length();
|
|
const IfcFloat epsilon = diag/1000.f;
|
|
|
|
// walk through all contour points and find those that lie on the BB corner
|
|
size_t last_hit = -1, very_first_hit = -1;
|
|
IfcVector2 edge;
|
|
for(size_t n = 0, e=0, size = contour.size();; n=(n+1)%size, ++e) {
|
|
|
|
// sanity checking
|
|
if (e == size*2) {
|
|
IFCImporter::LogError("encountered unexpected topology while generating window contour");
|
|
break;
|
|
}
|
|
|
|
const IfcVector2& v = contour[n];
|
|
|
|
bool hit = false;
|
|
if (fabs(v.x-bb.first.x)<epsilon) {
|
|
edge.x = bb.first.x;
|
|
hit = true;
|
|
}
|
|
else if (fabs(v.x-bb.second.x)<epsilon) {
|
|
edge.x = bb.second.x;
|
|
hit = true;
|
|
}
|
|
|
|
if (fabs(v.y-bb.first.y)<epsilon) {
|
|
edge.y = bb.first.y;
|
|
hit = true;
|
|
}
|
|
else if (fabs(v.y-bb.second.y)<epsilon) {
|
|
edge.y = bb.second.y;
|
|
hit = true;
|
|
}
|
|
|
|
if (hit) {
|
|
if (last_hit != (size_t)-1) {
|
|
|
|
const size_t old = curmesh.verts.size();
|
|
size_t cnt = last_hit > n ? size-(last_hit-n) : n-last_hit;
|
|
for(size_t a = last_hit, e = 0; e <= cnt; a=(a+1)%size, ++e) {
|
|
// hack: this is to fix cases where opening contours are self-intersecting.
|
|
// Clipper doesn't produce such polygons, but as soon as we're back in
|
|
// our brave new floating-point world, very small distances are consumed
|
|
// by the maximum available precision, leading to self-intersecting
|
|
// polygons. This fix makes concave windows fail even worse, but
|
|
// anyway, fail is fail.
|
|
if ((contour[a] - edge).SquareLength() > diag*diag*0.7) {
|
|
continue;
|
|
}
|
|
curmesh.verts.push_back(IfcVector3(contour[a].x, contour[a].y, 0.0f));
|
|
}
|
|
|
|
if (edge != contour[last_hit]) {
|
|
|
|
IfcVector2 corner = edge;
|
|
|
|
if (fabs(contour[last_hit].x-bb.first.x)<epsilon) {
|
|
corner.x = bb.first.x;
|
|
}
|
|
else if (fabs(contour[last_hit].x-bb.second.x)<epsilon) {
|
|
corner.x = bb.second.x;
|
|
}
|
|
|
|
if (fabs(contour[last_hit].y-bb.first.y)<epsilon) {
|
|
corner.y = bb.first.y;
|
|
}
|
|
else if (fabs(contour[last_hit].y-bb.second.y)<epsilon) {
|
|
corner.y = bb.second.y;
|
|
}
|
|
|
|
curmesh.verts.push_back(IfcVector3(corner.x, corner.y, 0.0f));
|
|
}
|
|
else if (cnt == 1) {
|
|
// avoid degenerate polygons (also known as lines or points)
|
|
curmesh.verts.erase(curmesh.verts.begin()+old,curmesh.verts.end());
|
|
}
|
|
|
|
if (const size_t d = curmesh.verts.size()-old) {
|
|
curmesh.vertcnt.push_back(d);
|
|
std::reverse(curmesh.verts.rbegin(),curmesh.verts.rbegin()+d);
|
|
}
|
|
if (n == very_first_hit) {
|
|
break;
|
|
}
|
|
}
|
|
else {
|
|
very_first_hit = n;
|
|
}
|
|
|
|
last_hit = n;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void MergeWindowContours (const std::vector<IfcVector2>& a,
|
|
const std::vector<IfcVector2>& b,
|
|
ClipperLib::ExPolygons& out)
|
|
{
|
|
out.clear();
|
|
|
|
ClipperLib::Clipper clipper;
|
|
ClipperLib::Polygon clip;
|
|
|
|
BOOST_FOREACH(const IfcVector2& pip, a) {
|
|
clip.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
|
|
}
|
|
|
|
if (ClipperLib::Orientation(clip)) {
|
|
std::reverse(clip.begin(), clip.end());
|
|
}
|
|
|
|
clipper.AddPolygon(clip, ClipperLib::ptSubject);
|
|
clip.clear();
|
|
|
|
BOOST_FOREACH(const IfcVector2& pip, b) {
|
|
clip.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
|
|
}
|
|
|
|
if (ClipperLib::Orientation(clip)) {
|
|
std::reverse(clip.begin(), clip.end());
|
|
}
|
|
|
|
clipper.AddPolygon(clip, ClipperLib::ptSubject);
|
|
clipper.Execute(ClipperLib::ctUnion, out,ClipperLib::pftNonZero,ClipperLib::pftNonZero);
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Subtract a from b
|
|
void MakeDisjunctWindowContours (const std::vector<IfcVector2>& a,
|
|
const std::vector<IfcVector2>& b,
|
|
ClipperLib::ExPolygons& out)
|
|
{
|
|
out.clear();
|
|
|
|
ClipperLib::Clipper clipper;
|
|
ClipperLib::Polygon clip;
|
|
|
|
BOOST_FOREACH(const IfcVector2& pip, a) {
|
|
clip.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
|
|
}
|
|
|
|
if (ClipperLib::Orientation(clip)) {
|
|
std::reverse(clip.begin(), clip.end());
|
|
}
|
|
|
|
clipper.AddPolygon(clip, ClipperLib::ptClip);
|
|
clip.clear();
|
|
|
|
BOOST_FOREACH(const IfcVector2& pip, b) {
|
|
clip.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
|
|
}
|
|
|
|
if (ClipperLib::Orientation(clip)) {
|
|
std::reverse(clip.begin(), clip.end());
|
|
}
|
|
|
|
clipper.AddPolygon(clip, ClipperLib::ptSubject);
|
|
clipper.Execute(ClipperLib::ctDifference, out,ClipperLib::pftNonZero,ClipperLib::pftNonZero);
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void CleanupWindowContour(ProjectedWindowContour& window)
|
|
{
|
|
std::vector<IfcVector2> scratch;
|
|
std::vector<IfcVector2>& contour = window.contour;
|
|
|
|
ClipperLib::Polygon subject;
|
|
ClipperLib::Clipper clipper;
|
|
ClipperLib::ExPolygons clipped;
|
|
|
|
BOOST_FOREACH(const IfcVector2& pip, contour) {
|
|
subject.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
|
|
}
|
|
|
|
clipper.AddPolygon(subject,ClipperLib::ptSubject);
|
|
clipper.Execute(ClipperLib::ctUnion,clipped,ClipperLib::pftNonZero,ClipperLib::pftNonZero);
|
|
|
|
// This should yield only one polygon or something went wrong
|
|
if (clipped.size() != 1) {
|
|
|
|
// Empty polygon? drop the contour altogether
|
|
if(clipped.empty()) {
|
|
IFCImporter::LogError("error during polygon clipping, window contour is degenerate");
|
|
window.FlagInvalid();
|
|
return;
|
|
}
|
|
|
|
// Else: take the first only
|
|
IFCImporter::LogError("error during polygon clipping, window contour is not convex");
|
|
}
|
|
|
|
ExtractVerticesFromClipper(clipped[0].outer, scratch);
|
|
// Assume the bounding box doesn't change during this operation
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void CleanupWindowContours(ContourVector& contours)
|
|
{
|
|
// Use PolyClipper to clean up window contours
|
|
try {
|
|
BOOST_FOREACH(ProjectedWindowContour& window, contours) {
|
|
CleanupWindowContour(window);
|
|
}
|
|
}
|
|
catch (const char* sx) {
|
|
IFCImporter::LogError("error during polygon clipping, window shape may be wrong: (Clipper: "
|
|
+ std::string(sx) + ")");
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void CleanupOuterContour(const std::vector<IfcVector2>& contour_flat, TempMesh& curmesh)
|
|
{
|
|
std::vector<IfcVector3> vold;
|
|
std::vector<unsigned int> iold;
|
|
|
|
vold.reserve(curmesh.verts.size());
|
|
iold.reserve(curmesh.vertcnt.size());
|
|
|
|
// Fix the outer contour using polyclipper
|
|
try {
|
|
|
|
ClipperLib::Polygon subject;
|
|
ClipperLib::Clipper clipper;
|
|
ClipperLib::ExPolygons clipped;
|
|
|
|
ClipperLib::Polygon clip;
|
|
clip.reserve(contour_flat.size());
|
|
BOOST_FOREACH(const IfcVector2& pip, contour_flat) {
|
|
clip.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
|
|
}
|
|
|
|
if (!ClipperLib::Orientation(clip)) {
|
|
std::reverse(clip.begin(), clip.end());
|
|
}
|
|
|
|
// We need to run polyclipper on every single polygon -- we can't run it one all
|
|
// of them at once or it would merge them all together which would undo all
|
|
// previous steps
|
|
subject.reserve(4);
|
|
size_t index = 0;
|
|
size_t countdown = 0;
|
|
BOOST_FOREACH(const IfcVector3& pip, curmesh.verts) {
|
|
if (!countdown) {
|
|
countdown = curmesh.vertcnt[index++];
|
|
if (!countdown) {
|
|
continue;
|
|
}
|
|
}
|
|
subject.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
|
|
if (--countdown == 0) {
|
|
if (!ClipperLib::Orientation(subject)) {
|
|
std::reverse(subject.begin(), subject.end());
|
|
}
|
|
|
|
clipper.AddPolygon(subject,ClipperLib::ptSubject);
|
|
clipper.AddPolygon(clip,ClipperLib::ptClip);
|
|
|
|
clipper.Execute(ClipperLib::ctIntersection,clipped,ClipperLib::pftNonZero,ClipperLib::pftNonZero);
|
|
|
|
BOOST_FOREACH(const ClipperLib::ExPolygon& ex, clipped) {
|
|
iold.push_back(ex.outer.size());
|
|
BOOST_FOREACH(const ClipperLib::IntPoint& point, ex.outer) {
|
|
vold.push_back(IfcVector3(
|
|
from_int64(point.X),
|
|
from_int64(point.Y),
|
|
0.0f));
|
|
}
|
|
}
|
|
|
|
subject.clear();
|
|
clipped.clear();
|
|
clipper.Clear();
|
|
}
|
|
}
|
|
}
|
|
catch (const char* sx) {
|
|
IFCImporter::LogError("Ifc: error during polygon clipping, wall contour line may be wrong: (Clipper: "
|
|
+ std::string(sx) + ")");
|
|
|
|
return;
|
|
}
|
|
|
|
// swap data arrays
|
|
std::swap(vold,curmesh.verts);
|
|
std::swap(iold,curmesh.vertcnt);
|
|
}
|
|
|
|
typedef std::vector<TempOpening*> OpeningRefs;
|
|
typedef std::vector<OpeningRefs > OpeningRefVector;
|
|
|
|
typedef std::vector<std::pair<
|
|
ContourVector::const_iterator,
|
|
Contour::const_iterator>
|
|
> ContourRefVector;
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
bool BoundingBoxesAdjacent(const BoundingBox& bb, const BoundingBox& ibb)
|
|
{
|
|
// TODO: I'm pretty sure there is a much more compact way to check this
|
|
const IfcFloat epsilon = 1e-5f;
|
|
return (fabs(bb.second.x - ibb.first.x) < epsilon && bb.first.y <= ibb.second.y && bb.second.y >= ibb.first.y) ||
|
|
(fabs(bb.first.x - ibb.second.x) < epsilon && ibb.first.y <= bb.second.y && ibb.second.y >= bb.first.y) ||
|
|
(fabs(bb.second.y - ibb.first.y) < epsilon && bb.first.x <= ibb.second.x && bb.second.x >= ibb.first.x) ||
|
|
(fabs(bb.first.y - ibb.second.y) < epsilon && ibb.first.x <= bb.second.x && ibb.second.x >= bb.first.x);
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Check if m0,m1 intersects n0,n1 assuming same ordering of the points in the line segments
|
|
// output the intersection points on n0,n1
|
|
bool IntersectingLineSegments(const IfcVector2& n0, const IfcVector2& n1,
|
|
const IfcVector2& m0, const IfcVector2& m1,
|
|
IfcVector2& out0, IfcVector2& out1)
|
|
{
|
|
const IfcVector2& m0_to_m1 = m1 - m0;
|
|
const IfcVector2& n0_to_n1 = n1 - n0;
|
|
|
|
const IfcVector2& n0_to_m0 = m0 - n0;
|
|
const IfcVector2& n1_to_m1 = m1 - n1;
|
|
|
|
const IfcVector2& n0_to_m1 = m1 - n0;
|
|
|
|
const IfcFloat e = 1e-5f;
|
|
const IfcFloat smalle = 1e-9f;
|
|
|
|
static const IfcFloat inf = std::numeric_limits<IfcFloat>::infinity();
|
|
|
|
if (!(n0_to_m0.SquareLength() < e*e || fabs(n0_to_m0 * n0_to_n1) / (n0_to_m0.Length() * n0_to_n1.Length()) > 1-1e-5 )) {
|
|
return false;
|
|
}
|
|
|
|
if (!(n1_to_m1.SquareLength() < e*e || fabs(n1_to_m1 * n0_to_n1) / (n1_to_m1.Length() * n0_to_n1.Length()) > 1-1e-5 )) {
|
|
return false;
|
|
}
|
|
|
|
IfcFloat s0;
|
|
IfcFloat s1;
|
|
|
|
// pick the axis with the higher absolute difference so the result
|
|
// is more accurate. Since we cannot guarantee that the axis with
|
|
// the higher absolute difference is big enough as to avoid
|
|
// divisions by zero, the case 0/0 ~ infinity is detected and
|
|
// handled separately.
|
|
if(fabs(n0_to_n1.x) > fabs(n0_to_n1.y)) {
|
|
s0 = n0_to_m0.x / n0_to_n1.x;
|
|
s1 = n0_to_m1.x / n0_to_n1.x;
|
|
|
|
if (fabs(s0) == inf && fabs(n0_to_m0.x) < smalle) {
|
|
s0 = 0.;
|
|
}
|
|
if (fabs(s1) == inf && fabs(n0_to_m1.x) < smalle) {
|
|
s1 = 0.;
|
|
}
|
|
}
|
|
else {
|
|
s0 = n0_to_m0.y / n0_to_n1.y;
|
|
s1 = n0_to_m1.y / n0_to_n1.y;
|
|
|
|
if (fabs(s0) == inf && fabs(n0_to_m0.y) < smalle) {
|
|
s0 = 0.;
|
|
}
|
|
if (fabs(s1) == inf && fabs(n0_to_m1.y) < smalle) {
|
|
s1 = 0.;
|
|
}
|
|
}
|
|
|
|
if (s1 < s0) {
|
|
std::swap(s1,s0);
|
|
}
|
|
|
|
s0 = std::max(0.0,s0);
|
|
s1 = std::max(0.0,s1);
|
|
|
|
s0 = std::min(1.0,s0);
|
|
s1 = std::min(1.0,s1);
|
|
|
|
if (fabs(s1-s0) < e) {
|
|
return false;
|
|
}
|
|
|
|
out0 = n0 + s0 * n0_to_n1;
|
|
out1 = n0 + s1 * n0_to_n1;
|
|
|
|
return true;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void FindAdjacentContours(ContourVector::iterator current, const ContourVector& contours)
|
|
{
|
|
const IfcFloat sqlen_epsilon = static_cast<IfcFloat>(1e-8);
|
|
const BoundingBox& bb = (*current).bb;
|
|
|
|
// What is to be done here is to populate the skip lists for the contour
|
|
// and to add necessary padding points when needed.
|
|
SkipList& skiplist = (*current).skiplist;
|
|
|
|
// First step to find possible adjacent contours is to check for adjacent bounding
|
|
// boxes. If the bounding boxes are not adjacent, the contours lines cannot possibly be.
|
|
for (ContourVector::const_iterator it = contours.begin(), end = contours.end(); it != end; ++it) {
|
|
if ((*it).IsInvalid()) {
|
|
continue;
|
|
}
|
|
|
|
// this left here to make clear we also run on the current contour
|
|
// to check for overlapping contour segments (which can happen due
|
|
// to projection artifacts).
|
|
//if(it == current) {
|
|
// continue;
|
|
//}
|
|
|
|
const bool is_me = it == current;
|
|
|
|
const BoundingBox& ibb = (*it).bb;
|
|
|
|
// Assumption: the bounding boxes are pairwise disjoint or identical
|
|
ai_assert(is_me || !BoundingBoxesOverlapping(bb, ibb));
|
|
|
|
if (is_me || BoundingBoxesAdjacent(bb, ibb)) {
|
|
|
|
// Now do a each-against-everyone check for intersecting contour
|
|
// lines. This obviously scales terribly, but in typical real
|
|
// world Ifc files it will not matter since most windows that
|
|
// are adjacent to each others are rectangular anyway.
|
|
|
|
Contour& ncontour = (*current).contour;
|
|
const Contour& mcontour = (*it).contour;
|
|
|
|
for (size_t n = 0; n < ncontour.size(); ++n) {
|
|
const IfcVector2& n0 = ncontour[n];
|
|
const IfcVector2& n1 = ncontour[(n+1) % ncontour.size()];
|
|
|
|
for (size_t m = 0, mend = (is_me ? n : mcontour.size()); m < mend; ++m) {
|
|
ai_assert(&mcontour != &ncontour || m < n);
|
|
|
|
const IfcVector2& m0 = mcontour[m];
|
|
const IfcVector2& m1 = mcontour[(m+1) % mcontour.size()];
|
|
|
|
IfcVector2 isect0, isect1;
|
|
if (IntersectingLineSegments(n0,n1, m0, m1, isect0, isect1)) {
|
|
|
|
if ((isect0 - n0).SquareLength() > sqlen_epsilon) {
|
|
++n;
|
|
|
|
ncontour.insert(ncontour.begin() + n, isect0);
|
|
skiplist.insert(skiplist.begin() + n, true);
|
|
}
|
|
else {
|
|
skiplist[n] = true;
|
|
}
|
|
|
|
if ((isect1 - n1).SquareLength() > sqlen_epsilon) {
|
|
++n;
|
|
|
|
ncontour.insert(ncontour.begin() + n, isect1);
|
|
skiplist.insert(skiplist.begin() + n, false);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
AI_FORCE_INLINE bool LikelyBorder(const IfcVector2& vdelta)
|
|
{
|
|
const IfcFloat dot_point_epsilon = static_cast<IfcFloat>(1e-5);
|
|
return fabs(vdelta.x * vdelta.y) < dot_point_epsilon;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void FindBorderContours(ContourVector::iterator current)
|
|
{
|
|
const IfcFloat border_epsilon_upper = static_cast<IfcFloat>(1-1e-4);
|
|
const IfcFloat border_epsilon_lower = static_cast<IfcFloat>(1e-4);
|
|
|
|
bool outer_border = false;
|
|
bool start_on_outer_border = false;
|
|
|
|
SkipList& skiplist = (*current).skiplist;
|
|
IfcVector2 last_proj_point;
|
|
|
|
const Contour::const_iterator cbegin = (*current).contour.begin(), cend = (*current).contour.end();
|
|
|
|
for (Contour::const_iterator cit = cbegin; cit != cend; ++cit) {
|
|
const IfcVector2& proj_point = *cit;
|
|
|
|
// Check if this connection is along the outer boundary of the projection
|
|
// plane. In such a case we better drop it because such 'edges' should
|
|
// not have any geometry to close them (think of door openings).
|
|
if (proj_point.x <= border_epsilon_lower || proj_point.x >= border_epsilon_upper ||
|
|
proj_point.y <= border_epsilon_lower || proj_point.y >= border_epsilon_upper) {
|
|
|
|
if (outer_border) {
|
|
ai_assert(cit != cbegin);
|
|
if (LikelyBorder(proj_point - last_proj_point)) {
|
|
skiplist[std::distance(cbegin, cit) - 1] = true;
|
|
}
|
|
}
|
|
else if (cit == cbegin) {
|
|
start_on_outer_border = true;
|
|
}
|
|
|
|
outer_border = true;
|
|
}
|
|
else {
|
|
outer_border = false;
|
|
}
|
|
|
|
last_proj_point = proj_point;
|
|
}
|
|
|
|
// handle last segment
|
|
if (outer_border && start_on_outer_border) {
|
|
const IfcVector2& proj_point = *cbegin;
|
|
if (LikelyBorder(proj_point - last_proj_point)) {
|
|
skiplist[skiplist.size()-1] = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
AI_FORCE_INLINE bool LikelyDiagonal(IfcVector2 vdelta)
|
|
{
|
|
vdelta.x = fabs(vdelta.x);
|
|
vdelta.y = fabs(vdelta.y);
|
|
return (fabs(vdelta.x-vdelta.y) < 0.8 * std::max(vdelta.x, vdelta.y));
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void FindLikelyCrossingLines(ContourVector::iterator current)
|
|
{
|
|
SkipList& skiplist = (*current).skiplist;
|
|
IfcVector2 last_proj_point;
|
|
|
|
const Contour::const_iterator cbegin = (*current).contour.begin(), cend = (*current).contour.end();
|
|
for (Contour::const_iterator cit = cbegin; cit != cend; ++cit) {
|
|
const IfcVector2& proj_point = *cit;
|
|
|
|
if (cit != cbegin) {
|
|
IfcVector2 vdelta = proj_point - last_proj_point;
|
|
if (LikelyDiagonal(vdelta)) {
|
|
skiplist[std::distance(cbegin, cit) - 1] = true;
|
|
}
|
|
}
|
|
|
|
last_proj_point = proj_point;
|
|
}
|
|
|
|
// handle last segment
|
|
if (LikelyDiagonal(*cbegin - last_proj_point)) {
|
|
skiplist[skiplist.size()-1] = true;
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void CloseWindows(ContourVector& contours,
|
|
const IfcMatrix4& minv,
|
|
OpeningRefVector contours_to_openings,
|
|
TempMesh& curmesh)
|
|
{
|
|
// For all contour points, check if one of the assigned openings does
|
|
// already have points assigned to it. In this case, assume this is
|
|
// the other side of the wall and generate connections between
|
|
// the two holes in order to close the window.
|
|
|
|
// All this gets complicated by the fact that contours may pertain to
|
|
// multiple openings(due to merging of adjacent or overlapping openings).
|
|
// The code is based on the assumption that this happens symmetrically
|
|
// on both sides of the wall. If it doesn't (which would be a bug anyway)
|
|
// wrong geometry may be generated.
|
|
for (ContourVector::iterator it = contours.begin(), end = contours.end(); it != end; ++it) {
|
|
if ((*it).IsInvalid()) {
|
|
continue;
|
|
}
|
|
OpeningRefs& refs = contours_to_openings[std::distance(contours.begin(), it)];
|
|
|
|
bool has_other_side = false;
|
|
BOOST_FOREACH(const TempOpening* opening, refs) {
|
|
if(!opening->wallPoints.empty()) {
|
|
has_other_side = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
ContourRefVector adjacent_contours;
|
|
|
|
// prepare a skiplist for this contour. The skiplist is used to
|
|
// eliminate unwanted contour lines for adjacent windows and
|
|
// those bordering the outer frame.
|
|
(*it).PrepareSkiplist();
|
|
|
|
FindAdjacentContours(it, contours);
|
|
FindBorderContours(it);
|
|
|
|
// if the window is the result of a finite union or intersection of rectangles,
|
|
// there shouldn't be any crossing or diagonal lines in it. Such lines would
|
|
// be artifacts caused by numerical inaccuracies or other bugs in polyclipper
|
|
// and our own code. Since rectangular openings are by far the most frequent
|
|
// case, it is worth filtering for this corner case.
|
|
if((*it).is_rectangular) {
|
|
FindLikelyCrossingLines(it);
|
|
}
|
|
|
|
ai_assert((*it).skiplist.size() == (*it).contour.size());
|
|
|
|
SkipList::const_iterator skipbegin = (*it).skiplist.begin(), skipend = (*it).skiplist.end();
|
|
const Contour::const_iterator cbegin = (*it).contour.begin(), cend = (*it).contour.end();
|
|
|
|
if (has_other_side) {
|
|
curmesh.verts.reserve(curmesh.verts.size() + (*it).contour.size() * 4);
|
|
curmesh.vertcnt.reserve(curmesh.vertcnt.size() + (*it).contour.size());
|
|
|
|
// XXX this algorithm is really a bit inefficient - both in terms
|
|
// of constant factor and of asymptotic runtime.
|
|
size_t vstart = curmesh.verts.size();
|
|
std::vector<bool>::const_iterator skipit = skipbegin;
|
|
|
|
IfcVector3 start0;
|
|
IfcVector3 start1;
|
|
|
|
IfcVector2 last_proj;
|
|
//const IfcVector2& first_proj;
|
|
|
|
bool drop_this_edge = false;
|
|
for (Contour::const_iterator cit = cbegin; cit != cend; ++cit, drop_this_edge = *skipit++) {
|
|
const IfcVector2& proj_point = *cit;
|
|
|
|
// Locate the closest opposite point. This should be a good heuristic to
|
|
// connect only the points that are really intended to be connected.
|
|
IfcFloat best = static_cast<IfcFloat>(1e10);
|
|
IfcVector3 bestv;
|
|
|
|
/* debug code to check for unwanted diagonal lines in window contours
|
|
if (cit != cbegin) {
|
|
const IfcVector2& vdelta = proj_point - last_proj;
|
|
if (fabs(vdelta.x-vdelta.y) < 0.5 * std::max(vdelta.x, vdelta.y)) {
|
|
//continue;
|
|
}
|
|
} */
|
|
|
|
const IfcVector3& world_point = minv * IfcVector3(proj_point.x,proj_point.y,0.0f);
|
|
last_proj = proj_point;
|
|
|
|
BOOST_FOREACH(const TempOpening* opening, refs) {
|
|
BOOST_FOREACH(const IfcVector3& other, opening->wallPoints) {
|
|
const IfcFloat sqdist = (world_point - other).SquareLength();
|
|
if (sqdist < best) {
|
|
bestv = other;
|
|
best = sqdist;
|
|
}
|
|
}
|
|
}
|
|
|
|
IfcVector3 diff = bestv - world_point;
|
|
diff.Normalize();
|
|
|
|
if (drop_this_edge) {
|
|
curmesh.verts.pop_back();
|
|
curmesh.verts.pop_back();
|
|
}
|
|
else {
|
|
curmesh.verts.push_back(cit == cbegin ? world_point : bestv);
|
|
curmesh.verts.push_back(cit == cbegin ? bestv : world_point);
|
|
|
|
curmesh.vertcnt.push_back(4);
|
|
}
|
|
|
|
if (cit == cbegin) {
|
|
start0 = world_point;
|
|
start1 = bestv;
|
|
continue;
|
|
}
|
|
|
|
curmesh.verts.push_back(world_point);
|
|
curmesh.verts.push_back(bestv);
|
|
|
|
if (cit == cend - 1) {
|
|
drop_this_edge = *skipit;
|
|
|
|
// Check if the final connection (last to first element) is itself
|
|
// a border edge that needs to be dropped.
|
|
if (drop_this_edge) {
|
|
curmesh.vertcnt.pop_back();
|
|
curmesh.verts.pop_back();
|
|
curmesh.verts.pop_back();
|
|
}
|
|
else {
|
|
curmesh.verts.push_back(start1);
|
|
curmesh.verts.push_back(start0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
BOOST_FOREACH(TempOpening* opening, refs) {
|
|
opening->wallPoints.reserve(opening->wallPoints.capacity() + (*it).contour.size());
|
|
for (Contour::const_iterator cit = cbegin; cit != cend; ++cit) {
|
|
|
|
const IfcVector2& proj_point = *cit;
|
|
opening->wallPoints.push_back(minv * IfcVector3(proj_point.x,proj_point.y,0.0f));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void Quadrify(const std::vector< BoundingBox >& bbs, TempMesh& curmesh)
|
|
{
|
|
ai_assert(curmesh.IsEmpty());
|
|
|
|
std::vector<IfcVector2> quads;
|
|
quads.reserve(bbs.size()*4);
|
|
|
|
// sort openings by x and y axis as a preliminiary to the QuadrifyPart() algorithm
|
|
XYSortedField field;
|
|
for (std::vector<BoundingBox>::const_iterator it = bbs.begin(); it != bbs.end(); ++it) {
|
|
if (field.find((*it).first) != field.end()) {
|
|
IFCImporter::LogWarn("constraint failure during generation of wall openings, results may be faulty");
|
|
}
|
|
field[(*it).first] = std::distance(bbs.begin(),it);
|
|
}
|
|
|
|
QuadrifyPart(IfcVector2(),one_vec,field,bbs,quads);
|
|
ai_assert(!(quads.size() % 4));
|
|
|
|
curmesh.vertcnt.resize(quads.size()/4,4);
|
|
curmesh.verts.reserve(quads.size());
|
|
BOOST_FOREACH(const IfcVector2& v2, quads) {
|
|
curmesh.verts.push_back(IfcVector3(v2.x, v2.y, static_cast<IfcFloat>(0.0)));
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void Quadrify(const ContourVector& contours, TempMesh& curmesh)
|
|
{
|
|
std::vector<BoundingBox> bbs;
|
|
bbs.reserve(contours.size());
|
|
|
|
BOOST_FOREACH(const ContourVector::value_type& val, contours) {
|
|
bbs.push_back(val.bb);
|
|
}
|
|
|
|
Quadrify(bbs, curmesh);
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
IfcMatrix4 ProjectOntoPlane(std::vector<IfcVector2>& out_contour, const TempMesh& in_mesh,
|
|
IfcFloat& out_base_d, bool &ok)
|
|
{
|
|
const std::vector<IfcVector3>& in_verts = in_mesh.verts;
|
|
ok = true;
|
|
|
|
IfcMatrix4 m = IfcMatrix4(DerivePlaneCoordinateSpace(in_mesh, ok, &out_base_d));
|
|
if(!ok) {
|
|
return IfcMatrix4();
|
|
}
|
|
|
|
|
|
IfcFloat coord = 0;
|
|
out_contour.reserve(in_verts.size());
|
|
|
|
IfcVector2 vmin, vmax;
|
|
MinMaxChooser<IfcVector2>()(vmin, vmax);
|
|
|
|
// Project all points into the new coordinate system, collect min/max verts on the way
|
|
BOOST_FOREACH(const IfcVector3& x, in_verts) {
|
|
const IfcVector3& vv = m * x;
|
|
// keep Z offset in the plane coordinate system. Ignoring precision issues
|
|
// (which are present, of course), this should be the same value for
|
|
// all polygon vertices (assuming the polygon is planar).
|
|
|
|
// XXX this should be guarded, but we somehow need to pick a suitable
|
|
// epsilon
|
|
// if(coord != -1.0f) {
|
|
// assert(fabs(coord - vv.z) < 1e-3f);
|
|
// }
|
|
coord += vv.z;
|
|
vmin = std::min(IfcVector2(vv.x, vv.y), vmin);
|
|
vmax = std::max(IfcVector2(vv.x, vv.y), vmax);
|
|
|
|
out_contour.push_back(IfcVector2(vv.x,vv.y));
|
|
}
|
|
|
|
coord /= in_verts.size();
|
|
|
|
// Further improve the projection by mapping the entire working set into
|
|
// [0,1] range. This gives us a consistent data range so all epsilons
|
|
// used below can be constants.
|
|
vmax -= vmin;
|
|
BOOST_FOREACH(IfcVector2& vv, out_contour) {
|
|
vv.x = (vv.x - vmin.x) / vmax.x;
|
|
vv.y = (vv.y - vmin.y) / vmax.y;
|
|
|
|
// sanity rounding
|
|
vv = std::max(vv,IfcVector2());
|
|
vv = std::min(vv,one_vec);
|
|
}
|
|
|
|
IfcMatrix4 mult;
|
|
mult.a1 = static_cast<IfcFloat>(1.0) / vmax.x;
|
|
mult.b2 = static_cast<IfcFloat>(1.0) / vmax.y;
|
|
|
|
mult.a4 = -vmin.x * mult.a1;
|
|
mult.b4 = -vmin.y * mult.b2;
|
|
mult.c4 = -coord;
|
|
m = mult * m;
|
|
|
|
// debug code to verify correctness
|
|
#ifdef _DEBUG
|
|
std::vector<IfcVector2> out_contour2;
|
|
BOOST_FOREACH(const IfcVector3& x, in_verts) {
|
|
const IfcVector3& vv = m * x;
|
|
|
|
out_contour2.push_back(IfcVector2(vv.x,vv.y));
|
|
ai_assert(fabs(vv.z) < 1e-5);
|
|
}
|
|
|
|
for(size_t i = 0; i < out_contour.size(); ++i) {
|
|
ai_assert((out_contour[i]-out_contour2[i]).SquareLength() < 1e-6);
|
|
}
|
|
#endif
|
|
|
|
return m;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
bool GenerateOpenings(std::vector<TempOpening>& openings,
|
|
const std::vector<IfcVector3>& nors,
|
|
TempMesh& curmesh,
|
|
bool check_intersection,
|
|
bool generate_connection_geometry)
|
|
{
|
|
std::vector<IfcVector3>& out = curmesh.verts;
|
|
OpeningRefVector contours_to_openings;
|
|
|
|
// Try to derive a solid base plane within the current surface for use as
|
|
// working coordinate system. Map all vertices onto this plane and
|
|
// rescale them to [0,1] range. This normalization means all further
|
|
// epsilons need not be scaled.
|
|
bool ok = true;
|
|
|
|
std::vector<IfcVector2> contour_flat;
|
|
IfcFloat base_d;
|
|
|
|
const IfcMatrix4& m = ProjectOntoPlane(contour_flat, curmesh, base_d, ok);
|
|
if(!ok) {
|
|
return false;
|
|
}
|
|
|
|
const IfcVector3& nor = IfcVector3(m.c1, m.c2, m.c3);
|
|
|
|
// Obtain inverse transform for getting back to world space later on
|
|
const IfcMatrix4& minv = IfcMatrix4(m).Inverse();
|
|
|
|
// Compute bounding boxes for all 2D openings in projection space
|
|
ContourVector contours;
|
|
|
|
std::vector<IfcVector2> temp_contour;
|
|
std::vector<IfcVector2> temp_contour2;
|
|
|
|
size_t c = 0;
|
|
BOOST_FOREACH(TempOpening& opening,openings) {
|
|
std::vector<IfcVector3> profile_verts = opening.profileMesh->verts;
|
|
std::vector<unsigned int> profile_vertcnts = opening.profileMesh->vertcnt;
|
|
if(profile_verts.size() <= 2) {
|
|
continue;
|
|
}
|
|
|
|
// The opening meshes are real 3D meshes so skip over all faces
|
|
// clearly facing into the wrong direction. Also, we need to check
|
|
// whether the meshes do actually intersect the base surface plane.
|
|
// This is done by recording minimum and maximum values for the
|
|
// d component of the plane equation for all polys and checking
|
|
// against surface d.
|
|
|
|
// Use the sign of the dot product of the face normal to the plane
|
|
// normal to determine to which side of the difference mesh a
|
|
// triangle belongs. Get independent bounding boxes and vertex
|
|
// sets for both sides and take the better one (we can't just
|
|
// take both - this would likely cause major screwup of vertex
|
|
// winding, producing errors as late as in CloseWindows()).
|
|
IfcFloat dmin, dmax;
|
|
MinMaxChooser<IfcFloat>()(dmin,dmax);
|
|
|
|
temp_contour.clear();
|
|
temp_contour2.clear();
|
|
|
|
IfcVector2 vpmin,vpmax;
|
|
MinMaxChooser<IfcVector2>()(vpmin,vpmax);
|
|
|
|
IfcVector2 vpmin2,vpmax2;
|
|
MinMaxChooser<IfcVector2>()(vpmin2,vpmax2);
|
|
|
|
for (size_t f = 0, vi_total = 0, fend = profile_vertcnts.size(); f < fend; ++f) {
|
|
const IfcVector3& face_nor = ((profile_verts[vi_total+2] - profile_verts[vi_total]) ^
|
|
(profile_verts[vi_total+1] - profile_verts[vi_total])).Normalize();
|
|
|
|
const IfcFloat abs_dot_face_nor = abs(nor * face_nor);
|
|
if (abs_dot_face_nor < 0.5) {
|
|
vi_total += profile_vertcnts[f];
|
|
continue;
|
|
}
|
|
|
|
const bool side_flag = nor * face_nor > 0;
|
|
|
|
for (unsigned int vi = 0, vend = profile_vertcnts[f]; vi < vend; ++vi, ++vi_total) {
|
|
const IfcVector3& x = profile_verts[vi_total];
|
|
|
|
const IfcVector3& v = m * x;
|
|
IfcVector2 vv(v.x, v.y);
|
|
|
|
if(check_intersection) {
|
|
dmin = std::min(dmin, v.z);
|
|
dmax = std::max(dmax, v.z);
|
|
}
|
|
|
|
// sanity rounding
|
|
vv = std::max(vv,IfcVector2());
|
|
vv = std::min(vv,one_vec);
|
|
|
|
if(side_flag) {
|
|
vpmin = std::min(vpmin,vv);
|
|
vpmax = std::max(vpmax,vv);
|
|
}
|
|
else {
|
|
vpmin2 = std::min(vpmin2,vv);
|
|
vpmax2 = std::max(vpmax2,vv);
|
|
}
|
|
|
|
std::vector<IfcVector2>& store = side_flag ? temp_contour : temp_contour2;
|
|
|
|
if (!IsDuplicateVertex(vv, store)) {
|
|
store.push_back(vv);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (temp_contour2.size() > 2) {
|
|
const IfcVector2 area = vpmax-vpmin;
|
|
const IfcVector2 area2 = vpmax2-vpmin2;
|
|
if (temp_contour.size() <= 2 || fabs(area2.x * area2.y) > fabs(area.x * area.y)) {
|
|
temp_contour.swap(temp_contour2);
|
|
|
|
vpmax = vpmax2;
|
|
vpmin = vpmin2;
|
|
}
|
|
}
|
|
if(temp_contour.size() <= 2) {
|
|
continue;
|
|
}
|
|
|
|
|
|
// TODO: This epsilon may be too large
|
|
const IfcFloat epsilon = fabs(dmax-dmin) * 0.001;
|
|
if (check_intersection && (0 < dmin-epsilon || 0 > dmax+epsilon)) {
|
|
continue;
|
|
}
|
|
|
|
BoundingBox bb = BoundingBox(vpmin,vpmax);
|
|
|
|
// Skip over very small openings - these are likely projection errors
|
|
// (i.e. they don't belong to this side of the wall)
|
|
if(fabs(vpmax.x - vpmin.x) * fabs(vpmax.y - vpmin.y) < static_cast<IfcFloat>(1e-10)) {
|
|
continue;
|
|
}
|
|
std::vector<TempOpening*> joined_openings(1, &opening);
|
|
|
|
bool is_rectangle = temp_contour.size() == 4;
|
|
|
|
// See if this BB intersects or is in close adjacency to any other BB we have so far.
|
|
for (ContourVector::iterator it = contours.begin(); it != contours.end(); ) {
|
|
const BoundingBox& ibb = (*it).bb;
|
|
|
|
if (BoundingBoxesOverlapping(ibb, bb)) {
|
|
|
|
if (!(*it).is_rectangular) {
|
|
is_rectangle = false;
|
|
}
|
|
|
|
const std::vector<IfcVector2>& other = (*it).contour;
|
|
ClipperLib::ExPolygons poly;
|
|
|
|
// First check whether subtracting the old contour (to which ibb belongs)
|
|
// from the new contour (to which bb belongs) yields an updated bb which
|
|
// no longer overlaps ibb
|
|
MakeDisjunctWindowContours(other, temp_contour, poly);
|
|
if(poly.size() == 1) {
|
|
|
|
const BoundingBox& newbb = GetBoundingBox(poly[0].outer);
|
|
if (!BoundingBoxesOverlapping(ibb, newbb )) {
|
|
// Good guy bounding box
|
|
bb = newbb ;
|
|
|
|
ExtractVerticesFromClipper(poly[0].outer, temp_contour, false);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Take these two overlapping contours and try to merge them. If they
|
|
// overlap (which should not happen, but in fact happens-in-the-real-
|
|
// world [tm] ), resume using a single contour and a single bounding box.
|
|
MergeWindowContours(temp_contour, other, poly);
|
|
|
|
if (poly.size() > 1) {
|
|
return TryAddOpenings_Poly2Tri(openings, nors, curmesh);
|
|
}
|
|
else if (poly.size() == 0) {
|
|
IFCImporter::LogWarn("ignoring duplicate opening");
|
|
temp_contour.clear();
|
|
break;
|
|
}
|
|
else {
|
|
IFCImporter::LogDebug("merging overlapping openings");
|
|
ExtractVerticesFromClipper(poly[0].outer, temp_contour, false);
|
|
|
|
// Generate the union of the bounding boxes
|
|
bb.first = std::min(bb.first, ibb.first);
|
|
bb.second = std::max(bb.second, ibb.second);
|
|
|
|
// Update contour-to-opening tables accordingly
|
|
if (generate_connection_geometry) {
|
|
std::vector<TempOpening*>& t = contours_to_openings[std::distance(contours.begin(),it)];
|
|
joined_openings.insert(joined_openings.end(), t.begin(), t.end());
|
|
|
|
contours_to_openings.erase(contours_to_openings.begin() + std::distance(contours.begin(),it));
|
|
}
|
|
|
|
contours.erase(it);
|
|
|
|
// Restart from scratch because the newly formed BB might now
|
|
// overlap any other BB which its constituent BBs didn't
|
|
// previously overlap.
|
|
it = contours.begin();
|
|
continue;
|
|
}
|
|
}
|
|
++it;
|
|
}
|
|
|
|
if(!temp_contour.empty()) {
|
|
if (generate_connection_geometry) {
|
|
contours_to_openings.push_back(std::vector<TempOpening*>(
|
|
joined_openings.begin(),
|
|
joined_openings.end()));
|
|
}
|
|
|
|
contours.push_back(ProjectedWindowContour(temp_contour, bb, is_rectangle));
|
|
}
|
|
}
|
|
|
|
// Check if we still have any openings left - it may well be that this is
|
|
// not the cause, for example if all the opening candidates don't intersect
|
|
// this surface or point into a direction perpendicular to it.
|
|
if (contours.empty()) {
|
|
return false;
|
|
}
|
|
|
|
curmesh.Clear();
|
|
|
|
// Generate a base subdivision into quads to accommodate the given list
|
|
// of window bounding boxes.
|
|
Quadrify(contours,curmesh);
|
|
|
|
// Run a sanity cleanup pass on the window contours to avoid generating
|
|
// artifacts during the contour generation phase later on.
|
|
CleanupWindowContours(contours);
|
|
|
|
// Previously we reduced all windows to rectangular AABBs in projection
|
|
// space, now it is time to fill the gaps between the BBs and the real
|
|
// window openings.
|
|
InsertWindowContours(contours,openings, curmesh);
|
|
|
|
// Clip the entire outer contour of our current result against the real
|
|
// outer contour of the surface. This is necessary because the result
|
|
// of the Quadrify() algorithm is always a square area spanning
|
|
// over [0,1]^2 (i.e. entire projection space).
|
|
CleanupOuterContour(contour_flat, curmesh);
|
|
|
|
// Undo the projection and get back to world (or local object) space
|
|
BOOST_FOREACH(IfcVector3& v3, curmesh.verts) {
|
|
v3 = minv * v3;
|
|
}
|
|
|
|
// Generate window caps to connect the symmetric openings on both sides
|
|
// of the wall.
|
|
if (generate_connection_geometry) {
|
|
CloseWindows(contours, minv, contours_to_openings, curmesh);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ProcessExtrudedAreaSolid(const IfcExtrudedAreaSolid& solid, TempMesh& result,
|
|
ConversionData& conv)
|
|
{
|
|
TempMesh meshout;
|
|
|
|
// First read the profile description
|
|
if(!ProcessProfile(*solid.SweptArea,meshout,conv) || meshout.verts.size()<=1) {
|
|
return;
|
|
}
|
|
|
|
IfcVector3 dir;
|
|
ConvertDirection(dir,solid.ExtrudedDirection);
|
|
|
|
dir *= solid.Depth;
|
|
|
|
// Outline: assuming that `meshout.verts` is now a list of vertex points forming
|
|
// the underlying profile, extrude along the given axis, forming new
|
|
// triangles.
|
|
|
|
std::vector<IfcVector3>& in = meshout.verts;
|
|
const size_t size=in.size();
|
|
|
|
const bool has_area = solid.SweptArea->ProfileType == "AREA" && size>2;
|
|
if(solid.Depth < 1e-3) {
|
|
if(has_area) {
|
|
meshout = result;
|
|
}
|
|
return;
|
|
}
|
|
|
|
result.verts.reserve(size*(has_area?4:2));
|
|
result.vertcnt.reserve(meshout.vertcnt.size()+2);
|
|
|
|
// First step: transform all vertices into the target coordinate space
|
|
IfcMatrix4 trafo;
|
|
ConvertAxisPlacement(trafo, solid.Position);
|
|
BOOST_FOREACH(IfcVector3& v,in) {
|
|
v *= trafo;
|
|
}
|
|
|
|
IfcVector3 min = in[0];
|
|
dir *= IfcMatrix3(trafo);
|
|
|
|
|
|
std::vector<IfcVector3> nors;
|
|
const bool openings = !!conv.apply_openings && conv.apply_openings->size();
|
|
|
|
// Compute the normal vectors for all opening polygons as a prerequisite
|
|
// to TryAddOpenings_Poly2Tri()
|
|
// XXX this belongs into the aforementioned function
|
|
if (openings) {
|
|
|
|
if (!conv.settings.useCustomTriangulation) {
|
|
// it is essential to apply the openings in the correct spatial order. The direction
|
|
// doesn't matter, but we would screw up if we started with e.g. a door in between
|
|
// two windows.
|
|
std::sort(conv.apply_openings->begin(),conv.apply_openings->end(),
|
|
DistanceSorter(min));
|
|
}
|
|
|
|
nors.reserve(conv.apply_openings->size());
|
|
BOOST_FOREACH(TempOpening& t,*conv.apply_openings) {
|
|
TempMesh& bounds = *t.profileMesh.get();
|
|
|
|
if (bounds.verts.size() <= 2) {
|
|
nors.push_back(IfcVector3());
|
|
continue;
|
|
}
|
|
nors.push_back(((bounds.verts[2]-bounds.verts[0])^(bounds.verts[1]-bounds.verts[0]) ).Normalize());
|
|
}
|
|
}
|
|
|
|
|
|
TempMesh temp;
|
|
TempMesh& curmesh = openings ? temp : result;
|
|
std::vector<IfcVector3>& out = curmesh.verts;
|
|
|
|
size_t sides_with_openings = 0;
|
|
for(size_t i = 0; i < size; ++i) {
|
|
const size_t next = (i+1)%size;
|
|
|
|
curmesh.vertcnt.push_back(4);
|
|
|
|
out.push_back(in[i]);
|
|
out.push_back(in[i]+dir);
|
|
out.push_back(in[next]+dir);
|
|
out.push_back(in[next]);
|
|
|
|
if(openings) {
|
|
if(GenerateOpenings(*conv.apply_openings,nors,temp,true, true)) {
|
|
++sides_with_openings;
|
|
}
|
|
|
|
result.Append(temp);
|
|
temp.Clear();
|
|
}
|
|
}
|
|
|
|
size_t sides_with_v_openings = 0;
|
|
if(has_area) {
|
|
|
|
for(size_t n = 0; n < 2; ++n) {
|
|
for(size_t i = size; i--; ) {
|
|
out.push_back(in[i]+(n?dir:IfcVector3()));
|
|
}
|
|
|
|
curmesh.vertcnt.push_back(size);
|
|
if(openings && size > 2) {
|
|
if(GenerateOpenings(*conv.apply_openings,nors,temp,true, true)) {
|
|
++sides_with_v_openings;
|
|
}
|
|
|
|
result.Append(temp);
|
|
temp.Clear();
|
|
}
|
|
}
|
|
}
|
|
|
|
if(openings && ((sides_with_openings == 1 && sides_with_openings) || (sides_with_v_openings == 2 && sides_with_v_openings))) {
|
|
IFCImporter::LogWarn("failed to resolve all openings, presumably their topology is not supported by Assimp");
|
|
}
|
|
|
|
IFCImporter::LogDebug("generate mesh procedurally by extrusion (IfcExtrudedAreaSolid)");
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ProcessSweptAreaSolid(const IfcSweptAreaSolid& swept, TempMesh& meshout,
|
|
ConversionData& conv)
|
|
{
|
|
if(const IfcExtrudedAreaSolid* const solid = swept.ToPtr<IfcExtrudedAreaSolid>()) {
|
|
ProcessExtrudedAreaSolid(*solid,meshout,conv);
|
|
}
|
|
else if(const IfcRevolvedAreaSolid* const rev = swept.ToPtr<IfcRevolvedAreaSolid>()) {
|
|
ProcessRevolvedAreaSolid(*rev,meshout,conv);
|
|
}
|
|
else {
|
|
IFCImporter::LogWarn("skipping unknown IfcSweptAreaSolid entity, type is " + swept.GetClassName());
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
enum Intersect {
|
|
Intersect_No,
|
|
Intersect_LiesOnPlane,
|
|
Intersect_Yes
|
|
};
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
Intersect IntersectSegmentPlane(const IfcVector3& p,const IfcVector3& n, const IfcVector3& e0,
|
|
const IfcVector3& e1,
|
|
IfcVector3& out)
|
|
{
|
|
const IfcVector3 pdelta = e0 - p, seg = e1-e0;
|
|
const IfcFloat dotOne = n*seg, dotTwo = -(n*pdelta);
|
|
|
|
if (fabs(dotOne) < 1e-6) {
|
|
return fabs(dotTwo) < 1e-6f ? Intersect_LiesOnPlane : Intersect_No;
|
|
}
|
|
|
|
const IfcFloat t = dotTwo/dotOne;
|
|
// t must be in [0..1] if the intersection point is within the given segment
|
|
if (t > 1.f || t < 0.f) {
|
|
return Intersect_No;
|
|
}
|
|
out = e0+t*seg;
|
|
return Intersect_Yes;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ProcessBooleanHalfSpaceDifference(const IfcHalfSpaceSolid* hs, TempMesh& result,
|
|
const TempMesh& first_operand,
|
|
ConversionData& conv)
|
|
{
|
|
ai_assert(hs != NULL);
|
|
|
|
const IfcPlane* const plane = hs->BaseSurface->ToPtr<IfcPlane>();
|
|
if(!plane) {
|
|
IFCImporter::LogError("expected IfcPlane as base surface for the IfcHalfSpaceSolid");
|
|
return;
|
|
}
|
|
|
|
// extract plane base position vector and normal vector
|
|
IfcVector3 p,n(0.f,0.f,1.f);
|
|
if (plane->Position->Axis) {
|
|
ConvertDirection(n,plane->Position->Axis.Get());
|
|
}
|
|
ConvertCartesianPoint(p,plane->Position->Location);
|
|
|
|
if(!IsTrue(hs->AgreementFlag)) {
|
|
n *= -1.f;
|
|
}
|
|
|
|
// clip the current contents of `meshout` against the plane we obtained from the second operand
|
|
const std::vector<IfcVector3>& in = first_operand.verts;
|
|
std::vector<IfcVector3>& outvert = result.verts;
|
|
|
|
std::vector<unsigned int>::const_iterator begin = first_operand.vertcnt.begin(),
|
|
end = first_operand.vertcnt.end(), iit;
|
|
|
|
outvert.reserve(in.size());
|
|
result.vertcnt.reserve(first_operand.vertcnt.size());
|
|
|
|
unsigned int vidx = 0;
|
|
for(iit = begin; iit != end; vidx += *iit++) {
|
|
|
|
unsigned int newcount = 0;
|
|
for(unsigned int i = 0; i < *iit; ++i) {
|
|
const IfcVector3& e0 = in[vidx+i], e1 = in[vidx+(i+1)%*iit];
|
|
|
|
// does the next segment intersect the plane?
|
|
IfcVector3 isectpos;
|
|
const Intersect isect = IntersectSegmentPlane(p,n,e0,e1,isectpos);
|
|
if (isect == Intersect_No || isect == Intersect_LiesOnPlane) {
|
|
if ( (e0-p).Normalize()*n > 0 ) {
|
|
outvert.push_back(e0);
|
|
++newcount;
|
|
}
|
|
}
|
|
else if (isect == Intersect_Yes) {
|
|
if ( (e0-p).Normalize()*n > 0 ) {
|
|
// e0 is on the right side, so keep it
|
|
outvert.push_back(e0);
|
|
outvert.push_back(isectpos);
|
|
newcount += 2;
|
|
}
|
|
else {
|
|
// e0 is on the wrong side, so drop it and keep e1 instead
|
|
outvert.push_back(isectpos);
|
|
++newcount;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!newcount) {
|
|
continue;
|
|
}
|
|
|
|
IfcVector3 vmin,vmax;
|
|
ArrayBounds(&*(outvert.end()-newcount),newcount,vmin,vmax);
|
|
|
|
// filter our IfcFloat points - those may happen if a point lies
|
|
// directly on the intersection line. However, due to IfcFloat
|
|
// precision a bitwise comparison is not feasible to detect
|
|
// this case.
|
|
const IfcFloat epsilon = (vmax-vmin).SquareLength() / 1e6f;
|
|
FuzzyVectorCompare fz(epsilon);
|
|
|
|
std::vector<IfcVector3>::iterator e = std::unique( outvert.end()-newcount, outvert.end(), fz );
|
|
|
|
if (e != outvert.end()) {
|
|
newcount -= static_cast<unsigned int>(std::distance(e,outvert.end()));
|
|
outvert.erase(e,outvert.end());
|
|
}
|
|
if (fz(*( outvert.end()-newcount),outvert.back())) {
|
|
outvert.pop_back();
|
|
--newcount;
|
|
}
|
|
if(newcount > 2) {
|
|
result.vertcnt.push_back(newcount);
|
|
}
|
|
else while(newcount-->0) {
|
|
result.verts.pop_back();
|
|
}
|
|
|
|
}
|
|
IFCImporter::LogDebug("generating CSG geometry by plane clipping (IfcBooleanClippingResult)");
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ProcessBooleanExtrudedAreaSolidDifference(const IfcExtrudedAreaSolid* as, TempMesh& result,
|
|
const TempMesh& first_operand,
|
|
ConversionData& conv)
|
|
{
|
|
ai_assert(as != NULL);
|
|
|
|
// This case is handled by reduction to an instance of the quadrify() algorithm.
|
|
// Obviously, this won't work for arbitrarily complex cases. In fact, the first
|
|
// operand should be near-planar. Luckily, this is usually the case in Ifc
|
|
// buildings.
|
|
|
|
boost::shared_ptr<TempMesh> meshtmp(new TempMesh());
|
|
ProcessExtrudedAreaSolid(*as,*meshtmp,conv);
|
|
|
|
std::vector<TempOpening> openings(1, TempOpening(as,IfcVector3(0,0,0),meshtmp));
|
|
|
|
result = first_operand;
|
|
|
|
TempMesh temp;
|
|
|
|
std::vector<IfcVector3>::const_iterator vit = first_operand.verts.begin();
|
|
BOOST_FOREACH(unsigned int pcount, first_operand.vertcnt) {
|
|
temp.Clear();
|
|
|
|
temp.verts.insert(temp.verts.end(), vit, vit + pcount);
|
|
temp.vertcnt.push_back(pcount);
|
|
|
|
// The algorithms used to generate mesh geometry sometimes
|
|
// spit out lines or other degenerates which must be
|
|
// filtered to avoid running into assertions later on.
|
|
|
|
// ComputePolygonNormal returns the Newell normal, so the
|
|
// length of the normal is the area of the polygon.
|
|
const IfcVector3& normal = temp.ComputeLastPolygonNormal(false);
|
|
if (normal.SquareLength() < static_cast<IfcFloat>(1e-5)) {
|
|
IFCImporter::LogWarn("skipping degenerate polygon (ProcessBooleanExtrudedAreaSolidDifference)");
|
|
continue;
|
|
}
|
|
|
|
GenerateOpenings(openings, std::vector<IfcVector3>(1,IfcVector3(1,0,0)), temp);
|
|
result.Append(temp);
|
|
|
|
vit += pcount;
|
|
}
|
|
|
|
IFCImporter::LogDebug("generating CSG geometry by geometric difference to a solid (IfcExtrudedAreaSolid)");
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ProcessBoolean(const IfcBooleanResult& boolean, TempMesh& result, ConversionData& conv)
|
|
{
|
|
// supported CSG operations:
|
|
// DIFFERENCE
|
|
if(const IfcBooleanResult* const clip = boolean.ToPtr<IfcBooleanResult>()) {
|
|
if(clip->Operator != "DIFFERENCE") {
|
|
IFCImporter::LogWarn("encountered unsupported boolean operator: " + (std::string)clip->Operator);
|
|
return;
|
|
}
|
|
|
|
// supported cases (1st operand):
|
|
// IfcBooleanResult -- call ProcessBoolean recursively
|
|
// IfcSweptAreaSolid -- obtain polygonal geometry first
|
|
|
|
// supported cases (2nd operand):
|
|
// IfcHalfSpaceSolid -- easy, clip against plane
|
|
// IfcExtrudedAreaSolid -- reduce to an instance of the quadrify() algorithm
|
|
|
|
|
|
const IfcHalfSpaceSolid* const hs = clip->SecondOperand->ResolveSelectPtr<IfcHalfSpaceSolid>(conv.db);
|
|
const IfcExtrudedAreaSolid* const as = clip->SecondOperand->ResolveSelectPtr<IfcExtrudedAreaSolid>(conv.db);
|
|
if(!hs && !as) {
|
|
IFCImporter::LogError("expected IfcHalfSpaceSolid or IfcExtrudedAreaSolid as second clipping operand");
|
|
return;
|
|
}
|
|
|
|
TempMesh first_operand;
|
|
if(const IfcBooleanResult* const op0 = clip->FirstOperand->ResolveSelectPtr<IfcBooleanResult>(conv.db)) {
|
|
ProcessBoolean(*op0,first_operand,conv);
|
|
}
|
|
else if (const IfcSweptAreaSolid* const swept = clip->FirstOperand->ResolveSelectPtr<IfcSweptAreaSolid>(conv.db)) {
|
|
ProcessSweptAreaSolid(*swept,first_operand,conv);
|
|
}
|
|
else {
|
|
IFCImporter::LogError("expected IfcSweptAreaSolid or IfcBooleanResult as first clipping operand");
|
|
return;
|
|
}
|
|
|
|
if(hs) {
|
|
ProcessBooleanHalfSpaceDifference(hs, result, first_operand, conv);
|
|
}
|
|
else {
|
|
ProcessBooleanExtrudedAreaSolidDifference(as, result, first_operand, conv);
|
|
}
|
|
}
|
|
else {
|
|
IFCImporter::LogWarn("skipping unknown IfcBooleanResult entity, type is " + boolean.GetClassName());
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
bool ProcessGeometricItem(const IfcRepresentationItem& geo, std::vector<unsigned int>& mesh_indices,
|
|
ConversionData& conv)
|
|
{
|
|
bool fix_orientation = true;
|
|
boost::shared_ptr< TempMesh > meshtmp = boost::make_shared<TempMesh>();
|
|
if(const IfcShellBasedSurfaceModel* shellmod = geo.ToPtr<IfcShellBasedSurfaceModel>()) {
|
|
BOOST_FOREACH(boost::shared_ptr<const IfcShell> shell,shellmod->SbsmBoundary) {
|
|
try {
|
|
const EXPRESS::ENTITY& e = shell->To<ENTITY>();
|
|
const IfcConnectedFaceSet& fs = conv.db.MustGetObject(e).To<IfcConnectedFaceSet>();
|
|
|
|
ProcessConnectedFaceSet(fs,*meshtmp.get(),conv);
|
|
}
|
|
catch(std::bad_cast&) {
|
|
IFCImporter::LogWarn("unexpected type error, IfcShell ought to inherit from IfcConnectedFaceSet");
|
|
}
|
|
}
|
|
}
|
|
else if(const IfcConnectedFaceSet* fset = geo.ToPtr<IfcConnectedFaceSet>()) {
|
|
ProcessConnectedFaceSet(*fset,*meshtmp.get(),conv);
|
|
}
|
|
else if(const IfcSweptAreaSolid* swept = geo.ToPtr<IfcSweptAreaSolid>()) {
|
|
ProcessSweptAreaSolid(*swept,*meshtmp.get(),conv);
|
|
}
|
|
else if(const IfcSweptDiskSolid* disk = geo.ToPtr<IfcSweptDiskSolid>()) {
|
|
ProcessSweptDiskSolid(*disk,*meshtmp.get(),conv);
|
|
fix_orientation = false;
|
|
}
|
|
else if(const IfcManifoldSolidBrep* brep = geo.ToPtr<IfcManifoldSolidBrep>()) {
|
|
ProcessConnectedFaceSet(brep->Outer,*meshtmp.get(),conv);
|
|
}
|
|
else if(const IfcFaceBasedSurfaceModel* surf = geo.ToPtr<IfcFaceBasedSurfaceModel>()) {
|
|
BOOST_FOREACH(const IfcConnectedFaceSet& fc, surf->FbsmFaces) {
|
|
ProcessConnectedFaceSet(fc,*meshtmp.get(),conv);
|
|
}
|
|
}
|
|
else if(const IfcBooleanResult* boolean = geo.ToPtr<IfcBooleanResult>()) {
|
|
ProcessBoolean(*boolean,*meshtmp.get(),conv);
|
|
}
|
|
else if(geo.ToPtr<IfcBoundingBox>()) {
|
|
// silently skip over bounding boxes
|
|
return false;
|
|
}
|
|
else {
|
|
IFCImporter::LogWarn("skipping unknown IfcGeometricRepresentationItem entity, type is " + geo.GetClassName());
|
|
return false;
|
|
}
|
|
|
|
meshtmp->RemoveAdjacentDuplicates();
|
|
meshtmp->RemoveDegenerates();
|
|
|
|
// Do we just collect openings for a parent element (i.e. a wall)?
|
|
// In such a case, we generate the polygonal extrusion mesh as usual,
|
|
// but attach it to a TempOpening instance which will later be applied
|
|
// to the wall it pertains to.
|
|
if(conv.collect_openings) {
|
|
conv.collect_openings->push_back(TempOpening(geo.ToPtr<IfcSolidModel>(),IfcVector3(0,0,0),meshtmp));
|
|
return true;
|
|
}
|
|
|
|
if(fix_orientation) {
|
|
meshtmp->FixupFaceOrientation();
|
|
}
|
|
|
|
aiMesh* const mesh = meshtmp->ToMesh();
|
|
if(mesh) {
|
|
mesh->mMaterialIndex = ProcessMaterials(geo,conv);
|
|
mesh_indices.push_back(conv.meshes.size());
|
|
conv.meshes.push_back(mesh);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void AssignAddedMeshes(std::vector<unsigned int>& mesh_indices,aiNode* nd,
|
|
ConversionData& /*conv*/)
|
|
{
|
|
if (!mesh_indices.empty()) {
|
|
|
|
// make unique
|
|
std::sort(mesh_indices.begin(),mesh_indices.end());
|
|
std::vector<unsigned int>::iterator it_end = std::unique(mesh_indices.begin(),mesh_indices.end());
|
|
|
|
const size_t size = std::distance(mesh_indices.begin(),it_end);
|
|
|
|
nd->mNumMeshes = size;
|
|
nd->mMeshes = new unsigned int[nd->mNumMeshes];
|
|
for(unsigned int i = 0; i < nd->mNumMeshes; ++i) {
|
|
nd->mMeshes[i] = mesh_indices[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
bool TryQueryMeshCache(const IfcRepresentationItem& item,
|
|
std::vector<unsigned int>& mesh_indices,
|
|
ConversionData& conv)
|
|
{
|
|
ConversionData::MeshCache::const_iterator it = conv.cached_meshes.find(&item);
|
|
if (it != conv.cached_meshes.end()) {
|
|
std::copy((*it).second.begin(),(*it).second.end(),std::back_inserter(mesh_indices));
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void PopulateMeshCache(const IfcRepresentationItem& item,
|
|
const std::vector<unsigned int>& mesh_indices,
|
|
ConversionData& conv)
|
|
{
|
|
conv.cached_meshes[&item] = mesh_indices;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
bool ProcessRepresentationItem(const IfcRepresentationItem& item,
|
|
std::vector<unsigned int>& mesh_indices,
|
|
ConversionData& conv)
|
|
{
|
|
if (!TryQueryMeshCache(item,mesh_indices,conv)) {
|
|
if(ProcessGeometricItem(item,mesh_indices,conv)) {
|
|
if(mesh_indices.size()) {
|
|
PopulateMeshCache(item,mesh_indices,conv);
|
|
}
|
|
}
|
|
else return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
#undef to_int64
|
|
#undef from_int64
|
|
#undef one_vec
|
|
|
|
} // ! IFC
|
|
} // ! Assimp
|
|
|
|
#endif
|