701 lines
27 KiB
C++
701 lines
27 KiB
C++
/*
|
|
Open Asset Import Library (assimp)
|
|
----------------------------------------------------------------------
|
|
|
|
Copyright (c) 2006-2012, assimp team
|
|
All rights reserved.
|
|
|
|
Redistribution and use of this software in source and binary forms,
|
|
with or without modification, are permitted provided that the
|
|
following conditions are met:
|
|
|
|
* Redistributions of source code must retain the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer in the documentation and/or other
|
|
materials provided with the distribution.
|
|
|
|
* Neither the name of the assimp team, nor the names of its
|
|
contributors may be used to endorse or promote products
|
|
derived from this software without specific prior
|
|
written permission of the assimp team.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
----------------------------------------------------------------------
|
|
*/
|
|
|
|
#include "AssimpPCH.h"
|
|
|
|
#ifndef ASSIMP_BUILD_NO_EXPORT
|
|
#ifndef ASSIMP_BUILD_NO_COLLADA_EXPORTER
|
|
#include "ColladaExporter.h"
|
|
|
|
#include <ctime>
|
|
#include <set>
|
|
|
|
using namespace Assimp;
|
|
|
|
namespace Assimp
|
|
{
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Worker function for exporting a scene to Collada. Prototyped and registered in Exporter.cpp
|
|
void ExportSceneCollada(const char* pFile,IOSystem* pIOSystem, const aiScene* pScene)
|
|
{
|
|
// invoke the exporter
|
|
ColladaExporter iDoTheExportThing( pScene);
|
|
|
|
// we're still here - export successfully completed. Write result to the given IOSYstem
|
|
boost::scoped_ptr<IOStream> outfile (pIOSystem->Open(pFile,"wt"));
|
|
if(outfile == NULL) {
|
|
throw DeadlyExportError("could not open output .dae file: " + std::string(pFile));
|
|
}
|
|
|
|
// XXX maybe use a small wrapper around IOStream that behaves like std::stringstream in order to avoid the extra copy.
|
|
outfile->Write( iDoTheExportThing.mOutput.str().c_str(), static_cast<size_t>(iDoTheExportThing.mOutput.tellp()),1);
|
|
}
|
|
|
|
} // end of namespace Assimp
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Constructor for a specific scene to export
|
|
ColladaExporter::ColladaExporter( const aiScene* pScene)
|
|
{
|
|
// make sure that all formatting happens using the standard, C locale and not the user's current locale
|
|
mOutput.imbue( std::locale("C") );
|
|
|
|
mScene = pScene;
|
|
|
|
// set up strings
|
|
endstr = "\n";
|
|
|
|
// start writing
|
|
WriteFile();
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Starts writing the contents
|
|
void ColladaExporter::WriteFile()
|
|
{
|
|
// write the DTD
|
|
mOutput << "<?xml version=\"1.0\"?>" << endstr;
|
|
// COLLADA element start
|
|
mOutput << "<COLLADA xmlns=\"http://www.collada.org/2005/11/COLLADASchema\" version=\"1.4.1\">" << endstr;
|
|
PushTag();
|
|
|
|
WriteHeader();
|
|
|
|
WriteMaterials();
|
|
WriteGeometryLibrary();
|
|
|
|
WriteSceneLibrary();
|
|
|
|
// useless Collada fu at the end, just in case we haven't had enough indirections, yet.
|
|
mOutput << startstr << "<scene>" << endstr;
|
|
PushTag();
|
|
mOutput << startstr << "<instance_visual_scene url=\"#" + std::string(mScene->mRootNode->mName.C_Str()) + "\" />" << endstr;
|
|
PopTag();
|
|
mOutput << startstr << "</scene>" << endstr;
|
|
PopTag();
|
|
mOutput << "</COLLADA>" << endstr;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Writes the asset header
|
|
void ColladaExporter::WriteHeader()
|
|
{
|
|
static const unsigned int date_nb_chars = 20;
|
|
char date_str[date_nb_chars];
|
|
std::time_t date = std::time(NULL);
|
|
std::strftime(date_str, date_nb_chars, "%Y-%m-%dT%H:%M:%S", std::localtime(&date));
|
|
|
|
aiVector3D scaling;
|
|
aiQuaternion rotation;
|
|
aiVector3D position;
|
|
mScene->mRootNode->mTransformation.Decompose(scaling, rotation, position);
|
|
|
|
std::string scene_name = mScene->mRootNode->mName.C_Str();
|
|
|
|
float scale = 1.0;
|
|
if(scaling.x == scaling.y && scaling.x == scaling.z) {
|
|
scale = scaling.x;
|
|
} else {
|
|
DefaultLogger::get()->warn("Collada: Unable to compute the global scale of the scene " + scene_name);
|
|
}
|
|
|
|
aiMatrix3x3 rot_mat = rotation.GetMatrix();
|
|
std::string up_axis = "Y_UP";
|
|
|
|
if(rot_mat == aiMatrix4x4()) {
|
|
up_axis = "Y_UP";
|
|
} else if(rot_mat == aiMatrix4x4(
|
|
0, -1, 0, 0,
|
|
1, 0, 0, 0,
|
|
0, 0, 1, 0,
|
|
0, 0, 0, 1)) {
|
|
up_axis = "X_UP";
|
|
} else if(rot_mat == aiMatrix4x4(
|
|
1, 0, 0, 0,
|
|
0, 0, 1, 0,
|
|
0, -1, 0, 0,
|
|
0, 0, 0, 1)) {
|
|
up_axis = "Z_UP";
|
|
} else {
|
|
DefaultLogger::get()->warn("Collada: Unable to compute the up axis of the scene " + scene_name);
|
|
}
|
|
|
|
if(position.x != 0 || position.y != 0 || position.z != 0) {
|
|
DefaultLogger::get()->warn("Collada: Unable to keep the global position of the scene " + scene_name);
|
|
}
|
|
|
|
// Dummy stuff. Nobody actually cares for it anyways
|
|
mOutput << startstr << "<asset>" << endstr;
|
|
PushTag();
|
|
mOutput << startstr << "<contributor>" << endstr;
|
|
PushTag();
|
|
mOutput << startstr << "<author>Assimp</author>" << endstr;
|
|
mOutput << startstr << "<authoring_tool>Assimp Collada Exporter</authoring_tool>" << endstr;
|
|
PopTag();
|
|
mOutput << startstr << "</contributor>" << endstr;
|
|
mOutput << startstr << "<created>" << date_str << "</created>" << endstr;
|
|
mOutput << startstr << "<modified>" << date_str << "</modified>" << endstr;
|
|
mOutput << startstr << "<unit name=\"meter\" meter=\"" << scale << "\" />" << endstr;
|
|
mOutput << startstr << "<up_axis>" << up_axis << "</up_axis>" << endstr;
|
|
PopTag();
|
|
mOutput << startstr << "</asset>" << endstr;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Reads a single surface entry from the given material keys
|
|
void ColladaExporter::ReadMaterialSurface( Surface& poSurface, const aiMaterial* pSrcMat, aiTextureType pTexture, const char* pKey, size_t pType, size_t pIndex)
|
|
{
|
|
if( pSrcMat->GetTextureCount( pTexture) > 0 )
|
|
{
|
|
aiString texfile;
|
|
unsigned int uvChannel = 0;
|
|
pSrcMat->GetTexture( pTexture, 0, &texfile, NULL, &uvChannel);
|
|
poSurface.texture = texfile.C_Str();
|
|
poSurface.channel = uvChannel;
|
|
poSurface.exist = true;
|
|
} else
|
|
{
|
|
if( pKey )
|
|
poSurface.exist = pSrcMat->Get( pKey, pType, pIndex, poSurface.color) == aiReturn_SUCCESS;
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Writes an image entry for the given surface
|
|
void ColladaExporter::WriteImageEntry( const Surface& pSurface, const std::string& pNameAdd)
|
|
{
|
|
if( !pSurface.texture.empty() )
|
|
{
|
|
mOutput << startstr << "<image id=\"" << pNameAdd << "\">" << endstr;
|
|
PushTag();
|
|
mOutput << startstr << "<init_from>";
|
|
for( std::string::const_iterator it = pSurface.texture.begin(); it != pSurface.texture.end(); ++it )
|
|
{
|
|
if( isalnum( *it) || *it == '_' || *it == '.' || *it == '/' || *it == '\\' )
|
|
mOutput << *it;
|
|
else
|
|
mOutput << '%' << std::hex << size_t( (unsigned char) *it) << std::dec;
|
|
}
|
|
mOutput << "</init_from>" << endstr;
|
|
PopTag();
|
|
mOutput << startstr << "</image>" << endstr;
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Writes a color-or-texture entry into an effect definition
|
|
void ColladaExporter::WriteTextureColorEntry( const Surface& pSurface, const std::string& pTypeName, const std::string& pImageName)
|
|
{
|
|
if(pSurface.exist) {
|
|
mOutput << startstr << "<" << pTypeName << ">" << endstr;
|
|
PushTag();
|
|
if( pSurface.texture.empty() )
|
|
{
|
|
mOutput << startstr << "<color sid=\"" << pTypeName << "\">" << pSurface.color.r << " " << pSurface.color.g << " " << pSurface.color.b << " " << pSurface.color.a << "</color>" << endstr;
|
|
} else
|
|
{
|
|
mOutput << startstr << "<texture texture=\"" << pImageName << "\" texcoord=\"CHANNEL" << pSurface.channel << "\" />" << endstr;
|
|
}
|
|
PopTag();
|
|
mOutput << startstr << "</" << pTypeName << ">" << endstr;
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Writes the two parameters necessary for referencing a texture in an effect entry
|
|
void ColladaExporter::WriteTextureParamEntry( const Surface& pSurface, const std::string& pTypeName, const std::string& pMatName)
|
|
{
|
|
// if surface is a texture, write out the sampler and the surface parameters necessary to reference the texture
|
|
if( !pSurface.texture.empty() )
|
|
{
|
|
mOutput << startstr << "<newparam sid=\"" << pMatName << "-" << pTypeName << "-surface\">" << endstr;
|
|
PushTag();
|
|
mOutput << startstr << "<surface type=\"2D\">" << endstr;
|
|
PushTag();
|
|
mOutput << startstr << "<init_from>" << pMatName << "-" << pTypeName << "-image</init_from>" << endstr;
|
|
PopTag();
|
|
mOutput << startstr << "</surface>" << endstr;
|
|
PopTag();
|
|
mOutput << startstr << "</newparam>" << endstr;
|
|
|
|
mOutput << startstr << "<newparam sid=\"" << pMatName << "-" << pTypeName << "-sampler\">" << endstr;
|
|
PushTag();
|
|
mOutput << startstr << "<sampler2D>" << endstr;
|
|
PushTag();
|
|
mOutput << startstr << "<source>" << pMatName << "-" << pTypeName << "-surface</source>" << endstr;
|
|
PopTag();
|
|
mOutput << startstr << "</sampler2D>" << endstr;
|
|
PopTag();
|
|
mOutput << startstr << "</newparam>" << endstr;
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Writes a scalar property
|
|
void ColladaExporter::WriteFloatEntry( const Property& pProperty, const std::string& pTypeName)
|
|
{
|
|
if(pProperty.exist) {
|
|
mOutput << startstr << "<" << pTypeName << ">" << endstr;
|
|
PushTag();
|
|
mOutput << startstr << "<float sid=\"" << pTypeName << "\">" << pProperty.value << "</float>" << endstr;
|
|
PopTag();
|
|
mOutput << startstr << "</" << pTypeName << ">" << endstr;
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Writes the material setup
|
|
void ColladaExporter::WriteMaterials()
|
|
{
|
|
materials.resize( mScene->mNumMaterials);
|
|
|
|
std::set<std::string> material_names;
|
|
|
|
/// collect all materials from the scene
|
|
size_t numTextures = 0;
|
|
for( size_t a = 0; a < mScene->mNumMaterials; ++a )
|
|
{
|
|
const aiMaterial* mat = mScene->mMaterials[a];
|
|
|
|
aiString name;
|
|
if( mat->Get( AI_MATKEY_NAME, name) != aiReturn_SUCCESS )
|
|
name = "mat";
|
|
if(material_names.find(name.C_Str()) != material_names.end()) {
|
|
materials[a].name = std::string( "m") + boost::lexical_cast<std::string> (a) + "_" + name.C_Str();
|
|
material_names.insert(materials[a].name);
|
|
} else {
|
|
materials[a].name = name.C_Str();
|
|
}
|
|
for( std::string::iterator it = materials[a].name.begin(); it != materials[a].name.end(); ++it )
|
|
if( !isalnum( *it) )
|
|
*it = '_';
|
|
|
|
aiShadingMode shading;
|
|
materials[a].shading_model = "phong";
|
|
if(mat->Get( AI_MATKEY_SHADING_MODEL, shading) == aiReturn_SUCCESS) {
|
|
if(shading == aiShadingMode_Phong) {
|
|
materials[a].shading_model = "phong";
|
|
} else if(shading == aiShadingMode_Blinn) {
|
|
materials[a].shading_model = "blinn";
|
|
} else if(shading == aiShadingMode_NoShading) {
|
|
materials[a].shading_model = "constant";
|
|
} else if(shading == aiShadingMode_Gouraud) {
|
|
materials[a].shading_model = "lambert";
|
|
}
|
|
}
|
|
|
|
ReadMaterialSurface( materials[a].ambient, mat, aiTextureType_AMBIENT, AI_MATKEY_COLOR_AMBIENT);
|
|
if( !materials[a].ambient.texture.empty() ) numTextures++;
|
|
ReadMaterialSurface( materials[a].diffuse, mat, aiTextureType_DIFFUSE, AI_MATKEY_COLOR_DIFFUSE);
|
|
if( !materials[a].diffuse.texture.empty() ) numTextures++;
|
|
ReadMaterialSurface( materials[a].specular, mat, aiTextureType_SPECULAR, AI_MATKEY_COLOR_SPECULAR);
|
|
if( !materials[a].specular.texture.empty() ) numTextures++;
|
|
ReadMaterialSurface( materials[a].emissive, mat, aiTextureType_EMISSIVE, AI_MATKEY_COLOR_EMISSIVE);
|
|
if( !materials[a].emissive.texture.empty() ) numTextures++;
|
|
ReadMaterialSurface( materials[a].reflective, mat, aiTextureType_REFLECTION, AI_MATKEY_COLOR_REFLECTIVE);
|
|
if( !materials[a].reflective.texture.empty() ) numTextures++;
|
|
ReadMaterialSurface( materials[a].transparent, mat, aiTextureType_OPACITY, AI_MATKEY_COLOR_TRANSPARENT);
|
|
if( !materials[a].transparent.texture.empty() ) numTextures++;
|
|
ReadMaterialSurface( materials[a].normal, mat, aiTextureType_NORMALS, NULL, 0, 0);
|
|
if( !materials[a].normal.texture.empty() ) numTextures++;
|
|
|
|
materials[a].shininess.exist = mat->Get( AI_MATKEY_SHININESS, materials[a].shininess.value) == aiReturn_SUCCESS;
|
|
materials[a].transparency.exist = mat->Get( AI_MATKEY_OPACITY, materials[a].transparency.value) == aiReturn_SUCCESS;
|
|
materials[a].transparency.value = 1 - materials[a].transparency.value;
|
|
materials[a].index_refraction.exist = mat->Get( AI_MATKEY_REFRACTI, materials[a].index_refraction.value) == aiReturn_SUCCESS;
|
|
}
|
|
|
|
// output textures if present
|
|
if( numTextures > 0 )
|
|
{
|
|
mOutput << startstr << "<library_images>" << endstr;
|
|
PushTag();
|
|
for( std::vector<Material>::const_iterator it = materials.begin(); it != materials.end(); ++it )
|
|
{
|
|
const Material& mat = *it;
|
|
WriteImageEntry( mat.ambient, mat.name + "-ambient-image");
|
|
WriteImageEntry( mat.diffuse, mat.name + "-diffuse-image");
|
|
WriteImageEntry( mat.specular, mat.name + "-specular-image");
|
|
WriteImageEntry( mat.emissive, mat.name + "-emission-image");
|
|
WriteImageEntry( mat.reflective, mat.name + "-reflective-image");
|
|
WriteImageEntry( mat.transparent, mat.name + "-transparent-image");
|
|
WriteImageEntry( mat.normal, mat.name + "-normal-image");
|
|
}
|
|
PopTag();
|
|
mOutput << startstr << "</library_images>" << endstr;
|
|
}
|
|
|
|
// output effects - those are the actual carriers of information
|
|
if( !materials.empty() )
|
|
{
|
|
mOutput << startstr << "<library_effects>" << endstr;
|
|
PushTag();
|
|
for( std::vector<Material>::const_iterator it = materials.begin(); it != materials.end(); ++it )
|
|
{
|
|
const Material& mat = *it;
|
|
// this is so ridiculous it must be right
|
|
mOutput << startstr << "<effect id=\"" << mat.name << "-fx\" name=\"" << mat.name << "\">" << endstr;
|
|
PushTag();
|
|
mOutput << startstr << "<profile_COMMON>" << endstr;
|
|
PushTag();
|
|
|
|
// write sampler- and surface params for the texture entries
|
|
WriteTextureParamEntry( mat.emissive, "emission", mat.name);
|
|
WriteTextureParamEntry( mat.ambient, "ambient", mat.name);
|
|
WriteTextureParamEntry( mat.diffuse, "diffuse", mat.name);
|
|
WriteTextureParamEntry( mat.specular, "specular", mat.name);
|
|
WriteTextureParamEntry( mat.reflective, "reflective", mat.name);
|
|
WriteTextureParamEntry( mat.transparent, "transparent", mat.name);
|
|
WriteTextureParamEntry( mat.normal, "normal", mat.name);
|
|
|
|
mOutput << startstr << "<technique sid=\"standard\">" << endstr;
|
|
PushTag();
|
|
mOutput << startstr << "<" << mat.shading_model << ">" << endstr;
|
|
PushTag();
|
|
|
|
WriteTextureColorEntry( mat.emissive, "emission", mat.name + "-emission-sampler");
|
|
WriteTextureColorEntry( mat.ambient, "ambient", mat.name + "-ambient-sampler");
|
|
WriteTextureColorEntry( mat.diffuse, "diffuse", mat.name + "-diffuse-sampler");
|
|
WriteTextureColorEntry( mat.specular, "specular", mat.name + "-specular-sampler");
|
|
WriteFloatEntry(mat.shininess, "shininess");
|
|
WriteTextureColorEntry( mat.reflective, "reflective", mat.name + "-reflective-sampler");
|
|
WriteTextureColorEntry( mat.transparent, "transparent", mat.name + "-transparent-sampler");
|
|
WriteFloatEntry(mat.transparency, "transparency");
|
|
WriteFloatEntry(mat.index_refraction, "index_of_refraction");
|
|
|
|
if(! mat.normal.texture.empty()) {
|
|
WriteTextureColorEntry( mat.normal, "bump", mat.name + "-normal-sampler");
|
|
}
|
|
|
|
PopTag();
|
|
mOutput << startstr << "</" << mat.shading_model << ">" << endstr;
|
|
PopTag();
|
|
mOutput << startstr << "</technique>" << endstr;
|
|
PopTag();
|
|
mOutput << startstr << "</profile_COMMON>" << endstr;
|
|
PopTag();
|
|
mOutput << startstr << "</effect>" << endstr;
|
|
}
|
|
PopTag();
|
|
mOutput << startstr << "</library_effects>" << endstr;
|
|
|
|
// write materials - they're just effect references
|
|
mOutput << startstr << "<library_materials>" << endstr;
|
|
PushTag();
|
|
for( std::vector<Material>::const_iterator it = materials.begin(); it != materials.end(); ++it )
|
|
{
|
|
const Material& mat = *it;
|
|
mOutput << startstr << "<material id=\"" << mat.name << "\" name=\"" << mat.name << "\">" << endstr;
|
|
PushTag();
|
|
mOutput << startstr << "<instance_effect url=\"#" << mat.name << "-fx\"/>" << endstr;
|
|
PopTag();
|
|
mOutput << startstr << "</material>" << endstr;
|
|
}
|
|
PopTag();
|
|
mOutput << startstr << "</library_materials>" << endstr;
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Writes the geometry library
|
|
void ColladaExporter::WriteGeometryLibrary()
|
|
{
|
|
mOutput << startstr << "<library_geometries>" << endstr;
|
|
PushTag();
|
|
|
|
for( size_t a = 0; a < mScene->mNumMeshes; ++a)
|
|
WriteGeometry( a);
|
|
|
|
PopTag();
|
|
mOutput << startstr << "</library_geometries>" << endstr;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Writes the given mesh
|
|
void ColladaExporter::WriteGeometry( size_t pIndex)
|
|
{
|
|
const aiMesh* mesh = mScene->mMeshes[pIndex];
|
|
std::string idstr = GetMeshId( pIndex);
|
|
|
|
if( mesh->mNumFaces == 0 || mesh->mNumVertices == 0 )
|
|
return;
|
|
|
|
// opening tag
|
|
mOutput << startstr << "<geometry id=\"" << idstr << "\" name=\"" << idstr << "_name\" >" << endstr;
|
|
PushTag();
|
|
|
|
mOutput << startstr << "<mesh>" << endstr;
|
|
PushTag();
|
|
|
|
// Positions
|
|
WriteFloatArray( idstr + "-positions", FloatType_Vector, (float*) mesh->mVertices, mesh->mNumVertices);
|
|
// Normals, if any
|
|
if( mesh->HasNormals() )
|
|
WriteFloatArray( idstr + "-normals", FloatType_Vector, (float*) mesh->mNormals, mesh->mNumVertices);
|
|
|
|
// texture coords
|
|
for( size_t a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a)
|
|
{
|
|
if( mesh->HasTextureCoords( a) )
|
|
{
|
|
WriteFloatArray( idstr + "-tex" + boost::lexical_cast<std::string> (a), mesh->mNumUVComponents[a] == 3 ? FloatType_TexCoord3 : FloatType_TexCoord2,
|
|
(float*) mesh->mTextureCoords[a], mesh->mNumVertices);
|
|
}
|
|
}
|
|
|
|
// vertex colors
|
|
for( size_t a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a)
|
|
{
|
|
if( mesh->HasVertexColors( a) )
|
|
WriteFloatArray( idstr + "-color" + boost::lexical_cast<std::string> (a), FloatType_Color, (float*) mesh->mColors[a], mesh->mNumVertices);
|
|
}
|
|
|
|
// assemble vertex structure
|
|
mOutput << startstr << "<vertices id=\"" << idstr << "-vertices" << "\">" << endstr;
|
|
PushTag();
|
|
mOutput << startstr << "<input semantic=\"POSITION\" source=\"#" << idstr << "-positions\" />" << endstr;
|
|
if( mesh->HasNormals() )
|
|
mOutput << startstr << "<input semantic=\"NORMAL\" source=\"#" << idstr << "-normals\" />" << endstr;
|
|
for( size_t a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a )
|
|
{
|
|
if( mesh->HasTextureCoords( a) )
|
|
mOutput << startstr << "<input semantic=\"TEXCOORD\" source=\"#" << idstr << "-tex" << a << "\" " /*<< "set=\"" << a << "\"" */ << " />" << endstr;
|
|
}
|
|
for( size_t a = 0; a < AI_MAX_NUMBER_OF_COLOR_SETS; ++a )
|
|
{
|
|
if( mesh->HasVertexColors( a) )
|
|
mOutput << startstr << "<input semantic=\"COLOR\" source=\"#" << idstr << "-color" << a << "\" " /*<< set=\"" << a << "\"" */ << " />" << endstr;
|
|
}
|
|
|
|
PopTag();
|
|
mOutput << startstr << "</vertices>" << endstr;
|
|
|
|
// write face setup
|
|
mOutput << startstr << "<polylist count=\"" << mesh->mNumFaces << "\" material=\"theresonlyone\">" << endstr;
|
|
PushTag();
|
|
mOutput << startstr << "<input offset=\"0\" semantic=\"VERTEX\" source=\"#" << idstr << "-vertices\" />" << endstr;
|
|
|
|
mOutput << startstr << "<vcount>";
|
|
for( size_t a = 0; a < mesh->mNumFaces; ++a )
|
|
mOutput << mesh->mFaces[a].mNumIndices << " ";
|
|
mOutput << "</vcount>" << endstr;
|
|
|
|
mOutput << startstr << "<p>";
|
|
for( size_t a = 0; a < mesh->mNumFaces; ++a )
|
|
{
|
|
const aiFace& face = mesh->mFaces[a];
|
|
for( size_t b = 0; b < face.mNumIndices; ++b )
|
|
mOutput << face.mIndices[b] << " ";
|
|
}
|
|
mOutput << "</p>" << endstr;
|
|
PopTag();
|
|
mOutput << startstr << "</polylist>" << endstr;
|
|
|
|
// closing tags
|
|
PopTag();
|
|
mOutput << startstr << "</mesh>" << endstr;
|
|
PopTag();
|
|
mOutput << startstr << "</geometry>" << endstr;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Writes a float array of the given type
|
|
void ColladaExporter::WriteFloatArray( const std::string& pIdString, FloatDataType pType, const float* pData, size_t pElementCount)
|
|
{
|
|
size_t floatsPerElement = 0;
|
|
switch( pType )
|
|
{
|
|
case FloatType_Vector: floatsPerElement = 3; break;
|
|
case FloatType_TexCoord2: floatsPerElement = 2; break;
|
|
case FloatType_TexCoord3: floatsPerElement = 3; break;
|
|
case FloatType_Color: floatsPerElement = 3; break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
std::string arrayId = pIdString + "-array";
|
|
|
|
mOutput << startstr << "<source id=\"" << pIdString << "\" name=\"" << pIdString << "\">" << endstr;
|
|
PushTag();
|
|
|
|
// source array
|
|
mOutput << startstr << "<float_array id=\"" << arrayId << "\" count=\"" << pElementCount * floatsPerElement << "\"> ";
|
|
PushTag();
|
|
|
|
if( pType == FloatType_TexCoord2 )
|
|
{
|
|
for( size_t a = 0; a < pElementCount; ++a )
|
|
{
|
|
mOutput << pData[a*3+0] << " ";
|
|
mOutput << pData[a*3+1] << " ";
|
|
}
|
|
}
|
|
else if( pType == FloatType_Color )
|
|
{
|
|
for( size_t a = 0; a < pElementCount; ++a )
|
|
{
|
|
mOutput << pData[a*4+0] << " ";
|
|
mOutput << pData[a*4+1] << " ";
|
|
mOutput << pData[a*4+2] << " ";
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for( size_t a = 0; a < pElementCount * floatsPerElement; ++a )
|
|
mOutput << pData[a] << " ";
|
|
}
|
|
mOutput << "</float_array>" << endstr;
|
|
PopTag();
|
|
|
|
// the usual Collada fun. Let's bloat it even more!
|
|
mOutput << startstr << "<technique_common>" << endstr;
|
|
PushTag();
|
|
mOutput << startstr << "<accessor count=\"" << pElementCount << "\" offset=\"0\" source=\"#" << arrayId << "\" stride=\"" << floatsPerElement << "\">" << endstr;
|
|
PushTag();
|
|
|
|
switch( pType )
|
|
{
|
|
case FloatType_Vector:
|
|
mOutput << startstr << "<param name=\"X\" type=\"float\" />" << endstr;
|
|
mOutput << startstr << "<param name=\"Y\" type=\"float\" />" << endstr;
|
|
mOutput << startstr << "<param name=\"Z\" type=\"float\" />" << endstr;
|
|
break;
|
|
|
|
case FloatType_TexCoord2:
|
|
mOutput << startstr << "<param name=\"S\" type=\"float\" />" << endstr;
|
|
mOutput << startstr << "<param name=\"T\" type=\"float\" />" << endstr;
|
|
break;
|
|
|
|
case FloatType_TexCoord3:
|
|
mOutput << startstr << "<param name=\"S\" type=\"float\" />" << endstr;
|
|
mOutput << startstr << "<param name=\"T\" type=\"float\" />" << endstr;
|
|
mOutput << startstr << "<param name=\"P\" type=\"float\" />" << endstr;
|
|
break;
|
|
|
|
case FloatType_Color:
|
|
mOutput << startstr << "<param name=\"R\" type=\"float\" />" << endstr;
|
|
mOutput << startstr << "<param name=\"G\" type=\"float\" />" << endstr;
|
|
mOutput << startstr << "<param name=\"B\" type=\"float\" />" << endstr;
|
|
break;
|
|
}
|
|
|
|
PopTag();
|
|
mOutput << startstr << "</accessor>" << endstr;
|
|
PopTag();
|
|
mOutput << startstr << "</technique_common>" << endstr;
|
|
PopTag();
|
|
mOutput << startstr << "</source>" << endstr;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Writes the scene library
|
|
void ColladaExporter::WriteSceneLibrary()
|
|
{
|
|
std::string scene_name = mScene->mRootNode->mName.C_Str();
|
|
|
|
mOutput << startstr << "<library_visual_scenes>" << endstr;
|
|
PushTag();
|
|
mOutput << startstr << "<visual_scene id=\"" + scene_name + "\" name=\"" + scene_name + "\">" << endstr;
|
|
PushTag();
|
|
|
|
// start recursive write at the root node
|
|
for( size_t a = 0; a < mScene->mRootNode->mNumChildren; ++a )
|
|
WriteNode( mScene->mRootNode->mChildren[a]);
|
|
|
|
PopTag();
|
|
mOutput << startstr << "</visual_scene>" << endstr;
|
|
PopTag();
|
|
mOutput << startstr << "</library_visual_scenes>" << endstr;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Recursively writes the given node
|
|
void ColladaExporter::WriteNode( const aiNode* pNode)
|
|
{
|
|
mOutput << startstr << "<node id=\"" << pNode->mName.data << "\" name=\"" << pNode->mName.data << "\">" << endstr;
|
|
PushTag();
|
|
|
|
// write transformation - we can directly put the matrix there
|
|
// TODO: (thom) decompose into scale - rot - quad to allow adressing it by animations afterwards
|
|
const aiMatrix4x4& mat = pNode->mTransformation;
|
|
mOutput << startstr << "<matrix>";
|
|
mOutput << mat.a1 << " " << mat.a2 << " " << mat.a3 << " " << mat.a4 << " ";
|
|
mOutput << mat.b1 << " " << mat.b2 << " " << mat.b3 << " " << mat.b4 << " ";
|
|
mOutput << mat.c1 << " " << mat.c2 << " " << mat.c3 << " " << mat.c4 << " ";
|
|
mOutput << mat.d1 << " " << mat.d2 << " " << mat.d3 << " " << mat.d4;
|
|
mOutput << "</matrix>" << endstr;
|
|
|
|
// instance every geometry
|
|
for( size_t a = 0; a < pNode->mNumMeshes; ++a )
|
|
{
|
|
const aiMesh* mesh = mScene->mMeshes[pNode->mMeshes[a]];
|
|
// do not instanciate mesh if empty. I wonder how this could happen
|
|
if( mesh->mNumFaces == 0 || mesh->mNumVertices == 0 )
|
|
continue;
|
|
|
|
mOutput << startstr << "<instance_geometry url=\"#" << GetMeshId( pNode->mMeshes[a]) << "\">" << endstr;
|
|
PushTag();
|
|
mOutput << startstr << "<bind_material>" << endstr;
|
|
PushTag();
|
|
mOutput << startstr << "<technique_common>" << endstr;
|
|
PushTag();
|
|
mOutput << startstr << "<instance_material symbol=\"theresonlyone\" target=\"#" << materials[mesh->mMaterialIndex].name << "\" />" << endstr;
|
|
PopTag();
|
|
mOutput << startstr << "</technique_common>" << endstr;
|
|
PopTag();
|
|
mOutput << startstr << "</bind_material>" << endstr;
|
|
PopTag();
|
|
mOutput << startstr << "</instance_geometry>" << endstr;
|
|
}
|
|
|
|
// recurse into subnodes
|
|
for( size_t a = 0; a < pNode->mNumChildren; ++a )
|
|
WriteNode( pNode->mChildren[a]);
|
|
|
|
PopTag();
|
|
mOutput << startstr << "</node>" << endstr;
|
|
}
|
|
|
|
#endif
|
|
#endif
|
|
|