198 lines
6.6 KiB
C
198 lines
6.6 KiB
C
/*
|
|
Open Asset Import Library (ASSIMP)
|
|
----------------------------------------------------------------------
|
|
|
|
Copyright (c) 2006-2008, ASSIMP Development Team
|
|
All rights reserved.
|
|
|
|
Redistribution and use of this software in source and binary forms,
|
|
with or without modification, are permitted provided that the
|
|
following conditions are met:
|
|
|
|
* Redistributions of source code must retain the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer in the documentation and/or other
|
|
materials provided with the distribution.
|
|
|
|
* Neither the name of the ASSIMP team, nor the names of its
|
|
contributors may be used to endorse or promote products
|
|
derived from this software without specific prior
|
|
written permission of the ASSIMP Development Team.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
----------------------------------------------------------------------
|
|
*/
|
|
|
|
/** @file Quaternion structure, including operators when compiling in C++ */
|
|
#ifndef AI_QUATERNION_H_INC
|
|
#define AI_QUATERNION_H_INC
|
|
|
|
#include <math.h>
|
|
#include "aiTypes.h"
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
// ---------------------------------------------------------------------------
|
|
/** Represents a quaternion in a 4D vector. */
|
|
struct aiQuaternion
|
|
{
|
|
#ifdef __cplusplus
|
|
aiQuaternion() : w(0.0f), x(0.0f), y(0.0f), z(0.0f) {}
|
|
aiQuaternion(float _w, float _x, float _y, float _z) : w(_w), x(_x), y(_y), z(_z) {}
|
|
|
|
/** Construct from rotation matrix. Result is undefined if the matrix is not orthonormal. */
|
|
aiQuaternion( const aiMatrix3x3& pRotMatrix);
|
|
|
|
/** Construct from euler angles */
|
|
aiQuaternion( float rotx, float roty, float rotz);
|
|
|
|
/** Construct from an axis angle pair */
|
|
aiQuaternion( aiVector3D axis, float angle);
|
|
|
|
/** Construct from a normalized quaternion stored in a vec3 */
|
|
aiQuaternion( aiVector3D normalized);
|
|
|
|
/** Returns a matrix representation of the quaternion */
|
|
aiMatrix3x3 GetMatrix() const;
|
|
|
|
#endif // __cplusplus
|
|
|
|
//! w,x,y,z components of the quaternion
|
|
float w, x, y, z;
|
|
} ;
|
|
|
|
|
|
#ifdef __cplusplus
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Constructs a quaternion from a rotation matrix
|
|
inline aiQuaternion::aiQuaternion( const aiMatrix3x3 &pRotMatrix)
|
|
{
|
|
float t = 1 + pRotMatrix.a1 + pRotMatrix.b2 + pRotMatrix.c3;
|
|
|
|
// large enough
|
|
if( t > 0.00001f)
|
|
{
|
|
float s = sqrt( t) * 2.0f;
|
|
x = (pRotMatrix.b3 - pRotMatrix.c2) / s;
|
|
y = (pRotMatrix.c1 - pRotMatrix.a3) / s;
|
|
z = (pRotMatrix.a2 - pRotMatrix.b1) / s;
|
|
w = 0.25f * s;
|
|
} // else we have to check several cases
|
|
else if( pRotMatrix.a1 > pRotMatrix.b2 && pRotMatrix.a1 > pRotMatrix.c3 )
|
|
{
|
|
// Column 0:
|
|
float s = sqrt( 1.0f + pRotMatrix.a1 - pRotMatrix.b2 - pRotMatrix.c3) * 2.0f;
|
|
x = -0.25f * s;
|
|
y = (pRotMatrix.a2 + pRotMatrix.b1) / s;
|
|
z = (pRotMatrix.c1 + pRotMatrix.a3) / s;
|
|
w = (pRotMatrix.c2 - pRotMatrix.b3) / s;
|
|
}
|
|
else if( pRotMatrix.b2 > pRotMatrix.c3)
|
|
{
|
|
// Column 1:
|
|
float s = sqrt( 1.0f + pRotMatrix.b2 - pRotMatrix.a1 - pRotMatrix.c3) * 2.0f;
|
|
x = (pRotMatrix.a2 + pRotMatrix.b1) / s;
|
|
y = -0.25f * s;
|
|
z = (pRotMatrix.b3 + pRotMatrix.c2) / s;
|
|
w = (pRotMatrix.a3 - pRotMatrix.c1) / s;
|
|
} else
|
|
{
|
|
// Column 2:
|
|
float s = sqrt( 1.0f + pRotMatrix.c3 - pRotMatrix.a1 - pRotMatrix.b2) * 2.0f;
|
|
x = (pRotMatrix.c1 + pRotMatrix.a3) / s;
|
|
y = (pRotMatrix.b3 + pRotMatrix.c2) / s;
|
|
z = -0.25f * s;
|
|
w = (pRotMatrix.b1 - pRotMatrix.a2) / s;
|
|
}
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Construction from euler angles
|
|
inline aiQuaternion::aiQuaternion( float fPitch, float fYaw, float fRoll )
|
|
{
|
|
const float fSinPitch(sin(fPitch*0.5F));
|
|
const float fCosPitch(cos(fPitch*0.5F));
|
|
const float fSinYaw(sin(fYaw*0.5F));
|
|
const float fCosYaw(cos(fYaw*0.5F));
|
|
const float fSinRoll(sin(fRoll*0.5F));
|
|
const float fCosRoll(cos(fRoll*0.5F));
|
|
const float fCosPitchCosYaw(fCosPitch*fCosYaw);
|
|
const float fSinPitchSinYaw(fSinPitch*fSinYaw);
|
|
x = fSinRoll * fCosPitchCosYaw - fCosRoll * fSinPitchSinYaw;
|
|
y = fCosRoll * fSinPitch * fCosYaw + fSinRoll * fCosPitch * fSinYaw;
|
|
z = fCosRoll * fCosPitch * fSinYaw - fSinRoll * fSinPitch * fCosYaw;
|
|
w = fCosRoll * fCosPitchCosYaw + fSinRoll * fSinPitchSinYaw;
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Returns a matrix representation of the quaternion
|
|
inline aiMatrix3x3 aiQuaternion::GetMatrix() const
|
|
{
|
|
aiMatrix3x3 resMatrix;
|
|
resMatrix.a1 = 1.0f - 2.0f * (y * y + z * z);
|
|
resMatrix.a2 = 2.0f * (x * y + z * w);
|
|
resMatrix.a3 = 2.0f * (x * z - y * w);
|
|
resMatrix.b1 = 2.0f * (x * y - z * w);
|
|
resMatrix.b2 = 1.0f - 2.0f * (x * x + z * z);
|
|
resMatrix.b3 = 2.0f * (y * z + x * w);
|
|
resMatrix.c1 = 2.0f * (x * z + y * w);
|
|
resMatrix.c2 = 2.0f * (y * z - x * w);
|
|
resMatrix.c3 = 1.0f - 2.0f * (x * x + y * y);
|
|
|
|
return resMatrix;
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Construction from an axis-angle pair
|
|
inline aiQuaternion::aiQuaternion( aiVector3D axis, float angle)
|
|
{
|
|
axis.Normalize();
|
|
|
|
const float sin_a = sin( angle / 2 );
|
|
const float cos_a = cos( angle / 2 );
|
|
x = axis.x * sin_a;
|
|
y = axis.y * sin_a;
|
|
z = axis.z * sin_a;
|
|
w = cos_a;
|
|
}
|
|
// ---------------------------------------------------------------------------
|
|
// Construction from am existing, normalized quaternion
|
|
inline aiQuaternion::aiQuaternion( aiVector3D normalized)
|
|
{
|
|
x = normalized.x;
|
|
y = normalized.y;
|
|
z = normalized.z;
|
|
|
|
float t = 1.0f - (normalized.x * normalized.x) -
|
|
(normalized.y * normalized.y) - (normalized.z * normalized.z);
|
|
|
|
if (t < 0.0f)
|
|
w = 0.0f;
|
|
else w = sqrt (t);
|
|
|
|
}
|
|
|
|
|
|
|
|
} // end extern "C"
|
|
#endif // __cplusplus
|
|
|
|
#endif // AI_QUATERNION_H_INC
|