313 lines
10 KiB
C
313 lines
10 KiB
C
/*
|
|
Open Asset Import Library (ASSIMP)
|
|
----------------------------------------------------------------------
|
|
|
|
Copyright (c) 2006-2010, ASSIMP Development Team
|
|
All rights reserved.
|
|
|
|
Redistribution and use of this software in source and binary forms,
|
|
with or without modification, are permitted provided that the
|
|
following conditions are met:
|
|
|
|
* Redistributions of source code must retain the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer in the documentation and/or other
|
|
materials provided with the distribution.
|
|
|
|
* Neither the name of the ASSIMP team, nor the names of its
|
|
contributors may be used to endorse or promote products
|
|
derived from this software without specific prior
|
|
written permission of the ASSIMP Development Team.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
----------------------------------------------------------------------
|
|
*/
|
|
|
|
/** @file aiQuaternion.h
|
|
* @brief Quaternion structure, including operators when compiling in C++
|
|
*/
|
|
#ifndef AI_QUATERNION_H_INC
|
|
#define AI_QUATERNION_H_INC
|
|
|
|
#include <math.h>
|
|
#include "aiTypes.h"
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
// ---------------------------------------------------------------------------
|
|
/** Represents a quaternion in a 4D vector. */
|
|
struct aiQuaternion
|
|
{
|
|
#ifdef __cplusplus
|
|
aiQuaternion() : w(0.0f), x(0.0f), y(0.0f), z(0.0f) {}
|
|
aiQuaternion(float _w, float _x, float _y, float _z) : w(_w), x(_x), y(_y), z(_z) {}
|
|
|
|
/** Construct from rotation matrix. Result is undefined if the matrix is not orthonormal. */
|
|
aiQuaternion( const aiMatrix3x3& pRotMatrix);
|
|
|
|
/** Construct from euler angles */
|
|
aiQuaternion( float rotx, float roty, float rotz);
|
|
|
|
/** Construct from an axis-angle pair */
|
|
aiQuaternion( aiVector3D axis, float angle);
|
|
|
|
/** Construct from a normalized quaternion stored in a vec3 */
|
|
aiQuaternion( aiVector3D normalized);
|
|
|
|
/** Returns a matrix representation of the quaternion */
|
|
aiMatrix3x3 GetMatrix() const;
|
|
|
|
|
|
bool operator== (const aiQuaternion& o) const
|
|
{return x == o.x && y == o.y && z == o.z && w == o.w;}
|
|
|
|
bool operator!= (const aiQuaternion& o) const
|
|
{return !(*this == o);}
|
|
|
|
/** Normalize the quaternion */
|
|
aiQuaternion& Normalize();
|
|
|
|
/** Compute quaternion conjugate */
|
|
aiQuaternion& Conjugate ();
|
|
|
|
/** Rotate a point by this quaternion */
|
|
aiVector3D Rotate (const aiVector3D& in);
|
|
|
|
/** Multiply two quaternions */
|
|
aiQuaternion operator* (const aiQuaternion& two) const;
|
|
|
|
/** Performs a spherical interpolation between two quaternions and writes the result into the third.
|
|
* @param pOut Target object to received the interpolated rotation.
|
|
* @param pStart Start rotation of the interpolation at factor == 0.
|
|
* @param pEnd End rotation, factor == 1.
|
|
* @param pFactor Interpolation factor between 0 and 1. Values outside of this range yield undefined results.
|
|
*/
|
|
static void Interpolate( aiQuaternion& pOut, const aiQuaternion& pStart, const aiQuaternion& pEnd, float pFactor);
|
|
|
|
#endif // __cplusplus
|
|
|
|
//! w,x,y,z components of the quaternion
|
|
float w, x, y, z;
|
|
} ;
|
|
|
|
|
|
#ifdef __cplusplus
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Constructs a quaternion from a rotation matrix
|
|
inline aiQuaternion::aiQuaternion( const aiMatrix3x3 &pRotMatrix)
|
|
{
|
|
float t = 1 + pRotMatrix.a1 + pRotMatrix.b2 + pRotMatrix.c3;
|
|
|
|
// large enough
|
|
if( t > 0.001f)
|
|
{
|
|
float s = sqrt( t) * 2.0f;
|
|
x = (pRotMatrix.c2 - pRotMatrix.b3) / s;
|
|
y = (pRotMatrix.a3 - pRotMatrix.c1) / s;
|
|
z = (pRotMatrix.b1 - pRotMatrix.a2) / s;
|
|
w = 0.25f * s;
|
|
} // else we have to check several cases
|
|
else if( pRotMatrix.a1 > pRotMatrix.b2 && pRotMatrix.a1 > pRotMatrix.c3 )
|
|
{
|
|
// Column 0:
|
|
float s = sqrt( 1.0f + pRotMatrix.a1 - pRotMatrix.b2 - pRotMatrix.c3) * 2.0f;
|
|
x = 0.25f * s;
|
|
y = (pRotMatrix.b1 + pRotMatrix.a2) / s;
|
|
z = (pRotMatrix.a3 + pRotMatrix.c1) / s;
|
|
w = (pRotMatrix.c2 - pRotMatrix.b3) / s;
|
|
}
|
|
else if( pRotMatrix.b2 > pRotMatrix.c3)
|
|
{
|
|
// Column 1:
|
|
float s = sqrt( 1.0f + pRotMatrix.b2 - pRotMatrix.a1 - pRotMatrix.c3) * 2.0f;
|
|
x = (pRotMatrix.b1 + pRotMatrix.a2) / s;
|
|
y = 0.25f * s;
|
|
z = (pRotMatrix.c2 + pRotMatrix.b3) / s;
|
|
w = (pRotMatrix.a3 - pRotMatrix.c1) / s;
|
|
} else
|
|
{
|
|
// Column 2:
|
|
float s = sqrt( 1.0f + pRotMatrix.c3 - pRotMatrix.a1 - pRotMatrix.b2) * 2.0f;
|
|
x = (pRotMatrix.a3 + pRotMatrix.c1) / s;
|
|
y = (pRotMatrix.c2 + pRotMatrix.b3) / s;
|
|
z = 0.25f * s;
|
|
w = (pRotMatrix.b1 - pRotMatrix.a2) / s;
|
|
}
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Construction from euler angles
|
|
inline aiQuaternion::aiQuaternion( float fPitch, float fYaw, float fRoll )
|
|
{
|
|
const float fSinPitch(sin(fPitch*0.5F));
|
|
const float fCosPitch(cos(fPitch*0.5F));
|
|
const float fSinYaw(sin(fYaw*0.5F));
|
|
const float fCosYaw(cos(fYaw*0.5F));
|
|
const float fSinRoll(sin(fRoll*0.5F));
|
|
const float fCosRoll(cos(fRoll*0.5F));
|
|
const float fCosPitchCosYaw(fCosPitch*fCosYaw);
|
|
const float fSinPitchSinYaw(fSinPitch*fSinYaw);
|
|
x = fSinRoll * fCosPitchCosYaw - fCosRoll * fSinPitchSinYaw;
|
|
y = fCosRoll * fSinPitch * fCosYaw + fSinRoll * fCosPitch * fSinYaw;
|
|
z = fCosRoll * fCosPitch * fSinYaw - fSinRoll * fSinPitch * fCosYaw;
|
|
w = fCosRoll * fCosPitchCosYaw + fSinRoll * fSinPitchSinYaw;
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Returns a matrix representation of the quaternion
|
|
inline aiMatrix3x3 aiQuaternion::GetMatrix() const
|
|
{
|
|
aiMatrix3x3 resMatrix;
|
|
resMatrix.a1 = 1.0f - 2.0f * (y * y + z * z);
|
|
resMatrix.a2 = 2.0f * (x * y - z * w);
|
|
resMatrix.a3 = 2.0f * (x * z + y * w);
|
|
resMatrix.b1 = 2.0f * (x * y + z * w);
|
|
resMatrix.b2 = 1.0f - 2.0f * (x * x + z * z);
|
|
resMatrix.b3 = 2.0f * (y * z - x * w);
|
|
resMatrix.c1 = 2.0f * (x * z - y * w);
|
|
resMatrix.c2 = 2.0f * (y * z + x * w);
|
|
resMatrix.c3 = 1.0f - 2.0f * (x * x + y * y);
|
|
|
|
return resMatrix;
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Construction from an axis-angle pair
|
|
inline aiQuaternion::aiQuaternion( aiVector3D axis, float angle)
|
|
{
|
|
axis.Normalize();
|
|
|
|
const float sin_a = sin( angle / 2 );
|
|
const float cos_a = cos( angle / 2 );
|
|
x = axis.x * sin_a;
|
|
y = axis.y * sin_a;
|
|
z = axis.z * sin_a;
|
|
w = cos_a;
|
|
}
|
|
// ---------------------------------------------------------------------------
|
|
// Construction from am existing, normalized quaternion
|
|
inline aiQuaternion::aiQuaternion( aiVector3D normalized)
|
|
{
|
|
x = normalized.x;
|
|
y = normalized.y;
|
|
z = normalized.z;
|
|
|
|
const float t = 1.0f - (x*x) - (y*y) - (z*z);
|
|
|
|
if (t < 0.0f)
|
|
w = 0.0f;
|
|
else w = sqrt (t);
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Performs a spherical interpolation between two quaternions
|
|
// Implementation adopted from the gmtl project. All others I found on the net fail in some cases.
|
|
// Congrats, gmtl!
|
|
inline void aiQuaternion::Interpolate( aiQuaternion& pOut, const aiQuaternion& pStart, const aiQuaternion& pEnd, float pFactor)
|
|
{
|
|
// calc cosine theta
|
|
float cosom = pStart.x * pEnd.x + pStart.y * pEnd.y + pStart.z * pEnd.z + pStart.w * pEnd.w;
|
|
|
|
// adjust signs (if necessary)
|
|
aiQuaternion end = pEnd;
|
|
if( cosom < 0.0f)
|
|
{
|
|
cosom = -cosom;
|
|
end.x = -end.x; // Reverse all signs
|
|
end.y = -end.y;
|
|
end.z = -end.z;
|
|
end.w = -end.w;
|
|
}
|
|
|
|
// Calculate coefficients
|
|
float sclp, sclq;
|
|
if( (1.0f - cosom) > 0.0001f) // 0.0001 -> some epsillon
|
|
{
|
|
// Standard case (slerp)
|
|
float omega, sinom;
|
|
omega = acos( cosom); // extract theta from dot product's cos theta
|
|
sinom = sin( omega);
|
|
sclp = sin( (1.0f - pFactor) * omega) / sinom;
|
|
sclq = sin( pFactor * omega) / sinom;
|
|
} else
|
|
{
|
|
// Very close, do linear interp (because it's faster)
|
|
sclp = 1.0f - pFactor;
|
|
sclq = pFactor;
|
|
}
|
|
|
|
pOut.x = sclp * pStart.x + sclq * end.x;
|
|
pOut.y = sclp * pStart.y + sclq * end.y;
|
|
pOut.z = sclp * pStart.z + sclq * end.z;
|
|
pOut.w = sclp * pStart.w + sclq * end.w;
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
inline aiQuaternion& aiQuaternion::Normalize()
|
|
{
|
|
// compute the magnitude and divide through it
|
|
const float mag = sqrt(x*x + y*y + z*z + w*w);
|
|
if (mag)
|
|
{
|
|
const float invMag = 1.0f/mag;
|
|
x *= invMag;
|
|
y *= invMag;
|
|
z *= invMag;
|
|
w *= invMag;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
inline aiQuaternion aiQuaternion::operator* (const aiQuaternion& t) const
|
|
{
|
|
return aiQuaternion(w*t.w - x*t.x - y*t.y - z*t.z,
|
|
w*t.x + x*t.w + y*t.z - z*t.y,
|
|
w*t.y + y*t.w + z*t.x - x*t.z,
|
|
w*t.z + z*t.w + x*t.y - y*t.x);
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
inline aiQuaternion& aiQuaternion::Conjugate ()
|
|
{
|
|
x = -x;
|
|
y = -y;
|
|
z = -z;
|
|
return *this;
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
inline aiVector3D aiQuaternion::Rotate (const aiVector3D& v)
|
|
{
|
|
aiQuaternion q2(0.f,v.x,v.y,v.z), q = *this, qinv = q;
|
|
q.Conjugate();
|
|
|
|
q = q*q2*qinv;
|
|
return aiVector3D(q.x,q.y,q.z);
|
|
|
|
}
|
|
|
|
} // end extern "C"
|
|
|
|
#endif // __cplusplus
|
|
|
|
#endif // AI_QUATERNION_H_INC
|