565 lines
19 KiB
C++
565 lines
19 KiB
C++
/*
|
|
Open Asset Import Library (ASSIMP)
|
|
----------------------------------------------------------------------
|
|
|
|
Copyright (c) 2006-2010, ASSIMP Development Team
|
|
All rights reserved.
|
|
|
|
Redistribution and use of this software in source and binary forms,
|
|
with or without modification, are permitted provided that the
|
|
following conditions are met:
|
|
|
|
* Redistributions of source code must retain the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer in the documentation and/or other
|
|
materials provided with the distribution.
|
|
|
|
* Neither the name of the ASSIMP team, nor the names of its
|
|
contributors may be used to endorse or promote products
|
|
derived from this software without specific prior
|
|
written permission of the ASSIMP Development Team.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
----------------------------------------------------------------------
|
|
*/
|
|
|
|
#ifndef AI_PROCESS_HELPER_H_INCLUDED
|
|
#define AI_PROCESS_HELPER_H_INCLUDED
|
|
|
|
#include "../include/aiPostProcess.h"
|
|
|
|
#include "SpatialSort.h"
|
|
#include "BaseProcess.h"
|
|
#include "ParsingUtils.h"
|
|
|
|
// -------------------------------------------------------------------------------
|
|
// Some extensions to std namespace. Mainly std::min and std::max for all
|
|
// flat data types in the aiScene. They're used to quickly determine the
|
|
// min/max bounds of data arrays.
|
|
#ifdef __cplusplus
|
|
namespace std {
|
|
|
|
// std::min for aiVector3D
|
|
inline ::aiVector3D min (const ::aiVector3D& a, const ::aiVector3D& b) {
|
|
return ::aiVector3D (min(a.x,b.x),min(a.y,b.y),min(a.z,b.z));
|
|
}
|
|
|
|
// std::max for aiVector3D
|
|
inline ::aiVector3D max (const ::aiVector3D& a, const ::aiVector3D& b) {
|
|
return ::aiVector3D (max(a.x,b.x),max(a.y,b.y),max(a.z,b.z));
|
|
}
|
|
|
|
// std::min for aiColor4D
|
|
inline ::aiColor4D min (const ::aiColor4D& a, const ::aiColor4D& b) {
|
|
return ::aiColor4D (min(a.r,b.r),min(a.g,b.g),min(a.b,b.b),min(a.a,b.a));
|
|
}
|
|
|
|
// std::max for aiColor4D
|
|
inline ::aiColor4D max (const ::aiColor4D& a, const ::aiColor4D& b) {
|
|
return ::aiColor4D (max(a.r,b.r),max(a.g,b.g),max(a.b,b.b),max(a.a,b.a));
|
|
}
|
|
|
|
// std::min for aiQuaternion
|
|
inline ::aiQuaternion min (const ::aiQuaternion& a, const ::aiQuaternion& b) {
|
|
return ::aiQuaternion (min(a.w,b.w),min(a.x,b.x),min(a.y,b.y),min(a.z,b.z));
|
|
}
|
|
|
|
// std::max for aiQuaternion
|
|
inline ::aiQuaternion max (const ::aiQuaternion& a, const ::aiQuaternion& b) {
|
|
return ::aiQuaternion (max(a.w,b.w),max(a.x,b.x),max(a.y,b.y),max(a.z,b.z));
|
|
}
|
|
|
|
// std::min for aiVectorKey
|
|
inline ::aiVectorKey min (const ::aiVectorKey& a, const ::aiVectorKey& b) {
|
|
return ::aiVectorKey (min(a.mTime,b.mTime),min(a.mValue,b.mValue));
|
|
}
|
|
|
|
// std::max for aiVectorKey
|
|
inline ::aiVectorKey max (const ::aiVectorKey& a, const ::aiVectorKey& b) {
|
|
return ::aiVectorKey (max(a.mTime,b.mTime),max(a.mValue,b.mValue));
|
|
}
|
|
|
|
// std::min for aiQuatKey
|
|
inline ::aiQuatKey min (const ::aiQuatKey& a, const ::aiQuatKey& b) {
|
|
return ::aiQuatKey (min(a.mTime,b.mTime),min(a.mValue,b.mValue));
|
|
}
|
|
|
|
// std::max for aiQuatKey
|
|
inline ::aiQuatKey max (const ::aiQuatKey& a, const ::aiQuatKey& b) {
|
|
return ::aiQuatKey (max(a.mTime,b.mTime),max(a.mValue,b.mValue));
|
|
}
|
|
|
|
// std::min for aiVertexWeight
|
|
inline ::aiVertexWeight min (const ::aiVertexWeight& a, const ::aiVertexWeight& b) {
|
|
return ::aiVertexWeight (min(a.mVertexId,b.mVertexId),min(a.mWeight,b.mWeight));
|
|
}
|
|
|
|
// std::max for aiVertexWeight
|
|
inline ::aiVertexWeight max (const ::aiVertexWeight& a, const ::aiVertexWeight& b) {
|
|
return ::aiVertexWeight (max(a.mVertexId,b.mVertexId),max(a.mWeight,b.mWeight));
|
|
}
|
|
|
|
} // end namespace std
|
|
#endif // !! C++
|
|
|
|
namespace Assimp {
|
|
|
|
// -------------------------------------------------------------------------------
|
|
// Start points for ArrayBounds<T> for all supported Ts
|
|
template <typename T>
|
|
struct MinMaxChooser;
|
|
|
|
template <> struct MinMaxChooser<float> {
|
|
void operator ()(float& min,float& max) {
|
|
max = -10e10f;
|
|
min = 10e10f;
|
|
}};
|
|
template <> struct MinMaxChooser<double> {
|
|
void operator ()(double& min,double& max) {
|
|
max = -10e10;
|
|
min = 10e10;
|
|
}};
|
|
template <> struct MinMaxChooser<unsigned int> {
|
|
void operator ()(unsigned int& min,unsigned int& max) {
|
|
max = 0;
|
|
min = (1u<<(sizeof(unsigned int)*8-1));
|
|
}};
|
|
|
|
template <> struct MinMaxChooser<aiVector3D> {
|
|
void operator ()(aiVector3D& min,aiVector3D& max) {
|
|
max = aiVector3D(-10e10f,-10e10f,-10e10f);
|
|
min = aiVector3D( 10e10f, 10e10f, 10e10f);
|
|
}};
|
|
template <> struct MinMaxChooser<aiColor4D> {
|
|
void operator ()(aiColor4D& min,aiColor4D& max) {
|
|
max = aiColor4D(-10e10f,-10e10f,-10e10f,-10e10f);
|
|
min = aiColor4D( 10e10f, 10e10f, 10e10f, 10e10f);
|
|
}};
|
|
|
|
template <> struct MinMaxChooser<aiQuaternion> {
|
|
void operator ()(aiQuaternion& min,aiQuaternion& max) {
|
|
max = aiQuaternion(-10e10f,-10e10f,-10e10f,-10e10f);
|
|
min = aiQuaternion( 10e10f, 10e10f, 10e10f, 10e10f);
|
|
}};
|
|
|
|
template <> struct MinMaxChooser<aiVectorKey> {
|
|
void operator ()(aiVectorKey& min,aiVectorKey& max) {
|
|
MinMaxChooser<double>()(min.mTime,max.mTime);
|
|
MinMaxChooser<aiVector3D>()(min.mValue,max.mValue);
|
|
}};
|
|
template <> struct MinMaxChooser<aiQuatKey> {
|
|
void operator ()(aiQuatKey& min,aiQuatKey& max) {
|
|
MinMaxChooser<double>()(min.mTime,max.mTime);
|
|
MinMaxChooser<aiQuaternion>()(min.mValue,max.mValue);
|
|
}};
|
|
|
|
template <> struct MinMaxChooser<aiVertexWeight> {
|
|
void operator ()(aiVertexWeight& min,aiVertexWeight& max) {
|
|
MinMaxChooser<unsigned int>()(min.mVertexId,max.mVertexId);
|
|
MinMaxChooser<float>()(min.mWeight,max.mWeight);
|
|
}};
|
|
|
|
// -------------------------------------------------------------------------------
|
|
/** @brief Find the min/max values of an array of Ts
|
|
* @param in Input array
|
|
* @param size Numebr of elements to process
|
|
* @param[out] min minimum value
|
|
* @param[out] max maximum value
|
|
*/
|
|
template <typename T>
|
|
inline void ArrayBounds(const T* in, unsigned int size, T& min, T& max)
|
|
{
|
|
MinMaxChooser<T> ()(min,max);
|
|
for (unsigned int i = 0; i < size;++i) {
|
|
min = std::min(in[i],min);
|
|
max = std::max(in[i],max);
|
|
}
|
|
}
|
|
|
|
// -------------------------------------------------------------------------------
|
|
/** @brief Extract single strings from a list of identifiers
|
|
* @param in Input string list.
|
|
* @param out Receives a list of clean output strings
|
|
* @sdee #AI_CONFIG_PP_OG_EXCLUDE_LIST
|
|
*/
|
|
inline void ConvertListToStrings(const std::string& in, std::list<std::string>& out)
|
|
{
|
|
const char* s = in.c_str();
|
|
while (*s) {
|
|
SkipSpacesAndLineEnd(&s);
|
|
if (*s == '\'') {
|
|
const char* base = ++s;
|
|
while (*s != '\'') {
|
|
++s;
|
|
if (*s == '\0') {
|
|
DefaultLogger::get()->error("ConvertListToString: String list is ill-formatted");
|
|
return;
|
|
}
|
|
}
|
|
out.push_back(std::string(base,(size_t)(s-base)));
|
|
++s;
|
|
}
|
|
else {
|
|
out.push_back(GetNextToken(s));
|
|
}
|
|
}
|
|
}
|
|
|
|
// -------------------------------------------------------------------------------
|
|
/** @brief Compute the newell normal of a polygon regardless of its shape
|
|
*
|
|
* @param out Receives the output normal
|
|
* @param num Number of input vertices
|
|
* @param x X data source. x[ofs_x*n] is the n'th element.
|
|
* @param y Y data source. y[ofs_y*n] is the y'th element
|
|
* @param z Z data source. z[ofs_z*n] is the z'th element
|
|
*
|
|
* @note The data arrays must have storage for at least num+2 elements. Using
|
|
* this method is much faster than the 'other' NewellNormal()
|
|
*/
|
|
template <int ofs_x, int ofs_y, int ofs_z>
|
|
inline void NewellNormal (aiVector3D& out, int num, float* x, float* y, float* z)
|
|
{
|
|
// Duplicate the first two vertices at the end
|
|
x[(num+0)*ofs_x] = x[0];
|
|
x[(num+1)*ofs_x] = x[ofs_x];
|
|
|
|
y[(num+0)*ofs_y] = y[0];
|
|
y[(num+1)*ofs_y] = y[ofs_y];
|
|
|
|
z[(num+0)*ofs_z] = z[0];
|
|
z[(num+1)*ofs_z] = z[ofs_z];
|
|
|
|
float sum_xy = 0.0, sum_yz = 0.0, sum_zx = 0.0;
|
|
|
|
float *xptr = x +ofs_x, *xlow = x, *xhigh = x + ofs_x*2;
|
|
float *yptr = y +ofs_y, *ylow = y, *yhigh = y + ofs_y*2;
|
|
float *zptr = z +ofs_z, *zlow = z, *zhigh = z + ofs_z*2;
|
|
|
|
for (int tmp=0; tmp < num; tmp++) {
|
|
sum_xy += (*xptr) * ( (*yhigh) - (*ylow) );
|
|
sum_yz += (*yptr) * ( (*zhigh) - (*zlow) );
|
|
sum_zx += (*zptr) * ( (*xhigh) - (*xlow) );
|
|
|
|
xptr += ofs_x;
|
|
xlow += ofs_x;
|
|
xhigh += ofs_x;
|
|
|
|
yptr += ofs_y;
|
|
ylow += ofs_y;
|
|
yhigh += ofs_y;
|
|
|
|
zptr += ofs_z;
|
|
zlow += ofs_z;
|
|
zhigh += ofs_z;
|
|
}
|
|
out = aiVector3D(sum_yz,sum_zx,sum_xy);
|
|
}
|
|
|
|
#if 0
|
|
// -------------------------------------------------------------------------------
|
|
/** @brief Compute newell normal of a polgon regardless of its shape
|
|
*
|
|
* @param out Receives the output normal
|
|
* @param data Input vertices
|
|
* @param idx Index buffer
|
|
* @param num Number of indices
|
|
*/
|
|
inline void NewellNormal (aiVector3D& out, const aiVector3D* data, unsigned int* idx, unsigned int num )
|
|
{
|
|
// TODO: intended to be used in GenNormals.
|
|
}
|
|
#endif
|
|
|
|
// -------------------------------------------------------------------------------
|
|
/** Little helper function to calculate the quadratic difference
|
|
* of two colours.
|
|
* @param pColor1 First color
|
|
* @param pColor2 second color
|
|
* @return Quadratic color difference
|
|
*/
|
|
inline float GetColorDifference( const aiColor4D& pColor1, const aiColor4D& pColor2)
|
|
{
|
|
const aiColor4D c (pColor1.r - pColor2.r, pColor1.g - pColor2.g,
|
|
pColor1.b - pColor2.b, pColor1.a - pColor2.a);
|
|
|
|
return c.r*c.r + c.g*c.g + c.b*c.b + c.a*c.a;
|
|
}
|
|
|
|
// -------------------------------------------------------------------------------
|
|
/** @brief Compute the AABB of a mesh after applying a given transform
|
|
* @param mesh Input mesh
|
|
* @param[out] min Receives minimum transformed vertex
|
|
* @param[out] max Receives maximum transformed vertex
|
|
* @param m Transformation matrix to be applied
|
|
*/
|
|
inline void FindAABBTransformed (const aiMesh* mesh, aiVector3D& min, aiVector3D& max,
|
|
const aiMatrix4x4& m)
|
|
{
|
|
min = aiVector3D (10e10f, 10e10f, 10e10f);
|
|
max = aiVector3D (-10e10f,-10e10f,-10e10f);
|
|
for (unsigned int i = 0;i < mesh->mNumVertices;++i)
|
|
{
|
|
const aiVector3D v = m * mesh->mVertices[i];
|
|
min = std::min(v,min);
|
|
max = std::max(v,max);
|
|
}
|
|
}
|
|
|
|
// -------------------------------------------------------------------------------
|
|
/** @brief Helper function to determine the 'real' center of a mesh
|
|
*
|
|
* That is the center of its axis-aligned bounding box.
|
|
* @param mesh Input mesh
|
|
* @param[out] min Minimum vertex of the mesh
|
|
* @param[out] max maximum vertex of the mesh
|
|
* @param[out] out Center point
|
|
*/
|
|
inline void FindMeshCenter (aiMesh* mesh, aiVector3D& out, aiVector3D& min, aiVector3D& max)
|
|
{
|
|
ArrayBounds(mesh->mVertices,mesh->mNumVertices, min,max);
|
|
out = min + (max-min)*0.5f;
|
|
}
|
|
|
|
// -------------------------------------------------------------------------------
|
|
// Helper function to determine the 'real' center of a mesh after applying a given transform
|
|
inline void FindMeshCenterTransformed (aiMesh* mesh, aiVector3D& out, aiVector3D& min,
|
|
aiVector3D& max, const aiMatrix4x4& m)
|
|
{
|
|
FindAABBTransformed(mesh,min,max,m);
|
|
out = min + (max-min)*0.5f;
|
|
}
|
|
|
|
// -------------------------------------------------------------------------------
|
|
// Helper function to determine the 'real' center of a mesh
|
|
inline void FindMeshCenter (aiMesh* mesh, aiVector3D& out)
|
|
{
|
|
aiVector3D min,max;
|
|
FindMeshCenter(mesh,out,min,max);
|
|
}
|
|
|
|
// -------------------------------------------------------------------------------
|
|
// Helper function to determine the 'real' center of a mesh after applying a given transform
|
|
inline void FindMeshCenterTransformed (aiMesh* mesh, aiVector3D& out,
|
|
const aiMatrix4x4& m)
|
|
{
|
|
aiVector3D min,max;
|
|
FindMeshCenterTransformed(mesh,out,min,max,m);
|
|
}
|
|
|
|
// -------------------------------------------------------------------------------
|
|
// Compute a good epsilon value for position comparisons on a mesh
|
|
inline float ComputePositionEpsilon(const aiMesh* pMesh)
|
|
{
|
|
const float epsilon = 1e-4f;
|
|
|
|
// calculate the position bounds so we have a reliable epsilon to check position differences against
|
|
aiVector3D minVec, maxVec;
|
|
ArrayBounds(pMesh->mVertices,pMesh->mNumVertices,minVec,maxVec);
|
|
return (maxVec - minVec).Length() * epsilon;
|
|
}
|
|
|
|
// -------------------------------------------------------------------------------
|
|
// Compute a good epsilon value for position comparisons on a array of meshes
|
|
inline float ComputePositionEpsilon(const aiMesh* const* pMeshes, size_t num)
|
|
{
|
|
const float epsilon = 1e-4f;
|
|
|
|
// calculate the position bounds so we have a reliable epsilon to check position differences against
|
|
aiVector3D minVec, maxVec, mi, ma;
|
|
MinMaxChooser<aiVector3D>()(minVec,maxVec);
|
|
|
|
for (size_t a = 0; a < num; ++a) {
|
|
const aiMesh* pMesh = pMeshes[a];
|
|
ArrayBounds(pMesh->mVertices,pMesh->mNumVertices,mi,ma);
|
|
|
|
minVec = std::min(minVec,mi);
|
|
maxVec = std::max(maxVec,ma);
|
|
}
|
|
return (maxVec - minVec).Length() * epsilon;
|
|
}
|
|
|
|
// -------------------------------------------------------------------------------
|
|
// Compute an unique value for the vertex format of a mesh
|
|
inline unsigned int GetMeshVFormatUnique(aiMesh* pcMesh)
|
|
{
|
|
ai_assert(NULL != pcMesh);
|
|
|
|
// FIX: the hash may never be 0. Otherwise a comparison against
|
|
// nullptr could be successful
|
|
unsigned int iRet = 1;
|
|
|
|
// normals
|
|
if (pcMesh->HasNormals())iRet |= 0x2;
|
|
// tangents and bitangents
|
|
if (pcMesh->HasTangentsAndBitangents())iRet |= 0x4;
|
|
|
|
#ifdef BOOST_STATIC_ASSERT
|
|
BOOST_STATIC_ASSERT(8 >= AI_MAX_NUMBER_OF_COLOR_SETS);
|
|
BOOST_STATIC_ASSERT(8 >= AI_MAX_NUMBER_OF_TEXTURECOORDS);
|
|
#endif
|
|
|
|
// texture coordinates
|
|
unsigned int p = 0;
|
|
while (pcMesh->HasTextureCoords(p))
|
|
{
|
|
iRet |= (0x100 << p);
|
|
if (3 == pcMesh->mNumUVComponents[p])
|
|
iRet |= (0x10000 << p);
|
|
|
|
++p;
|
|
}
|
|
// vertex colors
|
|
p = 0;
|
|
while (pcMesh->HasVertexColors(p))iRet |= (0x1000000 << p++);
|
|
return iRet;
|
|
}
|
|
|
|
typedef std::pair <unsigned int,float> PerVertexWeight;
|
|
typedef std::vector <PerVertexWeight> VertexWeightTable;
|
|
|
|
// -------------------------------------------------------------------------------
|
|
// Compute a per-vertex bone weight table
|
|
// please .... delete result with operator delete[] ...
|
|
inline VertexWeightTable* ComputeVertexBoneWeightTable(aiMesh* pMesh)
|
|
{
|
|
if (!pMesh || !pMesh->mNumVertices || !pMesh->mNumBones)
|
|
return NULL;
|
|
|
|
VertexWeightTable* avPerVertexWeights = new VertexWeightTable[pMesh->mNumVertices];
|
|
for (unsigned int i = 0; i < pMesh->mNumBones;++i)
|
|
{
|
|
aiBone* bone = pMesh->mBones[i];
|
|
for (unsigned int a = 0; a < bone->mNumWeights;++a) {
|
|
const aiVertexWeight& weight = bone->mWeights[a];
|
|
avPerVertexWeights[weight.mVertexId].push_back(
|
|
std::pair<unsigned int,float>(i,weight.mWeight));
|
|
}
|
|
}
|
|
return avPerVertexWeights;
|
|
}
|
|
|
|
// -------------------------------------------------------------------------------
|
|
// Get a string for a given aiTextureType
|
|
inline const char* TextureTypeToString(aiTextureType in)
|
|
{
|
|
switch (in)
|
|
{
|
|
case aiTextureType_NONE:
|
|
return "n/a";
|
|
case aiTextureType_DIFFUSE:
|
|
return "Diffuse";
|
|
case aiTextureType_SPECULAR:
|
|
return "Specular";
|
|
case aiTextureType_AMBIENT:
|
|
return "Ambient";
|
|
case aiTextureType_EMISSIVE:
|
|
return "Emissive";
|
|
case aiTextureType_OPACITY:
|
|
return "Opacity";
|
|
case aiTextureType_NORMALS:
|
|
return "Normals";
|
|
case aiTextureType_HEIGHT:
|
|
return "Height";
|
|
case aiTextureType_SHININESS:
|
|
return "Shininess";
|
|
case aiTextureType_DISPLACEMENT:
|
|
return "Displacement";
|
|
case aiTextureType_LIGHTMAP:
|
|
return "Lightmap";
|
|
case aiTextureType_REFLECTION:
|
|
return "Reflection";
|
|
case aiTextureType_UNKNOWN:
|
|
return "Unknown";
|
|
default:
|
|
return "HUGE ERROR. Expect BSOD (linux guys: kernel panic ...).";
|
|
}
|
|
}
|
|
|
|
// -------------------------------------------------------------------------------
|
|
// Get a string for a given aiTextureMapping
|
|
inline const char* MappingTypeToString(aiTextureMapping in)
|
|
{
|
|
switch (in)
|
|
{
|
|
case aiTextureMapping_UV:
|
|
return "UV";
|
|
case aiTextureMapping_BOX:
|
|
return "Box";
|
|
case aiTextureMapping_SPHERE:
|
|
return "Sphere";
|
|
case aiTextureMapping_CYLINDER:
|
|
return "Cylinder";
|
|
case aiTextureMapping_PLANE:
|
|
return "Plane";
|
|
case aiTextureMapping_OTHER:
|
|
return "Other";
|
|
default:
|
|
return "HUGE ERROR. Expect BSOD (linux guys: kernel panic ...).";
|
|
}
|
|
}
|
|
|
|
// -------------------------------------------------------------------------------
|
|
// Utility postprocess step to share the spatial sort tree between
|
|
// all steps which use it to speedup its computations.
|
|
class ComputeSpatialSortProcess : public BaseProcess
|
|
{
|
|
bool IsActive( unsigned int pFlags) const
|
|
{
|
|
return NULL != shared && 0 != (pFlags & (aiProcess_CalcTangentSpace |
|
|
aiProcess_GenNormals | aiProcess_JoinIdenticalVertices));
|
|
}
|
|
|
|
void Execute( aiScene* pScene)
|
|
{
|
|
typedef std::pair<SpatialSort, float> _Type;
|
|
DefaultLogger::get()->debug("Generate spatially-sorted vertex cache");
|
|
|
|
std::vector<_Type>* p = new std::vector<_Type>(pScene->mNumMeshes);
|
|
std::vector<_Type>::iterator it = p->begin();
|
|
|
|
for (unsigned int i = 0; i < pScene->mNumMeshes; ++i, ++it) {
|
|
aiMesh* mesh = pScene->mMeshes[i];
|
|
_Type& blubb = *it;
|
|
blubb.first.Fill(mesh->mVertices,mesh->mNumVertices,sizeof(aiVector3D));
|
|
blubb.second = ComputePositionEpsilon(mesh);
|
|
}
|
|
|
|
shared->AddProperty(AI_SPP_SPATIAL_SORT,p);
|
|
}
|
|
};
|
|
|
|
// -------------------------------------------------------------------------------
|
|
// ... and the same again to cleanup the whole stuff
|
|
class DestroySpatialSortProcess : public BaseProcess
|
|
{
|
|
bool IsActive( unsigned int pFlags) const
|
|
{
|
|
return NULL != shared && 0 != (pFlags & (aiProcess_CalcTangentSpace |
|
|
aiProcess_GenNormals | aiProcess_JoinIdenticalVertices));
|
|
}
|
|
|
|
void Execute( aiScene* pScene)
|
|
{
|
|
shared->RemoveProperty(AI_SPP_SPATIAL_SORT);
|
|
}
|
|
};
|
|
|
|
} // ! namespace Assimp
|
|
#endif // !! AI_PROCESS_HELPER_H_INCLUDED
|