878 lines
40 KiB
C++
878 lines
40 KiB
C++
/*
|
||
---------------------------------------------------------------------------
|
||
Open Asset Import Library (assimp)
|
||
---------------------------------------------------------------------------
|
||
|
||
Copyright (c) 2006-2020, assimp team
|
||
|
||
All rights reserved.
|
||
|
||
Redistribution and use of this software in source and binary forms,
|
||
with or without modification, are permitted provided that the following
|
||
conditions are met:
|
||
|
||
* Redistributions of source code must retain the above
|
||
copyright notice, this list of conditions and the
|
||
following disclaimer.
|
||
|
||
* Redistributions in binary form must reproduce the above
|
||
copyright notice, this list of conditions and the
|
||
following disclaimer in the documentation and/or other
|
||
materials provided with the distribution.
|
||
|
||
* Neither the name of the assimp team, nor the names of its
|
||
contributors may be used to endorse or promote products
|
||
derived from this software without specific prior
|
||
written permission of the assimp team.
|
||
|
||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
---------------------------------------------------------------------------
|
||
*/
|
||
|
||
/// \file AMFImporter_Postprocess.cpp
|
||
/// \brief Convert built scenegraph and objects to Assimp scenegraph.
|
||
/// \date 2016
|
||
/// \author smal.root@gmail.com
|
||
|
||
#ifndef ASSIMP_BUILD_NO_AMF_IMPORTER
|
||
|
||
#include "AMFImporter.hpp"
|
||
|
||
// Header files, Assimp.
|
||
#include <assimp/SceneCombiner.h>
|
||
#include <assimp/StandardShapes.h>
|
||
#include <assimp/StringUtils.h>
|
||
|
||
// Header files, stdlib.
|
||
#include <iterator>
|
||
|
||
namespace Assimp {
|
||
|
||
aiColor4D AMFImporter::SPP_Material::GetColor(const float /*pX*/, const float /*pY*/, const float /*pZ*/) const {
|
||
aiColor4D tcol;
|
||
|
||
// Check if stored data are supported.
|
||
if (!Composition.empty()) {
|
||
throw DeadlyImportError("IME. GetColor for composition");
|
||
} else if (Color->Composed) {
|
||
throw DeadlyImportError("IME. GetColor, composed color");
|
||
} else {
|
||
tcol = Color->Color;
|
||
}
|
||
|
||
// Check if default color must be used
|
||
if ((tcol.r == 0) && (tcol.g == 0) && (tcol.b == 0) && (tcol.a == 0)) {
|
||
tcol.r = 0.5f;
|
||
tcol.g = 0.5f;
|
||
tcol.b = 0.5f;
|
||
tcol.a = 1;
|
||
}
|
||
|
||
return tcol;
|
||
}
|
||
|
||
void AMFImporter::PostprocessHelper_CreateMeshDataArray(const AMFMesh &pNodeElement, std::vector<aiVector3D> &pVertexCoordinateArray,
|
||
std::vector<AMFColor *> &pVertexColorArray) const {
|
||
AMFVertex *vn = nullptr;
|
||
size_t col_idx;
|
||
|
||
// All data stored in "vertices", search for it.
|
||
for (AMFNodeElementBase *ne_child : pNodeElement.Child) {
|
||
if (ne_child->Type == AMFNodeElementBase::ENET_Vertices) {
|
||
vn = (AMFVertex *)ne_child;
|
||
}
|
||
}
|
||
|
||
// If "vertices" not found then no work for us.
|
||
if (vn == nullptr) {
|
||
return;
|
||
}
|
||
|
||
// all coordinates stored as child and we need to reserve space for future push_back's.
|
||
pVertexCoordinateArray.reserve(vn->Child.size());
|
||
|
||
// colors count equal vertices count.
|
||
pVertexColorArray.resize(vn->Child.size());
|
||
col_idx = 0;
|
||
|
||
// Inside vertices collect all data and place to arrays
|
||
for (AMFNodeElementBase *vn_child : vn->Child) {
|
||
// vertices, colors
|
||
if (vn_child->Type == AMFNodeElementBase::ENET_Vertex) {
|
||
// by default clear color for current vertex
|
||
pVertexColorArray[col_idx] = nullptr;
|
||
|
||
for (AMFNodeElementBase *vtx : vn_child->Child) {
|
||
if (vtx->Type == AMFNodeElementBase::ENET_Coordinates) {
|
||
pVertexCoordinateArray.push_back(((AMFCoordinates *)vtx)->Coordinate);
|
||
continue;
|
||
}
|
||
|
||
if (vtx->Type == AMFNodeElementBase::ENET_Color) {
|
||
pVertexColorArray[col_idx] = (AMFColor *)vtx;
|
||
continue;
|
||
}
|
||
}
|
||
|
||
col_idx++;
|
||
}
|
||
}
|
||
}
|
||
|
||
size_t AMFImporter::PostprocessHelper_GetTextureID_Or_Create(const std::string &r, const std::string &g, const std::string &b, const std::string &a) {
|
||
if (r.empty() && g.empty() && b.empty() && a.empty()) {
|
||
throw DeadlyImportError("PostprocessHelper_GetTextureID_Or_Create. At least one texture ID must be defined.");
|
||
}
|
||
|
||
std::string TextureConverted_ID = r + "_" + g + "_" + b + "_" + a;
|
||
size_t TextureConverted_Index = 0;
|
||
for (const SPP_Texture &tex_convd : mTexture_Converted) {
|
||
if (tex_convd.ID == TextureConverted_ID) {
|
||
return TextureConverted_Index;
|
||
} else {
|
||
++TextureConverted_Index;
|
||
}
|
||
}
|
||
|
||
// Converted texture not found, create it.
|
||
AMFTexture *src_texture[4] {
|
||
nullptr
|
||
};
|
||
std::vector<AMFTexture *> src_texture_4check;
|
||
SPP_Texture converted_texture;
|
||
|
||
{ // find all specified source textures
|
||
AMFNodeElementBase *t_tex = nullptr;
|
||
|
||
// R
|
||
if (!r.empty()) {
|
||
if (!Find_NodeElement(r, AMFNodeElementBase::EType::ENET_Texture, &t_tex)) Throw_ID_NotFound(r);
|
||
|
||
src_texture[0] = (AMFTexture *)t_tex;
|
||
src_texture_4check.push_back((AMFTexture *)t_tex);
|
||
} else {
|
||
src_texture[0] = nullptr;
|
||
}
|
||
|
||
// G
|
||
if (!g.empty()) {
|
||
if (!Find_NodeElement(g, AMFNodeElementBase::ENET_Texture, &t_tex)) Throw_ID_NotFound(g);
|
||
|
||
src_texture[1] = (AMFTexture *)t_tex;
|
||
src_texture_4check.push_back((AMFTexture *)t_tex);
|
||
} else {
|
||
src_texture[1] = nullptr;
|
||
}
|
||
|
||
// B
|
||
if (!b.empty()) {
|
||
if (!Find_NodeElement(b, AMFNodeElementBase::ENET_Texture, &t_tex)) Throw_ID_NotFound(b);
|
||
|
||
src_texture[2] = (AMFTexture *)t_tex;
|
||
src_texture_4check.push_back((AMFTexture *)t_tex);
|
||
} else {
|
||
src_texture[2] = nullptr;
|
||
}
|
||
|
||
// A
|
||
if (!a.empty()) {
|
||
if (!Find_NodeElement(a, AMFNodeElementBase::ENET_Texture, &t_tex)) Throw_ID_NotFound(a);
|
||
|
||
src_texture[3] = (AMFTexture *)t_tex;
|
||
src_texture_4check.push_back((AMFTexture *)t_tex);
|
||
} else {
|
||
src_texture[3] = nullptr;
|
||
}
|
||
} // END: find all specified source textures
|
||
|
||
// check that all textures has same size
|
||
if (src_texture_4check.size() > 1) {
|
||
for (size_t i = 0, i_e = (src_texture_4check.size() - 1); i < i_e; i++) {
|
||
if ((src_texture_4check[i]->Width != src_texture_4check[i + 1]->Width) || (src_texture_4check[i]->Height != src_texture_4check[i + 1]->Height) ||
|
||
(src_texture_4check[i]->Depth != src_texture_4check[i + 1]->Depth)) {
|
||
throw DeadlyImportError("PostprocessHelper_GetTextureID_Or_Create. Source texture must has the same size.");
|
||
}
|
||
}
|
||
} // if(src_texture_4check.size() > 1)
|
||
|
||
// set texture attributes
|
||
converted_texture.Width = src_texture_4check[0]->Width;
|
||
converted_texture.Height = src_texture_4check[0]->Height;
|
||
converted_texture.Depth = src_texture_4check[0]->Depth;
|
||
// if one of source texture is tiled then converted texture is tiled too.
|
||
converted_texture.Tiled = false;
|
||
for (uint8_t i = 0; i < src_texture_4check.size(); i++)
|
||
converted_texture.Tiled |= src_texture_4check[i]->Tiled;
|
||
|
||
// Create format hint.
|
||
strcpy(converted_texture.FormatHint, "rgba0000"); // copy initial string.
|
||
if (!r.empty()) converted_texture.FormatHint[4] = '8';
|
||
if (!g.empty()) converted_texture.FormatHint[5] = '8';
|
||
if (!b.empty()) converted_texture.FormatHint[6] = '8';
|
||
if (!a.empty()) converted_texture.FormatHint[7] = '8';
|
||
|
||
// Сopy data of textures.
|
||
size_t tex_size = 0;
|
||
size_t step = 0;
|
||
size_t off_g = 0;
|
||
size_t off_b = 0;
|
||
|
||
// Calculate size of the target array and rule how data will be copied.
|
||
if (!r.empty() && nullptr != src_texture[0]) {
|
||
tex_size += src_texture[0]->Data.size();
|
||
step++, off_g++, off_b++;
|
||
}
|
||
if (!g.empty() && nullptr != src_texture[1]) {
|
||
tex_size += src_texture[1]->Data.size();
|
||
step++, off_b++;
|
||
}
|
||
if (!b.empty() && nullptr != src_texture[2]) {
|
||
tex_size += src_texture[2]->Data.size();
|
||
step++;
|
||
}
|
||
if (!a.empty() && nullptr != src_texture[3]) {
|
||
tex_size += src_texture[3]->Data.size();
|
||
step++;
|
||
}
|
||
|
||
// Create target array.
|
||
converted_texture.Data = new uint8_t[tex_size];
|
||
// And copy data
|
||
auto CopyTextureData = [&](const std::string &pID, const size_t pOffset, const size_t pStep, const uint8_t pSrcTexNum) -> void {
|
||
if (!pID.empty()) {
|
||
for (size_t idx_target = pOffset, idx_src = 0; idx_target < tex_size; idx_target += pStep, idx_src++) {
|
||
AMFTexture *tex = src_texture[pSrcTexNum];
|
||
ai_assert(tex);
|
||
converted_texture.Data[idx_target] = tex->Data.at(idx_src);
|
||
}
|
||
}
|
||
}; // auto CopyTextureData = [&](const size_t pOffset, const size_t pStep, const uint8_t pSrcTexNum) -> void
|
||
|
||
CopyTextureData(r, 0, step, 0);
|
||
CopyTextureData(g, off_g, step, 1);
|
||
CopyTextureData(b, off_b, step, 2);
|
||
CopyTextureData(a, step - 1, step, 3);
|
||
|
||
// Store new converted texture ID
|
||
converted_texture.ID = TextureConverted_ID;
|
||
// Store new converted texture
|
||
mTexture_Converted.push_back(converted_texture);
|
||
|
||
return TextureConverted_Index;
|
||
}
|
||
|
||
void AMFImporter::PostprocessHelper_SplitFacesByTextureID(std::list<SComplexFace> &pInputList, std::list<std::list<SComplexFace>> &pOutputList_Separated) {
|
||
auto texmap_is_equal = [](const AMFTexMap *pTexMap1, const AMFTexMap *pTexMap2) -> bool {
|
||
if ((pTexMap1 == nullptr) && (pTexMap2 == nullptr)) return true;
|
||
if (pTexMap1 == nullptr) return false;
|
||
if (pTexMap2 == nullptr) return false;
|
||
|
||
if (pTexMap1->TextureID_R != pTexMap2->TextureID_R) return false;
|
||
if (pTexMap1->TextureID_G != pTexMap2->TextureID_G) return false;
|
||
if (pTexMap1->TextureID_B != pTexMap2->TextureID_B) return false;
|
||
if (pTexMap1->TextureID_A != pTexMap2->TextureID_A) return false;
|
||
|
||
return true;
|
||
};
|
||
|
||
pOutputList_Separated.clear();
|
||
if (pInputList.empty()) return;
|
||
|
||
do {
|
||
SComplexFace face_start = pInputList.front();
|
||
std::list<SComplexFace> face_list_cur;
|
||
|
||
for (std::list<SComplexFace>::iterator it = pInputList.begin(), it_end = pInputList.end(); it != it_end;) {
|
||
if (texmap_is_equal(face_start.TexMap, it->TexMap)) {
|
||
auto it_old = it;
|
||
|
||
++it;
|
||
face_list_cur.push_back(*it_old);
|
||
pInputList.erase(it_old);
|
||
} else {
|
||
++it;
|
||
}
|
||
}
|
||
|
||
if (!face_list_cur.empty()) pOutputList_Separated.push_back(face_list_cur);
|
||
|
||
} while (!pInputList.empty());
|
||
}
|
||
|
||
void AMFImporter::Postprocess_AddMetadata(const std::list<AMFMetadata *> &metadataList, aiNode &sceneNode) const {
|
||
if (metadataList.empty()) {
|
||
return;
|
||
}
|
||
if (sceneNode.mMetaData != nullptr) {
|
||
throw DeadlyImportError("Postprocess. MetaData member in node are not nullptr. Something went wrong.");
|
||
}
|
||
|
||
// copy collected metadata to output node.
|
||
sceneNode.mMetaData = aiMetadata::Alloc(static_cast<unsigned int>(metadataList.size()));
|
||
size_t meta_idx(0);
|
||
|
||
for (const AMFMetadata &metadata : metadataList) {
|
||
sceneNode.mMetaData->Set(static_cast<unsigned int>(meta_idx++), metadata.Type, aiString(metadata.Value));
|
||
}
|
||
}
|
||
|
||
void AMFImporter::Postprocess_BuildNodeAndObject(const AMFObject &pNodeElement, std::list<aiMesh *> &pMeshList, aiNode **pSceneNode) {
|
||
AMFColor *object_color = nullptr;
|
||
|
||
// create new aiNode and set name as <object> has.
|
||
*pSceneNode = new aiNode;
|
||
(*pSceneNode)->mName = pNodeElement.ID;
|
||
// read mesh and color
|
||
for (const AMFNodeElementBase *ne_child : pNodeElement.Child) {
|
||
std::vector<aiVector3D> vertex_arr;
|
||
std::vector<AMFColor *> color_arr;
|
||
|
||
// color for object
|
||
if (ne_child->Type == AMFNodeElementBase::ENET_Color) {
|
||
object_color = (AMFColor *) ne_child;
|
||
}
|
||
|
||
if (ne_child->Type == AMFNodeElementBase::ENET_Mesh) {
|
||
// Create arrays from children of mesh: vertices.
|
||
PostprocessHelper_CreateMeshDataArray(*((AMFMesh *)ne_child), vertex_arr, color_arr);
|
||
// Use this arrays as a source when creating every aiMesh
|
||
Postprocess_BuildMeshSet(*((AMFMesh *)ne_child), vertex_arr, color_arr, object_color, pMeshList, **pSceneNode);
|
||
}
|
||
} // for(const CAMFImporter_NodeElement* ne_child: pNodeElement)
|
||
}
|
||
|
||
void AMFImporter::Postprocess_BuildMeshSet(const AMFMesh &pNodeElement, const std::vector<aiVector3D> &pVertexCoordinateArray,
|
||
const std::vector<AMFColor *> &pVertexColorArray,
|
||
const AMFColor *pObjectColor, std::list<aiMesh *> &pMeshList, aiNode &pSceneNode) {
|
||
std::list<unsigned int> mesh_idx;
|
||
|
||
// all data stored in "volume", search for it.
|
||
for (const AMFNodeElementBase *ne_child : pNodeElement.Child) {
|
||
const AMFColor *ne_volume_color = nullptr;
|
||
const SPP_Material *cur_mat = nullptr;
|
||
|
||
if (ne_child->Type == AMFNodeElementBase::ENET_Volume) {
|
||
/******************* Get faces *******************/
|
||
const AMFVolume *ne_volume = reinterpret_cast<const AMFVolume *>(ne_child);
|
||
|
||
std::list<SComplexFace> complex_faces_list; // List of the faces of the volume.
|
||
std::list<std::list<SComplexFace>> complex_faces_toplist; // List of the face list for every mesh.
|
||
|
||
// check if volume use material
|
||
if (!ne_volume->MaterialID.empty()) {
|
||
if (!Find_ConvertedMaterial(ne_volume->MaterialID, &cur_mat)) Throw_ID_NotFound(ne_volume->MaterialID);
|
||
}
|
||
|
||
// inside "volume" collect all data and place to arrays or create new objects
|
||
for (const AMFNodeElementBase *ne_volume_child : ne_volume->Child) {
|
||
// color for volume
|
||
if (ne_volume_child->Type == AMFNodeElementBase::ENET_Color) {
|
||
ne_volume_color = reinterpret_cast<const AMFColor *>(ne_volume_child);
|
||
} else if (ne_volume_child->Type == AMFNodeElementBase::ENET_Triangle) // triangles, triangles colors
|
||
{
|
||
const AMFTriangle &tri_al = *reinterpret_cast<const AMFTriangle *>(ne_volume_child);
|
||
|
||
SComplexFace complex_face;
|
||
|
||
// initialize pointers
|
||
complex_face.Color = nullptr;
|
||
complex_face.TexMap = nullptr;
|
||
// get data from triangle children: color, texture coordinates.
|
||
if (tri_al.Child.size()) {
|
||
for (const AMFNodeElementBase *ne_triangle_child : tri_al.Child) {
|
||
if (ne_triangle_child->Type == AMFNodeElementBase::ENET_Color)
|
||
complex_face.Color = reinterpret_cast<const AMFColor *>(ne_triangle_child);
|
||
else if (ne_triangle_child->Type == AMFNodeElementBase::ENET_TexMap)
|
||
complex_face.TexMap = reinterpret_cast<const AMFTexMap *>(ne_triangle_child);
|
||
}
|
||
} // if(tri_al.Child.size())
|
||
|
||
// create new face and store it.
|
||
complex_face.Face.mNumIndices = 3;
|
||
complex_face.Face.mIndices = new unsigned int[3];
|
||
complex_face.Face.mIndices[0] = static_cast<unsigned int>(tri_al.V[0]);
|
||
complex_face.Face.mIndices[1] = static_cast<unsigned int>(tri_al.V[1]);
|
||
complex_face.Face.mIndices[2] = static_cast<unsigned int>(tri_al.V[2]);
|
||
complex_faces_list.push_back(complex_face);
|
||
}
|
||
} // for(const CAMFImporter_NodeElement* ne_volume_child: ne_volume->Child)
|
||
|
||
/**** Split faces list: one list per mesh ****/
|
||
PostprocessHelper_SplitFacesByTextureID(complex_faces_list, complex_faces_toplist);
|
||
|
||
/***** Create mesh for every faces list ******/
|
||
for (std::list<SComplexFace> &face_list_cur : complex_faces_toplist) {
|
||
auto VertexIndex_GetMinimal = [](const std::list<SComplexFace> &pFaceList, const size_t *pBiggerThan) -> size_t {
|
||
size_t rv = 0;
|
||
|
||
if (pBiggerThan != nullptr) {
|
||
bool found = false;
|
||
|
||
for (const SComplexFace &face : pFaceList) {
|
||
for (size_t idx_vert = 0; idx_vert < face.Face.mNumIndices; idx_vert++) {
|
||
if (face.Face.mIndices[idx_vert] > *pBiggerThan) {
|
||
rv = face.Face.mIndices[idx_vert];
|
||
found = true;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (found) {
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (!found) {
|
||
return *pBiggerThan;
|
||
}
|
||
} else {
|
||
rv = pFaceList.front().Face.mIndices[0];
|
||
} // if(pBiggerThan != nullptr) else
|
||
|
||
for (const SComplexFace &face : pFaceList) {
|
||
for (size_t vi = 0; vi < face.Face.mNumIndices; vi++) {
|
||
if (face.Face.mIndices[vi] < rv) {
|
||
if (pBiggerThan != nullptr) {
|
||
if (face.Face.mIndices[vi] > *pBiggerThan) rv = face.Face.mIndices[vi];
|
||
} else {
|
||
rv = face.Face.mIndices[vi];
|
||
}
|
||
}
|
||
}
|
||
} // for(const SComplexFace& face: pFaceList)
|
||
|
||
return rv;
|
||
}; // auto VertexIndex_GetMinimal = [](const std::list<SComplexFace>& pFaceList, const size_t* pBiggerThan) -> size_t
|
||
|
||
auto VertexIndex_Replace = [](std::list<SComplexFace> &pFaceList, const size_t pIdx_From, const size_t pIdx_To) -> void {
|
||
for (const SComplexFace &face : pFaceList) {
|
||
for (size_t vi = 0; vi < face.Face.mNumIndices; vi++) {
|
||
if (face.Face.mIndices[vi] == pIdx_From) face.Face.mIndices[vi] = static_cast<unsigned int>(pIdx_To);
|
||
}
|
||
}
|
||
}; // auto VertexIndex_Replace = [](std::list<SComplexFace>& pFaceList, const size_t pIdx_From, const size_t pIdx_To) -> void
|
||
|
||
auto Vertex_CalculateColor = [&](const size_t pIdx) -> aiColor4D {
|
||
// Color priorities(In descending order):
|
||
// 1. triangle color;
|
||
// 2. vertex color;
|
||
// 3. volume color;
|
||
// 4. object color;
|
||
// 5. material;
|
||
// 6. default - invisible coat.
|
||
//
|
||
// Fill vertices colors in color priority list above that's points from 1 to 6.
|
||
if ((pIdx < pVertexColorArray.size()) && (pVertexColorArray[pIdx] != nullptr)) // check for vertex color
|
||
{
|
||
if (pVertexColorArray[pIdx]->Composed)
|
||
throw DeadlyImportError("IME: vertex color composed");
|
||
else
|
||
return pVertexColorArray[pIdx]->Color;
|
||
} else if (ne_volume_color != nullptr) // check for volume color
|
||
{
|
||
if (ne_volume_color->Composed)
|
||
throw DeadlyImportError("IME: volume color composed");
|
||
else
|
||
return ne_volume_color->Color;
|
||
} else if (pObjectColor != nullptr) // check for object color
|
||
{
|
||
if (pObjectColor->Composed)
|
||
throw DeadlyImportError("IME: object color composed");
|
||
else
|
||
return pObjectColor->Color;
|
||
} else if (cur_mat != nullptr) // check for material
|
||
{
|
||
return cur_mat->GetColor(pVertexCoordinateArray.at(pIdx).x, pVertexCoordinateArray.at(pIdx).y, pVertexCoordinateArray.at(pIdx).z);
|
||
} else // set default color.
|
||
{
|
||
return { 0, 0, 0, 0 };
|
||
} // if((vi < pVertexColorArray.size()) && (pVertexColorArray[vi] != nullptr)) else
|
||
}; // auto Vertex_CalculateColor = [&](const size_t pIdx) -> aiColor4D
|
||
|
||
aiMesh *tmesh = new aiMesh;
|
||
|
||
tmesh->mPrimitiveTypes = aiPrimitiveType_TRIANGLE; // Only triangles is supported by AMF.
|
||
//
|
||
// set geometry and colors (vertices)
|
||
//
|
||
// copy faces/triangles
|
||
tmesh->mNumFaces = static_cast<unsigned int>(face_list_cur.size());
|
||
tmesh->mFaces = new aiFace[tmesh->mNumFaces];
|
||
|
||
// Create vertices list and optimize indices. Optimization mean following.In AMF all volumes use one big list of vertices. And one volume
|
||
// can use only part of vertices list, for example: vertices list contain few thousands of vertices and volume use vertices 1, 3, 10.
|
||
// Do you need all this thousands of garbage? Of course no. So, optimization step transform sparse indices set to continuous.
|
||
size_t VertexCount_Max = tmesh->mNumFaces * 3; // 3 - triangles.
|
||
std::vector<aiVector3D> vert_arr, texcoord_arr;
|
||
std::vector<aiColor4D> col_arr;
|
||
|
||
vert_arr.reserve(VertexCount_Max * 2); // "* 2" - see below TODO.
|
||
col_arr.reserve(VertexCount_Max * 2);
|
||
|
||
{ // fill arrays
|
||
size_t vert_idx_from, vert_idx_to;
|
||
|
||
// first iteration.
|
||
vert_idx_to = 0;
|
||
vert_idx_from = VertexIndex_GetMinimal(face_list_cur, nullptr);
|
||
vert_arr.push_back(pVertexCoordinateArray.at(vert_idx_from));
|
||
col_arr.push_back(Vertex_CalculateColor(vert_idx_from));
|
||
if (vert_idx_from != vert_idx_to) VertexIndex_Replace(face_list_cur, vert_idx_from, vert_idx_to);
|
||
|
||
// rest iterations
|
||
do {
|
||
vert_idx_from = VertexIndex_GetMinimal(face_list_cur, &vert_idx_to);
|
||
if (vert_idx_from == vert_idx_to) break; // all indices are transferred,
|
||
|
||
vert_arr.push_back(pVertexCoordinateArray.at(vert_idx_from));
|
||
col_arr.push_back(Vertex_CalculateColor(vert_idx_from));
|
||
vert_idx_to++;
|
||
if (vert_idx_from != vert_idx_to) VertexIndex_Replace(face_list_cur, vert_idx_from, vert_idx_to);
|
||
|
||
} while (true);
|
||
} // fill arrays. END.
|
||
|
||
//
|
||
// check if triangle colors are used and create additional faces if needed.
|
||
//
|
||
for (const SComplexFace &face_cur : face_list_cur) {
|
||
if (face_cur.Color != nullptr) {
|
||
aiColor4D face_color;
|
||
size_t vert_idx_new = vert_arr.size();
|
||
|
||
if (face_cur.Color->Composed)
|
||
throw DeadlyImportError("IME: face color composed");
|
||
else
|
||
face_color = face_cur.Color->Color;
|
||
|
||
for (size_t idx_ind = 0; idx_ind < face_cur.Face.mNumIndices; idx_ind++) {
|
||
vert_arr.push_back(vert_arr.at(face_cur.Face.mIndices[idx_ind]));
|
||
col_arr.push_back(face_color);
|
||
face_cur.Face.mIndices[idx_ind] = static_cast<unsigned int>(vert_idx_new++);
|
||
}
|
||
} // if(face_cur.Color != nullptr)
|
||
} // for(const SComplexFace& face_cur: face_list_cur)
|
||
|
||
//
|
||
// if texture is used then copy texture coordinates too.
|
||
//
|
||
if (face_list_cur.front().TexMap != nullptr) {
|
||
size_t idx_vert_new = vert_arr.size();
|
||
///TODO: clean unused vertices. "* 2": in certain cases - mesh full of triangle colors - vert_arr will contain duplicated vertices for
|
||
/// colored triangles and initial vertices (for colored vertices) which in real became unused. This part need more thinking about
|
||
/// optimization.
|
||
bool *idx_vert_used;
|
||
|
||
idx_vert_used = new bool[VertexCount_Max * 2];
|
||
for (size_t i = 0, i_e = VertexCount_Max * 2; i < i_e; i++)
|
||
idx_vert_used[i] = false;
|
||
|
||
// This ID's will be used when set materials ID in scene.
|
||
tmesh->mMaterialIndex = static_cast<unsigned int>(PostprocessHelper_GetTextureID_Or_Create(face_list_cur.front().TexMap->TextureID_R,
|
||
face_list_cur.front().TexMap->TextureID_G,
|
||
face_list_cur.front().TexMap->TextureID_B,
|
||
face_list_cur.front().TexMap->TextureID_A));
|
||
texcoord_arr.resize(VertexCount_Max * 2);
|
||
for (const SComplexFace &face_cur : face_list_cur) {
|
||
for (size_t idx_ind = 0; idx_ind < face_cur.Face.mNumIndices; idx_ind++) {
|
||
const size_t idx_vert = face_cur.Face.mIndices[idx_ind];
|
||
|
||
if (!idx_vert_used[idx_vert]) {
|
||
texcoord_arr.at(idx_vert) = face_cur.TexMap->TextureCoordinate[idx_ind];
|
||
idx_vert_used[idx_vert] = true;
|
||
} else if (texcoord_arr.at(idx_vert) != face_cur.TexMap->TextureCoordinate[idx_ind]) {
|
||
// in that case one vertex is shared with many texture coordinates. We need to duplicate vertex with another texture
|
||
// coordinates.
|
||
vert_arr.push_back(vert_arr.at(idx_vert));
|
||
col_arr.push_back(col_arr.at(idx_vert));
|
||
texcoord_arr.at(idx_vert_new) = face_cur.TexMap->TextureCoordinate[idx_ind];
|
||
face_cur.Face.mIndices[idx_ind] = static_cast<unsigned int>(idx_vert_new++);
|
||
}
|
||
} // for(size_t idx_ind = 0; idx_ind < face_cur.Face.mNumIndices; idx_ind++)
|
||
} // for(const SComplexFace& face_cur: face_list_cur)
|
||
|
||
delete[] idx_vert_used;
|
||
// shrink array
|
||
texcoord_arr.resize(idx_vert_new);
|
||
} // if(face_list_cur.front().TexMap != nullptr)
|
||
|
||
//
|
||
// copy collected data to mesh
|
||
//
|
||
tmesh->mNumVertices = static_cast<unsigned int>(vert_arr.size());
|
||
tmesh->mVertices = new aiVector3D[tmesh->mNumVertices];
|
||
tmesh->mColors[0] = new aiColor4D[tmesh->mNumVertices];
|
||
|
||
memcpy(tmesh->mVertices, vert_arr.data(), tmesh->mNumVertices * sizeof(aiVector3D));
|
||
memcpy(tmesh->mColors[0], col_arr.data(), tmesh->mNumVertices * sizeof(aiColor4D));
|
||
if (texcoord_arr.size() > 0) {
|
||
tmesh->mTextureCoords[0] = new aiVector3D[tmesh->mNumVertices];
|
||
memcpy(tmesh->mTextureCoords[0], texcoord_arr.data(), tmesh->mNumVertices * sizeof(aiVector3D));
|
||
tmesh->mNumUVComponents[0] = 2; // U and V stored in "x", "y" of aiVector3D.
|
||
}
|
||
|
||
size_t idx_face = 0;
|
||
for (const SComplexFace &face_cur : face_list_cur)
|
||
tmesh->mFaces[idx_face++] = face_cur.Face;
|
||
|
||
// store new aiMesh
|
||
mesh_idx.push_back(static_cast<unsigned int>(pMeshList.size()));
|
||
pMeshList.push_back(tmesh);
|
||
} // for(const std::list<SComplexFace>& face_list_cur: complex_faces_toplist)
|
||
} // if(ne_child->Type == CAMFImporter_NodeElement::ENET_Volume)
|
||
} // for(const CAMFImporter_NodeElement* ne_child: pNodeElement.Child)
|
||
|
||
// if meshes was created then assign new indices with current aiNode
|
||
if (!mesh_idx.empty()) {
|
||
std::list<unsigned int>::const_iterator mit = mesh_idx.begin();
|
||
|
||
pSceneNode.mNumMeshes = static_cast<unsigned int>(mesh_idx.size());
|
||
pSceneNode.mMeshes = new unsigned int[pSceneNode.mNumMeshes];
|
||
for (size_t i = 0; i < pSceneNode.mNumMeshes; i++)
|
||
pSceneNode.mMeshes[i] = *mit++;
|
||
} // if(mesh_idx.size() > 0)
|
||
}
|
||
|
||
void AMFImporter::Postprocess_BuildMaterial(const AMFMaterial &pMaterial) {
|
||
SPP_Material new_mat;
|
||
|
||
new_mat.ID = pMaterial.ID;
|
||
for (const AMFNodeElementBase *mat_child : pMaterial.Child) {
|
||
if (mat_child->Type == AMFNodeElementBase::ENET_Color) {
|
||
new_mat.Color = (AMFColor*)mat_child;
|
||
} else if (mat_child->Type == AMFNodeElementBase::ENET_Metadata) {
|
||
new_mat.Metadata.push_back((AMFMetadata *)mat_child);
|
||
}
|
||
} // for(const CAMFImporter_NodeElement* mat_child; pMaterial.Child)
|
||
|
||
// place converted material to special list
|
||
mMaterial_Converted.push_back(new_mat);
|
||
}
|
||
|
||
void AMFImporter::Postprocess_BuildConstellation(AMFConstellation &pConstellation, std::list<aiNode *> &pNodeList) const {
|
||
aiNode *con_node;
|
||
std::list<aiNode *> ch_node;
|
||
|
||
// We will build next hierarchy:
|
||
// aiNode as parent (<constellation>) for set of nodes as a children
|
||
// |- aiNode for transformation (<instance> -> <delta...>, <r...>) - aiNode for pointing to object ("objectid")
|
||
// ...
|
||
// \_ aiNode for transformation (<instance> -> <delta...>, <r...>) - aiNode for pointing to object ("objectid")
|
||
con_node = new aiNode;
|
||
con_node->mName = pConstellation.ID;
|
||
// Walk through children and search for instances of another objects, constellations.
|
||
for (const AMFNodeElementBase *ne : pConstellation.Child) {
|
||
aiMatrix4x4 tmat;
|
||
aiNode *t_node;
|
||
aiNode *found_node;
|
||
|
||
if (ne->Type == AMFNodeElementBase::ENET_Metadata) continue;
|
||
if (ne->Type != AMFNodeElementBase::ENET_Instance) throw DeadlyImportError("Only <instance> nodes can be in <constellation>.");
|
||
|
||
// create alias for conveniance
|
||
AMFInstance &als = *((AMFInstance *)ne);
|
||
// find referenced object
|
||
if (!Find_ConvertedNode(als.ObjectID, pNodeList, &found_node)) Throw_ID_NotFound(als.ObjectID);
|
||
|
||
// create node for applying transformation
|
||
t_node = new aiNode;
|
||
t_node->mParent = con_node;
|
||
// apply transformation
|
||
aiMatrix4x4::Translation(als.Delta, tmat), t_node->mTransformation *= tmat;
|
||
aiMatrix4x4::RotationX(als.Rotation.x, tmat), t_node->mTransformation *= tmat;
|
||
aiMatrix4x4::RotationY(als.Rotation.y, tmat), t_node->mTransformation *= tmat;
|
||
aiMatrix4x4::RotationZ(als.Rotation.z, tmat), t_node->mTransformation *= tmat;
|
||
// create array for one child node
|
||
t_node->mNumChildren = 1;
|
||
t_node->mChildren = new aiNode *[t_node->mNumChildren];
|
||
SceneCombiner::Copy(&t_node->mChildren[0], found_node);
|
||
t_node->mChildren[0]->mParent = t_node;
|
||
ch_node.push_back(t_node);
|
||
} // for(const CAMFImporter_NodeElement* ne: pConstellation.Child)
|
||
|
||
// copy found aiNode's as children
|
||
if (ch_node.empty()) throw DeadlyImportError("<constellation> must have at least one <instance>.");
|
||
|
||
size_t ch_idx = 0;
|
||
|
||
con_node->mNumChildren = static_cast<unsigned int>(ch_node.size());
|
||
con_node->mChildren = new aiNode *[con_node->mNumChildren];
|
||
for (aiNode *node : ch_node)
|
||
con_node->mChildren[ch_idx++] = node;
|
||
|
||
// and place "root" of <constellation> node to node list
|
||
pNodeList.push_back(con_node);
|
||
}
|
||
|
||
void AMFImporter::Postprocess_BuildScene(aiScene *pScene) {
|
||
std::list<aiNode *> node_list;
|
||
std::list<aiMesh *> mesh_list;
|
||
std::list<AMFMetadata *> meta_list;
|
||
|
||
//
|
||
// Because for AMF "material" is just complex colors mixing so aiMaterial will not be used.
|
||
// For building aiScene we are must to do few steps:
|
||
// at first creating root node for aiScene.
|
||
pScene->mRootNode = new aiNode;
|
||
pScene->mRootNode->mParent = nullptr;
|
||
pScene->mFlags |= AI_SCENE_FLAGS_ALLOW_SHARED;
|
||
// search for root(<amf>) element
|
||
AMFNodeElementBase *root_el = nullptr;
|
||
|
||
for (AMFNodeElementBase *ne : mNodeElement_List) {
|
||
if (ne->Type != AMFNodeElementBase::ENET_Root) {
|
||
continue;
|
||
}
|
||
|
||
root_el = ne;
|
||
break;
|
||
} // for(const CAMFImporter_NodeElement* ne: mNodeElement_List)
|
||
|
||
// Check if root element are found.
|
||
if (root_el == nullptr) throw DeadlyImportError("Root(<amf>) element not found.");
|
||
|
||
// after that walk through children of root and collect data. Five types of nodes can be placed at top level - in <amf>: <object>, <material>, <texture>,
|
||
// <constellation> and <metadata>. But at first we must read <material> and <texture> because they will be used in <object>. <metadata> can be read
|
||
// at any moment.
|
||
//
|
||
// 1. <material>
|
||
// 2. <texture> will be converted later when processing triangles list. \sa Postprocess_BuildMeshSet
|
||
for (const AMFNodeElementBase *root_child : root_el->Child) {
|
||
if (root_child->Type == AMFNodeElementBase::ENET_Material) Postprocess_BuildMaterial(*((AMFMaterial *)root_child));
|
||
}
|
||
|
||
// After "appearance" nodes we must read <object> because it will be used in <constellation> -> <instance>.
|
||
//
|
||
// 3. <object>
|
||
for (const AMFNodeElementBase *root_child : root_el->Child) {
|
||
if (root_child->Type == AMFNodeElementBase::ENET_Object) {
|
||
aiNode *tnode = nullptr;
|
||
|
||
// for <object> mesh and node must be built: object ID assigned to aiNode name and will be used in future for <instance>
|
||
Postprocess_BuildNodeAndObject(*((AMFObject *)root_child), mesh_list, &tnode);
|
||
if (tnode != nullptr) node_list.push_back(tnode);
|
||
}
|
||
} // for(const CAMFImporter_NodeElement* root_child: root_el->Child)
|
||
|
||
// And finally read rest of nodes.
|
||
//
|
||
for (const AMFNodeElementBase *root_child : root_el->Child) {
|
||
// 4. <constellation>
|
||
if (root_child->Type == AMFNodeElementBase::ENET_Constellation) {
|
||
// <object> and <constellation> at top of self abstraction use aiNode. So we can use only aiNode list for creating new aiNode's.
|
||
Postprocess_BuildConstellation(*((AMFConstellation *)root_child), node_list);
|
||
}
|
||
|
||
// 5, <metadata>
|
||
if (root_child->Type == AMFNodeElementBase::ENET_Metadata) meta_list.push_back((AMFMetadata *)root_child);
|
||
} // for(const CAMFImporter_NodeElement* root_child: root_el->Child)
|
||
|
||
// at now we can add collected metadata to root node
|
||
Postprocess_AddMetadata(meta_list, *pScene->mRootNode);
|
||
//
|
||
// Check constellation children
|
||
//
|
||
// As said in specification:
|
||
// "When multiple objects and constellations are defined in a single file, only the top level objects and constellations are available for printing."
|
||
// What that means? For example: if some object is used in constellation then you must show only constellation but not original object.
|
||
// And at this step we are checking that relations.
|
||
nl_clean_loop:
|
||
|
||
if (node_list.size() > 1) {
|
||
// walk through all nodes
|
||
for (std::list<aiNode *>::iterator nl_it = node_list.begin(); nl_it != node_list.end(); ++nl_it) {
|
||
// and try to find them in another top nodes.
|
||
std::list<aiNode *>::const_iterator next_it = nl_it;
|
||
|
||
++next_it;
|
||
for (; next_it != node_list.end(); ++next_it) {
|
||
if ((*next_it)->FindNode((*nl_it)->mName) != nullptr) {
|
||
// if current top node(nl_it) found in another top node then erase it from node_list and restart search loop.
|
||
node_list.erase(nl_it);
|
||
|
||
goto nl_clean_loop;
|
||
}
|
||
} // for(; next_it != node_list.end(); next_it++)
|
||
} // for(std::list<aiNode*>::const_iterator nl_it = node_list.begin(); nl_it != node_list.end(); nl_it++)
|
||
}
|
||
|
||
//
|
||
// move created objects to aiScene
|
||
//
|
||
//
|
||
// Nodes
|
||
if (!node_list.empty()) {
|
||
std::list<aiNode *>::const_iterator nl_it = node_list.begin();
|
||
|
||
pScene->mRootNode->mNumChildren = static_cast<unsigned int>(node_list.size());
|
||
pScene->mRootNode->mChildren = new aiNode *[pScene->mRootNode->mNumChildren];
|
||
for (size_t i = 0; i < pScene->mRootNode->mNumChildren; i++) {
|
||
// Objects and constellation that must be showed placed at top of hierarchy in <amf> node. So all aiNode's in node_list must have
|
||
// mRootNode only as parent.
|
||
(*nl_it)->mParent = pScene->mRootNode;
|
||
pScene->mRootNode->mChildren[i] = *nl_it++;
|
||
}
|
||
} // if(node_list.size() > 0)
|
||
|
||
//
|
||
// Meshes
|
||
if (!mesh_list.empty()) {
|
||
std::list<aiMesh *>::const_iterator ml_it = mesh_list.begin();
|
||
|
||
pScene->mNumMeshes = static_cast<unsigned int>(mesh_list.size());
|
||
pScene->mMeshes = new aiMesh *[pScene->mNumMeshes];
|
||
for (size_t i = 0; i < pScene->mNumMeshes; i++)
|
||
pScene->mMeshes[i] = *ml_it++;
|
||
} // if(mesh_list.size() > 0)
|
||
|
||
//
|
||
// Textures
|
||
pScene->mNumTextures = static_cast<unsigned int>(mTexture_Converted.size());
|
||
if (pScene->mNumTextures > 0) {
|
||
size_t idx;
|
||
|
||
idx = 0;
|
||
pScene->mTextures = new aiTexture *[pScene->mNumTextures];
|
||
for (const SPP_Texture &tex_convd : mTexture_Converted) {
|
||
pScene->mTextures[idx] = new aiTexture;
|
||
pScene->mTextures[idx]->mWidth = static_cast<unsigned int>(tex_convd.Width);
|
||
pScene->mTextures[idx]->mHeight = static_cast<unsigned int>(tex_convd.Height);
|
||
pScene->mTextures[idx]->pcData = (aiTexel *)tex_convd.Data;
|
||
// texture format description.
|
||
strcpy(pScene->mTextures[idx]->achFormatHint, tex_convd.FormatHint);
|
||
idx++;
|
||
} // for(const SPP_Texture& tex_convd: mTexture_Converted)
|
||
|
||
// Create materials for embedded textures.
|
||
idx = 0;
|
||
pScene->mNumMaterials = static_cast<unsigned int>(mTexture_Converted.size());
|
||
pScene->mMaterials = new aiMaterial *[pScene->mNumMaterials];
|
||
for (const SPP_Texture &tex_convd : mTexture_Converted) {
|
||
const aiString texture_id(AI_EMBEDDED_TEXNAME_PREFIX + to_string(idx));
|
||
const int mode = aiTextureOp_Multiply;
|
||
const int repeat = tex_convd.Tiled ? 1 : 0;
|
||
|
||
pScene->mMaterials[idx] = new aiMaterial;
|
||
pScene->mMaterials[idx]->AddProperty(&texture_id, AI_MATKEY_TEXTURE_DIFFUSE(0));
|
||
pScene->mMaterials[idx]->AddProperty(&mode, 1, AI_MATKEY_TEXOP_DIFFUSE(0));
|
||
pScene->mMaterials[idx]->AddProperty(&repeat, 1, AI_MATKEY_MAPPINGMODE_U_DIFFUSE(0));
|
||
pScene->mMaterials[idx]->AddProperty(&repeat, 1, AI_MATKEY_MAPPINGMODE_V_DIFFUSE(0));
|
||
idx++;
|
||
}
|
||
} // if(pScene->mNumTextures > 0)
|
||
} // END: after that walk through children of root and collect data
|
||
|
||
} // namespace Assimp
|
||
|
||
#endif // !ASSIMP_BUILD_NO_AMF_IMPORTER
|