476 lines
16 KiB
C++
476 lines
16 KiB
C++
/*
|
|
---------------------------------------------------------------------------
|
|
Open Asset Import Library (ASSIMP)
|
|
---------------------------------------------------------------------------
|
|
|
|
Copyright (c) 2006-2008, ASSIMP Development Team
|
|
|
|
All rights reserved.
|
|
|
|
Redistribution and use of this software in source and binary forms,
|
|
with or without modification, are permitted provided that the following
|
|
conditions are met:
|
|
|
|
* Redistributions of source code must retain the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer in the documentation and/or other
|
|
materials provided with the distribution.
|
|
|
|
* Neither the name of the ASSIMP team, nor the names of its
|
|
contributors may be used to endorse or promote products
|
|
derived from this software without specific prior
|
|
written permission of the ASSIMP Development Team.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
---------------------------------------------------------------------------
|
|
*/
|
|
|
|
/** @file Implementation of the STL importer class */
|
|
|
|
#include "AssimpPCH.h"
|
|
|
|
// internal headers
|
|
#include "NFFLoader.h"
|
|
#include "ParsingUtils.h"
|
|
#include "StandardShapes.h"
|
|
#include "fast_atof.h"
|
|
|
|
|
|
using namespace Assimp;
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Constructor to be privately used by Importer
|
|
NFFImporter::NFFImporter()
|
|
{
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Destructor, private as well
|
|
NFFImporter::~NFFImporter()
|
|
{
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Returns whether the class can handle the format of the given file.
|
|
bool NFFImporter::CanRead( const std::string& pFile, IOSystem* pIOHandler) const
|
|
{
|
|
// simple check of file extension is enough for the moment
|
|
std::string::size_type pos = pFile.find_last_of('.');
|
|
// no file extension - can't read
|
|
if( pos == std::string::npos)return false;
|
|
std::string extension = pFile.substr( pos);
|
|
|
|
return !(extension.length() != 4 || extension[0] != '.' ||
|
|
extension[1] != 'n' && extension[1] != 'N' ||
|
|
extension[2] != 'f' && extension[2] != 'F' ||
|
|
extension[3] != 'f' && extension[3] != 'F');
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
#define AI_NFF_PARSE_FLOAT(f) \
|
|
SkipSpaces(&sz); \
|
|
if (!::IsLineEnd(*sz))sz = fast_atof_move(sz, (float&)f);
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
#define AI_NFF_PARSE_TRIPLE(v) \
|
|
AI_NFF_PARSE_FLOAT(v.x) \
|
|
AI_NFF_PARSE_FLOAT(v.y) \
|
|
AI_NFF_PARSE_FLOAT(v.z)
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
#define AI_NFF_PARSE_SHAPE_INFORMATION() \
|
|
aiVector3D center, radius(1.0f,std::numeric_limits<float>::quiet_NaN(),std::numeric_limits<float>::quiet_NaN()); \
|
|
AI_NFF_PARSE_TRIPLE(center); \
|
|
AI_NFF_PARSE_TRIPLE(radius); \
|
|
if (is_qnan(radius.z))radius.z = radius.x; \
|
|
if (is_qnan(radius.y))radius.y = radius.x; \
|
|
currentMesh.radius = radius; \
|
|
currentMesh.center = center;
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Imports the given file into the given scene structure.
|
|
void NFFImporter::InternReadFile( const std::string& pFile,
|
|
aiScene* pScene, IOSystem* pIOHandler)
|
|
{
|
|
boost::scoped_ptr<IOStream> file( pIOHandler->Open( pFile, "rb"));
|
|
|
|
// Check whether we can read from the file
|
|
if( file.get() == NULL)
|
|
throw new ImportErrorException( "Failed to open NFF file " + pFile + ".");
|
|
|
|
unsigned int m = (unsigned int)file->FileSize();
|
|
|
|
// allocate storage and copy the contents of the file to a memory buffer
|
|
// (terminate it with zero)
|
|
std::vector<char> mBuffer2(m+1);
|
|
file->Read(&mBuffer2[0],m,1);
|
|
const char* buffer = &mBuffer2[0];
|
|
mBuffer2[m] = '\0';
|
|
|
|
// mesh arrays - separate here to make the handling of
|
|
// the pointers below easier.
|
|
std::vector<MeshInfo> meshes;
|
|
std::vector<MeshInfo> meshesWithNormals;
|
|
std::vector<MeshInfo> meshesLocked;
|
|
MeshInfo* currentMeshWithNormals = NULL;
|
|
MeshInfo* currentMesh = NULL;
|
|
|
|
ShadingInfo s; // current material info
|
|
|
|
// degree of tesselation
|
|
unsigned int iTesselation = 4;
|
|
|
|
char line[4096];
|
|
const char* sz;
|
|
unsigned int sphere = 0,cylinder = 0,cone = 0,numNamed = 0,
|
|
dodecahedron = 0,octahedron = 0,tetrahedron = 0, hexahedron = 0;
|
|
|
|
while (GetNextLine(buffer,line))
|
|
{
|
|
if ('p' == line[0])
|
|
{
|
|
MeshInfo* out = NULL;
|
|
// 'pp' - polygon patch primitive
|
|
if ('p' == line[1])
|
|
{
|
|
if (meshesWithNormals.empty())
|
|
{
|
|
meshesWithNormals.push_back(MeshInfo(true));
|
|
currentMeshWithNormals = &meshesWithNormals.back();
|
|
}
|
|
|
|
sz = &line[2];out = currentMeshWithNormals;
|
|
}
|
|
// 'p' - polygon primitive
|
|
else
|
|
{
|
|
if (meshes.empty())
|
|
{
|
|
meshes.push_back(MeshInfo(false));
|
|
currentMesh = &meshes.back();
|
|
}
|
|
sz = &line[1];out = currentMesh;
|
|
}
|
|
SkipSpaces(sz,&sz);
|
|
m = strtol10(sz);
|
|
|
|
// ---- flip the face order
|
|
out->vertices.resize(out->vertices.size()+m);
|
|
if (out == currentMeshWithNormals)
|
|
{
|
|
out->normals.resize(out->vertices.size());
|
|
}
|
|
for (unsigned int n = 0; n < m;++n)
|
|
{
|
|
if(!GetNextLine(buffer,line))
|
|
{
|
|
DefaultLogger::get()->error("NFF: Unexpected EOF was encountered");
|
|
continue;
|
|
}
|
|
|
|
aiVector3D v; sz = &line[0];
|
|
AI_NFF_PARSE_TRIPLE(v);
|
|
out->vertices[out->vertices.size()-n-1] = v;
|
|
|
|
if (out == currentMeshWithNormals)
|
|
{
|
|
AI_NFF_PARSE_TRIPLE(v);
|
|
out->normals[out->vertices.size()-n-1] = v;
|
|
}
|
|
}
|
|
out->faces.push_back(m);
|
|
}
|
|
// 'f' - shading information block
|
|
else if ('f' == line[0] && IsSpace(line[1]))
|
|
{
|
|
SkipSpaces(&line[1],&sz);
|
|
|
|
// read just the RGB colors, the rest is ignored for the moment
|
|
sz = fast_atof_move(sz, (float&)s.color.r);
|
|
SkipSpaces(&sz);
|
|
sz = fast_atof_move(sz, (float&)s.color.g);
|
|
SkipSpaces(&sz);
|
|
sz = fast_atof_move(sz, (float&)s.color.b);
|
|
|
|
// check whether we have this material already -
|
|
// although we have the RRM-Step, this is necessary here.
|
|
// otherwise we would generate hundreds of small meshes
|
|
// with just a few faces - this is surely never wanted.
|
|
currentMesh = currentMeshWithNormals = NULL;
|
|
for (std::vector<MeshInfo>::iterator it = meshes.begin(), end = meshes.end();
|
|
it != end;++it)
|
|
{
|
|
if ((*it).bLocked)continue;
|
|
if ((*it).shader == s)
|
|
{
|
|
if ((*it).bHasNormals)currentMeshWithNormals = &(*it);
|
|
else currentMesh = &(*it);
|
|
}
|
|
}
|
|
|
|
if (!currentMesh)
|
|
{
|
|
meshes.push_back(MeshInfo(false));
|
|
currentMesh = &meshes.back();
|
|
currentMesh->shader = s;
|
|
}
|
|
|
|
if (!currentMeshWithNormals)
|
|
{
|
|
meshesWithNormals.push_back(MeshInfo(true));
|
|
currentMeshWithNormals = &meshesWithNormals.back();
|
|
currentMeshWithNormals->shader = s;
|
|
}
|
|
}
|
|
// 's' - sphere
|
|
else if ('s' == line[0] && IsSpace(line[1]))
|
|
{
|
|
meshesLocked.push_back(MeshInfo(false,true));
|
|
MeshInfo& currentMesh = meshesLocked.back();
|
|
currentMesh.shader = s;
|
|
|
|
sz = &line[1];
|
|
AI_NFF_PARSE_SHAPE_INFORMATION();
|
|
|
|
// we don't need scaling or translation here - we do it in the node's transform
|
|
StandardShapes::MakeSphere(iTesselation, currentMesh.vertices);
|
|
currentMesh.faces.resize(currentMesh.vertices.size()/3,3);
|
|
|
|
// generate a name for the mesh
|
|
::sprintf(currentMesh.name,"sphere_%i",sphere++);
|
|
}
|
|
// 'dod' - dodecahedron
|
|
else if (!strncmp(line,"dod",3) && IsSpace(line[3]))
|
|
{
|
|
meshesLocked.push_back(MeshInfo(false,true));
|
|
MeshInfo& currentMesh = meshesLocked.back();
|
|
currentMesh.shader = s;
|
|
|
|
sz = &line[4];
|
|
AI_NFF_PARSE_SHAPE_INFORMATION();
|
|
|
|
// we don't need scaling or translation here - we do it in the node's transform
|
|
StandardShapes::MakeDodecahedron(currentMesh.vertices);
|
|
currentMesh.faces.resize(currentMesh.vertices.size()/3,3);
|
|
|
|
// generate a name for the mesh
|
|
::sprintf(currentMesh.name,"dodecahedron_%i",dodecahedron++);
|
|
}
|
|
|
|
// 'oct' - octahedron
|
|
else if (!strncmp(line,"oct",3) && IsSpace(line[3]))
|
|
{
|
|
meshesLocked.push_back(MeshInfo(false,true));
|
|
MeshInfo& currentMesh = meshesLocked.back();
|
|
currentMesh.shader = s;
|
|
|
|
sz = &line[4];
|
|
AI_NFF_PARSE_SHAPE_INFORMATION();
|
|
|
|
// we don't need scaling or translation here - we do it in the node's transform
|
|
StandardShapes::MakeOctahedron(currentMesh.vertices);
|
|
currentMesh.faces.resize(currentMesh.vertices.size()/3,3);
|
|
|
|
// generate a name for the mesh
|
|
::sprintf(currentMesh.name,"octahedron_%i",octahedron++);
|
|
}
|
|
|
|
// 'tet' - tetrahedron
|
|
else if (!strncmp(line,"tet",3) && IsSpace(line[3]))
|
|
{
|
|
meshesLocked.push_back(MeshInfo(false,true));
|
|
MeshInfo& currentMesh = meshesLocked.back();
|
|
currentMesh.shader = s;
|
|
|
|
sz = &line[4];
|
|
AI_NFF_PARSE_SHAPE_INFORMATION();
|
|
|
|
// we don't need scaling or translation here - we do it in the node's transform
|
|
StandardShapes::MakeTetrahedron(currentMesh.vertices);
|
|
currentMesh.faces.resize(currentMesh.vertices.size()/3,3);
|
|
|
|
// generate a name for the mesh
|
|
::sprintf(currentMesh.name,"tetrahedron_%i",tetrahedron++);
|
|
}
|
|
|
|
// 'hex' - hexahedron
|
|
else if (!strncmp(line,"hex",3) && IsSpace(line[3]))
|
|
{
|
|
meshesLocked.push_back(MeshInfo(false,true));
|
|
MeshInfo& currentMesh = meshesLocked.back();
|
|
currentMesh.shader = s;
|
|
|
|
sz = &line[4];
|
|
AI_NFF_PARSE_SHAPE_INFORMATION();
|
|
|
|
// we don't need scaling or translation here - we do it in the node's transform
|
|
StandardShapes::MakeHexahedron(currentMesh.vertices);
|
|
currentMesh.faces.resize(currentMesh.vertices.size()/3,3);
|
|
|
|
// generate a name for the mesh
|
|
::sprintf(currentMesh.name,"hexahedron_%i",hexahedron++);
|
|
}
|
|
|
|
// 'tess' - tesselation
|
|
else if (!strncmp(line,"tess",4) && IsSpace(line[4]))
|
|
{
|
|
sz = &line[5];SkipSpaces(&sz);
|
|
iTesselation = strtol10(sz);
|
|
}
|
|
// 'c' - cone
|
|
else if ('c' == line[0] && IsSpace(line[1]))
|
|
{
|
|
meshesLocked.push_back(MeshInfo(false,true));
|
|
MeshInfo& currentMesh = meshes.back();
|
|
currentMesh.shader = s;
|
|
|
|
sz = &line[1];
|
|
aiVector3D center1, center2; float radius1, radius2;
|
|
AI_NFF_PARSE_TRIPLE(center1);
|
|
AI_NFF_PARSE_FLOAT(radius1);
|
|
AI_NFF_PARSE_TRIPLE(center2);
|
|
AI_NFF_PARSE_FLOAT(radius2);
|
|
|
|
// compute the center point of the cone/cylinder
|
|
center2 = (center2-center1)/2.f;
|
|
currentMesh.center = center1+center2;
|
|
center1 = -center2;
|
|
|
|
// generate the cone - it consists of simple triangles
|
|
StandardShapes::MakeCone(center1, radius1, center2, radius2, iTesselation, currentMesh.vertices);
|
|
currentMesh.faces.resize(currentMesh.vertices.size()/3,3);
|
|
|
|
// generate a name for the mesh
|
|
if (radius1 != radius2)
|
|
::sprintf(currentMesh.name,"cone_%i",cone++);
|
|
else ::sprintf(currentMesh.name,"cylinder_%i",cylinder++);
|
|
}
|
|
// '#' - comment
|
|
else if ('#' == line[0])
|
|
{
|
|
const char* sz;SkipSpaces(&line[1],&sz);
|
|
if (!IsLineEnd(*sz))DefaultLogger::get()->info(sz);
|
|
}
|
|
}
|
|
|
|
// copy all arrays into one large
|
|
meshes.reserve(meshes.size()+meshesLocked.size()+meshesWithNormals.size());
|
|
meshes.insert(meshes.end(),meshesLocked.begin(),meshesLocked.end());
|
|
meshes.insert(meshes.end(),meshesWithNormals.begin(),meshesWithNormals.end());
|
|
|
|
// now generate output meshes. first find out how many meshes we'll need
|
|
std::vector<MeshInfo>::const_iterator it = meshes.begin(), end = meshes.end();
|
|
for (;it != end;++it)
|
|
{
|
|
if (!(*it).faces.empty())
|
|
{
|
|
++pScene->mNumMeshes;
|
|
if ((*it).name[0])++numNamed;
|
|
}
|
|
}
|
|
|
|
// generate a dummy root node - assign all unnamed elements such
|
|
// as polygons and polygon patches to the root node and generate
|
|
// sub nodes for named objects such as spheres and cones.
|
|
aiNode* const root = new aiNode();
|
|
root->mName.Set("<NFF_Root>");
|
|
root->mNumChildren = numNamed;
|
|
root->mNumMeshes = pScene->mNumMeshes-numNamed;
|
|
|
|
aiNode** ppcChildren;
|
|
unsigned int* pMeshes;
|
|
if (root->mNumMeshes)
|
|
pMeshes = root->mMeshes = new unsigned int[root->mNumMeshes];
|
|
if (root->mNumChildren)
|
|
ppcChildren = root->mChildren = new aiNode*[root->mNumChildren];
|
|
|
|
|
|
if (!pScene->mNumMeshes)throw new ImportErrorException("NFF: No meshes loaded");
|
|
pScene->mMeshes = new aiMesh*[pScene->mNumMeshes];
|
|
pScene->mMaterials = new aiMaterial*[pScene->mNumMaterials = pScene->mNumMeshes];
|
|
for (it = meshes.begin(), m = 0; it != end;++it)
|
|
{
|
|
if ((*it).faces.empty())continue;
|
|
|
|
const MeshInfo& src = *it;
|
|
aiMesh* const mesh = pScene->mMeshes[m] = new aiMesh();
|
|
mesh->mNumVertices = (unsigned int)src.vertices.size();
|
|
mesh->mNumFaces = (unsigned int)src.faces.size();
|
|
|
|
// generate sub nodes for named meshes
|
|
if (src.name[0])
|
|
{
|
|
aiNode* const node = *ppcChildren = new aiNode();
|
|
node->mParent = root;
|
|
node->mNumMeshes = 1;
|
|
node->mMeshes = new unsigned int[1];
|
|
node->mMeshes[0] = m;
|
|
node->mName.Set(src.name);
|
|
|
|
// setup the transformation matrix of the node
|
|
node->mTransformation.a4 = src.center.x;
|
|
node->mTransformation.b4 = src.center.y;
|
|
node->mTransformation.c4 = src.center.z;
|
|
|
|
node->mTransformation.a1 = src.radius.x;
|
|
node->mTransformation.b2 = src.radius.y;
|
|
node->mTransformation.c3 = src.radius.z;
|
|
|
|
++ppcChildren;
|
|
}
|
|
else *pMeshes++ = m;
|
|
|
|
// copy vertex positions
|
|
mesh->mVertices = new aiVector3D[mesh->mNumVertices];
|
|
::memcpy(mesh->mVertices,&src.vertices[0],sizeof(aiVector3D)*mesh->mNumVertices);
|
|
if (src.bHasNormals)
|
|
{
|
|
ai_assert(src.normals.size() == src.vertices.size());
|
|
|
|
// copy normal vectors
|
|
mesh->mNormals = new aiVector3D[mesh->mNumVertices];
|
|
::memcpy(mesh->mNormals,&src.normals[0],sizeof(aiVector3D)*mesh->mNumVertices);
|
|
}
|
|
|
|
// generate faces
|
|
unsigned int p = 0;
|
|
aiFace* pFace = mesh->mFaces = new aiFace[mesh->mNumFaces];
|
|
for (std::vector<unsigned int>::const_iterator it2 = src.faces.begin(),
|
|
end2 = src.faces.end();
|
|
it2 != end2;++it2,++pFace)
|
|
{
|
|
pFace->mIndices = new unsigned int [ pFace->mNumIndices = *it2 ];
|
|
for (unsigned int o = 0; o < pFace->mNumIndices;++o)
|
|
pFace->mIndices[o] = p++;
|
|
}
|
|
|
|
// generate a material for the mesh
|
|
MaterialHelper* pcMat = (MaterialHelper*)(pScene->
|
|
mMaterials[m] = new MaterialHelper());
|
|
|
|
mesh->mMaterialIndex = m++;
|
|
|
|
aiString s;
|
|
s.Set(AI_DEFAULT_MATERIAL_NAME);
|
|
pcMat->AddProperty(&s, AI_MATKEY_NAME);
|
|
|
|
pcMat->AddProperty(&src.shader.color,1,AI_MATKEY_COLOR_DIFFUSE);
|
|
pcMat->AddProperty(&src.shader.color,1,AI_MATKEY_COLOR_SPECULAR);
|
|
}
|
|
pScene->mRootNode = root;
|
|
}
|