assimp/code/IFCLoader.cpp

1271 lines
43 KiB
C++

/*
Open Asset Import Library (ASSIMP)
----------------------------------------------------------------------
Copyright (c) 2006-2010, ASSIMP Development Team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the
following conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the ASSIMP team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the ASSIMP Development Team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------
*/
/** @file IFC.cpp
* @brief Implementation of the Industry Foundation Classes loader
*/
#include "AssimpPCH.h"
#ifndef ASSIMP_BUILD_NO_IFC_IMPORTER
#include "IFCLoader.h"
#include "STEPFileReader.h"
#include "IFCReaderGen.h"
#include "StreamReader.h"
#include "TinyFormatter.h"
#include "MemoryIOWrapper.h"
using namespace Assimp;
using namespace Assimp::Formatter;
namespace EXPRESS = STEP::EXPRESS;
/* DO NOT REMOVE this comment block. The genentitylist.sh script
* just looks for names adhering to the IFC :: IfcSomething naming scheme
* and includes all matches in the whitelist for code-generation. Thus,
* all entity classes that are only indirectly referenced need to be
* mentioned explicitly.
IFC::IfcRepresentationMap
IFC::IfcProductRepresentation
IFC::IfcUnitAssignment
IFC::IfcClosedShell
IFC::IfcDoor
*/
namespace {
// helper for std::for_each to delete all heap-allocated items in a container
template<typename T>
struct delete_fun
{
void operator()(T* del) {
delete del;
}
};
// intermediate data dump during conversion
struct ConversionData
{
ConversionData(const STEP::DB& db, const IFC::IfcProject& proj, aiScene* out,const IFCImporter::Settings& settings)
: len_scale(1.0)
, db(db)
, proj(proj)
, out(out)
, settings(settings)
{}
~ConversionData() {
std::for_each(meshes.begin(),meshes.end(),delete_fun<aiMesh>());
std::for_each(materials.begin(),materials.end(),delete_fun<aiMaterial>());
}
float len_scale;
const STEP::DB& db;
const IFC::IfcProject& proj;
aiScene* out;
aiMatrix4x4 wcs;
std::vector<aiMesh*> meshes;
std::vector<aiMaterial*> materials;
typedef std::map<const IFC::IfcRepresentationItem*, std::vector<unsigned int> > MeshCache;
MeshCache cached_meshes;
const IFCImporter::Settings& settings;
};
// helper used during mesh construction
struct TempMesh
{
std::vector<aiVector3D> verts;
std::vector<unsigned int> vertcnt;
std::vector<unsigned int> mat_idx;
aiMesh* ToMesh() {
ai_assert(verts.size() == std::accumulate(vertcnt.begin(),vertcnt.end(),0));
if (verts.empty()) {
return NULL;
}
std::auto_ptr<aiMesh> mesh(new aiMesh());
// copy vertices
mesh->mNumVertices = static_cast<unsigned int>(verts.size());
mesh->mVertices = new aiVector3D[mesh->mNumVertices];
std::copy(verts.begin(),verts.end(),mesh->mVertices);
// and build up faces
mesh->mNumFaces = static_cast<unsigned int>(vertcnt.size());
mesh->mFaces = new aiFace[mesh->mNumFaces];
for(unsigned int i = 0, acc = 0; i < mesh->mNumFaces; ++i) {
aiFace& f = mesh->mFaces[i];
f.mNumIndices = vertcnt[i];
f.mIndices = new unsigned int[f.mNumIndices];
for(unsigned int a = 0; a < f.mNumIndices; ++a) {
f.mIndices[a] = acc++;
}
}
// XXX materials
mesh->mMaterialIndex = UINT_MAX;
return mesh.release();
}
};
// forward declarations
float ConvertSIPrefix(const std::string& prefix);
void SetUnits(ConversionData& conv);
void ConvertAxisPlacement(aiMatrix4x4& out, const IFC::IfcAxis2Placement& in, ConversionData& conv);
void SetCoordinateSpace(ConversionData& conv);
void ProcessSpatialStructures(ConversionData& conv);
aiNode* ProcessSpatialStructure(aiNode* parent, const IFC::IfcProduct& el ,ConversionData& conv);
void ProcessProductRepresentation(const IFC::IfcProduct& el, aiNode* nd, ConversionData& conv);
void MakeTreeRelative(ConversionData& conv);
} // anon
// ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer
IFCImporter::IFCImporter()
{}
// ------------------------------------------------------------------------------------------------
// Destructor, private as well
IFCImporter::~IFCImporter()
{
}
// ------------------------------------------------------------------------------------------------
// Returns whether the class can handle the format of the given file.
bool IFCImporter::CanRead( const std::string& pFile, IOSystem* pIOHandler, bool checkSig) const
{
const std::string& extension = GetExtension(pFile);
if (extension == "ifc") {
return true;
}
else if ((!extension.length() || checkSig) && pIOHandler) {
// note: this is the common identification for STEP-encoded files, so
// it is only unambiguous as long as we don't support any further
// file formats with STEP as their encoding.
const char* tokens[] = {"ISO-10303-21"};
return SearchFileHeaderForToken(pIOHandler,pFile,tokens,1);
}
return false;
}
// ------------------------------------------------------------------------------------------------
// List all extensions handled by this loader
void IFCImporter::GetExtensionList(std::set<std::string>& app)
{
app.insert("ifc");
}
// ------------------------------------------------------------------------------------------------
// Setup configuration properties for the loader
void IFCImporter::SetupProperties(const Importer* pImp)
{
settings.skipSpaceRepresentations = pImp->GetPropertyBool(AI_CONFIG_IMPORT_IFC_SKIP_SPACE_REPRESENTATIONS,true);
settings.skipCurveRepresentations = pImp->GetPropertyBool(AI_CONFIG_IMPORT_IFC_SKIP_CURVE_REPRESENTATIONS,false);
}
// ------------------------------------------------------------------------------------------------
// Imports the given file into the given scene structure.
void IFCImporter::InternReadFile( const std::string& pFile,
aiScene* pScene, IOSystem* pIOHandler)
{
boost::shared_ptr<IOStream> stream(pIOHandler->Open(pFile,"rt"));
if (!stream) {
ThrowException("Could not open file for reading");
}
boost::scoped_ptr<STEP::DB> db(STEP::ReadFileHeader(stream));
const STEP::HeaderInfo& head = const_cast<const STEP::DB&>(*db).GetHeader();
if(!head.fileSchema.size() || head.fileSchema.substr(0,3) != "IFC") {
ThrowException("Unrecognized file schema: " + head.fileSchema);
}
if (!DefaultLogger::isNullLogger()) {
LogDebug("File schema is \'" + head.fileSchema + '\'');
if (head.timestamp.length()) {
LogDebug("Timestamp \'" + head.timestamp + '\'');
}
if (head.app.length()) {
LogDebug("Application/Exporter identline is \'" + head.app + '\'');
}
}
// obtain a copy of the machine-generated IFC scheme
EXPRESS::ConversionSchema schema;
IFC::GetSchema(schema);
// feed the IFC schema into the reader and pre-parse all lines
STEP::ReadFile(*db, schema);
const STEP::LazyObject* proj = db->GetObject("ifcproject");
if (!proj) {
ThrowException("missing IfcProject entity");
}
ConversionData conv(*db,proj->To<IFC::IfcProject>(),pScene,settings);
SetUnits(conv);
SetCoordinateSpace(conv);
ProcessSpatialStructures(conv);
MakeTreeRelative(conv);
#ifdef ASSIMP_IFC_TEST
db->EvaluateAll();
#endif
// do final data copying
if (conv.meshes.size()) {
pScene->mNumMeshes = static_cast<unsigned int>(conv.meshes.size());
pScene->mMeshes = new aiMesh*[pScene->mNumMeshes]();
std::copy(conv.meshes.begin(),conv.meshes.end(),pScene->mMeshes);
// needed to keep the d'tor from burning us
conv.meshes.clear();
}
if (conv.materials.size()) {
pScene->mNumMaterials = static_cast<unsigned int>(conv.materials.size());
pScene->mMaterials = new aiMaterial*[pScene->mNumMaterials]();
std::copy(conv.materials.begin(),conv.materials.end(),pScene->mMaterials);
// needed to keep the d'tor from burning us
conv.materials.clear();
}
// apply world coordinate system (which includes the scaling to convert to metres)
aiMatrix4x4 scale;
aiMatrix4x4::Scaling(aiVector3D(conv.len_scale,conv.len_scale,conv.len_scale),scale);
pScene->mRootNode->mTransformation = scale * conv.wcs * pScene->mRootNode->mTransformation;
// this must be last because objects are evaluated lazily as we process them
if ( !DefaultLogger::isNullLogger() ){
LogDebug((Formatter::format(),"STEP: evaluated ",db->GetEvaluatedObjectCount()," object records"));
}
}
namespace {
// ------------------------------------------------------------------------------------------------
bool IsTrue(const EXPRESS::BOOLEAN& in)
{
return (std::string)in == "TRUE" || (std::string)in == "T";
}
// ------------------------------------------------------------------------------------------------
float ConvertSIPrefix(const std::string& prefix)
{
if (prefix == "EXA") {
return 1e18f;
}
else if (prefix == "PETA") {
return 1e15f;
}
else if (prefix == "TERA") {
return 1e12f;
}
else if (prefix == "GIGA") {
return 1e9f;
}
else if (prefix == "MEGA") {
return 1e6f;
}
else if (prefix == "KILO") {
return 1e3f;
}
else if (prefix == "HECTO") {
return 1e2f;
}
else if (prefix == "DECA") {
return 1e-0f;
}
else if (prefix == "DECI") {
return 1e-1f;
}
else if (prefix == "CENTI") {
return 1e-2f;
}
else if (prefix == "MILLI") {
return 1e-3f;
}
else if (prefix == "MICRO") {
return 1e-6f;
}
else if (prefix == "NANO") {
return 1e-9f;
}
else if (prefix == "PICO") {
return 1e-12f;
}
else if (prefix == "FEMTO") {
return 1e-15f;
}
else if (prefix == "ATTO") {
return 1e-18f;
}
else {
IFCImporter::LogError("Unrecognized SI prefix: " + prefix);
return 1;
}
}
// ------------------------------------------------------------------------------------------------
void SetUnits(ConversionData& conv)
{
// see if we can determine the coordinate space used to express
for(size_t i = 0; i < conv.proj.UnitsInContext->Units.size(); ++i ) {
try {
const EXPRESS::ENTITY& e = conv.proj.UnitsInContext->Units[i]->To<IFC::ENTITY>();
const IFC::IfcSIUnit& si = conv.db.MustGetObject(e).To<IFC::IfcSIUnit>();
if(si.UnitType == "LENGTHUNIT" && si.Prefix) {
conv.len_scale = ConvertSIPrefix(si.Prefix);
IFCImporter::LogDebug("got units used for lengths");
}
}
catch(std::bad_cast&) {
// not SI unit, not implemented
continue;
}
}
}
// ------------------------------------------------------------------------------------------------
void ConvertColor(aiColor4D& out, const IFC::IfcColourRgb& in)
{
out.r = in.Red;
out.g = in.Green;
out.b = in.Blue;
out.a = 1.f;
}
// ------------------------------------------------------------------------------------------------
void ConvertColor(aiColor4D& out, const IFC::IfcColourOrFactor* in,ConversionData& conv,const aiColor4D* base)
{
if (const EXPRESS::REAL* const r = in->ToPtr<EXPRESS::REAL>()) {
out.r = out.g = out.b = *r;
if(base) {
out.r *= base->r;
out.g *= base->g;
out.b *= base->b;
out.a = base->a;
}
else out.a = 1.0;
}
else if (const IFC::IfcColourRgb* const rgb = in->ResolveSelectPtr<IFC::IfcColourRgb>(conv.db)) {
ConvertColor(out,*rgb);
}
else {
IFCImporter::LogWarn("skipping unknown IfcColourOrFactor entity");
}
}
// ------------------------------------------------------------------------------------------------
void ConvertCartesianPoint(aiVector3D& out, const IFC::IfcCartesianPoint& in)
{
out = aiVector3D();
for(size_t i = 0; i < in.Coordinates.size(); ++i) {
out[i] = in.Coordinates[i];
}
}
// ------------------------------------------------------------------------------------------------
void ConvertDirection(aiVector3D& out, const IFC::IfcDirection& in)
{
out = aiVector3D();
for(size_t i = 0; i < in.DirectionRatios.size(); ++i) {
out[i] = in.DirectionRatios[i];
}
const float len = out.Length();
if (len<1e-6) {
IFCImporter::LogWarn("direction vector too small, normalizing would result in a division by zero");
return;
}
out /= len;
}
// ------------------------------------------------------------------------------------------------
void AssignMatrixAxes(aiMatrix4x4& out, const aiVector3D& x, const aiVector3D& y, const aiVector3D& z)
{
out.a1 = x.x;
out.b1 = x.y;
out.c1 = x.z;
out.a2 = y.x;
out.b2 = y.y;
out.c2 = y.z;
out.a3 = z.x;
out.b3 = z.y;
out.c3 = z.z;
}
// ------------------------------------------------------------------------------------------------
void ConvertAxisPlacement(aiMatrix4x4& out, const IFC::IfcAxis2Placement3D& in, ConversionData& conv)
{
aiVector3D loc;
ConvertCartesianPoint(loc,in.Location);
aiVector3D z(0.f,0.f,1.f),r(0.f,1.f,0.f),x;
if (in.Axis) {
ConvertDirection(z,*in.Axis.Get());
}
if (in.RefDirection) {
ConvertDirection(r,*in.RefDirection.Get());
}
aiVector3D v = r.Normalize();
aiVector3D tmpx = z * (v*z);
x = (v-tmpx).Normalize();
aiVector3D y = (z^x);
aiMatrix4x4::Translation(loc,out);
AssignMatrixAxes(out,x,y,z);
}
// ------------------------------------------------------------------------------------------------
void ConvertAxisPlacement(aiMatrix4x4& out, const IFC::IfcAxis2Placement2D& in, ConversionData& conv)
{
aiVector3D loc;
ConvertCartesianPoint(loc,in.Location);
aiVector3D x(1.f,0.f,1.f);
if (in.RefDirection) {
ConvertDirection(x,*in.RefDirection.Get());
}
const aiVector3D y = aiVector3D(x.y,-x.x,0.f);
aiMatrix4x4::Translation(loc,out);
AssignMatrixAxes(out,x,y,aiVector3D(0.f,0.f,1.f));
}
// ------------------------------------------------------------------------------------------------
void ConvertAxisPlacement(aiMatrix4x4& out, const IFC::IfcAxis2Placement& in, ConversionData& conv)
{
if(const IFC::IfcAxis2Placement3D* pl3 = in.ResolveSelectPtr<IFC::IfcAxis2Placement3D>(conv.db)) {
ConvertAxisPlacement(out,*pl3,conv);
}
else if(const IFC::IfcAxis2Placement2D* pl2 = in.ResolveSelectPtr<IFC::IfcAxis2Placement2D>(conv.db)) {
ConvertAxisPlacement(out,*pl2,conv);
}
else {
IFCImporter::LogWarn("skipping unknown IfcAxis2Placement entity");
}
}
// ------------------------------------------------------------------------------------------------
void SetCoordinateSpace(ConversionData& conv)
{
const IFC::IfcRepresentationContext* fav = NULL;
BOOST_FOREACH(const IFC::IfcRepresentationContext& v, conv.proj.RepresentationContexts) {
fav = &v;
// Model should be the most suitable type of context, hence ignore the others
if (v.ContextType && v.ContextType.Get() == "Model") {
break;
}
}
if (fav) {
if(const IFC::IfcGeometricRepresentationContext* const geo = fav->ToPtr<IFC::IfcGeometricRepresentationContext>()) {
ConvertAxisPlacement(conv.wcs, *geo->WorldCoordinateSystem, conv);
IFCImporter::LogDebug("got world coordinate system");
}
}
}
// ------------------------------------------------------------------------------------------------
void ConvertTransformOperator(aiMatrix4x4& out, const IFC::IfcCartesianTransformationOperator& op)
{
aiVector3D loc;
ConvertCartesianPoint(loc,op.LocalOrigin);
aiVector3D x(1.f,0.f,0.f),y(0.f,1.f,0.f),z(0.f,0.f,1.f);
if (op.Axis1) {
ConvertDirection(x,*op.Axis1.Get());
}
if (op.Axis2) {
ConvertDirection(y,*op.Axis2.Get());
}
if (const IFC::IfcCartesianTransformationOperator3D* op2 = op.ToPtr<IFC::IfcCartesianTransformationOperator3D>()) {
if(op2->Axis3) {
ConvertDirection(z,*op2->Axis3.Get());
}
}
aiMatrix4x4 locm;
aiMatrix4x4::Translation(loc,locm);
AssignMatrixAxes(out,x,y,z);
const float sc = op.Scale?op.Scale.Get():1.f;
aiMatrix4x4 s;
aiMatrix4x4::Scaling(aiVector3D(sc,sc,sc),s);
out = locm * out * s;
}
// ------------------------------------------------------------------------------------------------
void ProcessPolyloop(const IFC::IfcPolyLoop& loop, TempMesh& meshout, ConversionData& conv)
{
unsigned int cnt = 0;
BOOST_FOREACH(const IFC::IfcCartesianPoint& c, loop.Polygon) {
aiVector3D tmp;
ConvertCartesianPoint(tmp,c);
meshout.verts.push_back(tmp);
++cnt;
}
meshout.vertcnt.push_back(cnt);
}
// ------------------------------------------------------------------------------------------------
void ProcessConnectedFaceSet(const IFC::IfcConnectedFaceSet& fset, TempMesh& meshout, ConversionData& conv)
{
BOOST_FOREACH(const IFC::IfcFace& face, fset.CfsFaces) {
BOOST_FOREACH(const IFC::IfcFaceBound& bound, face.Bounds) {
if(const IFC::IfcPolyLoop* polyloop = bound.Bound->ToPtr<IFC::IfcPolyLoop>()) {
ProcessPolyloop(*polyloop, meshout, conv);
}
else {
IFCImporter::LogWarn("skipping unknown IfcFaceBound entity, type is " + bound.Bound->GetClassName());
continue;
}
if(!IsTrue(bound.Orientation)) {
unsigned int cnt = 0;
BOOST_FOREACH(unsigned int& i, meshout.vertcnt) {
std::reverse(meshout.verts.begin() + cnt,meshout.verts.begin() + cnt + i);
cnt += i;
}
}
}
}
}
// ------------------------------------------------------------------------------------------------
void ProcessPolyLine(const IFC::IfcPolyline& def, TempMesh& meshout, ConversionData& conv)
{
// this won't produce a valid mesh, it just spits out a list of vertices
aiVector3D t;
BOOST_FOREACH(const IFC::IfcCartesianPoint& cp, def.Points) {
ConvertCartesianPoint(t,cp);
meshout.verts.push_back(t);
}
}
// ------------------------------------------------------------------------------------------------
void ProcessClosedProfile(const IFC::IfcArbitraryClosedProfileDef& def, TempMesh& meshout, ConversionData& conv)
{
if(const IFC::IfcPolyline* poly = def.OuterCurve->ToPtr<IFC::IfcPolyline>()) {
ProcessPolyLine(*poly,meshout,conv);
if(meshout.verts.size()>2 && meshout.verts.front() == meshout.verts.back()) {
meshout.verts.pop_back(); // duplicate element, first==last
}
}
else {
IFCImporter::LogWarn("skipping unknown IfcArbitraryClosedProfileDef entity, type is " + def.GetClassName());
return;
}
}
// ------------------------------------------------------------------------------------------------
void ProcessOpenProfile(const IFC::IfcArbitraryOpenProfileDef& def, TempMesh& meshout, ConversionData& conv)
{
if(const IFC::IfcPolyline* poly = def.Curve->ToPtr<IFC::IfcPolyline>()) {
ProcessPolyLine(*poly,meshout,conv);
}
else {
IFCImporter::LogWarn("skipping unknown IfcArbitraryClosedProfileDef entity, type is " + def.GetClassName());
return;
}
}
// ------------------------------------------------------------------------------------------------
void ProcessParametrizedProfile(const IFC::IfcParameterizedProfileDef& def, TempMesh& meshout, ConversionData& conv)
{
if(const IFC::IfcRectangleProfileDef* cprofile = def.ToPtr<IFC::IfcRectangleProfileDef>()) {
const float x = cprofile->XDim*0.5f, y = cprofile->YDim*0.5f;
meshout.verts.reserve(meshout.verts.size()+4);
meshout.verts.push_back( aiVector3D( x, y, 0.f ));
meshout.verts.push_back( aiVector3D( x,-y, 0.f ));
meshout.verts.push_back( aiVector3D(-x,-y, 0.f ));
meshout.verts.push_back( aiVector3D(-x, y, 0.f ));
meshout.vertcnt.push_back(4);
}
else {
IFCImporter::LogWarn("skipping unknown IfcParameterizedProfileDef entity, type is " + def.GetClassName());
return;
}
aiMatrix4x4 trafo;
ConvertAxisPlacement(trafo, *def.Position,conv);
BOOST_FOREACH(aiVector3D& v, meshout.verts) {
v *= trafo;
}
}
// ------------------------------------------------------------------------------------------------
void ProcessExtrudedAreaSolid(const IFC::IfcExtrudedAreaSolid& solid, TempMesh& result, ConversionData& conv)
{
TempMesh meshout;
if(const IFC::IfcArbitraryClosedProfileDef* cprofile = solid.SweptArea->ToPtr<IFC::IfcArbitraryClosedProfileDef>()) {
ProcessClosedProfile(*cprofile,meshout,conv);
}
else if(const IFC::IfcArbitraryOpenProfileDef* copen = solid.SweptArea->ToPtr<IFC::IfcArbitraryOpenProfileDef>()) {
ProcessOpenProfile(*copen,meshout,conv);
}
else if(const IFC::IfcParameterizedProfileDef* cparam = solid.SweptArea->ToPtr<IFC::IfcParameterizedProfileDef>()) {
ProcessParametrizedProfile(*cparam,meshout,conv);
}
else {
IFCImporter::LogWarn("skipping unknown IfcProfileDef entity, type is " + solid.SweptArea->GetClassName());
return;
}
if(meshout.verts.size()<=1) {
return;
}
aiVector3D dir;
ConvertDirection(dir,solid.ExtrudedDirection);
dir *= solid.Depth;
// assuming that `meshout.verts` is now a list of vertex points forming
// the underlying profile, extrude along the given axis, forming new
// triangles.
const std::vector<aiVector3D>& in = meshout.verts;
const size_t size=in.size();
const bool has_area = solid.SweptArea->ProfileType == "AREA" && size>2;
result.verts.reserve(size*(has_area?4:2));
result.vertcnt.reserve(meshout.vertcnt.size()+2);
for(size_t i = 0; i < size; ++i) {
const size_t next = (i+1)%size;
result.vertcnt.push_back(4);
result.verts.push_back(in[i]);
result.verts.push_back(in[next]);
result.verts.push_back(in[next]+dir);
result.verts.push_back(in[i]+dir);
}
if(has_area) {
// leave the triangulation of the profile area to the ear cutting
// implementation in aiProcess_Triangulate - for now we just
// feed in a possibly huge polygon.
for(size_t i = 0; i < size; ++i) {
result.verts.push_back(in[i]);
}
for(size_t i = 0; i < size; ++i) {
result.verts.push_back(in[i]+dir);
}
result.vertcnt.push_back(size);
result.vertcnt.push_back(size);
}
aiMatrix4x4 trafo;
ConvertAxisPlacement(trafo, solid.Position,conv);
BOOST_FOREACH(aiVector3D& v, result.verts) {
v *= trafo;
}
IFCImporter::LogDebug("generate mesh procedurally by extrusion (IfcExtrudedAreaSolid)");
}
// ------------------------------------------------------------------------------------------------
void ProcessSweptAreaSolid(const IFC::IfcSweptAreaSolid& swept, TempMesh& meshout, ConversionData& conv)
{
if(const IFC::IfcExtrudedAreaSolid* solid = swept.ToPtr<IFC::IfcExtrudedAreaSolid>()) {
ProcessExtrudedAreaSolid(*solid,meshout,conv);
}
else {
IFCImporter::LogWarn("skipping unknown IfcSweptAreaSolid entity, type is " + swept.GetClassName());
}
}
// ------------------------------------------------------------------------------------------------
void ProcessBoolean(const IFC::IfcBooleanResult& boolean, TempMesh& meshout, ConversionData& conv)
{
if(const IFC::IfcBooleanClippingResult* const clip = boolean.ToPtr<IFC::IfcBooleanClippingResult>()) {
if(const IFC::IfcBooleanResult* const op0 = clip->FirstOperand->ResolveSelectPtr<IFC::IfcBooleanResult>(conv.db)) {
ProcessBoolean(*op0,meshout,conv);
}
else if (const IFC::IfcSweptAreaSolid* const swept = clip->FirstOperand->ResolveSelectPtr<IFC::IfcSweptAreaSolid>(conv.db)) {
//ProcessSweptAreaSolid(*swept,meshout,conv);
// XXX
}
}
else {
IFCImporter::LogWarn("skipping unknown IfcBooleanResult entity, type is " + boolean.GetClassName());
}
}
// ------------------------------------------------------------------------------------------------
int ConvertShadingMode(const std::string& name)
{
if (name == "BLINN") {
return aiShadingMode_Blinn;
}
else if (name == "FLAT" || name == "NOTDEFINED") {
return aiShadingMode_NoShading;
}
else if (name == "PHONG") {
return aiShadingMode_Phong;
}
IFCImporter::LogWarn("shading mode "+name+" not recognized by Assimp, using Phong instead");
return aiShadingMode_Phong;
}
// ------------------------------------------------------------------------------------------------
unsigned int ProcessMaterials(const IFC::IfcRepresentationItem& item, ConversionData& conv)
{
aiString name;
aiColor4D col;
if (conv.materials.empty()) {
std::auto_ptr<MaterialHelper> mat(new MaterialHelper());
name.Set("<IFCDefault>");
mat->AddProperty(&name,AI_MATKEY_NAME);
col = aiColor4D(0.6f,0.6f,0.6f,1.0f);
mat->AddProperty(&col,1, AI_MATKEY_COLOR_DIFFUSE);
conv.materials.push_back(mat.release());
}
STEP::DB::RefMapRange range = conv.db.GetRefs().equal_range(item.GetID());
for(;range.first != range.second; ++range.first) {
if(const IFC::IfcStyledItem* const styled = conv.db.GetObject((*range.first).second)->ToPtr<IFC::IfcStyledItem>()) {
BOOST_FOREACH(const IFC::IfcPresentationStyleAssignment& as, styled->Styles) {
BOOST_FOREACH(const IFC::IfcPresentationStyleSelect* sel, as.Styles) {
if (const IFC::IfcSurfaceStyle* surf = sel->ResolveSelectPtr<IFC::IfcSurfaceStyle>(conv.db)) {
const std::string side = static_cast<std::string>(surf->Side);
if (side != "BOTH") {
IFCImporter::LogWarn("ignoring surface side marker on IFC::IfcSurfaceStyle: " + side);
}
std::auto_ptr<MaterialHelper> mat(new MaterialHelper());
name.Set((surf->Name? surf->Name.Get() : "IfcSurfaceStyle_Unnamed"));
mat->AddProperty(&name,AI_MATKEY_NAME);
// now see which kinds of surface information are present
BOOST_FOREACH(const IFC::IfcSurfaceStyleElementSelect* sel2, surf->Styles) {
if (const IFC::IfcSurfaceStyleShading* shade = sel2->ResolveSelectPtr<IFC::IfcSurfaceStyleShading>(conv.db)) {
aiColor4D col_base;
ConvertColor(col_base, shade->SurfaceColour);
mat->AddProperty(&col,1, AI_MATKEY_COLOR_DIFFUSE);
if (const IFC::IfcSurfaceStyleRendering* ren = shade->ToPtr<IFC::IfcSurfaceStyleRendering>()) {
if (ren->DiffuseColour) {
ConvertColor(col, ren->DiffuseColour.Get(),conv,&col_base);
mat->AddProperty(&col,1, AI_MATKEY_COLOR_DIFFUSE);
}
if (ren->SpecularColour) {
ConvertColor(col, ren->SpecularColour.Get(),conv,&col_base);
mat->AddProperty(&col,1, AI_MATKEY_COLOR_SPECULAR);
}
if (ren->TransmissionColour) {
ConvertColor(col, ren->TransmissionColour.Get(),conv,&col_base);
mat->AddProperty(&col,1, AI_MATKEY_COLOR_TRANSPARENT);
}
if (ren->ReflectionColour) {
ConvertColor(col, ren->ReflectionColour.Get(),conv,&col_base);
mat->AddProperty(&col,1, AI_MATKEY_COLOR_REFLECTIVE);
}
const int shading = (ren->SpecularHighlight && ren->SpecularColour)?ConvertShadingMode(ren->ReflectanceMethod):aiShadingMode_Gouraud;
mat->AddProperty(&shading,1, AI_MATKEY_SHADING_MODEL);
if (ren->SpecularHighlight) {
if(const EXPRESS::REAL* rt = ren->SpecularHighlight.Get()->ToPtr<EXPRESS::REAL>()) {
// at this point we don't distinguish between the two distinct ways of
// specifying highlight intensities. leave this to the user.
const float e = *rt;
mat->AddProperty(&e,1,AI_MATKEY_SHININESS);
}
else {
IFCImporter::LogWarn("unexpected type error, SpecularHighlight should be a REAL");
}
}
}
}
else if (const IFC::IfcSurfaceStyleWithTextures* tex = sel2->ResolveSelectPtr<IFC::IfcSurfaceStyleWithTextures>(conv.db)) {
// XXX
}
}
conv.materials.push_back(mat.release());
return conv.materials.size()-1;
}
}
}
}
}
return 0;
}
// ------------------------------------------------------------------------------------------------
void ProcessTopologicalItem(const IFC::IfcTopologicalRepresentationItem& topo, std::vector<unsigned int>& mesh_indices, ConversionData& conv)
{
TempMesh meshtmp;
if(const IFC::IfcConnectedFaceSet* fset = topo.ToPtr<IFC::IfcConnectedFaceSet>()) {
ProcessConnectedFaceSet(*fset,meshtmp,conv);
}
else {
IFCImporter::LogWarn("skipping unknown IfcTopologicalRepresentationItem entity, type is " + topo.GetClassName());
return;
}
aiMesh* const mesh = meshtmp.ToMesh();
if(mesh) {
mesh->mMaterialIndex = ProcessMaterials(topo,conv);
mesh_indices.push_back(conv.meshes.size());
conv.meshes.push_back(mesh);
}
}
// ------------------------------------------------------------------------------------------------
void ProcessGeometricItem(const IFC::IfcGeometricRepresentationItem& geo, std::vector<unsigned int>& mesh_indices, ConversionData& conv)
{
TempMesh meshtmp;
if(const IFC::IfcShellBasedSurfaceModel* shellmod = geo.ToPtr<IFC::IfcShellBasedSurfaceModel>()) {
BOOST_FOREACH(const IFC::IfcShell* shell,shellmod->SbsmBoundary) {
try {
const EXPRESS::ENTITY& e = shell->To<IFC::ENTITY>();
const IFC::IfcConnectedFaceSet& fs = conv.db.MustGetObject(e).To<IFC::IfcConnectedFaceSet>();
ProcessConnectedFaceSet(fs,meshtmp,conv);
}
catch(std::bad_cast&) {
IFCImporter::LogWarn("unexpected type error, IfcShell ought to inherit from IfcConnectedFaceSet");
continue;
}
}
}
else if(const IFC::IfcSweptAreaSolid* swept = geo.ToPtr<IFC::IfcSweptAreaSolid>()) {
ProcessSweptAreaSolid(*swept,meshtmp,conv);
}
else if(const IFC::IfcManifoldSolidBrep* brep = geo.ToPtr<IFC::IfcManifoldSolidBrep>()) {
ProcessConnectedFaceSet(brep->Outer,meshtmp,conv);
}
else if(const IFC::IfcBooleanResult* boolean = geo.ToPtr<IFC::IfcBooleanResult>()) {
ProcessBoolean(*boolean,meshtmp,conv);
}
else {
IFCImporter::LogWarn("skipping unknown IfcGeometricRepresentationItem entity, type is " + geo.GetClassName());
return;
}
aiMesh* const mesh = meshtmp.ToMesh();
if(mesh) {
mesh->mMaterialIndex = ProcessMaterials(geo,conv);
mesh_indices.push_back(conv.meshes.size());
conv.meshes.push_back(mesh);
}
}
// ------------------------------------------------------------------------------------------------
void AssignAddedMeshes(std::vector<unsigned int>& mesh_indices,aiNode* nd,ConversionData& conv)
{
if (!mesh_indices.empty()) {
// make unique
std::sort(mesh_indices.begin(),mesh_indices.end());
std::vector<unsigned int>::iterator it_end = std::unique(mesh_indices.begin(),mesh_indices.end());
const size_t size = std::distance(mesh_indices.begin(),it_end);
nd->mNumMeshes = size;
nd->mMeshes = new unsigned int[nd->mNumMeshes];
for(unsigned int i = 0; i < nd->mNumMeshes; ++i) {
nd->mMeshes[i] = mesh_indices[i];
}
}
}
// ------------------------------------------------------------------------------------------------
bool TryQueryMeshCache(const IFC::IfcRepresentationItem& item, std::vector<unsigned int>& mesh_indices, ConversionData& conv)
{
ConversionData::MeshCache::const_iterator it = conv.cached_meshes.find(&item);
if (it != conv.cached_meshes.end()) {
std::copy((*it).second.begin(),(*it).second.end(),std::back_inserter(mesh_indices));
return true;
}
return false;
}
// ------------------------------------------------------------------------------------------------
void PopulateMeshCache(const IFC::IfcRepresentationItem& item, const std::vector<unsigned int>& mesh_indices, ConversionData& conv)
{
conv.cached_meshes[&item] = mesh_indices;
}
// ------------------------------------------------------------------------------------------------
bool ProcessRepresentationItem(const IFC::IfcRepresentationItem& item, std::vector<unsigned int>& mesh_indices, ConversionData& conv)
{
// XXX should we make a choice? handle only one of them?
if(const IFC::IfcTopologicalRepresentationItem* const topo = item.ToPtr<IFC::IfcTopologicalRepresentationItem>()) {
if (!TryQueryMeshCache(item,mesh_indices,conv)) {
ProcessTopologicalItem(*topo,mesh_indices,conv);
PopulateMeshCache(item,mesh_indices,conv);
}
}
else if(const IFC::IfcGeometricRepresentationItem* const geo = item.ToPtr<IFC::IfcGeometricRepresentationItem>()) {
if (!TryQueryMeshCache(item,mesh_indices,conv)) {
ProcessGeometricItem(*geo,mesh_indices,conv);
PopulateMeshCache(item,mesh_indices,conv);
}
}
else {
return false;
}
return true;
}
// ------------------------------------------------------------------------------------------------
void ResolveObjectPlacement(aiMatrix4x4& m, const IFC::IfcObjectPlacement& place, ConversionData& conv)
{
if (const IFC::IfcLocalPlacement* const local = place.ToPtr<IFC::IfcLocalPlacement>()){
ConvertAxisPlacement(m, *local->RelativePlacement, conv);
if (local->PlacementRelTo) {
aiMatrix4x4 tmp;
ResolveObjectPlacement(tmp,local->PlacementRelTo.Get(),conv);
m = tmp * m;
}
}
else {
IFCImporter::LogWarn("skipping unknown IfcObjectPlacement entity, type is " + place.GetClassName());
}
}
// ------------------------------------------------------------------------------------------------
void GetAbsTransform(aiMatrix4x4& out, const aiNode* nd, ConversionData& conv)
{
aiMatrix4x4 t;
if (nd->mParent) {
GetAbsTransform(t,nd->mParent,conv);
}
out = t*nd->mTransformation;
}
// ------------------------------------------------------------------------------------------------
void ProcessMappedItem(const IFC::IfcMappedItem& mapped, aiNode* nd_src, std::vector< aiNode* >& subnodes_src, ConversionData& conv)
{
// insert a custom node here, the cartesian transform operator is simply a conventional transformation matrix
std::auto_ptr<aiNode> nd(new aiNode());
nd->mName.Set("MappedItem");
std::vector<unsigned int> meshes;
const IFC::IfcRepresentation& repr = mapped.MappingSource->MappedRepresentation;
BOOST_FOREACH(const IFC::IfcRepresentationItem& item, repr.Items) {
if(!ProcessRepresentationItem(item,meshes,conv)) {
IFCImporter::LogWarn("skipping unknown IfcMappedItem entity, type is " + item.GetClassName());
}
}
AssignAddedMeshes(meshes,nd.get(),conv);
// handle the cartesian operator
aiMatrix4x4 m;
ConvertTransformOperator(m, *mapped.MappingTarget);
aiMatrix4x4 msrc;
ConvertAxisPlacement(msrc,*mapped.MappingSource->MappingOrigin,conv);
aiMatrix4x4 minv = msrc;
minv.Inverse();
//aiMatrix4x4 correct;
//GetAbsTransform(correct,nd_src,conv);
nd->mTransformation = nd_src->mTransformation * minv * m * msrc;
subnodes_src.push_back(nd.release());
}
// ------------------------------------------------------------------------------------------------
void ProcessProductRepresentation(const IFC::IfcProduct& el, aiNode* nd, std::vector< aiNode* >& subnodes, ConversionData& conv)
{
if(!el.Representation) {
return;
}
if(conv.settings.skipSpaceRepresentations) {
if(const IFC::IfcSpace* const space = el.ToPtr<IFC::IfcSpace>()) {
IFCImporter::LogWarn("skipping space representation due to importer settings");
return;
}
}
std::vector<unsigned int> meshes;
BOOST_FOREACH(const IFC::IfcRepresentation& repr, el.Representation.Get()->Representations) {
if (conv.settings.skipCurveRepresentations && repr.RepresentationType && repr.RepresentationType.Get() == "Curve2D") {
IFCImporter::LogWarn("skipping Curve2D representation item due to importer settings");
return;
}
BOOST_FOREACH(const IFC::IfcRepresentationItem& item, repr.Items) {
if(!ProcessRepresentationItem(item,meshes,conv)) {
if(const IFC::IfcMappedItem* const geo = item.ToPtr<IFC::IfcMappedItem>()) {
ProcessMappedItem(*geo,nd,subnodes,conv);
}
else {
IFCImporter::LogWarn("skipping unknown IfcRepresentationItem entity, type is " + item.GetClassName());
}
}
}
}
AssignAddedMeshes(meshes,nd,conv);
}
// ------------------------------------------------------------------------------------------------
aiNode* ProcessSpatialStructure(aiNode* parent, const IFC::IfcProduct& el, ConversionData& conv)
{
const STEP::DB::RefMap& refs = conv.db.GetRefs();
// add an output node for this spatial structure
std::auto_ptr<aiNode> nd(new aiNode());
nd->mName.Set(el.GetClassName()+"_"+(el.Name?el.Name:el.GlobalId));
nd->mParent = parent;
if(el.ObjectPlacement) {
ResolveObjectPlacement(nd->mTransformation,el.ObjectPlacement.Get(),conv);
}
// convert everything contained directly within this structure,
// this may result in more nodes.
std::vector< aiNode* > subnodes;
try {
ProcessProductRepresentation(el,nd.get(),subnodes,conv);
// locate aggregates and 'contained-in-here'-elements of this spatial structure and add them in recursively
STEP::DB::RefMapRange range = refs.equal_range(el.GetID());
for(STEP::DB::RefMapRange range2=range;range2.first != range.second; ++range2.first) {
if(const IFC::IfcRelContainedInSpatialStructure* const cont = conv.db.GetObject((*range2.first).second)->
ToPtr<IFC::IfcRelContainedInSpatialStructure>()) {
BOOST_FOREACH(const IFC::IfcProduct& pro, cont->RelatedElements) {
subnodes.push_back( ProcessSpatialStructure(nd.get(),pro,conv) );
}
break;
}
}
for(;range.first != range.second; ++range.first) {
if(const IFC::IfcRelAggregates* const aggr = conv.db.GetObject((*range.first).second)->ToPtr<IFC::IfcRelAggregates>()) {
// move aggregate elements to a separate node since they are semantically different than elements that are merely 'contained'
std::auto_ptr<aiNode> nd_aggr(new aiNode());
nd_aggr->mName.Set("$Aggregates");
nd_aggr->mParent = nd.get();
nd_aggr->mChildren = new aiNode*[aggr->RelatedObjects.size()]();
BOOST_FOREACH(const IFC::IfcObjectDefinition& def, aggr->RelatedObjects) {
if(const IFC::IfcProduct* const prod = def.ToPtr<IFC::IfcProduct>()) {
nd_aggr->mChildren[nd_aggr->mNumChildren++] = ProcessSpatialStructure(nd_aggr.get(),*prod,conv);
}
}
subnodes.push_back( nd_aggr.release() );
break;
}
}
if (subnodes.size()) {
nd->mChildren = new aiNode*[subnodes.size()]();
BOOST_FOREACH(aiNode* nd2, subnodes) {
nd->mChildren[nd->mNumChildren++] = nd2;
nd2->mParent = nd.get();
}
}
}
catch(...) {
// it hurts, but I don't want to pull boost::ptr_vector into -noboost only for these few spots here
std::for_each(subnodes.begin(),subnodes.end(),delete_fun<aiNode>());
throw;
}
return nd.release();
}
// ------------------------------------------------------------------------------------------------
void ProcessSpatialStructures(ConversionData& conv)
{
// process all products in the file. it is reasonable to assume that a
// file that is relevant for us contains at least a site or a building.
const STEP::DB::ObjectMapByType& map = conv.db.GetObjectsByType();
STEP::DB::ObjectMapRange range = map.equal_range("ifcsite");
if (range.first == map.end()) {
range = map.equal_range("ifcbuilding");
if (range.first == map.end()) {
// no site, no building - try all ids. this will take ages, but it should rarely happen.
range = STEP::DB::ObjectMapRange(map.begin(),map.end());
}
}
for(;range.first != range.second; ++range.first) {
const IFC::IfcSpatialStructureElement* const prod = (*range.first).second->ToPtr<IFC::IfcSpatialStructureElement>();
if(!prod) {
continue;
}
IFCImporter::LogDebug("looking at spatial structure `" + (prod->Name ? prod->Name.Get() : "unnamed") + "`" + (prod->ObjectType? " which is of type " + prod->ObjectType.Get():""));
// the primary site is referenced by an IFCRELAGGREGATES element which assigns it to the IFCPRODUCT
const STEP::DB::RefMap& refs = conv.db.GetRefs();
STEP::DB::RefMapRange range = refs.equal_range(conv.proj.GetID());
for(;range.first != range.second; ++range.first) {
if(const IFC::IfcRelAggregates* const aggr = conv.db.GetObject((*range.first).second)->ToPtr<IFC::IfcRelAggregates>()) {
BOOST_FOREACH(const IFC::IfcObjectDefinition& def, aggr->RelatedObjects) {
// comparing pointer values is not sufficient, we would need to cast them to the same type first
// as there is multiple inheritance in the game.
if (def.GlobalId == prod->GlobalId) {
IFCImporter::LogDebug("selecting this spatial structure as root structure");
// got it, this is the primary site.
conv.out->mRootNode = ProcessSpatialStructure(NULL,*prod,conv);
return;
}
}
}
}
}
IFCImporter::ThrowException("Failed to determine primary site element");
}
// ------------------------------------------------------------------------------------------------
void MakeTreeRelative(aiNode* start, const aiMatrix4x4& combined)
{
// combined is the parent's absolute transformation matrix
aiMatrix4x4 old = start->mTransformation;
if (!combined.IsIdentity()) {
start->mTransformation = aiMatrix4x4(combined).Inverse() * start->mTransformation;
}
// All nodes store absolute transformations right now, so we need to make them relative
for (unsigned int i = 0; i < start->mNumChildren; ++i) {
MakeTreeRelative(start->mChildren[i],old);
}
}
// ------------------------------------------------------------------------------------------------
void MakeTreeRelative(ConversionData& conv)
{
MakeTreeRelative(conv.out->mRootNode,aiMatrix4x4());
}
} // !anon
// ------------------------------------------------------------------------------------------------
/*static*/ void IFCImporter::ThrowException(const std::string& msg)
{
throw DeadlyImportError("IFC: "+msg);
}
// ------------------------------------------------------------------------------------------------
/*static*/ void IFCImporter::LogWarn(const Formatter::format& message) {
DefaultLogger::get()->warn(std::string("IFC: ")+=message);
}
// ------------------------------------------------------------------------------------------------
/*static*/ void IFCImporter::LogError(const Formatter::format& message) {
DefaultLogger::get()->error(std::string("IFC: ")+=message);
}
// ------------------------------------------------------------------------------------------------
/*static*/ void IFCImporter::LogInfo(const Formatter::format& message) {
DefaultLogger::get()->info(std::string("IFC: ")+=message);
}
// ------------------------------------------------------------------------------------------------
/*static*/ void IFCImporter::LogDebug(const Formatter::format& message) {
DefaultLogger::get()->debug(std::string("IFC: ")+=message);
}
#endif