assimp/code/AssetLib/X3D/X3DExporter.cpp

676 lines
26 KiB
C++

/// \file X3DExporter.cpp
/// \brief X3D-format files exporter for Assimp. Implementation.
/// \date 2016
/// \author smal.root@gmail.com
#ifndef ASSIMP_BUILD_NO_EXPORT
#ifndef ASSIMP_BUILD_NO_X3D_EXPORTER
#include "X3DExporter.hpp"
// Header files, Assimp.
#include <assimp/Exceptional.h>
#include <assimp/StringUtils.h>
#include <assimp/Exporter.hpp>
#include <assimp/IOSystem.hpp>
using namespace std;
namespace Assimp {
void ExportSceneX3D(const char *pFile, IOSystem *pIOSystem, const aiScene *pScene, const ExportProperties *pProperties) {
X3DExporter exporter(pFile, pIOSystem, pScene, pProperties);
}
} // namespace Assimp
namespace Assimp {
void X3DExporter::IndentationStringSet(const size_t pNewLevel) {
if (pNewLevel > mIndentationString.size()) {
if (pNewLevel > mIndentationString.capacity()) mIndentationString.reserve(pNewLevel + 1);
for (size_t i = 0, i_e = pNewLevel - mIndentationString.size(); i < i_e; i++)
mIndentationString.push_back('\t');
} else if (pNewLevel < mIndentationString.size()) {
mIndentationString.resize(pNewLevel);
}
}
void X3DExporter::XML_Write(const string &pData) {
if (pData.size() == 0) return;
if (mOutFile->Write((void *)pData.data(), pData.length(), 1) != 1) throw DeadlyExportError("Failed to write scene data!");
}
aiMatrix4x4 X3DExporter::Matrix_GlobalToCurrent(const aiNode &pNode) const {
aiNode *cur_node;
std::list<aiMatrix4x4> matr;
aiMatrix4x4 out_matr;
// starting walk from current element to root
matr.push_back(pNode.mTransformation);
cur_node = pNode.mParent;
if (cur_node != nullptr) {
do {
matr.push_back(cur_node->mTransformation);
cur_node = cur_node->mParent;
} while (cur_node != nullptr);
}
// multiplicate all matrices in reverse order
for (std::list<aiMatrix4x4>::reverse_iterator rit = matr.rbegin(); rit != matr.rend(); ++rit)
out_matr = out_matr * (*rit);
return out_matr;
}
void X3DExporter::AttrHelper_FloatToString(const float pValue, std::string &pTargetString) {
pTargetString = to_string(pValue);
AttrHelper_CommaToPoint(pTargetString);
}
void X3DExporter::AttrHelper_Vec3DArrToString(const aiVector3D *pArray, const size_t pArray_Size, string &pTargetString) {
pTargetString.clear();
pTargetString.reserve(pArray_Size * 6); // (Number + space) * 3.
for (size_t idx = 0; idx < pArray_Size; idx++)
pTargetString.append(to_string(pArray[idx].x) + " " + to_string(pArray[idx].y) + " " + to_string(pArray[idx].z) + " ");
// remove last space symbol.
pTargetString.resize(pTargetString.length() - 1);
AttrHelper_CommaToPoint(pTargetString);
}
void X3DExporter::AttrHelper_Vec2DArrToString(const aiVector2D *pArray, const size_t pArray_Size, std::string &pTargetString) {
pTargetString.clear();
pTargetString.reserve(pArray_Size * 4); // (Number + space) * 2.
for (size_t idx = 0; idx < pArray_Size; idx++)
pTargetString.append(to_string(pArray[idx].x) + " " + to_string(pArray[idx].y) + " ");
// remove last space symbol.
pTargetString.resize(pTargetString.length() - 1);
AttrHelper_CommaToPoint(pTargetString);
}
void X3DExporter::AttrHelper_Vec3DAsVec2fArrToString(const aiVector3D *pArray, const size_t pArray_Size, string &pTargetString) {
pTargetString.clear();
pTargetString.reserve(pArray_Size * 4); // (Number + space) * 2.
for (size_t idx = 0; idx < pArray_Size; idx++)
pTargetString.append(to_string(pArray[idx].x) + " " + to_string(pArray[idx].y) + " ");
// remove last space symbol.
pTargetString.resize(pTargetString.length() - 1);
AttrHelper_CommaToPoint(pTargetString);
}
void X3DExporter::AttrHelper_Col4DArrToString(const aiColor4D *pArray, const size_t pArray_Size, string &pTargetString) {
pTargetString.clear();
pTargetString.reserve(pArray_Size * 8); // (Number + space) * 4.
for (size_t idx = 0; idx < pArray_Size; idx++)
pTargetString.append(to_string(pArray[idx].r) + " " + to_string(pArray[idx].g) + " " + to_string(pArray[idx].b) + " " +
to_string(pArray[idx].a) + " ");
// remove last space symbol.
pTargetString.resize(pTargetString.length() - 1);
AttrHelper_CommaToPoint(pTargetString);
}
void X3DExporter::AttrHelper_Col3DArrToString(const aiColor3D *pArray, const size_t pArray_Size, std::string &pTargetString) {
pTargetString.clear();
pTargetString.reserve(pArray_Size * 6); // (Number + space) * 3.
for (size_t idx = 0; idx < pArray_Size; idx++)
pTargetString.append(to_string(pArray[idx].r) + " " + to_string(pArray[idx].g) + " " + to_string(pArray[idx].b) + " ");
// remove last space symbol.
pTargetString.resize(pTargetString.length() - 1);
AttrHelper_CommaToPoint(pTargetString);
}
void X3DExporter::AttrHelper_Color3ToAttrList(std::list<SAttribute> &pList, const std::string &pName, const aiColor3D &pValue, const aiColor3D &pDefaultValue) {
string tstr;
if (pValue == pDefaultValue) return;
AttrHelper_Col3DArrToString(&pValue, 1, tstr);
pList.push_back({ pName, tstr });
}
void X3DExporter::AttrHelper_FloatToAttrList(std::list<SAttribute> &pList, const string &pName, const float pValue, const float pDefaultValue) {
string tstr;
if (pValue == pDefaultValue) return;
AttrHelper_FloatToString(pValue, tstr);
pList.push_back({ pName, tstr });
}
void X3DExporter::NodeHelper_OpenNode(const string &pNodeName, const size_t pTabLevel, const bool pEmptyElement, const list<SAttribute> &pAttrList) {
// Write indentation.
IndentationStringSet(pTabLevel);
XML_Write(mIndentationString);
// Begin of the element
XML_Write("<" + pNodeName);
// Write attributes
for (const SAttribute &attr : pAttrList) {
XML_Write(" " + attr.Name + "='" + attr.Value + "'");
}
// End of the element
if (pEmptyElement) {
XML_Write("/>\n");
} else {
XML_Write(">\n");
}
}
void X3DExporter::NodeHelper_OpenNode(const string &pNodeName, const size_t pTabLevel, const bool pEmptyElement) {
const list<SAttribute> attr_list;
NodeHelper_OpenNode(pNodeName, pTabLevel, pEmptyElement, attr_list);
}
void X3DExporter::NodeHelper_CloseNode(const string &pNodeName, const size_t pTabLevel) {
// Write indentation.
IndentationStringSet(pTabLevel);
XML_Write(mIndentationString);
// Write element
XML_Write("</" + pNodeName + ">\n");
}
void X3DExporter::Export_Node(const aiNode *pNode, const size_t pTabLevel) {
bool transform = false;
list<SAttribute> attr_list;
// In Assimp lights is stored in next way: light source store in mScene->mLights and in node tree must present aiNode with name same as
// light source has. Considering it we must compare every aiNode name with light sources names. Why not to look where ligths is present
// and save them to fili? Because corresponding aiNode can be already written to file and we can only add information to file not to edit.
if (CheckAndExport_Light(*pNode, pTabLevel)) return;
// Check if need DEF.
if (pNode->mName.length) attr_list.push_back({ "DEF", pNode->mName.C_Str() });
// Check if need <Transformation> node against <Group>.
if (!pNode->mTransformation.IsIdentity()) {
auto Vector2String = [this](const aiVector3D pVector) -> string {
string tstr = to_string(pVector.x) + " " + to_string(pVector.y) + " " + to_string(pVector.z);
AttrHelper_CommaToPoint(tstr);
return tstr;
};
auto Rotation2String = [this](const aiVector3D pAxis, const ai_real pAngle) -> string {
string tstr = to_string(pAxis.x) + " " + to_string(pAxis.y) + " " + to_string(pAxis.z) + " " + to_string(pAngle);
AttrHelper_CommaToPoint(tstr);
return tstr;
};
aiVector3D scale, translate, rotate_axis;
ai_real rotate_angle;
transform = true;
pNode->mTransformation.Decompose(scale, rotate_axis, rotate_angle, translate);
// Check if values different from default
if ((rotate_angle != 0) && (rotate_axis.Length() > 0))
attr_list.push_back({ "rotation", Rotation2String(rotate_axis, rotate_angle) });
if (!scale.Equal({ 1.0, 1.0, 1.0 })) {
attr_list.push_back({ "scale", Vector2String(scale) });
}
if (translate.Length() > 0) {
attr_list.push_back({ "translation", Vector2String(translate) });
}
}
// Begin node if need.
if (transform)
NodeHelper_OpenNode("Transform", pTabLevel, false, attr_list);
else
NodeHelper_OpenNode("Group", pTabLevel);
// Export metadata
if (pNode->mMetaData != nullptr) {
for (size_t idx_prop = 0; idx_prop < pNode->mMetaData->mNumProperties; idx_prop++) {
const aiString *key;
const aiMetadataEntry *entry;
if (pNode->mMetaData->Get(idx_prop, key, entry)) {
switch (entry->mType) {
case AI_BOOL:
Export_MetadataBoolean(*key, *static_cast<bool *>(entry->mData), pTabLevel + 1);
break;
case AI_DOUBLE:
Export_MetadataDouble(*key, *static_cast<double *>(entry->mData), pTabLevel + 1);
break;
case AI_FLOAT:
Export_MetadataFloat(*key, *static_cast<float *>(entry->mData), pTabLevel + 1);
break;
case AI_INT32:
Export_MetadataInteger(*key, *static_cast<int32_t *>(entry->mData), pTabLevel + 1);
break;
case AI_AISTRING:
Export_MetadataString(*key, *static_cast<aiString *>(entry->mData), pTabLevel + 1);
break;
default:
LogError("Unsupported metadata type: " + to_string(entry->mType));
break;
} // switch(entry->mType)
}
}
} // if(pNode->mMetaData != nullptr)
// Export meshes.
for (size_t idx_mesh = 0; idx_mesh < pNode->mNumMeshes; idx_mesh++)
Export_Mesh(pNode->mMeshes[idx_mesh], pTabLevel + 1);
// Export children.
for (size_t idx_node = 0; idx_node < pNode->mNumChildren; idx_node++)
Export_Node(pNode->mChildren[idx_node], pTabLevel + 1);
// End node if need.
if (transform)
NodeHelper_CloseNode("Transform", pTabLevel);
else
NodeHelper_CloseNode("Group", pTabLevel);
}
void X3DExporter::Export_Mesh(const size_t pIdxMesh, const size_t pTabLevel) {
const char *NodeName_IFS = "IndexedFaceSet";
const char *NodeName_Shape = "Shape";
list<SAttribute> attr_list;
aiMesh &mesh = *mScene->mMeshes[pIdxMesh]; // create alias for convenience.
// Check if mesh already defined early.
if (mDEF_Map_Mesh.find(pIdxMesh) != mDEF_Map_Mesh.end()) {
// Mesh already defined, just refer to it
attr_list.push_back({ "USE", mDEF_Map_Mesh.at(pIdxMesh) });
NodeHelper_OpenNode(NodeName_Shape, pTabLevel, true, attr_list);
return;
}
string mesh_name(mesh.mName.C_Str() + string("_IDX_") + to_string(pIdxMesh)); // Create mesh name
// Define mesh name.
attr_list.push_back({ "DEF", mesh_name });
mDEF_Map_Mesh[pIdxMesh] = mesh_name;
//
// "Shape" node.
//
NodeHelper_OpenNode(NodeName_Shape, pTabLevel, false, attr_list);
attr_list.clear();
//
// "Appearance" node.
//
Export_Material(mesh.mMaterialIndex, pTabLevel + 1);
//
// "IndexedFaceSet" node.
//
// Fill attributes which differ from default. In Assimp for colors, vertices and normals used one indices set. So, only "coordIndex" must be set.
string coordIndex;
// fill coordinates index.
coordIndex.reserve(mesh.mNumVertices * 4); // Index + space + Face delimiter
for (size_t idx_face = 0; idx_face < mesh.mNumFaces; idx_face++) {
const aiFace &face_cur = mesh.mFaces[idx_face];
for (size_t idx_vert = 0; idx_vert < face_cur.mNumIndices; idx_vert++) {
coordIndex.append(to_string(face_cur.mIndices[idx_vert]) + " ");
}
coordIndex.append("-1 "); // face delimiter.
}
// remove last space symbol.
coordIndex.resize(coordIndex.length() - 1);
attr_list.push_back({ "coordIndex", coordIndex });
// create node
NodeHelper_OpenNode(NodeName_IFS, pTabLevel + 1, false, attr_list);
attr_list.clear();
// Child nodes for "IndexedFaceSet" needed when used colors, textures or normals.
string attr_value;
// Export <Coordinate>
AttrHelper_Vec3DArrToString(mesh.mVertices, mesh.mNumVertices, attr_value);
attr_list.push_back({ "point", attr_value });
NodeHelper_OpenNode("Coordinate", pTabLevel + 2, true, attr_list);
attr_list.clear();
// Export <ColorRGBA>
if (mesh.HasVertexColors(0)) {
AttrHelper_Col4DArrToString(mesh.mColors[0], mesh.mNumVertices, attr_value);
attr_list.push_back({ "color", attr_value });
NodeHelper_OpenNode("ColorRGBA", pTabLevel + 2, true, attr_list);
attr_list.clear();
}
// Export <TextureCoordinate>
if (mesh.HasTextureCoords(0)) {
AttrHelper_Vec3DAsVec2fArrToString(mesh.mTextureCoords[0], mesh.mNumVertices, attr_value);
attr_list.push_back({ "point", attr_value });
NodeHelper_OpenNode("TextureCoordinate", pTabLevel + 2, true, attr_list);
attr_list.clear();
}
// Export <Normal>
if (mesh.HasNormals()) {
AttrHelper_Vec3DArrToString(mesh.mNormals, mesh.mNumVertices, attr_value);
attr_list.push_back({ "vector", attr_value });
NodeHelper_OpenNode("Normal", pTabLevel + 2, true, attr_list);
attr_list.clear();
}
//
// Close opened nodes.
//
NodeHelper_CloseNode(NodeName_IFS, pTabLevel + 1);
NodeHelper_CloseNode(NodeName_Shape, pTabLevel);
}
void X3DExporter::Export_Material(const size_t pIdxMaterial, const size_t pTabLevel) {
const char *NodeName_A = "Appearance";
list<SAttribute> attr_list;
aiMaterial &material = *mScene->mMaterials[pIdxMaterial]; // create alias for convenience.
// Check if material already defined early.
if (mDEF_Map_Material.find(pIdxMaterial) != mDEF_Map_Material.end()) {
// Material already defined, just refer to it
attr_list.push_back({ "USE", mDEF_Map_Material.at(pIdxMaterial) });
NodeHelper_OpenNode(NodeName_A, pTabLevel, true, attr_list);
return;
}
string material_name(string("_IDX_") + to_string(pIdxMaterial)); // Create material name
aiString ai_mat_name;
if (material.Get(AI_MATKEY_NAME, ai_mat_name) == AI_SUCCESS) material_name.insert(0, ai_mat_name.C_Str());
// Define material name.
attr_list.push_back({ "DEF", material_name });
mDEF_Map_Material[pIdxMaterial] = material_name;
//
// "Appearance" node.
//
NodeHelper_OpenNode(NodeName_A, pTabLevel, false, attr_list);
attr_list.clear();
//
// "Material" node.
//
{
auto Color4ToAttrList = [&](const string &pAttrName, const aiColor4D &pAttrValue, const aiColor3D &pAttrDefaultValue) {
string tstr;
if (aiColor3D(pAttrValue.r, pAttrValue.g, pAttrValue.b) != pAttrDefaultValue) {
AttrHelper_Col4DArrToString(&pAttrValue, 1, tstr);
attr_list.push_back({ pAttrName, tstr });
}
};
float tvalf;
aiColor3D color3;
aiColor4D color4;
// ambientIntensity="0.2" SFFloat [inputOutput]
if (material.Get(AI_MATKEY_COLOR_AMBIENT, color3) == AI_SUCCESS)
AttrHelper_FloatToAttrList(attr_list, "ambientIntensity", (color3.r + color3.g + color3.b) / 3.0f, 0.2f);
else if (material.Get(AI_MATKEY_COLOR_AMBIENT, color4) == AI_SUCCESS)
AttrHelper_FloatToAttrList(attr_list, "ambientIntensity", (color4.r + color4.g + color4.b) / 3.0f, 0.2f);
// diffuseColor="0.8 0.8 0.8" SFColor [inputOutput]
if (material.Get(AI_MATKEY_COLOR_DIFFUSE, color3) == AI_SUCCESS)
AttrHelper_Color3ToAttrList(attr_list, "diffuseColor", color3, aiColor3D(0.8f, 0.8f, 0.8f));
else if (material.Get(AI_MATKEY_COLOR_DIFFUSE, color4) == AI_SUCCESS)
Color4ToAttrList("diffuseColor", color4, aiColor3D(0.8f, 0.8f, 0.8f));
// emissiveColor="0 0 0" SFColor [inputOutput]
if (material.Get(AI_MATKEY_COLOR_EMISSIVE, color3) == AI_SUCCESS)
AttrHelper_Color3ToAttrList(attr_list, "emissiveColor", color3, aiColor3D(0, 0, 0));
else if (material.Get(AI_MATKEY_COLOR_EMISSIVE, color4) == AI_SUCCESS)
Color4ToAttrList("emissiveColor", color4, aiColor3D(0, 0, 0));
// shininess="0.2" SFFloat [inputOutput]
if (material.Get(AI_MATKEY_SHININESS, tvalf) == AI_SUCCESS) AttrHelper_FloatToAttrList(attr_list, "shininess", tvalf, 0.2f);
// specularColor="0 0 0" SFColor [inputOutput]
if (material.Get(AI_MATKEY_COLOR_SPECULAR, color3) == AI_SUCCESS)
AttrHelper_Color3ToAttrList(attr_list, "specularColor", color3, aiColor3D(0, 0, 0));
else if (material.Get(AI_MATKEY_COLOR_SPECULAR, color4) == AI_SUCCESS)
Color4ToAttrList("specularColor", color4, aiColor3D(0, 0, 0));
// transparency="0" SFFloat [inputOutput]
if (material.Get(AI_MATKEY_OPACITY, tvalf) == AI_SUCCESS) {
if (tvalf > 1) tvalf = 1;
tvalf = 1.0f - tvalf;
AttrHelper_FloatToAttrList(attr_list, "transparency", tvalf, 0);
}
NodeHelper_OpenNode("Material", pTabLevel + 1, true, attr_list);
attr_list.clear();
} // "Material" node. END.
//
// "ImageTexture" node.
//
{
auto RepeatToAttrList = [&](const string &pAttrName, const bool pAttrValue) {
if (!pAttrValue) attr_list.push_back({ pAttrName, "false" });
};
bool tvalb;
aiString tstring;
// url="" MFString
if (material.Get(AI_MATKEY_TEXTURE_DIFFUSE(0), tstring) == AI_SUCCESS) {
if (strncmp(tstring.C_Str(), AI_EMBEDDED_TEXNAME_PREFIX, strlen(AI_EMBEDDED_TEXNAME_PREFIX)) == 0)
LogError("Embedded texture is not supported");
else
attr_list.push_back({ "url", string("\"") + tstring.C_Str() + "\"" });
}
// repeatS="true" SFBool
if (material.Get(AI_MATKEY_MAPPINGMODE_U_DIFFUSE(0), tvalb) == AI_SUCCESS) RepeatToAttrList("repeatS", tvalb);
// repeatT="true" SFBool
if (material.Get(AI_MATKEY_MAPPINGMODE_V_DIFFUSE(0), tvalb) == AI_SUCCESS) RepeatToAttrList("repeatT", tvalb);
NodeHelper_OpenNode("ImageTexture", pTabLevel + 1, true, attr_list);
attr_list.clear();
} // "ImageTexture" node. END.
//
// "TextureTransform" node.
//
{
auto Vec2ToAttrList = [&](const string &pAttrName, const aiVector2D &pAttrValue, const aiVector2D &pAttrDefaultValue) {
string tstr;
if (pAttrValue != pAttrDefaultValue) {
AttrHelper_Vec2DArrToString(&pAttrValue, 1, tstr);
attr_list.push_back({ pAttrName, tstr });
}
};
aiUVTransform transform;
if (material.Get(AI_MATKEY_UVTRANSFORM_DIFFUSE(0), transform) == AI_SUCCESS) {
Vec2ToAttrList("translation", transform.mTranslation, aiVector2D(0, 0));
AttrHelper_FloatToAttrList(attr_list, "rotation", transform.mRotation, 0);
Vec2ToAttrList("scale", transform.mScaling, aiVector2D(1, 1));
NodeHelper_OpenNode("TextureTransform", pTabLevel + 1, true, attr_list);
attr_list.clear();
}
} // "TextureTransform" node. END.
//
// Close opened nodes.
//
NodeHelper_CloseNode(NodeName_A, pTabLevel);
}
void X3DExporter::Export_MetadataBoolean(const aiString &pKey, const bool pValue, const size_t pTabLevel) {
list<SAttribute> attr_list;
attr_list.push_back({ "name", pKey.C_Str() });
attr_list.push_back({ "value", pValue ? "true" : "false" });
NodeHelper_OpenNode("MetadataBoolean", pTabLevel, true, attr_list);
}
void X3DExporter::Export_MetadataDouble(const aiString &pKey, const double pValue, const size_t pTabLevel) {
list<SAttribute> attr_list;
attr_list.push_back({ "name", pKey.C_Str() });
attr_list.push_back({ "value", to_string(pValue) });
NodeHelper_OpenNode("MetadataDouble", pTabLevel, true, attr_list);
}
void X3DExporter::Export_MetadataFloat(const aiString &pKey, const float pValue, const size_t pTabLevel) {
list<SAttribute> attr_list;
attr_list.push_back({ "name", pKey.C_Str() });
attr_list.push_back({ "value", to_string(pValue) });
NodeHelper_OpenNode("MetadataFloat", pTabLevel, true, attr_list);
}
void X3DExporter::Export_MetadataInteger(const aiString &pKey, const int32_t pValue, const size_t pTabLevel) {
list<SAttribute> attr_list;
attr_list.push_back({ "name", pKey.C_Str() });
attr_list.push_back({ "value", to_string(pValue) });
NodeHelper_OpenNode("MetadataInteger", pTabLevel, true, attr_list);
}
void X3DExporter::Export_MetadataString(const aiString &pKey, const aiString &pValue, const size_t pTabLevel) {
list<SAttribute> attr_list;
attr_list.push_back({ "name", pKey.C_Str() });
attr_list.push_back({ "value", pValue.C_Str() });
NodeHelper_OpenNode("MetadataString", pTabLevel, true, attr_list);
}
bool X3DExporter::CheckAndExport_Light(const aiNode &pNode, const size_t pTabLevel) {
list<SAttribute> attr_list;
auto Vec3ToAttrList = [&](const string &pAttrName, const aiVector3D &pAttrValue, const aiVector3D &pAttrDefaultValue) {
string tstr;
if (pAttrValue != pAttrDefaultValue) {
AttrHelper_Vec3DArrToString(&pAttrValue, 1, tstr);
attr_list.push_back({ pAttrName, tstr });
}
};
size_t idx_light;
bool found = false;
// Name of the light source can not be empty.
if (pNode.mName.length == 0) return false;
// search for light with name like node has.
for (idx_light = 0; mScene->mNumLights; idx_light++) {
if (pNode.mName == mScene->mLights[idx_light]->mName) {
found = true;
break;
}
}
if (!found) return false;
// Light source is found.
const aiLight &light = *mScene->mLights[idx_light]; // Alias for convenience.
aiMatrix4x4 trafo_mat = Matrix_GlobalToCurrent(pNode).Inverse();
attr_list.push_back({ "DEF", light.mName.C_Str() });
attr_list.push_back({ "global", "true" }); // "false" is not supported.
// ambientIntensity="0" SFFloat [inputOutput]
AttrHelper_FloatToAttrList(attr_list, "ambientIntensity", aiVector3D(light.mColorAmbient.r, light.mColorAmbient.g, light.mColorAmbient.b).Length(), 0);
// color="1 1 1" SFColor [inputOutput]
AttrHelper_Color3ToAttrList(attr_list, "color", light.mColorDiffuse, aiColor3D(1, 1, 1));
switch (light.mType) {
case aiLightSource_DIRECTIONAL: {
aiVector3D direction = trafo_mat * light.mDirection;
Vec3ToAttrList("direction", direction, aiVector3D(0, 0, -1));
NodeHelper_OpenNode("DirectionalLight", pTabLevel, true, attr_list);
}
break;
case aiLightSource_POINT: {
aiVector3D attenuation(light.mAttenuationConstant, light.mAttenuationLinear, light.mAttenuationQuadratic);
aiVector3D location = trafo_mat * light.mPosition;
Vec3ToAttrList("attenuation", attenuation, aiVector3D(1, 0, 0));
Vec3ToAttrList("location", location, aiVector3D(0, 0, 0));
NodeHelper_OpenNode("PointLight", pTabLevel, true, attr_list);
}
break;
case aiLightSource_SPOT: {
aiVector3D attenuation(light.mAttenuationConstant, light.mAttenuationLinear, light.mAttenuationQuadratic);
aiVector3D location = trafo_mat * light.mPosition;
aiVector3D direction = trafo_mat * light.mDirection;
Vec3ToAttrList("attenuation", attenuation, aiVector3D(1, 0, 0));
Vec3ToAttrList("location", location, aiVector3D(0, 0, 0));
Vec3ToAttrList("direction", direction, aiVector3D(0, 0, -1));
AttrHelper_FloatToAttrList(attr_list, "beamWidth", light.mAngleInnerCone, 0.7854f);
AttrHelper_FloatToAttrList(attr_list, "cutOffAngle", light.mAngleOuterCone, 1.570796f);
NodeHelper_OpenNode("SpotLight", pTabLevel, true, attr_list);
}
break;
default:
throw DeadlyExportError("Unknown light type: " + to_string(light.mType));
} // switch(light.mType)
return true;
}
X3DExporter::X3DExporter(const char *pFileName, IOSystem *pIOSystem, const aiScene *pScene, const ExportProperties * /*pProperties*/) :
mScene(pScene) {
list<SAttribute> attr_list;
mOutFile = pIOSystem->Open(pFileName, "wt");
if (mOutFile == nullptr) throw DeadlyExportError("Could not open output .x3d file: " + string(pFileName));
// Begin document
XML_Write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n");
XML_Write("<!DOCTYPE X3D PUBLIC \"ISO//Web3D//DTD X3D 3.3//EN\" \"http://www.web3d.org/specifications/x3d-3.3.dtd\">\n");
// Root node
attr_list.push_back({ "profile", "Interchange" });
attr_list.push_back({ "version", "3.3" });
attr_list.push_back({ "xmlns:xsd", "http://www.w3.org/2001/XMLSchema-instance" });
attr_list.push_back({ "xsd:noNamespaceSchemaLocation", "http://www.web3d.org/specifications/x3d-3.3.xsd" });
NodeHelper_OpenNode("X3D", 0, false, attr_list);
attr_list.clear();
// <head>: meta data.
NodeHelper_OpenNode("head", 1);
XML_Write(mIndentationString + "<!-- All \"meta\" from this section tou will found in <Scene> node as MetadataString nodes. -->\n");
NodeHelper_CloseNode("head", 1);
// Scene node.
NodeHelper_OpenNode("Scene", 1);
Export_Node(mScene->mRootNode, 2);
NodeHelper_CloseNode("Scene", 1);
// Close Root node.
NodeHelper_CloseNode("X3D", 0);
// Cleanup
pIOSystem->Close(mOutFile);
mOutFile = nullptr;
}
} // namespace Assimp
#endif // ASSIMP_BUILD_NO_X3D_EXPORTER
#endif // ASSIMP_BUILD_NO_EXPORT