2668 lines
88 KiB
C++
2668 lines
88 KiB
C++
/*
|
|
Open Asset Import Library (ASSIMP)
|
|
----------------------------------------------------------------------
|
|
|
|
Copyright (c) 2006-2010, ASSIMP Development Team
|
|
All rights reserved.
|
|
|
|
Redistribution and use of this software in source and binary forms,
|
|
with or without modification, are permitted provided that the
|
|
following conditions are met:
|
|
|
|
* Redistributions of source code must retain the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer in the documentation and/or other
|
|
materials provided with the distribution.
|
|
|
|
* Neither the name of the ASSIMP team, nor the names of its
|
|
contributors may be used to endorse or promote products
|
|
derived from this software without specific prior
|
|
written permission of the ASSIMP Development Team.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
----------------------------------------------------------------------
|
|
*/
|
|
|
|
/** @file IFC.cpp
|
|
* @brief Implementation of the Industry Foundation Classes loader.
|
|
*/
|
|
#include "AssimpPCH.h"
|
|
|
|
#ifndef ASSIMP_BUILD_NO_IFC_IMPORTER
|
|
|
|
#include <iterator>
|
|
#include <boost/tuple/tuple.hpp>
|
|
|
|
|
|
#include "IFCLoader.h"
|
|
#include "STEPFileReader.h"
|
|
#include "IFCReaderGen.h"
|
|
|
|
|
|
#include "StreamReader.h"
|
|
#include "MemoryIOWrapper.h"
|
|
#include "ProcessHelper.h"
|
|
#include "PolyTools.h"
|
|
|
|
|
|
using namespace Assimp;
|
|
using namespace Assimp::Formatter;
|
|
namespace EXPRESS = STEP::EXPRESS;
|
|
|
|
template<> const std::string LogFunctions<IFCImporter>::log_prefix = "IFC: ";
|
|
|
|
|
|
/* DO NOT REMOVE this comment block. The genentitylist.sh script
|
|
* just looks for names adhering to the IFC :: IfcSomething naming scheme
|
|
* and includes all matches in the whitelist for code-generation. Thus,
|
|
* all entity classes that are only indirectly referenced need to be
|
|
* mentioned explicitly.
|
|
|
|
IFC::IfcRepresentationMap
|
|
IFC::IfcProductRepresentation
|
|
IFC::IfcUnitAssignment
|
|
IFC::IfcClosedShell
|
|
IFC::IfcDoor
|
|
|
|
*/
|
|
|
|
namespace {
|
|
|
|
// helper for std::for_each to delete all heap-allocated items in a container
|
|
template<typename T>
|
|
struct delete_fun
|
|
{
|
|
void operator()(T* del) {
|
|
delete del;
|
|
}
|
|
};
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Temporary representation of an opening in a wall or a floor
|
|
// ------------------------------------------------------------------------------------------------
|
|
struct TempMesh;
|
|
struct TempOpening
|
|
{
|
|
const IFC::IfcExtrudedAreaSolid* solid;
|
|
aiVector3D extrusionDir;
|
|
boost::shared_ptr<TempMesh> profileMesh;
|
|
|
|
// ------------------------------------------------------------------------------
|
|
TempOpening(const IFC::IfcExtrudedAreaSolid* solid,aiVector3D extrusionDir,boost::shared_ptr<TempMesh> profileMesh)
|
|
: solid(solid)
|
|
, extrusionDir(extrusionDir)
|
|
, profileMesh(profileMesh)
|
|
{
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------
|
|
void Transform(const aiMatrix4x4& mat); // defined later since TempMesh is not complete yet
|
|
};
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Intermediate data storage during conversion. Keeps everything and a bit more.
|
|
// ------------------------------------------------------------------------------------------------
|
|
struct ConversionData
|
|
{
|
|
ConversionData(const STEP::DB& db, const IFC::IfcProject& proj, aiScene* out,const IFCImporter::Settings& settings)
|
|
: len_scale(1.0)
|
|
, angle_scale(1.0)
|
|
, db(db)
|
|
, proj(proj)
|
|
, out(out)
|
|
, settings(settings)
|
|
, apply_openings()
|
|
, collect_openings()
|
|
{}
|
|
|
|
~ConversionData() {
|
|
std::for_each(meshes.begin(),meshes.end(),delete_fun<aiMesh>());
|
|
std::for_each(materials.begin(),materials.end(),delete_fun<aiMaterial>());
|
|
}
|
|
|
|
float len_scale, angle_scale;
|
|
bool plane_angle_in_radians;
|
|
|
|
const STEP::DB& db;
|
|
const IFC::IfcProject& proj;
|
|
aiScene* out;
|
|
|
|
aiMatrix4x4 wcs;
|
|
std::vector<aiMesh*> meshes;
|
|
std::vector<aiMaterial*> materials;
|
|
|
|
typedef std::map<const IFC::IfcRepresentationItem*, std::vector<unsigned int> > MeshCache;
|
|
MeshCache cached_meshes;
|
|
|
|
const IFCImporter::Settings& settings;
|
|
|
|
// Intermediate arrays used to resolve openings in walls: only one of them
|
|
// can be given at a time. apply_openings if present if the current element
|
|
// is a wall and needs its openings to be poured into its geometry while
|
|
// collect_openings is present only if the current element is an
|
|
// IfcOpeningElement, for which all the geometry needs to be preserved
|
|
// for later processing by a parent, which is a wall.
|
|
std::vector<TempOpening>* apply_openings;
|
|
std::vector<TempOpening>* collect_openings;
|
|
};
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
struct FuzzyVectorCompare {
|
|
|
|
FuzzyVectorCompare(float epsilon) : epsilon(epsilon) {}
|
|
bool operator()(const aiVector3D& a, const aiVector3D& b) {
|
|
return fabs((a-b).SquareLength()) < epsilon;
|
|
}
|
|
|
|
const float epsilon;
|
|
};
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Helper used during mesh construction. Aids at creating aiMesh'es out of relatively few polygons.
|
|
// ------------------------------------------------------------------------------------------------
|
|
struct TempMesh
|
|
{
|
|
std::vector<aiVector3D> verts;
|
|
std::vector<unsigned int> vertcnt;
|
|
|
|
// ------------------------------------------------------------------------------
|
|
aiMesh* ToMesh() {
|
|
ai_assert(verts.size() == std::accumulate(vertcnt.begin(),vertcnt.end(),0));
|
|
|
|
if (verts.empty()) {
|
|
return NULL;
|
|
}
|
|
|
|
std::auto_ptr<aiMesh> mesh(new aiMesh());
|
|
|
|
// copy vertices
|
|
mesh->mNumVertices = static_cast<unsigned int>(verts.size());
|
|
mesh->mVertices = new aiVector3D[mesh->mNumVertices];
|
|
std::copy(verts.begin(),verts.end(),mesh->mVertices);
|
|
|
|
// and build up faces
|
|
mesh->mNumFaces = static_cast<unsigned int>(vertcnt.size());
|
|
mesh->mFaces = new aiFace[mesh->mNumFaces];
|
|
|
|
for(unsigned int i = 0,n=0, acc = 0; i < mesh->mNumFaces; ++n) {
|
|
aiFace& f = mesh->mFaces[i];
|
|
if (!vertcnt[n]) {
|
|
--mesh->mNumFaces;
|
|
continue;
|
|
}
|
|
|
|
f.mNumIndices = vertcnt[n];
|
|
f.mIndices = new unsigned int[f.mNumIndices];
|
|
for(unsigned int a = 0; a < f.mNumIndices; ++a) {
|
|
f.mIndices[a] = acc++;
|
|
}
|
|
|
|
++i;
|
|
}
|
|
|
|
return mesh.release();
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------
|
|
void Clear() {
|
|
verts.clear();
|
|
vertcnt.clear();
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------
|
|
void Transform(const aiMatrix4x4& mat) {
|
|
BOOST_FOREACH(aiVector3D& v, verts) {
|
|
v *= mat;
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------
|
|
aiVector3D Center() {
|
|
return std::accumulate(verts.begin(),verts.end(),aiVector3D(0.f,0.f,0.f)) / static_cast<float>(verts.size());
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------
|
|
void Append(const TempMesh& other) {
|
|
|
|
verts.insert(verts.end(),other.verts.begin(),other.verts.end());
|
|
vertcnt.insert(vertcnt.end(),other.vertcnt.begin(),other.vertcnt.end());
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------
|
|
void RemoveAdjacentDuplicates() {
|
|
|
|
bool drop = false;
|
|
std::vector<aiVector3D>::iterator base = verts.begin();
|
|
BOOST_FOREACH(unsigned int& cnt, vertcnt) {
|
|
if (cnt < 2){
|
|
base += cnt;
|
|
continue;
|
|
}
|
|
|
|
aiVector3D vmin,vmax;
|
|
ArrayBounds(&*base, cnt ,vmin,vmax);
|
|
|
|
const float epsilon = (vmax-vmin).SquareLength() / 1e9f, dotepsilon = 1e-7;
|
|
|
|
//// look for vertices that lie directly on the line between their predecessor and their
|
|
//// successor and replace them with either of them.
|
|
//for(size_t i = 0; i < cnt; ++i) {
|
|
// aiVector3D& v1 = *(base+i), &v0 = *(base+(i?i-1:cnt-1)), &v2 = *(base+(i+1)%cnt);
|
|
// const aiVector3D& d0 = (v1-v0), &d1 = (v2-v1);
|
|
// const float l0 = d0.SquareLength(), l1 = d1.SquareLength();
|
|
// if (!l0 || !l1) {
|
|
// continue;
|
|
// }
|
|
|
|
// const float d = (d0/sqrt(l0))*(d1/sqrt(l1));
|
|
// if ( d >= 1.f-dotepsilon ) {
|
|
// v1 = v0;
|
|
// }
|
|
// else if ( d0*d1 < -1.f+dotepsilon ) {
|
|
// v2 = v1;
|
|
// continue;
|
|
// }
|
|
//}
|
|
|
|
// drop any identical, adjacent vertices. this pass will collect the dropouts
|
|
// of the previous pass as a side-effect.
|
|
FuzzyVectorCompare fz(epsilon);
|
|
std::vector<aiVector3D>::iterator end = base+cnt, e = std::unique( base, end, fz );
|
|
if (e != end) {
|
|
cnt -= static_cast<unsigned int>(std::distance(e, end));
|
|
verts.erase(e,end);
|
|
drop = true;
|
|
}
|
|
|
|
// check front and back vertices for this polygon
|
|
if (cnt > 1 && fz(*base,*(base+cnt-1))) {
|
|
verts.erase(base+ --cnt);
|
|
drop = true;
|
|
}
|
|
|
|
// removing adjacent duplicates shouldn't erase everything :-)
|
|
ai_assert(cnt>0);
|
|
base += cnt;
|
|
}
|
|
if(drop) {
|
|
IFCImporter::LogDebug("removed duplicate vertices");
|
|
}
|
|
}
|
|
};
|
|
|
|
|
|
// ------------------------------------------------------------------------------
|
|
void TempOpening::Transform(const aiMatrix4x4& mat)
|
|
{
|
|
if(profileMesh) {
|
|
profileMesh->Transform(mat);
|
|
}
|
|
extrusionDir *= aiMatrix3x3(mat);
|
|
}
|
|
|
|
|
|
// forward declarations
|
|
float ConvertSIPrefix(const std::string& prefix);
|
|
void SetUnits(ConversionData& conv);
|
|
void ConvertAxisPlacement(aiMatrix4x4& out, const IFC::IfcAxis2Placement& in, ConversionData& conv);
|
|
void SetCoordinateSpace(ConversionData& conv);
|
|
void ProcessSpatialStructures(ConversionData& conv);
|
|
aiNode* ProcessSpatialStructure(aiNode* parent, const IFC::IfcProduct& el ,ConversionData& conv);
|
|
void ProcessProductRepresentation(const IFC::IfcProduct& el, aiNode* nd, ConversionData& conv);
|
|
void MakeTreeRelative(ConversionData& conv);
|
|
void ConvertUnit(const EXPRESS::DataType* dt,ConversionData& conv);
|
|
void ProcessSweptAreaSolid(const IFC::IfcSweptAreaSolid& swept, TempMesh& meshout, ConversionData& conv);
|
|
|
|
} // anon
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Constructor to be privately used by Importer
|
|
IFCImporter::IFCImporter()
|
|
{}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Destructor, private as well
|
|
IFCImporter::~IFCImporter()
|
|
{
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Returns whether the class can handle the format of the given file.
|
|
bool IFCImporter::CanRead( const std::string& pFile, IOSystem* pIOHandler, bool checkSig) const
|
|
{
|
|
const std::string& extension = GetExtension(pFile);
|
|
if (extension == "ifc") {
|
|
return true;
|
|
}
|
|
|
|
else if ((!extension.length() || checkSig) && pIOHandler) {
|
|
// note: this is the common identification for STEP-encoded files, so
|
|
// it is only unambiguous as long as we don't support any further
|
|
// file formats with STEP as their encoding.
|
|
const char* tokens[] = {"ISO-10303-21"};
|
|
return SearchFileHeaderForToken(pIOHandler,pFile,tokens,1);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// List all extensions handled by this loader
|
|
void IFCImporter::GetExtensionList(std::set<std::string>& app)
|
|
{
|
|
app.insert("ifc");
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Setup configuration properties for the loader
|
|
void IFCImporter::SetupProperties(const Importer* pImp)
|
|
{
|
|
settings.skipSpaceRepresentations = pImp->GetPropertyBool(AI_CONFIG_IMPORT_IFC_SKIP_SPACE_REPRESENTATIONS,true);
|
|
settings.skipCurveRepresentations = pImp->GetPropertyBool(AI_CONFIG_IMPORT_IFC_SKIP_CURVE_REPRESENTATIONS,true);
|
|
settings.useCustomTriangulation = pImp->GetPropertyBool(AI_CONFIG_IMPORT_IFC_CUSTOM_TRIANGULATION,true);
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Imports the given file into the given scene structure.
|
|
void IFCImporter::InternReadFile( const std::string& pFile,
|
|
aiScene* pScene, IOSystem* pIOHandler)
|
|
{
|
|
boost::shared_ptr<IOStream> stream(pIOHandler->Open(pFile));
|
|
if (!stream) {
|
|
ThrowException("Could not open file for reading");
|
|
}
|
|
|
|
boost::scoped_ptr<STEP::DB> db(STEP::ReadFileHeader(stream));
|
|
const STEP::HeaderInfo& head = const_cast<const STEP::DB&>(*db).GetHeader();
|
|
|
|
if(!head.fileSchema.size() || head.fileSchema.substr(0,3) != "IFC") {
|
|
ThrowException("Unrecognized file schema: " + head.fileSchema);
|
|
}
|
|
|
|
if (!DefaultLogger::isNullLogger()) {
|
|
LogDebug("File schema is \'" + head.fileSchema + '\'');
|
|
if (head.timestamp.length()) {
|
|
LogDebug("Timestamp \'" + head.timestamp + '\'');
|
|
}
|
|
if (head.app.length()) {
|
|
LogDebug("Application/Exporter identline is \'" + head.app + '\'');
|
|
}
|
|
}
|
|
|
|
// obtain a copy of the machine-generated IFC scheme
|
|
EXPRESS::ConversionSchema schema;
|
|
IFC::GetSchema(schema);
|
|
|
|
// tell the reader which entity types to track with special care
|
|
static const char* const types_to_track[] = {
|
|
"ifcsite", "ifcbuilding", "ifcproject"
|
|
};
|
|
|
|
// tell the reader for which types we need to simulate STEPs reverse indices
|
|
static const char* const inverse_indices_to_track[] = {
|
|
"ifcrelcontainedinspatialstructure", "ifcrelaggregates", "ifcrelvoidselement", "ifcstyleditem"
|
|
};
|
|
|
|
// feed the IFC schema into the reader and pre-parse all lines
|
|
STEP::ReadFile(*db, schema, types_to_track, inverse_indices_to_track);
|
|
|
|
const STEP::LazyObject* proj = db->GetObject("ifcproject");
|
|
if (!proj) {
|
|
ThrowException("missing IfcProject entity");
|
|
}
|
|
|
|
ConversionData conv(*db,proj->To<IFC::IfcProject>(),pScene,settings);
|
|
SetUnits(conv);
|
|
SetCoordinateSpace(conv);
|
|
ProcessSpatialStructures(conv);
|
|
MakeTreeRelative(conv);
|
|
|
|
// NOTE - this is a stress test for the importer, but it works only
|
|
// in a build with no entities disabled. See
|
|
// scripts/IFCImporter/CPPGenerator.py
|
|
// for more information.
|
|
#ifdef ASSIMP_IFC_TEST
|
|
db->EvaluateAll();
|
|
#endif
|
|
|
|
// do final data copying
|
|
if (conv.meshes.size()) {
|
|
pScene->mNumMeshes = static_cast<unsigned int>(conv.meshes.size());
|
|
pScene->mMeshes = new aiMesh*[pScene->mNumMeshes]();
|
|
std::copy(conv.meshes.begin(),conv.meshes.end(),pScene->mMeshes);
|
|
|
|
// needed to keep the d'tor from burning us
|
|
conv.meshes.clear();
|
|
}
|
|
|
|
if (conv.materials.size()) {
|
|
pScene->mNumMaterials = static_cast<unsigned int>(conv.materials.size());
|
|
pScene->mMaterials = new aiMaterial*[pScene->mNumMaterials]();
|
|
std::copy(conv.materials.begin(),conv.materials.end(),pScene->mMaterials);
|
|
|
|
// needed to keep the d'tor from burning us
|
|
conv.materials.clear();
|
|
}
|
|
|
|
// apply world coordinate system (which includes the scaling to convert to meters and a -90 degrees rotation around x)
|
|
aiMatrix4x4 scale, rot;
|
|
aiMatrix4x4::Scaling(aiVector3D(conv.len_scale,conv.len_scale,conv.len_scale),scale);
|
|
aiMatrix4x4::RotationX(-AI_MATH_HALF_PI_F,rot);
|
|
|
|
pScene->mRootNode->mTransformation = rot * scale * conv.wcs * pScene->mRootNode->mTransformation;
|
|
|
|
// this must be last because objects are evaluated lazily as we process them
|
|
if ( !DefaultLogger::isNullLogger() ){
|
|
LogDebug((Formatter::format(),"STEP: evaluated ",db->GetEvaluatedObjectCount()," object records"));
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
bool IsTrue(const EXPRESS::BOOLEAN& in)
|
|
{
|
|
return (std::string)in == "TRUE" || (std::string)in == "T";
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
float ConvertSIPrefix(const std::string& prefix)
|
|
{
|
|
if (prefix == "EXA") {
|
|
return 1e18f;
|
|
}
|
|
else if (prefix == "PETA") {
|
|
return 1e15f;
|
|
}
|
|
else if (prefix == "TERA") {
|
|
return 1e12f;
|
|
}
|
|
else if (prefix == "GIGA") {
|
|
return 1e9f;
|
|
}
|
|
else if (prefix == "MEGA") {
|
|
return 1e6f;
|
|
}
|
|
else if (prefix == "KILO") {
|
|
return 1e3f;
|
|
}
|
|
else if (prefix == "HECTO") {
|
|
return 1e2f;
|
|
}
|
|
else if (prefix == "DECA") {
|
|
return 1e-0f;
|
|
}
|
|
else if (prefix == "DECI") {
|
|
return 1e-1f;
|
|
}
|
|
else if (prefix == "CENTI") {
|
|
return 1e-2f;
|
|
}
|
|
else if (prefix == "MILLI") {
|
|
return 1e-3f;
|
|
}
|
|
else if (prefix == "MICRO") {
|
|
return 1e-6f;
|
|
}
|
|
else if (prefix == "NANO") {
|
|
return 1e-9f;
|
|
}
|
|
else if (prefix == "PICO") {
|
|
return 1e-12f;
|
|
}
|
|
else if (prefix == "FEMTO") {
|
|
return 1e-15f;
|
|
}
|
|
else if (prefix == "ATTO") {
|
|
return 1e-18f;
|
|
}
|
|
else {
|
|
IFCImporter::LogError("Unrecognized SI prefix: " + prefix);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ConvertUnit(const IFC::IfcNamedUnit& unit,ConversionData& conv)
|
|
{
|
|
if(const IFC::IfcSIUnit* const si = unit.ToPtr<IFC::IfcSIUnit>()) {
|
|
|
|
if(si->UnitType == "LENGTHUNIT") {
|
|
conv.len_scale = si->Prefix ? ConvertSIPrefix(si->Prefix) : 1.f;
|
|
IFCImporter::LogDebug("got units used for lengths");
|
|
}
|
|
if(si->UnitType == "PLANEANGLEUNIT") {
|
|
if (si->Name != "RADIAN") {
|
|
IFCImporter::LogWarn("expected base unit for angles to be radian");
|
|
}
|
|
}
|
|
}
|
|
else if(const IFC::IfcConversionBasedUnit* const convu = unit.ToPtr<IFC::IfcConversionBasedUnit>()) {
|
|
|
|
if(convu->UnitType == "PLANEANGLEUNIT") {
|
|
try {
|
|
conv.angle_scale = convu->ConversionFactor->ValueComponent->To<EXPRESS::REAL>();
|
|
ConvertUnit(convu->ConversionFactor->UnitComponent,conv);
|
|
IFCImporter::LogDebug("got units used for angles");
|
|
}
|
|
catch(std::bad_cast&) {
|
|
IFCImporter::LogError("skipping unknown IfcConversionBasedUnit.ValueComponent entry - expected REAL");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ConvertUnit(const EXPRESS::DataType* dt,ConversionData& conv)
|
|
{
|
|
try {
|
|
const EXPRESS::ENTITY& e = dt->To<IFC::ENTITY>();
|
|
|
|
const IFC::IfcNamedUnit& unit = e.ResolveSelect<IFC::IfcNamedUnit>(conv.db);
|
|
if(unit.UnitType != "LENGTHUNIT" && unit.UnitType != "PLANEANGLEUNIT") {
|
|
return;
|
|
}
|
|
|
|
ConvertUnit(unit,conv);
|
|
}
|
|
catch(std::bad_cast&) {
|
|
// not entity, somehow
|
|
IFCImporter::LogError("skipping unknown IfcUnit entry - expected entity");
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void SetUnits(ConversionData& conv)
|
|
{
|
|
// see if we can determine the coordinate space used to express.
|
|
for(size_t i = 0; i < conv.proj.UnitsInContext->Units.size(); ++i ) {
|
|
ConvertUnit(conv.proj.UnitsInContext->Units[i],conv);
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ConvertColor(aiColor4D& out, const IFC::IfcColourRgb& in)
|
|
{
|
|
out.r = in.Red;
|
|
out.g = in.Green;
|
|
out.b = in.Blue;
|
|
out.a = 1.f;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ConvertColor(aiColor4D& out, const IFC::IfcColourOrFactor* in,ConversionData& conv,const aiColor4D* base)
|
|
{
|
|
if (const EXPRESS::REAL* const r = in->ToPtr<EXPRESS::REAL>()) {
|
|
out.r = out.g = out.b = *r;
|
|
if(base) {
|
|
out.r *= base->r;
|
|
out.g *= base->g;
|
|
out.b *= base->b;
|
|
out.a = base->a;
|
|
}
|
|
else out.a = 1.0;
|
|
}
|
|
else if (const IFC::IfcColourRgb* const rgb = in->ResolveSelectPtr<IFC::IfcColourRgb>(conv.db)) {
|
|
ConvertColor(out,*rgb);
|
|
}
|
|
else {
|
|
IFCImporter::LogWarn("skipping unknown IfcColourOrFactor entity");
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ConvertCartesianPoint(aiVector3D& out, const IFC::IfcCartesianPoint& in)
|
|
{
|
|
out = aiVector3D();
|
|
for(size_t i = 0; i < in.Coordinates.size(); ++i) {
|
|
out[i] = in.Coordinates[i];
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ConvertDirection(aiVector3D& out, const IFC::IfcDirection& in)
|
|
{
|
|
out = aiVector3D();
|
|
for(size_t i = 0; i < in.DirectionRatios.size(); ++i) {
|
|
out[i] = in.DirectionRatios[i];
|
|
}
|
|
const float len = out.Length();
|
|
if (len<1e-6) {
|
|
IFCImporter::LogWarn("direction vector too small, normalizing would result in a division by zero");
|
|
return;
|
|
}
|
|
out /= len;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void AssignMatrixAxes(aiMatrix4x4& out, const aiVector3D& x, const aiVector3D& y, const aiVector3D& z)
|
|
{
|
|
out.a1 = x.x;
|
|
out.b1 = x.y;
|
|
out.c1 = x.z;
|
|
|
|
out.a2 = y.x;
|
|
out.b2 = y.y;
|
|
out.c2 = y.z;
|
|
|
|
out.a3 = z.x;
|
|
out.b3 = z.y;
|
|
out.c3 = z.z;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ConvertAxisPlacement(aiMatrix4x4& out, const IFC::IfcAxis2Placement3D& in, ConversionData& conv)
|
|
{
|
|
aiVector3D loc;
|
|
ConvertCartesianPoint(loc,in.Location);
|
|
|
|
aiVector3D z(0.f,0.f,1.f),r(1.f,0.f,0.f),x;
|
|
|
|
if (in.Axis) {
|
|
ConvertDirection(z,*in.Axis.Get());
|
|
}
|
|
if (in.RefDirection) {
|
|
ConvertDirection(r,*in.RefDirection.Get());
|
|
}
|
|
|
|
aiVector3D v = r.Normalize();
|
|
aiVector3D tmpx = z * (v*z);
|
|
|
|
x = (v-tmpx).Normalize();
|
|
aiVector3D y = (z^x);
|
|
|
|
aiMatrix4x4::Translation(loc,out);
|
|
AssignMatrixAxes(out,x,y,z);
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ConvertAxisPlacement(aiMatrix4x4& out, const IFC::IfcAxis2Placement2D& in, ConversionData& conv)
|
|
{
|
|
aiVector3D loc;
|
|
ConvertCartesianPoint(loc,in.Location);
|
|
|
|
aiVector3D x(1.f,0.f,0.f);
|
|
if (in.RefDirection) {
|
|
ConvertDirection(x,*in.RefDirection.Get());
|
|
}
|
|
|
|
const aiVector3D y = aiVector3D(x.y,-x.x,0.f);
|
|
|
|
aiMatrix4x4::Translation(loc,out);
|
|
AssignMatrixAxes(out,x,y,aiVector3D(0.f,0.f,1.f));
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ConvertAxisPlacement(aiVector3D& axis, aiVector3D& pos, const IFC::IfcAxis1Placement& in, ConversionData& conv)
|
|
{
|
|
ConvertCartesianPoint(pos,in.Location);
|
|
if (in.Axis) {
|
|
ConvertDirection(axis,in.Axis.Get());
|
|
}
|
|
else {
|
|
axis = aiVector3D(0.f,0.f,1.f);
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ConvertAxisPlacement(aiMatrix4x4& out, const IFC::IfcAxis2Placement& in, ConversionData& conv)
|
|
{
|
|
if(const IFC::IfcAxis2Placement3D* pl3 = in.ResolveSelectPtr<IFC::IfcAxis2Placement3D>(conv.db)) {
|
|
ConvertAxisPlacement(out,*pl3,conv);
|
|
}
|
|
else if(const IFC::IfcAxis2Placement2D* pl2 = in.ResolveSelectPtr<IFC::IfcAxis2Placement2D>(conv.db)) {
|
|
ConvertAxisPlacement(out,*pl2,conv);
|
|
}
|
|
else {
|
|
IFCImporter::LogWarn("skipping unknown IfcAxis2Placement entity");
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void SetCoordinateSpace(ConversionData& conv)
|
|
{
|
|
const IFC::IfcRepresentationContext* fav = NULL;
|
|
BOOST_FOREACH(const IFC::IfcRepresentationContext& v, conv.proj.RepresentationContexts) {
|
|
fav = &v;
|
|
// Model should be the most suitable type of context, hence ignore the others
|
|
if (v.ContextType && v.ContextType.Get() == "Model") {
|
|
break;
|
|
}
|
|
}
|
|
if (fav) {
|
|
if(const IFC::IfcGeometricRepresentationContext* const geo = fav->ToPtr<IFC::IfcGeometricRepresentationContext>()) {
|
|
ConvertAxisPlacement(conv.wcs, *geo->WorldCoordinateSystem, conv);
|
|
IFCImporter::LogDebug("got world coordinate system");
|
|
}
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ConvertTransformOperator(aiMatrix4x4& out, const IFC::IfcCartesianTransformationOperator& op)
|
|
{
|
|
aiVector3D loc;
|
|
ConvertCartesianPoint(loc,op.LocalOrigin);
|
|
|
|
aiVector3D x(1.f,0.f,0.f),y(0.f,1.f,0.f),z(0.f,0.f,1.f);
|
|
if (op.Axis1) {
|
|
ConvertDirection(x,*op.Axis1.Get());
|
|
}
|
|
if (op.Axis2) {
|
|
ConvertDirection(y,*op.Axis2.Get());
|
|
}
|
|
if (const IFC::IfcCartesianTransformationOperator3D* op2 = op.ToPtr<IFC::IfcCartesianTransformationOperator3D>()) {
|
|
if(op2->Axis3) {
|
|
ConvertDirection(z,*op2->Axis3.Get());
|
|
}
|
|
}
|
|
|
|
aiMatrix4x4 locm;
|
|
aiMatrix4x4::Translation(loc,locm);
|
|
AssignMatrixAxes(out,x,y,z);
|
|
|
|
|
|
aiVector3D vscale;
|
|
if (const IFC::IfcCartesianTransformationOperator3DnonUniform* nuni = op.ToPtr<IFC::IfcCartesianTransformationOperator3DnonUniform>()) {
|
|
vscale.x = nuni->Scale?op.Scale.Get():1.f;
|
|
vscale.y = nuni->Scale2?nuni->Scale2.Get():1.f;
|
|
vscale.z = nuni->Scale3?nuni->Scale3.Get():1.f;
|
|
}
|
|
else {
|
|
const float sc = op.Scale?op.Scale.Get():1.f;
|
|
vscale = aiVector3D(sc,sc,sc);
|
|
}
|
|
|
|
aiMatrix4x4 s;
|
|
aiMatrix4x4::Scaling(vscale,s);
|
|
|
|
out = locm * out * s;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
bool ProcessPolyloop(const IFC::IfcPolyLoop& loop, TempMesh& meshout, ConversionData& conv)
|
|
{
|
|
size_t cnt = 0;
|
|
BOOST_FOREACH(const IFC::IfcCartesianPoint& c, loop.Polygon) {
|
|
aiVector3D tmp;
|
|
ConvertCartesianPoint(tmp,c);
|
|
|
|
meshout.verts.push_back(tmp);
|
|
++cnt;
|
|
}
|
|
|
|
meshout.vertcnt.push_back(cnt);
|
|
|
|
// zero- or one- vertex polyloops simply ignored
|
|
if (meshout.vertcnt.back() > 1) {
|
|
return true;
|
|
}
|
|
|
|
if (meshout.vertcnt.back()==1) {
|
|
meshout.vertcnt.pop_back();
|
|
meshout.verts.pop_back();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ComputePolygonNormals(const TempMesh& meshout, std::vector<aiVector3D>& normals, bool normalize = true, size_t ofs = 0)
|
|
{
|
|
size_t max_vcount = 0;
|
|
std::vector<unsigned int>::const_iterator begin=meshout.vertcnt.begin()+ofs, end=meshout.vertcnt.end(), iit;
|
|
for(iit = begin; iit != end; ++iit) {
|
|
max_vcount = std::max(max_vcount,static_cast<size_t>(*iit));
|
|
}
|
|
|
|
std::vector<float> temp((max_vcount+2)*4);
|
|
normals.reserve( normals.size() + meshout.vertcnt.size()-ofs );
|
|
|
|
// `NewellNormal()` currently has a relatively strange interface and need to
|
|
// re-structure things a bit to meet them.
|
|
size_t vidx = std::accumulate(meshout.vertcnt.begin(),begin,0);
|
|
for(iit = begin; iit != end; vidx += *iit++) {
|
|
if (!*iit) {
|
|
normals.push_back(aiVector3D());
|
|
continue;
|
|
}
|
|
for(size_t vofs = 0, cnt = 0; vofs < *iit; ++vofs) {
|
|
const aiVector3D& v = meshout.verts[vidx+vofs];
|
|
temp[cnt++] = v.x;
|
|
temp[cnt++] = v.y;
|
|
temp[cnt++] = v.z;
|
|
#ifdef _DEBUG
|
|
temp[cnt] = std::numeric_limits<float>::quiet_NaN();
|
|
#endif
|
|
++cnt;
|
|
}
|
|
|
|
normals.push_back(aiVector3D());
|
|
NewellNormal<4,4,4>(normals.back(),*iit,&temp[0],&temp[1],&temp[2]);
|
|
}
|
|
|
|
if(normalize) {
|
|
BOOST_FOREACH(aiVector3D& n, normals) {
|
|
n.Normalize();
|
|
}
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Compute the normal of the last polygon in the given mesh
|
|
aiVector3D ComputePolygonNormal(const TempMesh& inmesh, bool normalize = true)
|
|
{
|
|
size_t total = inmesh.vertcnt.back(), vidx = inmesh.verts.size() - total;
|
|
std::vector<float> temp((total+2)*3);
|
|
for(size_t vofs = 0, cnt = 0; vofs < total; ++vofs) {
|
|
const aiVector3D& v = inmesh.verts[vidx+vofs];
|
|
temp[cnt++] = v.x;
|
|
temp[cnt++] = v.y;
|
|
temp[cnt++] = v.z;
|
|
}
|
|
aiVector3D nor;
|
|
NewellNormal<3,3,3>(nor,total,&temp[0],&temp[1],&temp[2]);
|
|
return normalize ? nor.Normalize() : nor;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void FixupFaceOrientation(TempMesh& result)
|
|
{
|
|
const aiVector3D vavg = result.Center();
|
|
|
|
std::vector<aiVector3D> normals;
|
|
ComputePolygonNormals(result,normals);
|
|
|
|
size_t c = 0, ofs = 0;
|
|
BOOST_FOREACH(unsigned int cnt, result.vertcnt) {
|
|
if (cnt>2){
|
|
const aiVector3D& thisvert = result.verts[c];
|
|
if (normals[ofs]*(thisvert-vavg) < 0) {
|
|
std::reverse(result.verts.begin()+c,result.verts.begin()+cnt+c);
|
|
}
|
|
}
|
|
c += cnt;
|
|
++ofs;
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void RecursiveMergeBoundaries(TempMesh& final_result, const TempMesh& in, const TempMesh& boundary, std::vector<aiVector3D>& normals, const aiVector3D& nor_boundary)
|
|
{
|
|
ai_assert(in.vertcnt.size() >= 1);
|
|
ai_assert(boundary.vertcnt.size() == 1);
|
|
std::vector<unsigned int>::const_iterator end = in.vertcnt.end(), begin=in.vertcnt.begin(), iit, best_iit;
|
|
|
|
TempMesh out;
|
|
|
|
// iterate through all other bounds and find the one for which the shortest connection
|
|
// to the outer boundary is actually the shortest possible.
|
|
size_t vidx = 0, best_vidx_start = 0;
|
|
size_t best_ofs, best_outer = boundary.verts.size();
|
|
float best_dist = 1e10;
|
|
for(std::vector<unsigned int>::const_iterator iit = begin; iit != end; vidx += *iit++) {
|
|
|
|
for(size_t vofs = 0; vofs < *iit; ++vofs) {
|
|
const aiVector3D& v = in.verts[vidx+vofs];
|
|
|
|
for(size_t outer = 0; outer < boundary.verts.size(); ++outer) {
|
|
const aiVector3D& o = boundary.verts[outer];
|
|
const float d = (o-v).SquareLength();
|
|
|
|
if (d < best_dist) {
|
|
best_dist = d;
|
|
best_ofs = vofs;
|
|
best_outer = outer;
|
|
best_iit = iit;
|
|
best_vidx_start = vidx;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
ai_assert(best_outer != boundary.verts.size());
|
|
|
|
|
|
// now that we collected all vertex connections to be added, build the output polygon
|
|
const size_t cnt = boundary.verts.size() + *best_iit+2;
|
|
out.verts.reserve(cnt);
|
|
|
|
for(size_t outer = 0; outer < boundary.verts.size(); ++outer) {
|
|
const aiVector3D& o = boundary.verts[outer];
|
|
out.verts.push_back(o);
|
|
|
|
if (outer == best_outer) {
|
|
for(size_t i = best_ofs; i < *best_iit; ++i) {
|
|
out.verts.push_back(in.verts[best_vidx_start + i]);
|
|
}
|
|
|
|
// we need the first vertex of the inner polygon twice as we return to the
|
|
// outer loop through the very same connection through which we got there.
|
|
for(size_t i = 0; i <= best_ofs; ++i) {
|
|
out.verts.push_back(in.verts[best_vidx_start + i]);
|
|
}
|
|
|
|
// reverse face winding if the normal of the sub-polygon points in the
|
|
// same direction as the normal of the outer polygonal boundary
|
|
if (normals[std::distance(begin,best_iit)] * nor_boundary > 0) {
|
|
std::reverse(out.verts.rbegin(),out.verts.rbegin()+*best_iit+1);
|
|
}
|
|
|
|
// also append a copy of the initial insertion point to be able to continue the outer polygon
|
|
out.verts.push_back(o);
|
|
}
|
|
}
|
|
out.vertcnt.push_back(cnt);
|
|
ai_assert(out.verts.size() == cnt);
|
|
|
|
if (in.vertcnt.size()-std::count(begin,end,0) > 1) {
|
|
// Recursively apply the same algorithm if there are more boundaries to merge. The
|
|
// current implementation is relatively inefficient, though.
|
|
|
|
TempMesh temp;
|
|
|
|
// drop the boundary that we just processed
|
|
const size_t dist = std::distance(begin, best_iit);
|
|
TempMesh remaining = in;
|
|
remaining.vertcnt.erase(remaining.vertcnt.begin() + dist);
|
|
remaining.verts.erase(remaining.verts.begin()+best_vidx_start,remaining.verts.begin()+best_vidx_start+*best_iit);
|
|
|
|
normals.erase(normals.begin() + dist);
|
|
RecursiveMergeBoundaries(temp,remaining,out,normals,nor_boundary);
|
|
|
|
final_result.Append(temp);
|
|
}
|
|
else final_result.Append(out);
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void MergePolygonBoundaries(TempMesh& result, const TempMesh& inmesh, size_t master_bounds = -1)
|
|
{
|
|
// standard case - only one boundary, just copy it to the result vector
|
|
if (inmesh.vertcnt.size() <= 1) {
|
|
result.Append(inmesh);
|
|
return;
|
|
}
|
|
|
|
result.vertcnt.reserve(inmesh.vertcnt.size()+result.vertcnt.size());
|
|
|
|
// XXX get rid of the extra copy if possible
|
|
TempMesh meshout = inmesh;
|
|
|
|
// handle polygons with holes. Our built in triangulation won't handle them as is, but
|
|
// the ear cutting algorithm is solid enough to deal with them if we join the inner
|
|
// holes with the outer boundaries by dummy connections.
|
|
IFCImporter::LogDebug("fixing polygon with holes for triangulation via ear-cutting");
|
|
std::vector<unsigned int>::iterator outer_polygon = meshout.vertcnt.end(), begin=meshout.vertcnt.begin(), end=outer_polygon, iit;
|
|
|
|
// each hole results in two extra vertices
|
|
result.verts.reserve(meshout.verts.size()+meshout.vertcnt.size()*2+result.verts.size());
|
|
size_t outer_polygon_start = 0;
|
|
|
|
// do not normalize 'normals', we need the original length for computing the polygon area
|
|
std::vector<aiVector3D> normals;
|
|
ComputePolygonNormals(meshout,normals,false);
|
|
|
|
// see if one of the polygons is a IfcFaceOuterBound (in which case `master_bounds` is its index).
|
|
// sadly we can't rely on it, the docs say 'At most one of the bounds shall be of the type IfcFaceOuterBound'
|
|
float area_outer_polygon = 1e-10f;
|
|
if (master_bounds != -1) {
|
|
outer_polygon = begin + master_bounds;
|
|
outer_polygon_start = std::accumulate(begin,outer_polygon,0);
|
|
area_outer_polygon = normals[master_bounds].SquareLength();
|
|
}
|
|
else {
|
|
size_t vidx = 0;
|
|
for(iit = begin; iit != meshout.vertcnt.end(); vidx += *iit++) {
|
|
// find the polygon with the largest area, it must be the outer bound.
|
|
aiVector3D& n = normals[std::distance(begin,iit)];
|
|
const float area = n.SquareLength();
|
|
if (area > area_outer_polygon) {
|
|
area_outer_polygon = area;
|
|
outer_polygon = iit;
|
|
outer_polygon_start = vidx;
|
|
}
|
|
}
|
|
}
|
|
|
|
ai_assert(outer_polygon != meshout.vertcnt.end());
|
|
std::vector<aiVector3D>& in = meshout.verts;
|
|
|
|
// skip over extremely small boundaries - this is a workaround to fix cases
|
|
// in which the number of holes is so extremely large that the
|
|
// triangulation code fails.
|
|
#define IFC_VERTICAL_HOLE_SIZE_TRESHOLD 0.000001f
|
|
size_t vidx = 0, removed = 0, index = 0;
|
|
const float treshold = area_outer_polygon * IFC_VERTICAL_HOLE_SIZE_TRESHOLD;
|
|
for(iit = begin; iit != end ;++index) {
|
|
const float sqlen = normals[index].SquareLength();
|
|
if (sqlen < treshold) {
|
|
std::vector<aiVector3D>::iterator inbase = in.begin()+vidx;
|
|
in.erase(inbase,inbase+*iit);
|
|
|
|
outer_polygon_start -= outer_polygon_start>vidx ? *iit : 0;
|
|
*iit++ = 0;
|
|
++removed;
|
|
|
|
IFCImporter::LogDebug("skip small hole below treshold");
|
|
}
|
|
else {
|
|
normals[index] /= sqrt(sqlen);
|
|
vidx += *iit++;
|
|
}
|
|
}
|
|
|
|
// see if one or more of the hole has a face that lies directly on an outer bound.
|
|
// this happens for doors, for example.
|
|
vidx = 0;
|
|
for(iit = begin; ; vidx += *iit++) {
|
|
next_loop:
|
|
if (iit == end) {
|
|
break;
|
|
}
|
|
if (iit == outer_polygon) {
|
|
continue;
|
|
}
|
|
|
|
for(size_t vofs = 0; vofs < *iit; ++vofs) {
|
|
if (!*iit) {
|
|
continue;
|
|
}
|
|
const size_t next = (vofs+1)%*iit;
|
|
const aiVector3D& v = in[vidx+vofs], &vnext = in[vidx+next],&vd = (vnext-v).Normalize();
|
|
|
|
for(size_t outer = 0; outer < *outer_polygon; ++outer) {
|
|
const aiVector3D& o = in[outer_polygon_start+outer], &onext = in[outer_polygon_start+(outer+1)%*outer_polygon], &od = (onext-o).Normalize();
|
|
|
|
if (fabs(vd * od) > 1.f-1e-6f && (onext-v).Normalize() * vd > 1.f-1e-6f && (onext-v)*(o-v) < 0) {
|
|
IFCImporter::LogDebug("got an inner hole that lies partly on the outer polygonal boundary, merging them to a single contour");
|
|
|
|
// in between outer and outer+1 insert all vertices of this loop, then drop the original altogether.
|
|
std::vector<aiVector3D> tmp(*iit);
|
|
|
|
const size_t start = (v-o).SquareLength() > (vnext-o).SquareLength() ? vofs : next;
|
|
std::vector<aiVector3D>::iterator inbase = in.begin()+vidx, it = std::copy(inbase+start, inbase+*iit,tmp.begin());
|
|
std::copy(inbase, inbase+start,it);
|
|
std::reverse(tmp.begin(),tmp.end());
|
|
|
|
in.insert(in.begin()+outer_polygon_start+(outer+1)%*outer_polygon,tmp.begin(),tmp.end());
|
|
vidx += outer_polygon_start<vidx ? *iit : 0;
|
|
|
|
inbase = in.begin()+vidx;
|
|
in.erase(inbase,inbase+*iit);
|
|
|
|
outer_polygon_start -= outer_polygon_start>vidx ? *iit : 0;
|
|
|
|
*outer_polygon += tmp.size();
|
|
*iit++ = 0;
|
|
++removed;
|
|
goto next_loop;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if ( meshout.vertcnt.size() - removed <= 1) {
|
|
result.Append(meshout);
|
|
return;
|
|
}
|
|
|
|
// extract the outer boundary and move it to a separate mesh
|
|
TempMesh boundary;
|
|
boundary.vertcnt.resize(1,*outer_polygon);
|
|
boundary.verts.resize(*outer_polygon);
|
|
|
|
std::vector<aiVector3D>::iterator b = in.begin()+outer_polygon_start;
|
|
std::copy(b,b+*outer_polygon,boundary.verts.begin());
|
|
in.erase(b,b+*outer_polygon);
|
|
|
|
std::vector<aiVector3D>::iterator norit = normals.begin()+std::distance(meshout.vertcnt.begin(),outer_polygon);
|
|
const aiVector3D nor_boundary = *norit;
|
|
normals.erase(norit);
|
|
meshout.vertcnt.erase(outer_polygon);
|
|
|
|
// keep merging the closest inner boundary with the outer boundary until no more boundaries are left
|
|
RecursiveMergeBoundaries(result,meshout,boundary,normals,nor_boundary);
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ProcessConnectedFaceSet(const IFC::IfcConnectedFaceSet& fset, TempMesh& result, ConversionData& conv)
|
|
{
|
|
BOOST_FOREACH(const IFC::IfcFace& face, fset.CfsFaces) {
|
|
size_t ob = -1, cnt = 0;
|
|
TempMesh meshout;
|
|
BOOST_FOREACH(const IFC::IfcFaceBound& bound, face.Bounds) {
|
|
|
|
// XXX implement proper merging for polygonal loops
|
|
if(const IFC::IfcPolyLoop* const polyloop = bound.Bound->ToPtr<IFC::IfcPolyLoop>()) {
|
|
if(ProcessPolyloop(*polyloop, meshout,conv)) {
|
|
if(bound.ToPtr<IFC::IfcFaceOuterBound>()) {
|
|
ob = cnt;
|
|
}
|
|
++cnt;
|
|
}
|
|
}
|
|
else {
|
|
IFCImporter::LogWarn("skipping unknown IfcFaceBound entity, type is " + bound.Bound->GetClassName());
|
|
continue;
|
|
}
|
|
|
|
/*if(!IsTrue(bound.Orientation)) {
|
|
size_t c = 0;
|
|
BOOST_FOREACH(unsigned int& c, meshout.vertcnt) {
|
|
std::reverse(result.verts.begin() + cnt,result.verts.begin() + cnt + c);
|
|
cnt += c;
|
|
}
|
|
}*/
|
|
|
|
}
|
|
MergePolygonBoundaries(result,meshout);
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ProcessPolyLine(const IFC::IfcPolyline& def, TempMesh& meshout, ConversionData& conv)
|
|
{
|
|
// this won't produce a valid mesh, it just spits out a list of vertices
|
|
aiVector3D t;
|
|
BOOST_FOREACH(const IFC::IfcCartesianPoint& cp, def.Points) {
|
|
ConvertCartesianPoint(t,cp);
|
|
meshout.verts.push_back(t);
|
|
}
|
|
meshout.vertcnt.push_back(meshout.verts.size());
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
bool ProcessCurve(const IFC::IfcCurve& curve, TempMesh& meshout, ConversionData& conv)
|
|
{
|
|
if(const IFC::IfcPolyline* poly = curve.ToPtr<IFC::IfcPolyline>()) {
|
|
ProcessPolyLine(*poly,meshout,conv);
|
|
}
|
|
else {
|
|
IFCImporter::LogWarn("skipping unknown IfcCurve entity, type is " + curve.GetClassName());
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ProcessClosedProfile(const IFC::IfcArbitraryClosedProfileDef& def, TempMesh& meshout, ConversionData& conv)
|
|
{
|
|
ProcessCurve(def.OuterCurve,meshout,conv);
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ProcessOpenProfile(const IFC::IfcArbitraryOpenProfileDef& def, TempMesh& meshout, ConversionData& conv)
|
|
{
|
|
ProcessCurve(def.Curve,meshout,conv);
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ProcessParametrizedProfile(const IFC::IfcParameterizedProfileDef& def, TempMesh& meshout, ConversionData& conv)
|
|
{
|
|
if(const IFC::IfcRectangleProfileDef* const cprofile = def.ToPtr<IFC::IfcRectangleProfileDef>()) {
|
|
const float x = cprofile->XDim*0.5f, y = cprofile->YDim*0.5f;
|
|
|
|
meshout.verts.reserve(meshout.verts.size()+4);
|
|
meshout.verts.push_back( aiVector3D( x, y, 0.f ));
|
|
meshout.verts.push_back( aiVector3D(-x, y, 0.f ));
|
|
meshout.verts.push_back( aiVector3D(-x,-y, 0.f ));
|
|
meshout.verts.push_back( aiVector3D( x,-y, 0.f ));
|
|
meshout.vertcnt.push_back(4);
|
|
}
|
|
else if( const IFC::IfcCircleProfileDef* const circle = def.ToPtr<IFC::IfcCircleProfileDef>()) {
|
|
if( const IFC::IfcCircleHollowProfileDef* const hollow = def.ToPtr<IFC::IfcCircleHollowProfileDef>()) {
|
|
// TODO
|
|
}
|
|
const size_t segments = 32;
|
|
const float delta = AI_MATH_TWO_PI_F/segments, radius = circle->Radius;
|
|
|
|
meshout.verts.reserve(segments);
|
|
|
|
float angle = 0.f;
|
|
for(size_t i = 0; i < segments; ++i, angle += delta) {
|
|
meshout.verts.push_back( aiVector3D( cos(angle)*radius, sin(angle)*radius, 0.f ));
|
|
}
|
|
|
|
meshout.vertcnt.push_back(segments);
|
|
}
|
|
else {
|
|
IFCImporter::LogWarn("skipping unknown IfcParameterizedProfileDef entity, type is " + def.GetClassName());
|
|
return;
|
|
}
|
|
|
|
aiMatrix4x4 trafo;
|
|
ConvertAxisPlacement(trafo, *def.Position,conv);
|
|
meshout.Transform(trafo);
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
bool ProcessProfile(const IFC::IfcProfileDef& prof, TempMesh& meshout, ConversionData& conv)
|
|
{
|
|
if(const IFC::IfcArbitraryClosedProfileDef* const cprofile = prof.ToPtr<IFC::IfcArbitraryClosedProfileDef>()) {
|
|
ProcessClosedProfile(*cprofile,meshout,conv);
|
|
}
|
|
else if(const IFC::IfcArbitraryOpenProfileDef* const copen = prof.ToPtr<IFC::IfcArbitraryOpenProfileDef>()) {
|
|
ProcessOpenProfile(*copen,meshout,conv);
|
|
}
|
|
else if(const IFC::IfcParameterizedProfileDef* const cparam = prof.ToPtr<IFC::IfcParameterizedProfileDef>()) {
|
|
ProcessParametrizedProfile(*cparam,meshout,conv);
|
|
}
|
|
else {
|
|
IFCImporter::LogWarn("skipping unknown IfcProfileDef entity, type is " + prof.GetClassName());
|
|
return false;
|
|
}
|
|
meshout.RemoveAdjacentDuplicates();
|
|
if (!meshout.vertcnt.size() || meshout.vertcnt.front() <= 1) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ProcessRevolvedAreaSolid(const IFC::IfcRevolvedAreaSolid& solid, TempMesh& result, ConversionData& conv)
|
|
{
|
|
TempMesh meshout;
|
|
|
|
// first read the profile description
|
|
if(!ProcessProfile(*solid.SweptArea,meshout,conv) || meshout.verts.size()<=1) {
|
|
return;
|
|
}
|
|
|
|
aiVector3D axis, pos;
|
|
ConvertAxisPlacement(axis,pos,solid.Axis,conv);
|
|
|
|
aiMatrix4x4 tb0,tb1;
|
|
aiMatrix4x4::Translation(pos,tb0);
|
|
aiMatrix4x4::Translation(-pos,tb1);
|
|
|
|
const std::vector<aiVector3D>& in = meshout.verts;
|
|
const size_t size=in.size();
|
|
|
|
bool has_area = solid.SweptArea->ProfileType == "AREA" && size>2;
|
|
const float max_angle = solid.Angle*conv.angle_scale;
|
|
if(fabs(max_angle) < 1e-3) {
|
|
if(has_area) {
|
|
result = meshout;
|
|
}
|
|
return;
|
|
}
|
|
|
|
const unsigned int cnt_segments = std::max(2u,static_cast<unsigned int>(16 * fabs(max_angle)/AI_MATH_HALF_PI_F));
|
|
const float delta = max_angle/cnt_segments;
|
|
|
|
has_area = has_area && fabs(max_angle) < AI_MATH_TWO_PI_F*0.99;
|
|
|
|
result.verts.reserve(size*((cnt_segments+1)*4+(has_area?2:0)));
|
|
result.vertcnt.reserve(size*cnt_segments+2);
|
|
|
|
aiMatrix4x4 rot;
|
|
rot = tb0 * aiMatrix4x4::Rotation(delta,axis,rot) * tb1;
|
|
|
|
size_t base = 0;
|
|
std::vector<aiVector3D>& out = result.verts;
|
|
|
|
// dummy data to simplify later processing
|
|
for(size_t i = 0; i < size; ++i) {
|
|
out.insert(out.end(),4,in[i]);
|
|
}
|
|
|
|
for(unsigned int seg = 0; seg < cnt_segments; ++seg) {
|
|
for(size_t i = 0; i < size; ++i) {
|
|
const size_t next = (i+1)%size;
|
|
|
|
result.vertcnt.push_back(4);
|
|
const aiVector3D& base_0 = out[base+i*4+3],base_1 = out[base+next*4+3];
|
|
|
|
out.push_back(base_0);
|
|
out.push_back(base_1);
|
|
out.push_back(rot*base_1);
|
|
out.push_back(rot*base_0);
|
|
}
|
|
base += size*4;
|
|
}
|
|
|
|
out.erase(out.begin(),out.begin()+size*4);
|
|
|
|
if(has_area) {
|
|
// leave the triangulation of the profile area to the ear cutting
|
|
// implementation in aiProcess_Triangulate - for now we just
|
|
// feed in two huge polygons.
|
|
base -= size*8;
|
|
for(size_t i = size; i--; ) {
|
|
out.push_back(out[base+i*4+3]);
|
|
}
|
|
for(size_t i = 0; i < size; ++i ) {
|
|
out.push_back(out[i*4]);
|
|
}
|
|
result.vertcnt.push_back(size);
|
|
result.vertcnt.push_back(size);
|
|
}
|
|
|
|
aiMatrix4x4 trafo;
|
|
ConvertAxisPlacement(trafo, solid.Position,conv);
|
|
|
|
result.Transform(trafo);
|
|
IFCImporter::LogDebug("generate mesh procedurally by radial extrusion (IfcRevolvedAreaSolid)");
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
bool TryAddOpenings(const std::vector<TempOpening>& openings,const std::vector<aiVector3D>& nors, TempMesh& curmesh)
|
|
{
|
|
std::vector<aiVector3D>& out = curmesh.verts;
|
|
|
|
const size_t s = out.size();
|
|
|
|
const aiVector3D any_point = out[s-1];
|
|
const aiVector3D nor = ComputePolygonNormal(curmesh); ;
|
|
|
|
bool got_openings = false;
|
|
TempMesh res;
|
|
|
|
size_t c = 0;
|
|
BOOST_FOREACH(const TempOpening& t,openings) {
|
|
const aiVector3D& outernor = nors[c++];
|
|
const float dot = nor * outernor;
|
|
if (fabs(dot)<1.f-1e-6f) {
|
|
continue;
|
|
}
|
|
|
|
const aiVector3D diff = t.extrusionDir;
|
|
const std::vector<aiVector3D>& va = t.profileMesh->verts;
|
|
if(va.size() <= 2) {
|
|
continue;
|
|
}
|
|
|
|
const float dd = t.extrusionDir*nor;
|
|
IFCImporter::LogDebug("apply an IfcOpeningElement linked via IfcRelVoidsElement to this polygon");
|
|
|
|
got_openings = true;
|
|
|
|
// project va[i] onto the plane formed by the current polygon [given by (any_point,nor)]
|
|
for(size_t i = 0; i < va.size(); ++i) {
|
|
const aiVector3D& v = va[i];
|
|
out.push_back(v-(nor*(v-any_point))*nor);
|
|
}
|
|
|
|
|
|
curmesh.vertcnt.push_back(va.size());
|
|
|
|
res.Clear();
|
|
MergePolygonBoundaries(res,curmesh,0);
|
|
curmesh = res;
|
|
}
|
|
return got_openings;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
struct DistanceSorter {
|
|
|
|
DistanceSorter(const aiVector3D& base) : base(base) {}
|
|
|
|
bool operator () (const TempOpening& a, const TempOpening& b) const {
|
|
return (a.profileMesh->Center()-base).SquareLength() < (b.profileMesh->Center()-base).SquareLength();
|
|
}
|
|
|
|
aiVector3D base;
|
|
};
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
struct XYSorter {
|
|
|
|
// sort first by X coordinates, then by Y coordinates
|
|
bool operator () (const aiVector2D&a, const aiVector2D& b) const {
|
|
if (a.x == b.x) {
|
|
return a.y < b.y;
|
|
}
|
|
return a.x < b.x;
|
|
}
|
|
};
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
struct ProjectionInfo {
|
|
unsigned int ac, bc;
|
|
aiVector3D p,u,v;
|
|
};
|
|
|
|
typedef std::pair< aiVector2D, aiVector2D > BoundingBox;
|
|
typedef std::map<aiVector2D,size_t,XYSorter> XYSortedField;
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
aiVector2D ProjectPositionVectorOntoPlane(const aiVector3D& x, const ProjectionInfo& proj)
|
|
{
|
|
const aiVector3D xx = x-proj.p;
|
|
return aiVector2D(xx[proj.ac]/proj.u[proj.ac],xx[proj.bc]/proj.v[proj.bc]);
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void QuadrifyPart(const aiVector2D& pmin, const aiVector2D& pmax, XYSortedField& field, const std::vector< BoundingBox >& bbs,
|
|
std::vector<aiVector2D>& out)
|
|
{
|
|
if (!(pmin.x-pmax.x) || !(pmin.y-pmax.y)) {
|
|
return;
|
|
}
|
|
|
|
float xs = 1e10, xe = 1e10;
|
|
bool found = false;
|
|
|
|
// Search along the x-axis until we find an opening
|
|
XYSortedField::iterator start = field.begin();
|
|
for(; start != field.end(); ++start) {
|
|
const BoundingBox& bb = bbs[(*start).second];
|
|
if (bb.second.x > pmin.x && bb.first.x < pmax.x && bb.second.y > pmin.y && bb.first.y < pmax.y) {
|
|
xs = bb.first.x;
|
|
xe = bb.second.x;
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
xs = std::max(pmin.x,xs);
|
|
xe = std::min(pmax.x,xe);
|
|
|
|
if (!found) {
|
|
// the rectangle [pmin,pend] is opaque, fill it
|
|
out.push_back(pmin);
|
|
out.push_back(aiVector2D(pmin.x,pmax.y));
|
|
out.push_back(pmax);
|
|
out.push_back(aiVector2D(pmax.x,pmin.y));
|
|
return;
|
|
}
|
|
|
|
if (xs - pmin.x) {
|
|
out.push_back(pmin);
|
|
out.push_back(aiVector2D(pmin.x,pmax.y));
|
|
out.push_back(aiVector2D(xs,pmax.y));
|
|
out.push_back(aiVector2D(xs,pmin.y));
|
|
}
|
|
|
|
// search along the y-axis for all openings that overlap xs and our element
|
|
float ylast = pmin.y;
|
|
found = false;
|
|
for(; start != field.end(); ++start) {
|
|
const BoundingBox& bb = bbs[(*start).second];
|
|
|
|
if (bb.second.y > ylast && bb.first.y < pmax.y) {
|
|
|
|
found = true;
|
|
const float ys = std::max(bb.first.y,pmin.y), ye = std::min(bb.second.y,pmax.y);
|
|
if (ys - ylast) {
|
|
// Divide et impera!
|
|
QuadrifyPart( aiVector2D(xs,ylast), aiVector2D(xe,ys) ,field,bbs,out);
|
|
}
|
|
|
|
// the following are the window vertices
|
|
|
|
/*wnd.push_back(aiVector2D(xs,ys));
|
|
wnd.push_back(aiVector2D(xs,ye));
|
|
wnd.push_back(aiVector2D(xe,ye));
|
|
wnd.push_back(aiVector2D(xe,ys));*/
|
|
ylast = ye;
|
|
}
|
|
|
|
if (bb.first.x > xs) {
|
|
break;
|
|
}
|
|
}
|
|
if (!found) {
|
|
// the rectangle [pmin,pend] is opaque, fill it
|
|
out.push_back(aiVector2D(xs,pmin.y));
|
|
out.push_back(aiVector2D(xs,pmax.y));
|
|
out.push_back(aiVector2D(xe,pmax.y));
|
|
out.push_back(aiVector2D(xe,pmin.y));
|
|
return;
|
|
}
|
|
if (ylast < pmax.y) {
|
|
// Divide et impera!
|
|
QuadrifyPart( aiVector2D(xs,ylast), aiVector2D(xe,pmax.y) ,field,bbs,out);
|
|
}
|
|
|
|
// Divide et impera! - now for the whole rest
|
|
if (pmax.x-xe) {
|
|
QuadrifyPart(aiVector2D(xe,pmin.y), pmax ,field,bbs,out);
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
enum Intersect {
|
|
Intersect_No,
|
|
Intersect_LiesOnPlane,
|
|
Intersect_Yes
|
|
};
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
Intersect IntersectSegmentPlane(const aiVector3D& p,const aiVector3D& n, const aiVector3D& e0, const aiVector3D& e1, aiVector3D& out)
|
|
{
|
|
const aiVector3D pdelta = e0 - p, seg = e1-e0;
|
|
const float dotOne = n*seg, dotTwo = -(n*pdelta);
|
|
|
|
if (fabs(dotOne) < 1e-6) {
|
|
return fabs(dotTwo) < 1e-6f ? Intersect_LiesOnPlane : Intersect_No;
|
|
}
|
|
|
|
const float t = dotTwo/dotOne;
|
|
// t must be in [0..1] if the intersection point is within the given segment
|
|
if (t > 1.f || t < 0.f) {
|
|
return Intersect_No;
|
|
}
|
|
out = e0+t*seg;
|
|
return Intersect_Yes;
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
aiVector3D Unproject(const aiVector2D& vproj, const ProjectionInfo& proj)
|
|
{
|
|
return vproj.x*proj.u + vproj.y*proj.v + proj.p;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void InsertWindowContours(const std::vector< BoundingBox >& bbs,const std::vector< std::vector<aiVector2D> >& contours,const ProjectionInfo& proj, TempMesh& curmesh)
|
|
{
|
|
ai_assert(contours.size() == bbs.size());
|
|
|
|
// fix windows - we need to insert the real, polygonal shapes into the quadratic holes that we have now
|
|
for(size_t i = 0; i < contours.size();++i) {
|
|
const BoundingBox& bb = bbs[i];
|
|
const std::vector<aiVector2D>& contour = contours[i];
|
|
|
|
// check if we need to do it at all - many windows just fit perfectly into their quadratic holes,
|
|
// i.e. their contours *are* already their bounding boxes.
|
|
if (contour.size() == 4) {
|
|
std::set<aiVector2D,XYSorter> verts;
|
|
for(size_t n = 0; n < 4; ++n) {
|
|
verts.insert(contour[n]);
|
|
}
|
|
const std::set<aiVector2D,XYSorter>::const_iterator end = verts.end();
|
|
if (verts.find(bb.first)!=end && verts.find(bb.second)!=end
|
|
&& verts.find(aiVector2D(bb.first.x,bb.second.y))!=end
|
|
&& verts.find(aiVector2D(bb.second.x,bb.first.y))!=end
|
|
) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
const float epsilon = (bb.first-bb.second).Length()/1000.f;
|
|
|
|
// walk through all contour points and find those that lie on the BB corner
|
|
size_t last_hit = -1, very_first_hit = -1;
|
|
aiVector2D edge;
|
|
for(size_t n = 0, e=0, size = contour.size();; n=(n+1)%size, ++e) {
|
|
|
|
// sanity checking
|
|
if (e == size*2) {
|
|
IFCImporter::LogError("encountered unexpected topology while generating window contour");
|
|
break;
|
|
}
|
|
|
|
const aiVector2D& v = contour[n];
|
|
|
|
bool hit = false;
|
|
if (fabs(v.x-bb.first.x)<epsilon) {
|
|
edge.x = bb.first.x;
|
|
hit = true;
|
|
}
|
|
else if (fabs(v.x-bb.second.x)<epsilon) {
|
|
edge.x = bb.second.x;
|
|
hit = true;
|
|
}
|
|
|
|
if (fabs(v.y-bb.first.y)<epsilon) {
|
|
edge.y = bb.first.y;
|
|
hit = true;
|
|
}
|
|
else if (fabs(v.y-bb.second.y)<epsilon) {
|
|
edge.y = bb.second.y;
|
|
hit = true;
|
|
}
|
|
|
|
if (hit) {
|
|
if (last_hit != -1) {
|
|
const size_t old = curmesh.verts.size();
|
|
size_t cnt = last_hit > n ? size-(last_hit-n) : n-last_hit;
|
|
for(size_t a = last_hit, e = 0; e <= cnt; a=(a+1)%size, ++e) {
|
|
curmesh.verts.push_back(Unproject(contour[a],proj));
|
|
}
|
|
|
|
if (edge != contour[last_hit] && edge != contour[n]) {
|
|
curmesh.verts.push_back(Unproject(edge,proj));
|
|
}
|
|
else if (cnt == 1) {
|
|
// avoid degenerate polygons (also known as lines or points)
|
|
curmesh.verts.erase(curmesh.verts.begin()+old,curmesh.verts.end());
|
|
}
|
|
|
|
if (const size_t d = curmesh.verts.size()-old) {
|
|
curmesh.vertcnt.push_back(d);
|
|
std::reverse(curmesh.verts.rbegin(),curmesh.verts.rbegin()+d);
|
|
}
|
|
if (n == very_first_hit) {
|
|
break;
|
|
}
|
|
}
|
|
else {
|
|
very_first_hit = n;
|
|
}
|
|
|
|
last_hit = n;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
bool TryAddOpenings_Quadrulate(const std::vector<TempOpening>& openings,const std::vector<aiVector3D>& nors, TempMesh& curmesh)
|
|
{
|
|
std::vector<aiVector3D>& out = curmesh.verts;
|
|
|
|
// Try to derive a solid base plane within the current surface for use as
|
|
// working coordinate system.
|
|
aiVector3D vmin,vmax;
|
|
ArrayBounds(&out[0],out.size(),vmin,vmax);
|
|
|
|
const size_t s = out.size();
|
|
|
|
const aiVector3D any_point = out[s-4];
|
|
const aiVector3D nor = ((out[s-3]-any_point)^(out[s-2]-any_point)).Normalize();
|
|
|
|
const aiVector3D diag = vmax-vmin, diagn = aiVector3D(diag).Normalize();
|
|
const float ax = fabs(nor.x);
|
|
const float ay = fabs(nor.y);
|
|
const float az = fabs(nor.z);
|
|
|
|
unsigned int ac = 0, bc = 1; /* no z coord. -> projection to xy */
|
|
if (ax > ay) {
|
|
if (ax > az) { /* no x coord. -> projection to yz */
|
|
ac = 1; bc = 2;
|
|
}
|
|
}
|
|
else if (ay > az) { /* no y coord. -> projection to zy */
|
|
ac = 2; bc = 0;
|
|
}
|
|
|
|
ProjectionInfo proj;
|
|
proj.u = proj.v = diag;
|
|
proj.u[bc]=0;
|
|
proj.v[ac]=0;
|
|
proj.ac = ac;
|
|
proj.bc = bc;
|
|
proj.p = vmin;
|
|
|
|
// project all points into the coordinate system defined by the p+sv*tu plane
|
|
// and compute bounding boxes for them
|
|
std::vector< BoundingBox > bbs;
|
|
XYSortedField field;
|
|
|
|
std::vector<aiVector2D> contour_flat;
|
|
contour_flat.reserve(out.size());
|
|
BOOST_FOREACH(const aiVector3D& x, out) {
|
|
contour_flat.push_back(ProjectPositionVectorOntoPlane(x,proj));
|
|
}
|
|
|
|
std::vector< std::vector<aiVector2D> > contours;
|
|
|
|
size_t c = 0;
|
|
BOOST_FOREACH(const TempOpening& t,openings) {
|
|
const aiVector3D& outernor = nors[c++];
|
|
const float dot = nor * outernor;
|
|
if (fabs(dot)<1.f-1e-6f) {
|
|
continue;
|
|
}
|
|
|
|
const aiVector3D diff = t.extrusionDir;
|
|
const std::vector<aiVector3D>& va = t.profileMesh->verts;
|
|
if(va.size() <= 2) {
|
|
continue;
|
|
}
|
|
|
|
aiVector2D vpmin,vpmax;
|
|
MinMaxChooser<aiVector2D>()(vpmin,vpmax);
|
|
|
|
contours.push_back(std::vector<aiVector2D>());
|
|
std::vector<aiVector2D>& contour = contours.back();
|
|
|
|
BOOST_FOREACH(const aiVector3D& x, t.profileMesh->verts) {
|
|
const aiVector2D& vproj = ProjectPositionVectorOntoPlane(x,proj);
|
|
|
|
vpmin = std::min(vpmin,vproj);
|
|
vpmax = std::max(vpmax,vproj);
|
|
|
|
contour.push_back(vproj);
|
|
}
|
|
|
|
|
|
if (field.find(vpmin) != field.end()) {
|
|
IFCImporter::LogWarn("constraint failure during generation of wall openings, results may be faulty");
|
|
}
|
|
field[vpmin] = bbs.size();
|
|
bbs.push_back(BoundingBox(vpmin,vpmax));
|
|
}
|
|
|
|
if (bbs.empty()) {
|
|
return false;
|
|
}
|
|
|
|
|
|
std::vector<aiVector2D> outflat;
|
|
outflat.reserve(openings.size()*4);
|
|
QuadrifyPart(aiVector2D(0.f,0.f),aiVector2D(1.f,1.f),field,bbs,outflat);
|
|
ai_assert(!(outflat.size() % 4));
|
|
|
|
//FixOuterBoundaries(outflat,contour_flat);
|
|
|
|
// undo the projection, generate output quads
|
|
std::vector<aiVector3D> vold;
|
|
vold.reserve(outflat.size());
|
|
std::swap(vold,curmesh.verts);
|
|
|
|
std::vector<unsigned int> iold;
|
|
iold.resize(outflat.size()/4,4);
|
|
std::swap(iold,curmesh.vertcnt);
|
|
|
|
BOOST_FOREACH(const aiVector2D& vproj, outflat) {
|
|
out.push_back(Unproject(vproj,proj));
|
|
}
|
|
|
|
InsertWindowContours(bbs,contours,proj,curmesh);
|
|
return true;
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ProcessExtrudedAreaSolid(const IFC::IfcExtrudedAreaSolid& solid, TempMesh& result, ConversionData& conv)
|
|
{
|
|
TempMesh meshout;
|
|
|
|
// first read the profile description
|
|
if(!ProcessProfile(*solid.SweptArea,meshout,conv) || meshout.verts.size()<=1) {
|
|
return;
|
|
}
|
|
|
|
aiVector3D dir;
|
|
ConvertDirection(dir,solid.ExtrudedDirection);
|
|
|
|
dir *= solid.Depth;
|
|
|
|
// assuming that `meshout.verts` is now a list of vertex points forming
|
|
// the underlying profile, extrude along the given axis, forming new
|
|
// triangles.
|
|
|
|
std::vector<aiVector3D>& in = meshout.verts;
|
|
const size_t size=in.size();
|
|
|
|
const bool has_area = solid.SweptArea->ProfileType == "AREA" && size>2;
|
|
if(solid.Depth < 1e-3) {
|
|
if(has_area) {
|
|
meshout = result;
|
|
}
|
|
return;
|
|
}
|
|
|
|
result.verts.reserve(size*(has_area?4:2));
|
|
result.vertcnt.reserve(meshout.vertcnt.size()+2);
|
|
|
|
// transform to target space
|
|
aiMatrix4x4 trafo;
|
|
ConvertAxisPlacement(trafo, solid.Position,conv);
|
|
BOOST_FOREACH(aiVector3D& v,in) {
|
|
v *= trafo;
|
|
}
|
|
|
|
|
|
aiVector3D min = in[0];
|
|
dir *= aiMatrix3x3(trafo);
|
|
|
|
std::vector<aiVector3D> nors;
|
|
|
|
// compute the normal vectors for all opening polygons
|
|
if (conv.apply_openings) {
|
|
if (!conv.settings.useCustomTriangulation) {
|
|
// it is essential to apply the openings in the correct spatial order. The direction
|
|
// doesn't matter, but we would screw up if we started with e.g. a door in between
|
|
// two windows.
|
|
std::sort(conv.apply_openings->begin(),conv.apply_openings->end(),DistanceSorter(min));
|
|
}
|
|
|
|
nors.reserve(conv.apply_openings->size());
|
|
BOOST_FOREACH(TempOpening& t,*conv.apply_openings) {
|
|
TempMesh& bounds = *t.profileMesh.get();
|
|
|
|
if (bounds.verts.size() <= 2) {
|
|
nors.push_back(aiVector3D());
|
|
continue;
|
|
}
|
|
nors.push_back(((bounds.verts[2]-bounds.verts[0])^(bounds.verts[1]-bounds.verts[0]) ).Normalize());
|
|
}
|
|
}
|
|
|
|
TempMesh temp;
|
|
TempMesh& curmesh = conv.apply_openings ? temp : result;
|
|
std::vector<aiVector3D>& out = curmesh.verts;
|
|
|
|
bool (* const gen_openings)(const std::vector<TempOpening>&,const std::vector<aiVector3D>&, TempMesh&) = conv.settings.useCustomTriangulation
|
|
? &TryAddOpenings_Quadrulate
|
|
: &TryAddOpenings;
|
|
|
|
size_t sides_with_openings = 0;
|
|
for(size_t i = 0; i < size; ++i) {
|
|
const size_t next = (i+1)%size;
|
|
|
|
curmesh.vertcnt.push_back(4);
|
|
|
|
out.push_back(in[i]);
|
|
out.push_back(in[i]+dir);
|
|
out.push_back(in[next]+dir);
|
|
out.push_back(in[next]);
|
|
|
|
if(conv.apply_openings) {
|
|
if(gen_openings(*conv.apply_openings,nors,temp)) {
|
|
++sides_with_openings;
|
|
}
|
|
|
|
result.Append(temp);
|
|
temp.Clear();
|
|
}
|
|
}
|
|
|
|
size_t sides_with_v_openings = 0;
|
|
if(has_area) {
|
|
|
|
for(size_t n = 0; n < 2; ++n) {
|
|
for(size_t i = size; i--; ) {
|
|
out.push_back(in[i]+(n?dir:aiVector3D()));
|
|
}
|
|
|
|
curmesh.vertcnt.push_back(size);
|
|
if(conv.apply_openings && size > 2) {
|
|
// XXX here we are forced to use the un-triangulated version of TryAddOpening, with
|
|
// all the problems it causes. The reason is that vertical walls (ehm, floors)
|
|
// can have an arbitrary outer shape, so the usual approach of projecting
|
|
// the surface and all openings onto a flat quad and triangulating the quad
|
|
// fails.
|
|
if(TryAddOpenings(*conv.apply_openings,nors,temp)) {
|
|
++sides_with_v_openings;
|
|
}
|
|
|
|
result.Append(temp);
|
|
temp.Clear();
|
|
}
|
|
}
|
|
}
|
|
|
|
// add connection geometry to close the 'holes' for the openings
|
|
if(conv.apply_openings) {
|
|
//result.infacing.resize(result.verts.size()+);
|
|
BOOST_FOREACH(const TempOpening& t,*conv.apply_openings) {
|
|
const std::vector<aiVector3D>& in = t.profileMesh->verts;
|
|
std::vector<aiVector3D>& out = result.verts;
|
|
|
|
const aiVector3D dir = t.extrusionDir;
|
|
for(size_t i = 0, size = in.size(); i < size; ++i) {
|
|
const size_t next = (i+1)%size;
|
|
|
|
result.vertcnt.push_back(4);
|
|
|
|
out.push_back(in[i]);
|
|
out.push_back(in[i]+dir);
|
|
out.push_back(in[next]+dir);
|
|
out.push_back(in[next]);
|
|
}
|
|
}
|
|
}
|
|
|
|
if(conv.apply_openings && (sides_with_openings != 2 && sides_with_openings || sides_with_v_openings != 2 && sides_with_v_openings)) {
|
|
IFCImporter::LogWarn("failed to resolve all openings, presumably their topology is not supported by Assimp");
|
|
}
|
|
|
|
IFCImporter::LogDebug("generate mesh procedurally by extrusion (IfcExtrudedAreaSolid)");
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ProcessSweptAreaSolid(const IFC::IfcSweptAreaSolid& swept, TempMesh& meshout, ConversionData& conv)
|
|
{
|
|
if(const IFC::IfcExtrudedAreaSolid* const solid = swept.ToPtr<IFC::IfcExtrudedAreaSolid>()) {
|
|
// Do we just collect openings for a parent element (i.e. a wall)?
|
|
// In this case we don't extrude the surface yet, just keep the profile and transform it correctly
|
|
if(conv.collect_openings) {
|
|
boost::shared_ptr<TempMesh> meshtmp(new TempMesh());
|
|
ProcessProfile(swept.SweptArea,*meshtmp,conv);
|
|
|
|
aiMatrix4x4 m;
|
|
ConvertAxisPlacement(m,solid->Position,conv);
|
|
meshtmp->Transform(m);
|
|
|
|
aiVector3D dir;
|
|
ConvertDirection(dir,solid->ExtrudedDirection);
|
|
conv.collect_openings->push_back(TempOpening(solid, aiMatrix3x3(m) * (dir*solid->Depth),meshtmp));
|
|
return;
|
|
}
|
|
|
|
ProcessExtrudedAreaSolid(*solid,meshout,conv);
|
|
}
|
|
else if(const IFC::IfcRevolvedAreaSolid* const rev = swept.ToPtr<IFC::IfcRevolvedAreaSolid>()) {
|
|
ProcessRevolvedAreaSolid(*rev,meshout,conv);
|
|
}
|
|
else {
|
|
IFCImporter::LogWarn("skipping unknown IfcSweptAreaSolid entity, type is " + swept.GetClassName());
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ProcessBoolean(const IFC::IfcBooleanResult& boolean, TempMesh& result, ConversionData& conv)
|
|
{
|
|
if(const IFC::IfcBooleanClippingResult* const clip = boolean.ToPtr<IFC::IfcBooleanClippingResult>()) {
|
|
if(clip->Operator != "DIFFERENCE") {
|
|
IFCImporter::LogWarn("encountered unsupported boolean operator: " + (std::string)clip->Operator);
|
|
return;
|
|
}
|
|
|
|
TempMesh meshout;
|
|
const IFC::IfcHalfSpaceSolid* const hs = clip->SecondOperand->ResolveSelectPtr<IFC::IfcHalfSpaceSolid>(conv.db);
|
|
if(!hs) {
|
|
IFCImporter::LogError("expected IfcHalfSpaceSolid as second clipping operand");
|
|
return;
|
|
}
|
|
|
|
const IFC::IfcPlane* const plane = hs->BaseSurface->ToPtr<IFC::IfcPlane>();
|
|
if(!plane) {
|
|
IFCImporter::LogError("expected IfcPlane as base surface for the IfcHalfSpaceSolid");
|
|
return;
|
|
}
|
|
|
|
if(const IFC::IfcBooleanResult* const op0 = clip->FirstOperand->ResolveSelectPtr<IFC::IfcBooleanResult>(conv.db)) {
|
|
ProcessBoolean(*op0,meshout,conv);
|
|
}
|
|
else if (const IFC::IfcSweptAreaSolid* const swept = clip->FirstOperand->ResolveSelectPtr<IFC::IfcSweptAreaSolid>(conv.db)) {
|
|
ProcessSweptAreaSolid(*swept,meshout,conv);
|
|
}
|
|
else {
|
|
IFCImporter::LogError("expected IfcSweptAreaSolid or IfcBooleanResult as first clipping operand");
|
|
return;
|
|
}
|
|
|
|
// extract plane base position vector and normal vector
|
|
aiVector3D p,n(0.f,0.f,1.f);
|
|
if (plane->Position->Axis) {
|
|
ConvertDirection(n,plane->Position->Axis.Get());
|
|
}
|
|
ConvertCartesianPoint(p,plane->Position->Location);
|
|
|
|
if(!IsTrue(hs->AgreementFlag)) {
|
|
n *= -1.f;
|
|
}
|
|
|
|
// clip the current contents of `meshout` against the plane we obtained from the second operand
|
|
const std::vector<aiVector3D>& in = meshout.verts;
|
|
std::vector<aiVector3D>& outvert = result.verts;
|
|
std::vector<unsigned int>::const_iterator begin=meshout.vertcnt.begin(), end=meshout.vertcnt.end(), iit;
|
|
|
|
outvert.reserve(in.size());
|
|
result.vertcnt.reserve(meshout.vertcnt.size());
|
|
|
|
unsigned int vidx = 0;
|
|
for(iit = begin; iit != end; vidx += *iit++) {
|
|
|
|
unsigned int newcount = 0;
|
|
for(unsigned int i = 0; i < *iit; ++i) {
|
|
const aiVector3D& e0 = in[vidx+i], e1 = in[vidx+(i+1)%*iit];
|
|
|
|
// does the next segment intersect the plane?
|
|
aiVector3D isectpos;
|
|
const Intersect isect = IntersectSegmentPlane(p,n,e0,e1,isectpos);
|
|
if (isect == Intersect_No || isect == Intersect_LiesOnPlane) {
|
|
if ( (e0-p).Normalize()*n > 0 ) {
|
|
outvert.push_back(e0);
|
|
++newcount;
|
|
}
|
|
}
|
|
else if (isect == Intersect_Yes) {
|
|
if ( (e0-p).Normalize()*n > 0 ) {
|
|
// e0 is on the right side, so keep it
|
|
outvert.push_back(e0);
|
|
outvert.push_back(isectpos);
|
|
newcount += 2;
|
|
}
|
|
else {
|
|
// e0 is on the wrong side, so drop it and keep e1 instead
|
|
outvert.push_back(isectpos);
|
|
++newcount;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!newcount) {
|
|
continue;
|
|
}
|
|
|
|
aiVector3D vmin,vmax;
|
|
ArrayBounds(&*(outvert.end()-newcount),newcount,vmin,vmax);
|
|
|
|
// filter our double points - those may happen if a point lies
|
|
// directly on the intersection line. However, due to float
|
|
// precision a bitwise comparison is not feasible to detect
|
|
// this case.
|
|
const float epsilon = (vmax-vmin).SquareLength() / 1e6f;
|
|
FuzzyVectorCompare fz(epsilon);
|
|
|
|
std::vector<aiVector3D>::iterator e = std::unique( outvert.end()-newcount, outvert.end(), fz );
|
|
if (e != outvert.end()) {
|
|
newcount -= static_cast<unsigned int>(std::distance(e,outvert.end()));
|
|
outvert.erase(e,outvert.end());
|
|
}
|
|
if (fz(*( outvert.end()-newcount),outvert.back())) {
|
|
outvert.pop_back();
|
|
--newcount;
|
|
}
|
|
if(newcount > 2) {
|
|
result.vertcnt.push_back(newcount);
|
|
}
|
|
else while(newcount-->0)result.verts.pop_back();
|
|
|
|
}
|
|
IFCImporter::LogDebug("generating CSG geometry by plane clipping (IfcBooleanClippingResult)");
|
|
}
|
|
else {
|
|
IFCImporter::LogWarn("skipping unknown IfcBooleanResult entity, type is " + boolean.GetClassName());
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
int ConvertShadingMode(const std::string& name)
|
|
{
|
|
if (name == "BLINN") {
|
|
return aiShadingMode_Blinn;
|
|
}
|
|
else if (name == "FLAT" || name == "NOTDEFINED") {
|
|
return aiShadingMode_NoShading;
|
|
}
|
|
else if (name == "PHONG") {
|
|
return aiShadingMode_Phong;
|
|
}
|
|
IFCImporter::LogWarn("shading mode "+name+" not recognized by Assimp, using Phong instead");
|
|
return aiShadingMode_Phong;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void FillMaterial(MaterialHelper* mat,const IFC::IfcSurfaceStyle* surf,ConversionData& conv)
|
|
{
|
|
aiString name;
|
|
name.Set((surf->Name? surf->Name.Get() : "IfcSurfaceStyle_Unnamed"));
|
|
mat->AddProperty(&name,AI_MATKEY_NAME);
|
|
|
|
// now see which kinds of surface information are present
|
|
BOOST_FOREACH(const IFC::IfcSurfaceStyleElementSelect* sel2, surf->Styles) {
|
|
if (const IFC::IfcSurfaceStyleShading* shade = sel2->ResolveSelectPtr<IFC::IfcSurfaceStyleShading>(conv.db)) {
|
|
aiColor4D col_base,col;
|
|
|
|
ConvertColor(col_base, shade->SurfaceColour);
|
|
mat->AddProperty(&col_base,1, AI_MATKEY_COLOR_DIFFUSE);
|
|
|
|
if (const IFC::IfcSurfaceStyleRendering* ren = shade->ToPtr<IFC::IfcSurfaceStyleRendering>()) {
|
|
|
|
if (ren->Transparency) {
|
|
const float t = 1.f-ren->Transparency.Get();
|
|
mat->AddProperty(&t,1, AI_MATKEY_OPACITY);
|
|
}
|
|
|
|
if (ren->DiffuseColour) {
|
|
ConvertColor(col, ren->DiffuseColour.Get(),conv,&col_base);
|
|
mat->AddProperty(&col,1, AI_MATKEY_COLOR_DIFFUSE);
|
|
}
|
|
|
|
if (ren->SpecularColour) {
|
|
ConvertColor(col, ren->SpecularColour.Get(),conv,&col_base);
|
|
mat->AddProperty(&col,1, AI_MATKEY_COLOR_SPECULAR);
|
|
}
|
|
|
|
if (ren->TransmissionColour) {
|
|
ConvertColor(col, ren->TransmissionColour.Get(),conv,&col_base);
|
|
mat->AddProperty(&col,1, AI_MATKEY_COLOR_TRANSPARENT);
|
|
}
|
|
|
|
if (ren->ReflectionColour) {
|
|
ConvertColor(col, ren->ReflectionColour.Get(),conv,&col_base);
|
|
mat->AddProperty(&col,1, AI_MATKEY_COLOR_REFLECTIVE);
|
|
}
|
|
|
|
const int shading = (ren->SpecularHighlight && ren->SpecularColour)?ConvertShadingMode(ren->ReflectanceMethod):aiShadingMode_Gouraud;
|
|
mat->AddProperty(&shading,1, AI_MATKEY_SHADING_MODEL);
|
|
|
|
if (ren->SpecularHighlight) {
|
|
if(const EXPRESS::REAL* rt = ren->SpecularHighlight.Get()->ToPtr<EXPRESS::REAL>()) {
|
|
// at this point we don't distinguish between the two distinct ways of
|
|
// specifying highlight intensities. leave this to the user.
|
|
const float e = *rt;
|
|
mat->AddProperty(&e,1,AI_MATKEY_SHININESS);
|
|
}
|
|
else {
|
|
IFCImporter::LogWarn("unexpected type error, SpecularHighlight should be a REAL");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if (const IFC::IfcSurfaceStyleWithTextures* tex = sel2->ResolveSelectPtr<IFC::IfcSurfaceStyleWithTextures>(conv.db)) {
|
|
// XXX
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
unsigned int ProcessMaterials(const IFC::IfcRepresentationItem& item, ConversionData& conv)
|
|
{
|
|
if (conv.materials.empty()) {
|
|
aiString name;
|
|
std::auto_ptr<MaterialHelper> mat(new MaterialHelper());
|
|
|
|
name.Set("<IFCDefault>");
|
|
mat->AddProperty(&name,AI_MATKEY_NAME);
|
|
|
|
aiColor4D col = aiColor4D(0.6f,0.6f,0.6f,1.0f);
|
|
mat->AddProperty(&col,1, AI_MATKEY_COLOR_DIFFUSE);
|
|
|
|
conv.materials.push_back(mat.release());
|
|
}
|
|
|
|
STEP::DB::RefMapRange range = conv.db.GetRefs().equal_range(item.GetID());
|
|
for(;range.first != range.second; ++range.first) {
|
|
if(const IFC::IfcStyledItem* const styled = conv.db.GetObject((*range.first).second)->ToPtr<IFC::IfcStyledItem>()) {
|
|
BOOST_FOREACH(const IFC::IfcPresentationStyleAssignment& as, styled->Styles) {
|
|
BOOST_FOREACH(const IFC::IfcPresentationStyleSelect* sel, as.Styles) {
|
|
|
|
if (const IFC::IfcSurfaceStyle* const surf = sel->ResolveSelectPtr<IFC::IfcSurfaceStyle>(conv.db)) {
|
|
const std::string side = static_cast<std::string>(surf->Side);
|
|
if (side != "BOTH") {
|
|
IFCImporter::LogWarn("ignoring surface side marker on IFC::IfcSurfaceStyle: " + side);
|
|
}
|
|
|
|
std::auto_ptr<MaterialHelper> mat(new MaterialHelper());
|
|
|
|
FillMaterial(mat.get(),surf,conv);
|
|
|
|
conv.materials.push_back(mat.release());
|
|
return conv.materials.size()-1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
bool ProcessTopologicalItem(const IFC::IfcTopologicalRepresentationItem& topo, std::vector<unsigned int>& mesh_indices, ConversionData& conv)
|
|
{
|
|
TempMesh meshtmp;
|
|
if(const IFC::IfcConnectedFaceSet* fset = topo.ToPtr<IFC::IfcConnectedFaceSet>()) {
|
|
ProcessConnectedFaceSet(*fset,meshtmp,conv);
|
|
}
|
|
else {
|
|
IFCImporter::LogWarn("skipping unknown IfcTopologicalRepresentationItem entity, type is " + topo.GetClassName());
|
|
return false;
|
|
}
|
|
|
|
meshtmp.RemoveAdjacentDuplicates();
|
|
FixupFaceOrientation(meshtmp);
|
|
|
|
aiMesh* const mesh = meshtmp.ToMesh();
|
|
if(mesh) {
|
|
mesh->mMaterialIndex = ProcessMaterials(topo,conv);
|
|
mesh_indices.push_back(conv.meshes.size());
|
|
conv.meshes.push_back(mesh);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
bool ProcessGeometricItem(const IFC::IfcGeometricRepresentationItem& geo, std::vector<unsigned int>& mesh_indices, ConversionData& conv)
|
|
{
|
|
TempMesh meshtmp;
|
|
if(const IFC::IfcShellBasedSurfaceModel* shellmod = geo.ToPtr<IFC::IfcShellBasedSurfaceModel>()) {
|
|
BOOST_FOREACH(const IFC::IfcShell* shell,shellmod->SbsmBoundary) {
|
|
try {
|
|
const EXPRESS::ENTITY& e = shell->To<IFC::ENTITY>();
|
|
const IFC::IfcConnectedFaceSet& fs = conv.db.MustGetObject(e).To<IFC::IfcConnectedFaceSet>();
|
|
|
|
ProcessConnectedFaceSet(fs,meshtmp,conv);
|
|
}
|
|
catch(std::bad_cast&) {
|
|
IFCImporter::LogWarn("unexpected type error, IfcShell ought to inherit from IfcConnectedFaceSet");
|
|
}
|
|
}
|
|
}
|
|
else if(const IFC::IfcSweptAreaSolid* swept = geo.ToPtr<IFC::IfcSweptAreaSolid>()) {
|
|
ProcessSweptAreaSolid(*swept,meshtmp,conv);
|
|
}
|
|
else if(const IFC::IfcManifoldSolidBrep* brep = geo.ToPtr<IFC::IfcManifoldSolidBrep>()) {
|
|
ProcessConnectedFaceSet(brep->Outer,meshtmp,conv);
|
|
}
|
|
else if(const IFC::IfcFaceBasedSurfaceModel* surf = geo.ToPtr<IFC::IfcFaceBasedSurfaceModel>()) {
|
|
BOOST_FOREACH(const IFC::IfcConnectedFaceSet& fc, surf->FbsmFaces) {
|
|
ProcessConnectedFaceSet(fc,meshtmp,conv);
|
|
}
|
|
}
|
|
else if(const IFC::IfcBooleanResult* boolean = geo.ToPtr<IFC::IfcBooleanResult>()) {
|
|
ProcessBoolean(*boolean,meshtmp,conv);
|
|
}
|
|
else if(const IFC::IfcBoundingBox* bb = geo.ToPtr<IFC::IfcBoundingBox>()) {
|
|
// silently skip over bounding boxes
|
|
return false;
|
|
}
|
|
else {
|
|
IFCImporter::LogWarn("skipping unknown IfcGeometricRepresentationItem entity, type is " + geo.GetClassName());
|
|
return false;
|
|
}
|
|
|
|
meshtmp.RemoveAdjacentDuplicates();
|
|
FixupFaceOrientation(meshtmp);
|
|
|
|
aiMesh* const mesh = meshtmp.ToMesh();
|
|
if(mesh) {
|
|
mesh->mMaterialIndex = ProcessMaterials(geo,conv);
|
|
mesh_indices.push_back(conv.meshes.size());
|
|
conv.meshes.push_back(mesh);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void AssignAddedMeshes(std::vector<unsigned int>& mesh_indices,aiNode* nd,ConversionData& conv)
|
|
{
|
|
if (!mesh_indices.empty()) {
|
|
|
|
// make unique
|
|
std::sort(mesh_indices.begin(),mesh_indices.end());
|
|
std::vector<unsigned int>::iterator it_end = std::unique(mesh_indices.begin(),mesh_indices.end());
|
|
|
|
const size_t size = std::distance(mesh_indices.begin(),it_end);
|
|
|
|
nd->mNumMeshes = size;
|
|
nd->mMeshes = new unsigned int[nd->mNumMeshes];
|
|
for(unsigned int i = 0; i < nd->mNumMeshes; ++i) {
|
|
nd->mMeshes[i] = mesh_indices[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
bool TryQueryMeshCache(const IFC::IfcRepresentationItem& item, std::vector<unsigned int>& mesh_indices, ConversionData& conv)
|
|
{
|
|
ConversionData::MeshCache::const_iterator it = conv.cached_meshes.find(&item);
|
|
if (it != conv.cached_meshes.end()) {
|
|
std::copy((*it).second.begin(),(*it).second.end(),std::back_inserter(mesh_indices));
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void PopulateMeshCache(const IFC::IfcRepresentationItem& item, const std::vector<unsigned int>& mesh_indices, ConversionData& conv)
|
|
{
|
|
conv.cached_meshes[&item] = mesh_indices;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
bool ProcessRepresentationItem(const IFC::IfcRepresentationItem& item, std::vector<unsigned int>& mesh_indices, ConversionData& conv)
|
|
{
|
|
if(const IFC::IfcTopologicalRepresentationItem* const topo = item.ToPtr<IFC::IfcTopologicalRepresentationItem>()) {
|
|
if (!TryQueryMeshCache(item,mesh_indices,conv)) {
|
|
if(ProcessTopologicalItem(*topo,mesh_indices,conv)) {
|
|
if(mesh_indices.size()) {
|
|
PopulateMeshCache(item,mesh_indices,conv);
|
|
}
|
|
}
|
|
else return false;
|
|
}
|
|
return true;
|
|
}
|
|
else if(const IFC::IfcGeometricRepresentationItem* const geo = item.ToPtr<IFC::IfcGeometricRepresentationItem>()) {
|
|
if (!TryQueryMeshCache(item,mesh_indices,conv)) {
|
|
if(ProcessGeometricItem(*geo,mesh_indices,conv)) {
|
|
if(mesh_indices.size()) {
|
|
PopulateMeshCache(item,mesh_indices,conv);
|
|
}
|
|
}
|
|
else return false;
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ResolveObjectPlacement(aiMatrix4x4& m, const IFC::IfcObjectPlacement& place, ConversionData& conv)
|
|
{
|
|
if (const IFC::IfcLocalPlacement* const local = place.ToPtr<IFC::IfcLocalPlacement>()){
|
|
ConvertAxisPlacement(m, *local->RelativePlacement, conv);
|
|
|
|
if (local->PlacementRelTo) {
|
|
aiMatrix4x4 tmp;
|
|
ResolveObjectPlacement(tmp,local->PlacementRelTo.Get(),conv);
|
|
m = tmp * m;
|
|
}
|
|
}
|
|
else {
|
|
IFCImporter::LogWarn("skipping unknown IfcObjectPlacement entity, type is " + place.GetClassName());
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void GetAbsTransform(aiMatrix4x4& out, const aiNode* nd, ConversionData& conv)
|
|
{
|
|
aiMatrix4x4 t;
|
|
if (nd->mParent) {
|
|
GetAbsTransform(t,nd->mParent,conv);
|
|
}
|
|
out = t*nd->mTransformation;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ProcessMappedItem(const IFC::IfcMappedItem& mapped, aiNode* nd_src, std::vector< aiNode* >& subnodes_src, ConversionData& conv)
|
|
{
|
|
// insert a custom node here, the cartesian transform operator is simply a conventional transformation matrix
|
|
std::auto_ptr<aiNode> nd(new aiNode());
|
|
nd->mName.Set("IfcMappedItem");
|
|
|
|
// handle the cartesian operator
|
|
aiMatrix4x4 m;
|
|
ConvertTransformOperator(m, *mapped.MappingTarget);
|
|
|
|
aiMatrix4x4 msrc;
|
|
ConvertAxisPlacement(msrc,*mapped.MappingSource->MappingOrigin,conv);
|
|
|
|
msrc = m*msrc;
|
|
|
|
std::vector<unsigned int> meshes;
|
|
const size_t old_openings = conv.collect_openings ? conv.collect_openings->size() : 0;
|
|
if (conv.apply_openings) {
|
|
aiMatrix4x4 minv = msrc;
|
|
minv.Inverse();
|
|
BOOST_FOREACH(TempOpening& open,*conv.apply_openings){
|
|
open.Transform(minv);
|
|
}
|
|
}
|
|
|
|
const IFC::IfcRepresentation& repr = mapped.MappingSource->MappedRepresentation;
|
|
BOOST_FOREACH(const IFC::IfcRepresentationItem& item, repr.Items) {
|
|
if(!ProcessRepresentationItem(item,meshes,conv)) {
|
|
IFCImporter::LogWarn("skipping unknown mapped entity, type is " + item.GetClassName());
|
|
}
|
|
}
|
|
|
|
AssignAddedMeshes(meshes,nd.get(),conv);
|
|
if (conv.collect_openings) {
|
|
|
|
// if this pass serves us only to collect opening geometry,
|
|
// make sure we transform the TempMesh's which we need to
|
|
// preserve as well.
|
|
if(const size_t diff = conv.collect_openings->size() - old_openings) {
|
|
for(size_t i = 0; i < diff; ++i) {
|
|
(*conv.collect_openings)[old_openings+i].Transform(msrc);
|
|
}
|
|
}
|
|
}
|
|
|
|
nd->mTransformation = nd_src->mTransformation * msrc;
|
|
subnodes_src.push_back(nd.release());
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ProcessProductRepresentation(const IFC::IfcProduct& el, aiNode* nd, std::vector< aiNode* >& subnodes, ConversionData& conv)
|
|
{
|
|
if(!el.Representation) {
|
|
return;
|
|
}
|
|
|
|
if(conv.settings.skipSpaceRepresentations) {
|
|
if(const IFC::IfcSpace* const space = el.ToPtr<IFC::IfcSpace>()) {
|
|
IFCImporter::LogWarn("skipping IfcSpace entity due to importer settings");
|
|
return;
|
|
}
|
|
}
|
|
|
|
std::vector<unsigned int> meshes;
|
|
|
|
BOOST_FOREACH(const IFC::IfcRepresentation& repr, el.Representation.Get()->Representations) {
|
|
if (conv.settings.skipCurveRepresentations && repr.RepresentationType && repr.RepresentationType.Get() == "Curve2D") {
|
|
IFCImporter::LogWarn("skipping Curve2D representation item due to importer settings");
|
|
continue;
|
|
}
|
|
BOOST_FOREACH(const IFC::IfcRepresentationItem& item, repr.Items) {
|
|
if(const IFC::IfcMappedItem* const geo = item.ToPtr<IFC::IfcMappedItem>()) {
|
|
ProcessMappedItem(*geo,nd,subnodes,conv);
|
|
}
|
|
else {
|
|
ProcessRepresentationItem(item,meshes,conv);
|
|
}
|
|
}
|
|
}
|
|
|
|
AssignAddedMeshes(meshes,nd,conv);
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
aiNode* ProcessSpatialStructure(aiNode* parent, const IFC::IfcProduct& el, ConversionData& conv, std::vector<TempOpening>* collect_openings = NULL)
|
|
{
|
|
const STEP::DB::RefMap& refs = conv.db.GetRefs();
|
|
|
|
// add an output node for this spatial structure
|
|
std::auto_ptr<aiNode> nd(new aiNode());
|
|
nd->mName.Set(el.GetClassName()+"_"+(el.Name?el.Name:el.GlobalId));
|
|
nd->mParent = parent;
|
|
|
|
if(el.ObjectPlacement) {
|
|
ResolveObjectPlacement(nd->mTransformation,el.ObjectPlacement.Get(),conv);
|
|
}
|
|
|
|
std::vector<TempOpening> openings;
|
|
|
|
aiMatrix4x4 myInv;
|
|
bool didinv = false;
|
|
|
|
// convert everything contained directly within this structure,
|
|
// this may result in more nodes.
|
|
std::vector< aiNode* > subnodes;
|
|
try {
|
|
// locate aggregates and 'contained-in-here'-elements of this spatial structure and add them in recursively
|
|
// on our way, collect openings in *this* element
|
|
STEP::DB::RefMapRange range = refs.equal_range(el.GetID());
|
|
|
|
for(STEP::DB::RefMapRange range2 = range; range2.first != range.second; ++range2.first) {
|
|
const STEP::LazyObject& obj = conv.db.MustGetObject((*range2.first).second);
|
|
|
|
// handle regularly-contained elements
|
|
if(const IFC::IfcRelContainedInSpatialStructure* const cont = obj->ToPtr<IFC::IfcRelContainedInSpatialStructure>()) {
|
|
BOOST_FOREACH(const IFC::IfcProduct& pro, cont->RelatedElements) {
|
|
if(const IFC::IfcOpeningElement* const open = pro.ToPtr<IFC::IfcOpeningElement>()) {
|
|
// IfcOpeningElement is handled below. Sadly we can't use it here as is:
|
|
// The docs say that opening elements are USUALLY attached to building storeys
|
|
// but we want them for the building elements to which they belong to.
|
|
continue;
|
|
}
|
|
|
|
subnodes.push_back( ProcessSpatialStructure(nd.get(),pro,conv,NULL) );
|
|
}
|
|
}
|
|
// handle openings, which we collect in a list rather than adding them to the node graph
|
|
else if(const IFC::IfcRelVoidsElement* const fills = obj->ToPtr<IFC::IfcRelVoidsElement>()) {
|
|
if(fills->RelatingBuildingElement->GetID() == el.GetID()) {
|
|
const IFC::IfcFeatureElementSubtraction& open = fills->RelatedOpeningElement;
|
|
|
|
// move opening elements to a separate node since they are semantically different than elements that are just 'contained'
|
|
std::auto_ptr<aiNode> nd_aggr(new aiNode());
|
|
nd_aggr->mName.Set("$RelVoidsElement");
|
|
nd_aggr->mParent = nd.get();
|
|
|
|
nd_aggr->mTransformation = nd->mTransformation;
|
|
|
|
nd_aggr->mNumChildren = 1;
|
|
nd_aggr->mChildren = new aiNode*[1]();
|
|
|
|
std::vector<TempOpening> openings_local;
|
|
nd_aggr->mChildren[0] = ProcessSpatialStructure( nd_aggr.get(),open, conv,&openings_local);
|
|
|
|
|
|
if(openings_local.size()) {
|
|
if (!didinv) {
|
|
myInv = aiMatrix4x4(nd->mTransformation ).Inverse();
|
|
didinv = true;
|
|
}
|
|
|
|
// we need all openings to be in the local space of *this* node, so transform them
|
|
BOOST_FOREACH(TempOpening& op,openings_local) {
|
|
op.Transform( myInv*nd_aggr->mChildren[0]->mTransformation);
|
|
openings.push_back(op);
|
|
}
|
|
}
|
|
|
|
subnodes.push_back( nd_aggr.release() );
|
|
}
|
|
}
|
|
}
|
|
|
|
for(;range.first != range.second; ++range.first) {
|
|
if(const IFC::IfcRelAggregates* const aggr = conv.db.GetObject((*range.first).second)->ToPtr<IFC::IfcRelAggregates>()) {
|
|
|
|
// move aggregate elements to a separate node since they are semantically different than elements that are just 'contained'
|
|
std::auto_ptr<aiNode> nd_aggr(new aiNode());
|
|
nd_aggr->mName.Set("$RelAggregates");
|
|
nd_aggr->mParent = nd.get();
|
|
|
|
nd_aggr->mTransformation = nd->mTransformation;
|
|
|
|
nd_aggr->mChildren = new aiNode*[aggr->RelatedObjects.size()]();
|
|
BOOST_FOREACH(const IFC::IfcObjectDefinition& def, aggr->RelatedObjects) {
|
|
if(const IFC::IfcProduct* const prod = def.ToPtr<IFC::IfcProduct>()) {
|
|
nd_aggr->mChildren[nd_aggr->mNumChildren++] = ProcessSpatialStructure(nd_aggr.get(),*prod,conv,NULL);
|
|
}
|
|
}
|
|
|
|
subnodes.push_back( nd_aggr.release() );
|
|
}
|
|
}
|
|
|
|
conv.collect_openings = collect_openings;
|
|
if(!conv.collect_openings) {
|
|
conv.apply_openings = &openings;
|
|
}
|
|
|
|
ProcessProductRepresentation(el,nd.get(),subnodes,conv);
|
|
conv.apply_openings = conv.collect_openings = NULL;
|
|
|
|
if (subnodes.size()) {
|
|
nd->mChildren = new aiNode*[subnodes.size()]();
|
|
BOOST_FOREACH(aiNode* nd2, subnodes) {
|
|
nd->mChildren[nd->mNumChildren++] = nd2;
|
|
nd2->mParent = nd.get();
|
|
}
|
|
}
|
|
}
|
|
catch(...) {
|
|
// it hurts, but I don't want to pull boost::ptr_vector into -noboost only for these few spots here
|
|
std::for_each(subnodes.begin(),subnodes.end(),delete_fun<aiNode>());
|
|
throw;
|
|
}
|
|
|
|
return nd.release();
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ProcessSpatialStructures(ConversionData& conv)
|
|
{
|
|
// process all products in the file. it is reasonable to assume that a
|
|
// file that is relevant for us contains at least a site or a building.
|
|
const STEP::DB::ObjectMapByType& map = conv.db.GetObjectsByType();
|
|
|
|
ai_assert(map.find("ifcsite") != map.end());
|
|
const STEP::DB::ObjectSet* range = &map.find("ifcsite")->second;
|
|
|
|
if (range->empty()) {
|
|
ai_assert(map.find("ifcbuilding") != map.end());
|
|
range = &map.find("ifcbuilding")->second;
|
|
if (range->empty()) {
|
|
// no site, no building - fail;
|
|
IFCImporter::ThrowException("no root element found (expected IfcBuilding or preferably IfcSite)");
|
|
}
|
|
}
|
|
|
|
|
|
BOOST_FOREACH(const STEP::LazyObject* lz, *range) {
|
|
const IFC::IfcSpatialStructureElement* const prod = lz->ToPtr<IFC::IfcSpatialStructureElement>();
|
|
if(!prod) {
|
|
continue;
|
|
}
|
|
IFCImporter::LogDebug("looking at spatial structure `" + (prod->Name ? prod->Name.Get() : "unnamed") + "`" + (prod->ObjectType? " which is of type " + prod->ObjectType.Get():""));
|
|
|
|
// the primary site is referenced by an IFCRELAGGREGATES element which assigns it to the IFCPRODUCT
|
|
const STEP::DB::RefMap& refs = conv.db.GetRefs();
|
|
STEP::DB::RefMapRange range = refs.equal_range(conv.proj.GetID());
|
|
for(;range.first != range.second; ++range.first) {
|
|
if(const IFC::IfcRelAggregates* const aggr = conv.db.GetObject((*range.first).second)->ToPtr<IFC::IfcRelAggregates>()) {
|
|
|
|
BOOST_FOREACH(const IFC::IfcObjectDefinition& def, aggr->RelatedObjects) {
|
|
// comparing pointer values is not sufficient, we would need to cast them to the same type first
|
|
// as there is multiple inheritance in the game.
|
|
if (def.GetID() == prod->GetID()) {
|
|
IFCImporter::LogDebug("selecting this spatial structure as root structure");
|
|
// got it, this is the primary site.
|
|
conv.out->mRootNode = ProcessSpatialStructure(NULL,*prod,conv,NULL);
|
|
return;
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
IFCImporter::ThrowException("failed to determine primary site element");
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void MakeTreeRelative(aiNode* start, const aiMatrix4x4& combined)
|
|
{
|
|
// combined is the parent's absolute transformation matrix
|
|
aiMatrix4x4 old = start->mTransformation;
|
|
|
|
if (!combined.IsIdentity()) {
|
|
start->mTransformation = aiMatrix4x4(combined).Inverse() * start->mTransformation;
|
|
}
|
|
|
|
// All nodes store absolute transformations right now, so we need to make them relative
|
|
for (unsigned int i = 0; i < start->mNumChildren; ++i) {
|
|
MakeTreeRelative(start->mChildren[i],old);
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void MakeTreeRelative(ConversionData& conv)
|
|
{
|
|
MakeTreeRelative(conv.out->mRootNode,aiMatrix4x4());
|
|
}
|
|
|
|
} // !anon
|
|
|
|
|
|
|
|
#endif
|