505 lines
18 KiB
C++
505 lines
18 KiB
C++
/*
|
|
Open Asset Import Library (ASSIMP)
|
|
----------------------------------------------------------------------
|
|
|
|
Copyright (c) 2006-2010, ASSIMP Development Team
|
|
All rights reserved.
|
|
|
|
Redistribution and use of this software in source and binary forms,
|
|
with or without modification, are permitted provided that the
|
|
following conditions are met:
|
|
|
|
* Redistributions of source code must retain the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer in the documentation and/or other
|
|
materials provided with the distribution.
|
|
|
|
* Neither the name of the ASSIMP team, nor the names of its
|
|
contributors may be used to endorse or promote products
|
|
derived from this software without specific prior
|
|
written permission of the ASSIMP Development Team.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
----------------------------------------------------------------------
|
|
*/
|
|
|
|
/** @file GenUVCoords step */
|
|
|
|
|
|
#include "AssimpPCH.h"
|
|
#include "ComputeUVMappingProcess.h"
|
|
#include "ProcessHelper.h"
|
|
|
|
using namespace Assimp;
|
|
|
|
namespace {
|
|
|
|
const static aiVector3D base_axis_y(0.f,1.f,0.f);
|
|
const static aiVector3D base_axis_x(1.f,0.f,0.f);
|
|
const static aiVector3D base_axis_z(0.f,0.f,1.f);
|
|
const static float angle_epsilon = 0.95f;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Constructor to be privately used by Importer
|
|
ComputeUVMappingProcess::ComputeUVMappingProcess()
|
|
{
|
|
// nothing to do here
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Destructor, private as well
|
|
ComputeUVMappingProcess::~ComputeUVMappingProcess()
|
|
{
|
|
// nothing to do here
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Returns whether the processing step is present in the given flag field.
|
|
bool ComputeUVMappingProcess::IsActive( unsigned int pFlags) const
|
|
{
|
|
return (pFlags & aiProcess_GenUVCoords) != 0;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Check whether a ray intersects a plane and find the intersection point
|
|
inline bool PlaneIntersect(const aiRay& ray, const aiVector3D& planePos,
|
|
const aiVector3D& planeNormal, aiVector3D& pos)
|
|
{
|
|
const float b = planeNormal * (planePos - ray.pos);
|
|
float h = ray.dir * planeNormal;
|
|
if ((h < 10e-5f && h > -10e-5f) || (h = b/h) < 0)
|
|
return false;
|
|
|
|
pos = ray.pos + (ray.dir * h);
|
|
return true;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Find the first empty UV channel in a mesh
|
|
inline unsigned int FindEmptyUVChannel (aiMesh* mesh)
|
|
{
|
|
for (unsigned int m = 0; m < AI_MAX_NUMBER_OF_TEXTURECOORDS;++m)
|
|
if (!mesh->mTextureCoords[m])return m;
|
|
|
|
DefaultLogger::get()->error("Unable to compute UV coordinates, no free UV slot found");
|
|
return UINT_MAX;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Try to remove UV seams
|
|
void RemoveUVSeams (aiMesh* mesh, aiVector3D* out)
|
|
{
|
|
// TODO: just a very rough algorithm. I think it could be done
|
|
// much easier, but I don't know how and am currently too tired to
|
|
// to think about a better solution.
|
|
|
|
const static float LOWER_LIMIT = 0.1f;
|
|
const static float UPPER_LIMIT = 0.9f;
|
|
|
|
const static float LOWER_EPSILON = 10e-3f;
|
|
const static float UPPER_EPSILON = 1.f-10e-3f;
|
|
|
|
for (unsigned int fidx = 0; fidx < mesh->mNumFaces;++fidx)
|
|
{
|
|
const aiFace& face = mesh->mFaces[fidx];
|
|
if (face.mNumIndices < 3) continue; // triangles and polygons only, please
|
|
|
|
unsigned int small = face.mNumIndices, large = small;
|
|
bool zero = false, one = false, round_to_zero = false;
|
|
|
|
// Check whether this face lies on a UV seam. We can just guess,
|
|
// but the assumption that a face with at least one very small
|
|
// on the one side and one very large U coord on the other side
|
|
// lies on a UV seam should work for most cases.
|
|
for (unsigned int n = 0; n < face.mNumIndices;++n)
|
|
{
|
|
if (out[face.mIndices[n]].x < LOWER_LIMIT)
|
|
{
|
|
small = n;
|
|
|
|
// If we have a U value very close to 0 we can't
|
|
// round the others to 0, too.
|
|
if (out[face.mIndices[n]].x <= LOWER_EPSILON)
|
|
zero = true;
|
|
else round_to_zero = true;
|
|
}
|
|
if (out[face.mIndices[n]].x > UPPER_LIMIT)
|
|
{
|
|
large = n;
|
|
|
|
// If we have a U value very close to 1 we can't
|
|
// round the others to 1, too.
|
|
if (out[face.mIndices[n]].x >= UPPER_EPSILON)
|
|
one = true;
|
|
}
|
|
}
|
|
if (small != face.mNumIndices && large != face.mNumIndices)
|
|
{
|
|
for (unsigned int n = 0; n < face.mNumIndices;++n)
|
|
{
|
|
// If the u value is over the upper limit and no other u
|
|
// value of that face is 0, round it to 0
|
|
if (out[face.mIndices[n]].x > UPPER_LIMIT && !zero)
|
|
out[face.mIndices[n]].x = 0.f;
|
|
|
|
// If the u value is below the lower limit and no other u
|
|
// value of that face is 1, round it to 1
|
|
else if (out[face.mIndices[n]].x < LOWER_LIMIT && !one)
|
|
out[face.mIndices[n]].x = 1.f;
|
|
|
|
// The face contains both 0 and 1 as UV coords. This can occur
|
|
// for faces which have an edge that lies directly on the seam.
|
|
// Due to numerical inaccuracies one U coord becomes 0, the
|
|
// other 1. But we do still have a third UV coord to determine
|
|
// to which side we must round to.
|
|
else if (one && zero)
|
|
{
|
|
if (round_to_zero && out[face.mIndices[n]].x >= UPPER_EPSILON)
|
|
out[face.mIndices[n]].x = 0.f;
|
|
else if (!round_to_zero && out[face.mIndices[n]].x <= LOWER_EPSILON)
|
|
out[face.mIndices[n]].x = 1.f;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ComputeUVMappingProcess::ComputeSphereMapping(aiMesh* mesh,const aiVector3D& axis, aiVector3D* out)
|
|
{
|
|
aiVector3D center, min, max;
|
|
FindMeshCenter(mesh, center, min, max);
|
|
|
|
// If the axis is one of x,y,z run a faster code path. It's worth the extra effort ...
|
|
// currently the mapping axis will always be one of x,y,z, except if the
|
|
// PretransformVertices step is used (it transforms the meshes into worldspace,
|
|
// thus changing the mapping axis)
|
|
if (axis * base_axis_x >= angle_epsilon) {
|
|
|
|
// For each point get a normalized projection vector in the sphere,
|
|
// get its longitude and latitude and map them to their respective
|
|
// UV axes. Problems occur around the poles ... unsolvable.
|
|
//
|
|
// The spherical coordinate system looks like this:
|
|
// x = cos(lon)*cos(lat)
|
|
// y = sin(lon)*cos(lat)
|
|
// z = sin(lat)
|
|
//
|
|
// Thus we can derive:
|
|
// lat = arcsin (z)
|
|
// lon = arctan (y/x)
|
|
for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt) {
|
|
const aiVector3D diff = (mesh->mVertices[pnt]-center).Normalize();
|
|
out[pnt] = aiVector3D((atan2 (diff.z, diff.y) + AI_MATH_PI_F ) / AI_MATH_TWO_PI_F,
|
|
(asin (diff.x) + AI_MATH_HALF_PI_F) / AI_MATH_PI_F, 0.f);
|
|
}
|
|
}
|
|
else if (axis * base_axis_y >= angle_epsilon) {
|
|
// ... just the same again
|
|
for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt) {
|
|
const aiVector3D diff = (mesh->mVertices[pnt]-center).Normalize();
|
|
out[pnt] = aiVector3D((atan2 (diff.x, diff.z) + AI_MATH_PI_F ) / AI_MATH_TWO_PI_F,
|
|
(asin (diff.y) + AI_MATH_HALF_PI_F) / AI_MATH_PI_F, 0.f);
|
|
}
|
|
}
|
|
else if (axis * base_axis_z >= angle_epsilon) {
|
|
// ... just the same again
|
|
for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt) {
|
|
const aiVector3D diff = (mesh->mVertices[pnt]-center).Normalize();
|
|
out[pnt] = aiVector3D((atan2 (diff.y, diff.x) + AI_MATH_PI_F ) / AI_MATH_TWO_PI_F,
|
|
(asin (diff.z) + AI_MATH_HALF_PI_F) / AI_MATH_PI_F, 0.f);
|
|
}
|
|
}
|
|
// slower code path in case the mapping axis is not one of the coordinate system axes
|
|
else {
|
|
aiMatrix4x4 mTrafo;
|
|
aiMatrix4x4::FromToMatrix(axis,base_axis_y,mTrafo);
|
|
|
|
// again the same, except we're applying a transformation now
|
|
for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt) {
|
|
const aiVector3D diff = ((mTrafo*mesh->mVertices[pnt])-center).Normalize();
|
|
out[pnt] = aiVector3D((atan2 (diff.y, diff.x) + AI_MATH_PI_F ) / AI_MATH_TWO_PI_F,
|
|
(asin (diff.z) + AI_MATH_HALF_PI_F) / AI_MATH_PI_F, 0.f);
|
|
}
|
|
}
|
|
|
|
|
|
// Now find and remove UV seams. A seam occurs if a face has a tcoord
|
|
// close to zero on the one side, and a tcoord close to one on the
|
|
// other side.
|
|
RemoveUVSeams(mesh,out);
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ComputeUVMappingProcess::ComputeCylinderMapping(aiMesh* mesh,const aiVector3D& axis, aiVector3D* out)
|
|
{
|
|
aiVector3D center, min, max;
|
|
|
|
// If the axis is one of x,y,z run a faster code path. It's worth the extra effort ...
|
|
// currently the mapping axis will always be one of x,y,z, except if the
|
|
// PretransformVertices step is used (it transforms the meshes into worldspace,
|
|
// thus changing the mapping axis)
|
|
if (axis * base_axis_x >= angle_epsilon) {
|
|
FindMeshCenter(mesh, center, min, max);
|
|
const float diff = max.x - min.x;
|
|
|
|
// If the main axis is 'z', the z coordinate of a point 'p' is mapped
|
|
// directly to the texture V axis. The other axis is derived from
|
|
// the angle between ( p.x - c.x, p.y - c.y ) and (1,0), where
|
|
// 'c' is the center point of the mesh.
|
|
for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt) {
|
|
const aiVector3D& pos = mesh->mVertices[pnt];
|
|
aiVector3D& uv = out[pnt];
|
|
|
|
uv.y = (pos.x - min.x) / diff;
|
|
uv.x = (atan2 ( pos.z - center.z, pos.y - center.y) +(float)AI_MATH_PI ) / (float)AI_MATH_TWO_PI;
|
|
}
|
|
}
|
|
else if (axis * base_axis_y >= angle_epsilon) {
|
|
FindMeshCenter(mesh, center, min, max);
|
|
const float diff = max.y - min.y;
|
|
|
|
// just the same ...
|
|
for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt) {
|
|
const aiVector3D& pos = mesh->mVertices[pnt];
|
|
aiVector3D& uv = out[pnt];
|
|
|
|
uv.y = (pos.y - min.y) / diff;
|
|
uv.x = (atan2 ( pos.x - center.x, pos.z - center.z) +(float)AI_MATH_PI ) / (float)AI_MATH_TWO_PI;
|
|
}
|
|
}
|
|
else if (axis * base_axis_z >= angle_epsilon) {
|
|
FindMeshCenter(mesh, center, min, max);
|
|
const float diff = max.z - min.z;
|
|
|
|
// just the same ...
|
|
for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt) {
|
|
const aiVector3D& pos = mesh->mVertices[pnt];
|
|
aiVector3D& uv = out[pnt];
|
|
|
|
uv.y = (pos.z - min.z) / diff;
|
|
uv.x = (atan2 ( pos.y - center.y, pos.x - center.x) +(float)AI_MATH_PI ) / (float)AI_MATH_TWO_PI;
|
|
}
|
|
}
|
|
// slower code path in case the mapping axis is not one of the coordinate system axes
|
|
else {
|
|
aiMatrix4x4 mTrafo;
|
|
aiMatrix4x4::FromToMatrix(axis,base_axis_y,mTrafo);
|
|
FindMeshCenterTransformed(mesh, center, min, max,mTrafo);
|
|
const float diff = max.y - min.y;
|
|
|
|
// again the same, except we're applying a transformation now
|
|
for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt){
|
|
const aiVector3D pos = mTrafo* mesh->mVertices[pnt];
|
|
aiVector3D& uv = out[pnt];
|
|
|
|
uv.y = (pos.y - min.y) / diff;
|
|
uv.x = (atan2 ( pos.x - center.x, pos.z - center.z) +(float)AI_MATH_PI ) / (float)AI_MATH_TWO_PI;
|
|
}
|
|
}
|
|
|
|
// Now find and remove UV seams. A seam occurs if a face has a tcoord
|
|
// close to zero on the one side, and a tcoord close to one on the
|
|
// other side.
|
|
RemoveUVSeams(mesh,out);
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ComputeUVMappingProcess::ComputePlaneMapping(aiMesh* mesh,const aiVector3D& axis, aiVector3D* out)
|
|
{
|
|
float diffu,diffv;
|
|
aiVector3D center, min, max;
|
|
|
|
// If the axis is one of x,y,z run a faster code path. It's worth the extra effort ...
|
|
// currently the mapping axis will always be one of x,y,z, except if the
|
|
// PretransformVertices step is used (it transforms the meshes into worldspace,
|
|
// thus changing the mapping axis)
|
|
if (axis * base_axis_x >= angle_epsilon) {
|
|
FindMeshCenter(mesh, center, min, max);
|
|
diffu = max.z - min.z;
|
|
diffv = max.y - min.y;
|
|
|
|
for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt) {
|
|
const aiVector3D& pos = mesh->mVertices[pnt];
|
|
out[pnt].Set((pos.z - min.z) / diffu,(pos.y - min.y) / diffv);
|
|
}
|
|
}
|
|
else if (axis * base_axis_y >= angle_epsilon) {
|
|
FindMeshCenter(mesh, center, min, max);
|
|
diffu = max.x - min.x;
|
|
diffv = max.z - min.z;
|
|
|
|
for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt) {
|
|
const aiVector3D& pos = mesh->mVertices[pnt];
|
|
out[pnt].Set((pos.x - min.x) / diffu,(pos.z - min.z) / diffv);
|
|
}
|
|
}
|
|
else if (axis * base_axis_z >= angle_epsilon) {
|
|
FindMeshCenter(mesh, center, min, max);
|
|
diffu = max.y - min.y;
|
|
diffv = max.z - min.z;
|
|
|
|
for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt) {
|
|
const aiVector3D& pos = mesh->mVertices[pnt];
|
|
out[pnt].Set((pos.y - min.y) / diffu,(pos.x - min.x) / diffv);
|
|
}
|
|
}
|
|
// slower code path in case the mapping axis is not one of the coordinate system axes
|
|
else
|
|
{
|
|
aiMatrix4x4 mTrafo;
|
|
aiMatrix4x4::FromToMatrix(axis,base_axis_y,mTrafo);
|
|
FindMeshCenterTransformed(mesh, center, min, max,mTrafo);
|
|
diffu = max.x - min.x;
|
|
diffv = max.z - min.z;
|
|
|
|
// again the same, except we're applying a transformation now
|
|
for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt) {
|
|
const aiVector3D pos = mTrafo * mesh->mVertices[pnt];
|
|
out[pnt].Set((pos.x - min.x) / diffu,(pos.z - min.z) / diffv);
|
|
}
|
|
}
|
|
|
|
// shouldn't be necessary to remove UV seams ...
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ComputeUVMappingProcess::ComputeBoxMapping(aiMesh* /*mesh*/, aiVector3D* /*out*/)
|
|
{
|
|
DefaultLogger::get()->error("Mapping type currently not implemented");
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ComputeUVMappingProcess::Execute( aiScene* pScene)
|
|
{
|
|
DefaultLogger::get()->debug("GenUVCoordsProcess begin");
|
|
char buffer[1024];
|
|
|
|
if (pScene->mFlags & AI_SCENE_FLAGS_NON_VERBOSE_FORMAT)
|
|
throw DeadlyImportError("Post-processing order mismatch: expecting pseudo-indexed (\"verbose\") vertices here");
|
|
|
|
std::list<MappingInfo> mappingStack;
|
|
|
|
/* Iterate through all materials and search for non-UV mapped textures
|
|
*/
|
|
for (unsigned int i = 0; i < pScene->mNumMaterials;++i)
|
|
{
|
|
mappingStack.clear();
|
|
aiMaterial* mat = pScene->mMaterials[i];
|
|
for (unsigned int a = 0; a < mat->mNumProperties;++a)
|
|
{
|
|
aiMaterialProperty* prop = mat->mProperties[a];
|
|
if (!::strcmp( prop->mKey.data, "$tex.mapping"))
|
|
{
|
|
aiTextureMapping& mapping = *((aiTextureMapping*)prop->mData);
|
|
if (aiTextureMapping_UV != mapping)
|
|
{
|
|
if (!DefaultLogger::isNullLogger())
|
|
{
|
|
sprintf(buffer, "Found non-UV mapped texture (%s,%i). Mapping type: %s",
|
|
TextureTypeToString((aiTextureType)prop->mSemantic),prop->mIndex,
|
|
MappingTypeToString(mapping));
|
|
|
|
DefaultLogger::get()->info(buffer);
|
|
}
|
|
|
|
if (aiTextureMapping_OTHER == mapping)
|
|
continue;
|
|
|
|
MappingInfo info (mapping);
|
|
|
|
// Get further properties - currently only the major axis
|
|
for (unsigned int a2 = 0; a2 < mat->mNumProperties;++a2)
|
|
{
|
|
aiMaterialProperty* prop2 = mat->mProperties[a2];
|
|
if (prop2->mSemantic != prop->mSemantic || prop2->mIndex != prop->mIndex)
|
|
continue;
|
|
|
|
if ( !::strcmp( prop2->mKey.data, "$tex.mapaxis")) {
|
|
info.axis = *((aiVector3D*)prop2->mData);
|
|
break;
|
|
}
|
|
}
|
|
|
|
unsigned int idx;
|
|
|
|
// Check whether we have this mapping mode already
|
|
std::list<MappingInfo>::iterator it = std::find (mappingStack.begin(),mappingStack.end(), info);
|
|
if (mappingStack.end() != it)
|
|
{
|
|
idx = (*it).uv;
|
|
}
|
|
else
|
|
{
|
|
/* We have found a non-UV mapped texture. Now
|
|
* we need to find all meshes using this material
|
|
* that we can compute UV channels for them.
|
|
*/
|
|
for (unsigned int m = 0; m < pScene->mNumMeshes;++m)
|
|
{
|
|
aiMesh* mesh = pScene->mMeshes[m];
|
|
unsigned int outIdx;
|
|
if ( mesh->mMaterialIndex != i || ( outIdx = FindEmptyUVChannel(mesh) ) == UINT_MAX ||
|
|
!mesh->mNumVertices)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
// Allocate output storage
|
|
aiVector3D* p = mesh->mTextureCoords[outIdx] = new aiVector3D[mesh->mNumVertices];
|
|
|
|
switch (mapping)
|
|
{
|
|
case aiTextureMapping_SPHERE:
|
|
ComputeSphereMapping(mesh,info.axis,p);
|
|
break;
|
|
case aiTextureMapping_CYLINDER:
|
|
ComputeCylinderMapping(mesh,info.axis,p);
|
|
break;
|
|
case aiTextureMapping_PLANE:
|
|
ComputePlaneMapping(mesh,info.axis,p);
|
|
break;
|
|
case aiTextureMapping_BOX:
|
|
ComputeBoxMapping(mesh,p);
|
|
break;
|
|
default:
|
|
ai_assert(false);
|
|
}
|
|
if (m && idx != outIdx)
|
|
{
|
|
DefaultLogger::get()->warn("UV index mismatch. Not all meshes assigned to "
|
|
"this material have equal numbers of UV channels. The UV index stored in "
|
|
"the material structure does therefore not apply for all meshes. ");
|
|
}
|
|
idx = outIdx;
|
|
}
|
|
info.uv = idx;
|
|
mappingStack.push_back(info);
|
|
}
|
|
|
|
// Update the material property list
|
|
mapping = aiTextureMapping_UV;
|
|
((MaterialHelper*)mat)->AddProperty(&idx,1,AI_MATKEY_UVWSRC(prop->mSemantic,prop->mIndex));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
DefaultLogger::get()->debug("GenUVCoordsProcess finished");
|
|
}
|