assimp/code/AssetLib/Collada/ColladaHelper.h

680 lines
20 KiB
C++

/*
Open Asset Import Library (assimp)
----------------------------------------------------------------------
Copyright (c) 2006-2022, assimp team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the
following conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the assimp team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the assimp team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------
*/
/** Helper structures for the Collada loader */
#ifndef AI_COLLADAHELPER_H_INC
#define AI_COLLADAHELPER_H_INC
#include <assimp/light.h>
#include <assimp/material.h>
#include <assimp/mesh.h>
#include <cstdint>
#include <map>
#include <set>
#include <vector>
struct aiMaterial;
namespace Assimp {
namespace Collada {
/// Collada file versions which evolved during the years ...
enum FormatVersion {
FV_1_5_n,
FV_1_4_n,
FV_1_3_n
};
/// Transformation types that can be applied to a node
enum TransformType {
TF_LOOKAT,
TF_ROTATE,
TF_TRANSLATE,
TF_SCALE,
TF_SKEW,
TF_MATRIX
};
/// Different types of input data to a vertex or face
enum InputType {
IT_Invalid,
IT_Vertex, // special type for per-index data referring to the <vertices> element carrying the per-vertex data.
IT_Position,
IT_Normal,
IT_Texcoord,
IT_Color,
IT_Tangent,
IT_Bitangent
};
/// Supported controller types
enum ControllerType {
Skin,
Morph
};
/// Supported morph methods
enum MorphMethod {
Normalized,
Relative
};
/// Common metadata keys as <Collada, Assimp>
using MetaKeyPair = std::pair<std::string, std::string>;
using MetaKeyPairVector = std::vector<MetaKeyPair>;
/// Collada as lower_case (native)
const MetaKeyPairVector &GetColladaAssimpMetaKeys();
// Collada as CamelCase (used by Assimp for consistency)
const MetaKeyPairVector &GetColladaAssimpMetaKeysCamelCase();
/// Convert underscore_separated to CamelCase "authoring_tool" becomes "AuthoringTool"
void ToCamelCase(std::string &text);
/// Contains all data for one of the different transformation types
struct Transform {
std::string mID; ///< SID of the transform step, by which anim channels address their target node
TransformType mType;
ai_real f[16]; ///< Interpretation of data depends on the type of the transformation
};
/// A collada camera.
struct Camera {
Camera() :
mOrtho(false),
mHorFov(10e10f),
mVerFov(10e10f),
mAspect(10e10f),
mZNear(0.1f),
mZFar(1000.f) {}
/// Name of camera
std::string mName;
/// True if it is an orthographic camera
bool mOrtho;
/// Horizontal field of view in degrees
ai_real mHorFov;
/// Vertical field of view in degrees
ai_real mVerFov;
/// Screen aspect
ai_real mAspect;
/// Near& far z
ai_real mZNear, mZFar;
};
#define ASSIMP_COLLADA_LIGHT_ANGLE_NOT_SET 1e9f
/** A collada light source. */
struct Light {
Light() :
mType(aiLightSource_UNDEFINED),
mAttConstant(1.f),
mAttLinear(0.f),
mAttQuadratic(0.f),
mFalloffAngle(180.f),
mFalloffExponent(0.f),
mPenumbraAngle(ASSIMP_COLLADA_LIGHT_ANGLE_NOT_SET),
mOuterAngle(ASSIMP_COLLADA_LIGHT_ANGLE_NOT_SET),
mIntensity(1.f) {}
/// Type of the light source aiLightSourceType + ambient
unsigned int mType;
/// Color of the light
aiColor3D mColor;
/// Light attenuation
ai_real mAttConstant, mAttLinear, mAttQuadratic;
/// Spot light falloff
ai_real mFalloffAngle;
ai_real mFalloffExponent;
// -----------------------------------------------------
// FCOLLADA extension from here
/// ... related stuff from maja and max extensions
ai_real mPenumbraAngle;
ai_real mOuterAngle;
/// Common light intensity
ai_real mIntensity;
};
/** Short vertex index description */
struct InputSemanticMapEntry {
InputSemanticMapEntry() :
mSet(0),
mType(IT_Invalid) {}
/// Index of set, optional
unsigned int mSet;
/// Type of referenced vertex input
InputType mType;
};
/// Table to map from effect to vertex input semantics
struct SemanticMappingTable {
/// Name of material
std::string mMatName;
/// List of semantic map commands, grouped by effect semantic name
using InputSemanticMap = std::map<std::string, InputSemanticMapEntry>;
InputSemanticMap mMap;
/// For std::find
bool operator==(const std::string &s) const {
return s == mMatName;
}
};
/// A reference to a mesh inside a node, including materials assigned to the various subgroups.
/// The ID refers to either a mesh or a controller which specifies the mesh
struct MeshInstance {
///< ID of the mesh or controller to be instanced
std::string mMeshOrController;
///< Map of materials by the subgroup ID they're applied to
std::map<std::string, SemanticMappingTable> mMaterials;
};
/// A reference to a camera inside a node
struct CameraInstance {
///< ID of the camera
std::string mCamera;
};
/// A reference to a light inside a node
struct LightInstance {
///< ID of the camera
std::string mLight;
};
/// A reference to a node inside a node
struct NodeInstance {
///< ID of the node
std::string mNode;
};
/// A node in a scene hierarchy
struct Node {
std::string mName;
std::string mID;
std::string mSID;
Node *mParent;
std::vector<Node *> mChildren;
/// Operations in order to calculate the resulting transformation to parent.
std::vector<Transform> mTransforms;
/// Meshes at this node
std::vector<MeshInstance> mMeshes;
/// Lights at this node
std::vector<LightInstance> mLights;
/// Cameras at this node
std::vector<CameraInstance> mCameras;
/// Node instances at this node
std::vector<NodeInstance> mNodeInstances;
/// Root-nodes: Name of primary camera, if any
std::string mPrimaryCamera;
/// Constructor. Begin with a zero parent
Node() :
mParent(nullptr) {
// empty
}
/// Destructor: delete all children subsequently
~Node() {
for (std::vector<Node *>::iterator it = mChildren.begin(); it != mChildren.end(); ++it) {
delete *it;
}
}
};
/// Data source array: either floats or strings
struct Data {
bool mIsStringArray;
std::vector<ai_real> mValues;
std::vector<std::string> mStrings;
};
/// Accessor to a data array
struct Accessor {
size_t mCount; // in number of objects
size_t mSize; // size of an object, in elements (floats or strings, mostly 1)
size_t mOffset; // in number of values
size_t mStride; // Stride in number of values
std::vector<std::string> mParams; // names of the data streams in the accessors. Empty string tells to ignore.
size_t mSubOffset[4]; // Sub-offset inside the object for the common 4 elements. For a vector, that's XYZ, for a color RGBA and so on.
// For example, SubOffset[0] denotes which of the values inside the object is the vector X component.
std::string mSource; // URL of the source array
mutable const Data *mData; // Pointer to the source array, if resolved. nullptr else
Accessor() {
mCount = 0;
mSize = 0;
mOffset = 0;
mStride = 0;
mData = nullptr;
mSubOffset[0] = mSubOffset[1] = mSubOffset[2] = mSubOffset[3] = 0;
}
};
/// A single face in a mesh
struct Face {
std::vector<size_t> mIndices;
};
/// An input channel for mesh data, referring to a single accessor
struct InputChannel {
InputType mType; // Type of the data
size_t mIndex; // Optional index, if multiple sets of the same data type are given
size_t mOffset; // Index offset in the indices array of per-face indices. Don't ask, can't explain that any better.
std::string mAccessor; // ID of the accessor where to read the actual values from.
mutable const Accessor *mResolved; // Pointer to the accessor, if resolved. nullptr else
InputChannel() {
mType = IT_Invalid;
mIndex = 0;
mOffset = 0;
mResolved = nullptr;
}
};
/// Subset of a mesh with a certain material
struct SubMesh {
std::string mMaterial; ///< subgroup identifier
size_t mNumFaces; ///< number of faces in this sub-mesh
};
/// Contains data for a single mesh
struct Mesh {
Mesh(const std::string &id) :
mId(id) {
for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) {
mNumUVComponents[i] = 2;
}
}
const std::string mId;
std::string mName;
// just to check if there's some sophisticated addressing involved...
// which we don't support, and therefore should warn about.
std::string mVertexID;
// Vertex data addressed by vertex indices
std::vector<InputChannel> mPerVertexData;
// actual mesh data, assembled on encounter of a <p> element. Verbose format, not indexed
std::vector<aiVector3D> mPositions;
std::vector<aiVector3D> mNormals;
std::vector<aiVector3D> mTangents;
std::vector<aiVector3D> mBitangents;
std::vector<aiVector3D> mTexCoords[AI_MAX_NUMBER_OF_TEXTURECOORDS];
std::vector<aiColor4D> mColors[AI_MAX_NUMBER_OF_COLOR_SETS];
unsigned int mNumUVComponents[AI_MAX_NUMBER_OF_TEXTURECOORDS];
// Faces. Stored are only the number of vertices for each face.
// 1 == point, 2 == line, 3 == triangle, 4+ == poly
std::vector<size_t> mFaceSize;
// Position indices for all faces in the sequence given in mFaceSize -
// necessary for bone weight assignment
std::vector<size_t> mFacePosIndices;
// Sub-meshes in this mesh, each with a given material
std::vector<SubMesh> mSubMeshes;
};
/// Which type of primitives the ReadPrimitives() function is going to read
enum PrimitiveType {
Prim_Invalid,
Prim_Lines,
Prim_LineStrip,
Prim_Triangles,
Prim_TriStrips,
Prim_TriFans,
Prim_Polylist,
Prim_Polygon
};
/// A skeleton controller to deform a mesh with the use of joints
struct Controller {
// controller type
ControllerType mType;
// Morphing method if type is Morph
MorphMethod mMethod;
// the URL of the mesh deformed by the controller.
std::string mMeshId;
// accessor URL of the joint names
std::string mJointNameSource;
///< The bind shape matrix, as array of floats. I'm not sure what this matrix actually describes, but it can't be ignored in all cases
ai_real mBindShapeMatrix[16];
// accessor URL of the joint inverse bind matrices
std::string mJointOffsetMatrixSource;
// input channel: joint names.
InputChannel mWeightInputJoints;
// input channel: joint weights
InputChannel mWeightInputWeights;
// Number of weights per vertex.
std::vector<size_t> mWeightCounts;
// JointIndex-WeightIndex pairs for all vertices
std::vector<std::pair<size_t, size_t>> mWeights;
std::string mMorphTarget;
std::string mMorphWeight;
};
/// A collada material. Pretty much the only member is a reference to an effect.
struct Material {
std::string mName;
std::string mEffect;
};
/// Type of the effect param
enum ParamType {
Param_Sampler,
Param_Surface
};
/// A param for an effect. Might be of several types, but they all just refer to each other, so I summarize them
struct EffectParam {
ParamType mType;
std::string mReference; // to which other thing the param is referring to.
};
/// Shading type supported by the standard effect spec of Collada
enum ShadeType {
Shade_Invalid,
Shade_Constant,
Shade_Lambert,
Shade_Phong,
Shade_Blinn
};
/// Represents a texture sampler in collada
struct Sampler {
Sampler() :
mWrapU(true),
mWrapV(true),
mMirrorU(),
mMirrorV(),
mOp(aiTextureOp_Multiply),
mUVId(UINT_MAX),
mWeighting(1.f),
mMixWithPrevious(1.f) {}
/// Name of image reference
std::string mName;
/// Wrap U?
bool mWrapU;
/// Wrap V?
bool mWrapV;
/// Mirror U?
bool mMirrorU;
/// Mirror V?
bool mMirrorV;
/// Blend mode
aiTextureOp mOp;
/// UV transformation
aiUVTransform mTransform;
/// Name of source UV channel
std::string mUVChannel;
/// Resolved UV channel index or UINT_MAX if not known
unsigned int mUVId;
// OKINO/MAX3D extensions from here
// -------------------------------------------------------
/// Weighting factor
ai_real mWeighting;
/// Mixing factor from OKINO
ai_real mMixWithPrevious;
};
/// A collada effect. Can contain about anything according to the Collada spec,
/// but we limit our version to a reasonable subset.
struct Effect {
/// Shading mode
ShadeType mShadeType;
/// Colors
aiColor4D mEmissive, mAmbient, mDiffuse, mSpecular,
mTransparent, mReflective;
/// Textures
Sampler mTexEmissive, mTexAmbient, mTexDiffuse, mTexSpecular,
mTexTransparent, mTexBump, mTexReflective;
/// Scalar factory
ai_real mShininess, mRefractIndex, mReflectivity;
ai_real mTransparency;
bool mHasTransparency;
bool mRGBTransparency;
bool mInvertTransparency;
/// local params referring to each other by their SID
using ParamLibrary = std::map<std::string, Collada::EffectParam>;
ParamLibrary mParams;
// MAX3D extensions
// ---------------------------------------------------------
// Double-sided?
bool mDoubleSided, mWireframe, mFaceted;
Effect() :
mShadeType(Shade_Phong),
mEmissive(0, 0, 0, 1),
mAmbient(0.1f, 0.1f, 0.1f, 1),
mDiffuse(0.6f, 0.6f, 0.6f, 1),
mSpecular(0.4f, 0.4f, 0.4f, 1),
mTransparent(0, 0, 0, 1),
mShininess(10.0f),
mRefractIndex(1.f),
mReflectivity(0.f),
mTransparency(1.f),
mHasTransparency(false),
mRGBTransparency(false),
mInvertTransparency(false),
mDoubleSided(false),
mWireframe(false),
mFaceted(false) {
}
};
/// An image, meaning texture
struct Image {
std::string mFileName;
/// Embedded image data
std::vector<uint8_t> mImageData;
/// File format hint of embedded image data
std::string mEmbeddedFormat;
};
/// An animation channel.
struct AnimationChannel {
/// URL of the data to animate. Could be about anything, but we support only the
/// "NodeID/TransformID.SubElement" notation
std::string mTarget;
/// Source URL of the time values. Collada calls them "input". Meh.
std::string mSourceTimes;
/// Source URL of the value values. Collada calls them "output".
std::string mSourceValues;
/// Source URL of the IN_TANGENT semantic values.
std::string mInTanValues;
/// Source URL of the OUT_TANGENT semantic values.
std::string mOutTanValues;
/// Source URL of the INTERPOLATION semantic values.
std::string mInterpolationValues;
};
/// An animation. Container for 0-x animation channels or 0-x animations
struct Animation {
/// Anim name
std::string mName;
/// the animation channels, if any
std::vector<AnimationChannel> mChannels;
/// the sub-animations, if any
std::vector<Animation *> mSubAnims;
/// Destructor
~Animation() {
for (std::vector<Animation *>::iterator it = mSubAnims.begin(); it != mSubAnims.end(); ++it) {
delete *it;
}
}
/// Collect all channels in the animation hierarchy into a single channel list.
void CollectChannelsRecursively(std::vector<AnimationChannel> &channels) {
channels.insert(channels.end(), mChannels.begin(), mChannels.end());
for (std::vector<Animation *>::iterator it = mSubAnims.begin(); it != mSubAnims.end(); ++it) {
Animation *pAnim = (*it);
pAnim->CollectChannelsRecursively(channels);
}
}
/// Combine all single-channel animations' channel into the same (parent) animation channel list.
void CombineSingleChannelAnimations() {
CombineSingleChannelAnimationsRecursively(this);
}
void CombineSingleChannelAnimationsRecursively(Animation *pParent) {
std::set<std::string> childrenTargets;
bool childrenAnimationsHaveDifferentChannels = true;
for (std::vector<Animation *>::iterator it = pParent->mSubAnims.begin(); it != pParent->mSubAnims.end();) {
Animation *anim = *it;
CombineSingleChannelAnimationsRecursively(anim);
if (childrenAnimationsHaveDifferentChannels && anim->mChannels.size() == 1 &&
childrenTargets.find(anim->mChannels[0].mTarget) == childrenTargets.end()) {
childrenTargets.insert(anim->mChannels[0].mTarget);
} else {
childrenAnimationsHaveDifferentChannels = false;
}
++it;
}
// We only want to combine animations if they have different channels
if (childrenAnimationsHaveDifferentChannels) {
for (std::vector<Animation *>::iterator it = pParent->mSubAnims.begin(); it != pParent->mSubAnims.end();) {
Animation *anim = *it;
pParent->mChannels.push_back(anim->mChannels[0]);
it = pParent->mSubAnims.erase(it);
delete anim;
continue;
}
}
}
};
/// Description of a collada animation channel which has been determined to affect the current node
struct ChannelEntry {
const Collada::AnimationChannel *mChannel; ///< the source channel
std::string mTargetId;
std::string mTransformId; // the ID of the transformation step of the node which is influenced
size_t mTransformIndex; // Index into the node's transform chain to apply the channel to
size_t mSubElement; // starting index inside the transform data
// resolved data references
const Collada::Accessor *mTimeAccessor; ///> Collada accessor to the time values
const Collada::Data *mTimeData; ///> Source data array for the time values
const Collada::Accessor *mValueAccessor; ///> Collada accessor to the key value values
const Collada::Data *mValueData; ///> Source datat array for the key value values
ChannelEntry() :
mChannel(),
mTransformIndex(),
mSubElement(),
mTimeAccessor(),
mTimeData(),
mValueAccessor(),
mValueData() {}
};
} // end of namespace Collada
} // end of namespace Assimp
#endif // AI_COLLADAHELPER_H_INC