1632 lines
60 KiB
C++
1632 lines
60 KiB
C++
/*
|
|
Open Asset Import Library (assimp)
|
|
----------------------------------------------------------------------
|
|
|
|
Copyright (c) 2006-2020, assimp team
|
|
All rights reserved.
|
|
|
|
Redistribution and use of this software in source and binary forms,
|
|
with or without modification, are permitted provided that the
|
|
following conditions are met:
|
|
|
|
* Redistributions of source code must retain the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer in the documentation and/or other
|
|
materials provided with the distribution.
|
|
|
|
* Neither the name of the assimp team, nor the names of its
|
|
contributors may be used to endorse or promote products
|
|
derived from this software without specific prior
|
|
written permission of the assimp team.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
----------------------------------------------------------------------
|
|
*/
|
|
|
|
/** @file IFCOpenings.cpp
|
|
* @brief Implements a subset of Ifc CSG operations for pouring
|
|
* holes for windows and doors into walls.
|
|
*/
|
|
|
|
#ifndef ASSIMP_BUILD_NO_IFC_IMPORTER
|
|
#include "Common/PolyTools.h"
|
|
#include "IFCUtil.h"
|
|
#include "PostProcessing/ProcessHelper.h"
|
|
|
|
#ifdef ASSIMP_USE_HUNTER
|
|
#include <poly2tri/poly2tri.h>
|
|
#include <polyclipping/clipper.hpp>
|
|
#else
|
|
#include "../contrib/clipper/clipper.hpp"
|
|
#include "../contrib/poly2tri/poly2tri/poly2tri.h"
|
|
#endif
|
|
|
|
#include <iterator>
|
|
|
|
namespace Assimp {
|
|
namespace IFC {
|
|
|
|
using ClipperLib::ulong64;
|
|
// XXX use full -+ range ...
|
|
const ClipperLib::long64 max_ulong64 = 1518500249; // clipper.cpp / hiRange var
|
|
|
|
//#define to_int64(p) (static_cast<ulong64>( std::max( 0., std::min( static_cast<IfcFloat>((p)), 1.) ) * max_ulong64 ))
|
|
#define to_int64(p) (static_cast<ulong64>(static_cast<IfcFloat>((p)) * max_ulong64))
|
|
#define from_int64(p) (static_cast<IfcFloat>((p)) / max_ulong64)
|
|
#define one_vec (IfcVector2(static_cast<IfcFloat>(1.0), static_cast<IfcFloat>(1.0)))
|
|
|
|
// fallback method to generate wall openings
|
|
bool TryAddOpenings_Poly2Tri(const std::vector<TempOpening> &openings, const std::vector<IfcVector3> &nors,
|
|
TempMesh &curmesh);
|
|
|
|
using BoundingBox = std::pair<IfcVector2, IfcVector2>;
|
|
using XYSortedField = std::map<IfcVector2, size_t, XYSorter>;
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void QuadrifyPart(const IfcVector2 &pmin, const IfcVector2 &pmax, XYSortedField &field,
|
|
const std::vector<BoundingBox> &bbs,
|
|
std::vector<IfcVector2> &out) {
|
|
if (!(pmin.x - pmax.x) || !(pmin.y - pmax.y)) {
|
|
return;
|
|
}
|
|
|
|
IfcFloat xs = 1e10, xe = 1e10;
|
|
bool found = false;
|
|
|
|
// Search along the x-axis until we find an opening
|
|
XYSortedField::iterator start = field.begin();
|
|
for (; start != field.end(); ++start) {
|
|
const BoundingBox &bb = bbs[(*start).second];
|
|
if (bb.first.x >= pmax.x) {
|
|
break;
|
|
}
|
|
|
|
if (bb.second.x > pmin.x && bb.second.y > pmin.y && bb.first.y < pmax.y) {
|
|
xs = bb.first.x;
|
|
xe = bb.second.x;
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!found) {
|
|
// the rectangle [pmin,pend] is opaque, fill it
|
|
out.emplace_back(pmin);
|
|
out.emplace_back(pmin.x, pmax.y);
|
|
out.emplace_back(pmax);
|
|
out.emplace_back(pmax.x, pmin.y);
|
|
return;
|
|
}
|
|
|
|
xs = std::max(pmin.x, xs);
|
|
xe = std::min(pmax.x, xe);
|
|
|
|
// see if there's an offset to fill at the top of our quad
|
|
if (xs - pmin.x) {
|
|
out.emplace_back(pmin);
|
|
out.emplace_back(pmin.x, pmax.y);
|
|
out.emplace_back(xs, pmax.y);
|
|
out.emplace_back(xs, pmin.y);
|
|
}
|
|
|
|
// search along the y-axis for all openings that overlap xs and our quad
|
|
IfcFloat ylast = pmin.y;
|
|
found = false;
|
|
for (; start != field.end(); ++start) {
|
|
const BoundingBox &bb = bbs[(*start).second];
|
|
if (bb.first.x > xs || bb.first.y >= pmax.y) {
|
|
break;
|
|
}
|
|
|
|
if (bb.second.y > ylast) {
|
|
|
|
found = true;
|
|
const IfcFloat ys = std::max(bb.first.y, pmin.y), ye = std::min(bb.second.y, pmax.y);
|
|
if (ys - ylast > 0.0f) {
|
|
QuadrifyPart(IfcVector2(xs, ylast), IfcVector2(xe, ys), field, bbs, out);
|
|
}
|
|
|
|
// the following are the window vertices
|
|
|
|
/*wnd.push_back(IfcVector2(xs,ys));
|
|
wnd.push_back(IfcVector2(xs,ye));
|
|
wnd.push_back(IfcVector2(xe,ye));
|
|
wnd.push_back(IfcVector2(xe,ys));*/
|
|
ylast = ye;
|
|
}
|
|
}
|
|
if (!found) {
|
|
// the rectangle [pmin,pend] is opaque, fill it
|
|
out.emplace_back(IfcVector2(xs, pmin.y));
|
|
out.emplace_back(xs, pmax.y);
|
|
out.emplace_back(xe, pmax.y);
|
|
out.emplace_back(xe, pmin.y);
|
|
return;
|
|
}
|
|
if (ylast < pmax.y) {
|
|
QuadrifyPart(IfcVector2(xs, ylast), IfcVector2(xe, pmax.y), field, bbs, out);
|
|
}
|
|
|
|
// now for the whole rest
|
|
if (pmax.x - xe) {
|
|
QuadrifyPart(IfcVector2(xe, pmin.y), pmax, field, bbs, out);
|
|
}
|
|
}
|
|
|
|
using Contour = std::vector<IfcVector2>;
|
|
using SkipList = std::vector<bool>; // should probably use int for performance reasons
|
|
|
|
struct ProjectedWindowContour {
|
|
Contour contour;
|
|
BoundingBox bb;
|
|
SkipList skiplist;
|
|
bool is_rectangular;
|
|
|
|
ProjectedWindowContour(const Contour &contour, const BoundingBox &bb, bool is_rectangular) :
|
|
contour(contour), bb(bb), is_rectangular(is_rectangular) {}
|
|
|
|
bool IsInvalid() const {
|
|
return contour.empty();
|
|
}
|
|
|
|
void FlagInvalid() {
|
|
contour.clear();
|
|
}
|
|
|
|
void PrepareSkiplist() {
|
|
skiplist.resize(contour.size(), false);
|
|
}
|
|
};
|
|
|
|
using ContourVector = std::vector<ProjectedWindowContour>;
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
bool BoundingBoxesOverlapping(const BoundingBox &ibb, const BoundingBox &bb) {
|
|
// count the '=' case as non-overlapping but as adjacent to each other
|
|
return ibb.first.x < bb.second.x && ibb.second.x > bb.first.x &&
|
|
ibb.first.y < bb.second.y && ibb.second.y > bb.first.y;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
bool IsDuplicateVertex(const IfcVector2 &vv, const std::vector<IfcVector2> &temp_contour) {
|
|
// sanity check for duplicate vertices
|
|
for (const IfcVector2 &cp : temp_contour) {
|
|
if ((cp - vv).SquareLength() < 1e-5f) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ExtractVerticesFromClipper(const ClipperLib::Polygon &poly, std::vector<IfcVector2> &temp_contour,
|
|
bool filter_duplicates = false) {
|
|
temp_contour.clear();
|
|
for (const ClipperLib::IntPoint &point : poly) {
|
|
IfcVector2 vv = IfcVector2(from_int64(point.X), from_int64(point.Y));
|
|
vv = std::max(vv, IfcVector2());
|
|
vv = std::min(vv, one_vec);
|
|
|
|
if (!filter_duplicates || !IsDuplicateVertex(vv, temp_contour)) {
|
|
temp_contour.push_back(vv);
|
|
}
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
BoundingBox GetBoundingBox2D(const ClipperLib::Polygon &poly) {
|
|
IfcVector2 newbb_min, newbb_max;
|
|
MinMaxChooser<IfcVector2>()(newbb_min, newbb_max);
|
|
|
|
for (const ClipperLib::IntPoint &point : poly) {
|
|
IfcVector2 vv = IfcVector2(from_int64(point.X), from_int64(point.Y));
|
|
|
|
// sanity rounding
|
|
vv = std::max(vv, IfcVector2());
|
|
vv = std::min(vv, one_vec);
|
|
|
|
newbb_min = std::min(newbb_min, vv);
|
|
newbb_max = std::max(newbb_max, vv);
|
|
}
|
|
return BoundingBox(newbb_min, newbb_max);
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void InsertWindowContours(const ContourVector &contours,
|
|
const std::vector<TempOpening> & /*openings*/,
|
|
TempMesh &curmesh) {
|
|
// fix windows - we need to insert the real, polygonal shapes into the quadratic holes that we have now
|
|
for (size_t i = 0; i < contours.size(); ++i) {
|
|
const BoundingBox &bb = contours[i].bb;
|
|
const std::vector<IfcVector2> &contour = contours[i].contour;
|
|
if (contour.empty()) {
|
|
continue;
|
|
}
|
|
|
|
// check if we need to do it at all - many windows just fit perfectly into their quadratic holes,
|
|
// i.e. their contours *are* already their bounding boxes.
|
|
if (contour.size() == 4) {
|
|
std::set<IfcVector2, XYSorter> verts;
|
|
for (size_t n = 0; n < 4; ++n) {
|
|
verts.insert(contour[n]);
|
|
}
|
|
const std::set<IfcVector2, XYSorter>::const_iterator end = verts.end();
|
|
if (verts.find(bb.first) != end && verts.find(bb.second) != end && verts.find(IfcVector2(bb.first.x, bb.second.y)) != end && verts.find(IfcVector2(bb.second.x, bb.first.y)) != end) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
const IfcFloat diag = (bb.first - bb.second).Length();
|
|
const IfcFloat epsilon = diag / 1000.f;
|
|
|
|
// walk through all contour points and find those that lie on the BB corner
|
|
size_t last_hit = (size_t)-1, very_first_hit = (size_t)-1;
|
|
IfcVector2 edge;
|
|
for (size_t n = 0, e = 0, size = contour.size();; n = (n + 1) % size, ++e) {
|
|
|
|
// sanity checking
|
|
if (e == size * 2) {
|
|
IFCImporter::LogError("encountered unexpected topology while generating window contour");
|
|
break;
|
|
}
|
|
|
|
const IfcVector2 &v = contour[n];
|
|
|
|
bool hit = false;
|
|
if (std::fabs(v.x - bb.first.x) < epsilon) {
|
|
edge.x = bb.first.x;
|
|
hit = true;
|
|
} else if (std::fabs(v.x - bb.second.x) < epsilon) {
|
|
edge.x = bb.second.x;
|
|
hit = true;
|
|
}
|
|
|
|
if (std::fabs(v.y - bb.first.y) < epsilon) {
|
|
edge.y = bb.first.y;
|
|
hit = true;
|
|
} else if (std::fabs(v.y - bb.second.y) < epsilon) {
|
|
edge.y = bb.second.y;
|
|
hit = true;
|
|
}
|
|
|
|
if (hit) {
|
|
if (last_hit != (size_t)-1) {
|
|
|
|
const size_t old = curmesh.mVerts.size();
|
|
size_t cnt = last_hit > n ? size - (last_hit - n) : n - last_hit;
|
|
for (size_t a = last_hit, ee = 0; ee <= cnt; a = (a + 1) % size, ++ee) {
|
|
// hack: this is to fix cases where opening contours are self-intersecting.
|
|
// Clipper doesn't produce such polygons, but as soon as we're back in
|
|
// our brave new floating-point world, very small distances are consumed
|
|
// by the maximum available precision, leading to self-intersecting
|
|
// polygons. This fix makes concave windows fail even worse, but
|
|
// anyway, fail is fail.
|
|
if ((contour[a] - edge).SquareLength() > diag * diag * 0.7) {
|
|
continue;
|
|
}
|
|
curmesh.mVerts.push_back(IfcVector3(contour[a].x, contour[a].y, 0.0f));
|
|
}
|
|
|
|
if (edge != contour[last_hit]) {
|
|
|
|
IfcVector2 corner = edge;
|
|
|
|
if (std::fabs(contour[last_hit].x - bb.first.x) < epsilon) {
|
|
corner.x = bb.first.x;
|
|
} else if (std::fabs(contour[last_hit].x - bb.second.x) < epsilon) {
|
|
corner.x = bb.second.x;
|
|
}
|
|
|
|
if (std::fabs(contour[last_hit].y - bb.first.y) < epsilon) {
|
|
corner.y = bb.first.y;
|
|
} else if (std::fabs(contour[last_hit].y - bb.second.y) < epsilon) {
|
|
corner.y = bb.second.y;
|
|
}
|
|
|
|
curmesh.mVerts.push_back(IfcVector3(corner.x, corner.y, 0.0f));
|
|
} else if (cnt == 1) {
|
|
// avoid degenerate polygons (also known as lines or points)
|
|
curmesh.mVerts.erase(curmesh.mVerts.begin() + old, curmesh.mVerts.end());
|
|
}
|
|
|
|
if (const size_t d = curmesh.mVerts.size() - old) {
|
|
curmesh.mVertcnt.push_back(static_cast<unsigned int>(d));
|
|
std::reverse(curmesh.mVerts.rbegin(), curmesh.mVerts.rbegin() + d);
|
|
}
|
|
if (n == very_first_hit) {
|
|
break;
|
|
}
|
|
} else {
|
|
very_first_hit = n;
|
|
}
|
|
|
|
last_hit = n;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void MergeWindowContours(const std::vector<IfcVector2> &a,
|
|
const std::vector<IfcVector2> &b,
|
|
ClipperLib::ExPolygons &out) {
|
|
out.clear();
|
|
|
|
ClipperLib::Clipper clipper;
|
|
ClipperLib::Polygon clip;
|
|
|
|
for (const IfcVector2 &pip : a) {
|
|
clip.push_back(ClipperLib::IntPoint(to_int64(pip.x), to_int64(pip.y)));
|
|
}
|
|
|
|
if (ClipperLib::Orientation(clip)) {
|
|
std::reverse(clip.begin(), clip.end());
|
|
}
|
|
|
|
clipper.AddPolygon(clip, ClipperLib::ptSubject);
|
|
clip.clear();
|
|
|
|
for (const IfcVector2 &pip : b) {
|
|
clip.push_back(ClipperLib::IntPoint(to_int64(pip.x), to_int64(pip.y)));
|
|
}
|
|
|
|
if (ClipperLib::Orientation(clip)) {
|
|
std::reverse(clip.begin(), clip.end());
|
|
}
|
|
|
|
clipper.AddPolygon(clip, ClipperLib::ptSubject);
|
|
clipper.Execute(ClipperLib::ctUnion, out, ClipperLib::pftNonZero, ClipperLib::pftNonZero);
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Subtract a from b
|
|
void MakeDisjunctWindowContours(const std::vector<IfcVector2> &a,
|
|
const std::vector<IfcVector2> &b,
|
|
ClipperLib::ExPolygons &out) {
|
|
out.clear();
|
|
|
|
ClipperLib::Clipper clipper;
|
|
ClipperLib::Polygon clip;
|
|
|
|
for (const IfcVector2 &pip : a) {
|
|
clip.push_back(ClipperLib::IntPoint(to_int64(pip.x), to_int64(pip.y)));
|
|
}
|
|
|
|
if (ClipperLib::Orientation(clip)) {
|
|
std::reverse(clip.begin(), clip.end());
|
|
}
|
|
|
|
clipper.AddPolygon(clip, ClipperLib::ptClip);
|
|
clip.clear();
|
|
|
|
for (const IfcVector2 &pip : b) {
|
|
clip.push_back(ClipperLib::IntPoint(to_int64(pip.x), to_int64(pip.y)));
|
|
}
|
|
|
|
if (ClipperLib::Orientation(clip)) {
|
|
std::reverse(clip.begin(), clip.end());
|
|
}
|
|
|
|
clipper.AddPolygon(clip, ClipperLib::ptSubject);
|
|
clipper.Execute(ClipperLib::ctDifference, out, ClipperLib::pftNonZero, ClipperLib::pftNonZero);
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void CleanupWindowContour(ProjectedWindowContour &window) {
|
|
std::vector<IfcVector2> scratch;
|
|
std::vector<IfcVector2> &contour = window.contour;
|
|
|
|
ClipperLib::Polygon subject;
|
|
ClipperLib::Clipper clipper;
|
|
ClipperLib::ExPolygons clipped;
|
|
|
|
for (const IfcVector2 &pip : contour) {
|
|
subject.push_back(ClipperLib::IntPoint(to_int64(pip.x), to_int64(pip.y)));
|
|
}
|
|
|
|
clipper.AddPolygon(subject, ClipperLib::ptSubject);
|
|
clipper.Execute(ClipperLib::ctUnion, clipped, ClipperLib::pftNonZero, ClipperLib::pftNonZero);
|
|
|
|
// This should yield only one polygon or something went wrong
|
|
if (clipped.size() != 1) {
|
|
|
|
// Empty polygon? drop the contour altogether
|
|
if (clipped.empty()) {
|
|
IFCImporter::LogError("error during polygon clipping, window contour is degenerate");
|
|
window.FlagInvalid();
|
|
return;
|
|
}
|
|
|
|
// Else: take the first only
|
|
IFCImporter::LogError("error during polygon clipping, window contour is not convex");
|
|
}
|
|
|
|
ExtractVerticesFromClipper(clipped[0].outer, scratch);
|
|
// Assume the bounding box doesn't change during this operation
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void CleanupWindowContours(ContourVector &contours) {
|
|
// Use PolyClipper to clean up window contours
|
|
try {
|
|
for (ProjectedWindowContour &window : contours) {
|
|
CleanupWindowContour(window);
|
|
}
|
|
} catch (const char *sx) {
|
|
IFCImporter::LogError("error during polygon clipping, window shape may be wrong: (Clipper: " + std::string(sx) + ")");
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void CleanupOuterContour(const std::vector<IfcVector2> &contour_flat, TempMesh &curmesh) {
|
|
std::vector<IfcVector3> vold;
|
|
std::vector<unsigned int> iold;
|
|
|
|
vold.reserve(curmesh.mVerts.size());
|
|
iold.reserve(curmesh.mVertcnt.size());
|
|
|
|
// Fix the outer contour using polyclipper
|
|
try {
|
|
|
|
ClipperLib::Polygon subject;
|
|
ClipperLib::Clipper clipper;
|
|
ClipperLib::ExPolygons clipped;
|
|
|
|
ClipperLib::Polygon clip;
|
|
clip.reserve(contour_flat.size());
|
|
for (const IfcVector2 &pip : contour_flat) {
|
|
clip.push_back(ClipperLib::IntPoint(to_int64(pip.x), to_int64(pip.y)));
|
|
}
|
|
|
|
if (!ClipperLib::Orientation(clip)) {
|
|
std::reverse(clip.begin(), clip.end());
|
|
}
|
|
|
|
// We need to run polyclipper on every single polygon -- we can't run it one all
|
|
// of them at once or it would merge them all together which would undo all
|
|
// previous steps
|
|
subject.reserve(4);
|
|
size_t index = 0;
|
|
size_t countdown = 0;
|
|
for (const IfcVector3 &pip : curmesh.mVerts) {
|
|
if (!countdown) {
|
|
countdown = curmesh.mVertcnt[index++];
|
|
if (!countdown) {
|
|
continue;
|
|
}
|
|
}
|
|
subject.push_back(ClipperLib::IntPoint(to_int64(pip.x), to_int64(pip.y)));
|
|
if (--countdown == 0) {
|
|
if (!ClipperLib::Orientation(subject)) {
|
|
std::reverse(subject.begin(), subject.end());
|
|
}
|
|
|
|
clipper.AddPolygon(subject, ClipperLib::ptSubject);
|
|
clipper.AddPolygon(clip, ClipperLib::ptClip);
|
|
|
|
clipper.Execute(ClipperLib::ctIntersection, clipped, ClipperLib::pftNonZero, ClipperLib::pftNonZero);
|
|
|
|
for (const ClipperLib::ExPolygon &ex : clipped) {
|
|
iold.push_back(static_cast<unsigned int>(ex.outer.size()));
|
|
for (const ClipperLib::IntPoint &point : ex.outer) {
|
|
vold.push_back(IfcVector3(
|
|
from_int64(point.X),
|
|
from_int64(point.Y),
|
|
0.0f));
|
|
}
|
|
}
|
|
|
|
subject.clear();
|
|
clipped.clear();
|
|
clipper.Clear();
|
|
}
|
|
}
|
|
} catch (const char *sx) {
|
|
IFCImporter::LogError("Ifc: error during polygon clipping, wall contour line may be wrong: (Clipper: " + std::string(sx) + ")");
|
|
|
|
return;
|
|
}
|
|
|
|
// swap data arrays
|
|
std::swap(vold, curmesh.mVerts);
|
|
std::swap(iold, curmesh.mVertcnt);
|
|
}
|
|
|
|
typedef std::vector<TempOpening *> OpeningRefs;
|
|
typedef std::vector<OpeningRefs> OpeningRefVector;
|
|
|
|
typedef std::vector<std::pair<
|
|
ContourVector::const_iterator,
|
|
Contour::const_iterator>>
|
|
ContourRefVector;
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
bool BoundingBoxesAdjacent(const BoundingBox &bb, const BoundingBox &ibb) {
|
|
// TODO: I'm pretty sure there is a much more compact way to check this
|
|
const IfcFloat epsilon = Math::getEpsilon<float>();
|
|
return (std::fabs(bb.second.x - ibb.first.x) < epsilon && bb.first.y <= ibb.second.y && bb.second.y >= ibb.first.y) ||
|
|
(std::fabs(bb.first.x - ibb.second.x) < epsilon && ibb.first.y <= bb.second.y && ibb.second.y >= bb.first.y) ||
|
|
(std::fabs(bb.second.y - ibb.first.y) < epsilon && bb.first.x <= ibb.second.x && bb.second.x >= ibb.first.x) ||
|
|
(std::fabs(bb.first.y - ibb.second.y) < epsilon && ibb.first.x <= bb.second.x && ibb.second.x >= bb.first.x);
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Check if m0,m1 intersects n0,n1 assuming same ordering of the points in the line segments
|
|
// output the intersection points on n0,n1
|
|
bool IntersectingLineSegments(const IfcVector2 &n0, const IfcVector2 &n1,
|
|
const IfcVector2 &m0, const IfcVector2 &m1,
|
|
IfcVector2 &out0, IfcVector2 &out1) {
|
|
const IfcVector2 n0_to_n1 = n1 - n0;
|
|
|
|
const IfcVector2 n0_to_m0 = m0 - n0;
|
|
const IfcVector2 n1_to_m1 = m1 - n1;
|
|
|
|
const IfcVector2 n0_to_m1 = m1 - n0;
|
|
|
|
const IfcFloat e = 1e-5f;
|
|
const IfcFloat smalle = 1e-9f;
|
|
|
|
static const IfcFloat inf = std::numeric_limits<IfcFloat>::infinity();
|
|
|
|
if (!(n0_to_m0.SquareLength() < e * e || std::fabs(n0_to_m0 * n0_to_n1) / (n0_to_m0.Length() * n0_to_n1.Length()) > 1 - 1e-5)) {
|
|
return false;
|
|
}
|
|
|
|
if (!(n1_to_m1.SquareLength() < e * e || std::fabs(n1_to_m1 * n0_to_n1) / (n1_to_m1.Length() * n0_to_n1.Length()) > 1 - 1e-5)) {
|
|
return false;
|
|
}
|
|
|
|
IfcFloat s0;
|
|
IfcFloat s1;
|
|
|
|
// pick the axis with the higher absolute difference so the result
|
|
// is more accurate. Since we cannot guarantee that the axis with
|
|
// the higher absolute difference is big enough as to avoid
|
|
// divisions by zero, the case 0/0 ~ infinity is detected and
|
|
// handled separately.
|
|
if (std::fabs(n0_to_n1.x) > std::fabs(n0_to_n1.y)) {
|
|
s0 = n0_to_m0.x / n0_to_n1.x;
|
|
s1 = n0_to_m1.x / n0_to_n1.x;
|
|
|
|
if (std::fabs(s0) == inf && std::fabs(n0_to_m0.x) < smalle) {
|
|
s0 = 0.;
|
|
}
|
|
if (std::fabs(s1) == inf && std::fabs(n0_to_m1.x) < smalle) {
|
|
s1 = 0.;
|
|
}
|
|
} else {
|
|
s0 = n0_to_m0.y / n0_to_n1.y;
|
|
s1 = n0_to_m1.y / n0_to_n1.y;
|
|
|
|
if (std::fabs(s0) == inf && std::fabs(n0_to_m0.y) < smalle) {
|
|
s0 = 0.;
|
|
}
|
|
if (std::fabs(s1) == inf && std::fabs(n0_to_m1.y) < smalle) {
|
|
s1 = 0.;
|
|
}
|
|
}
|
|
|
|
if (s1 < s0) {
|
|
std::swap(s1, s0);
|
|
}
|
|
|
|
s0 = std::max(0.0, s0);
|
|
s1 = std::max(0.0, s1);
|
|
|
|
s0 = std::min(1.0, s0);
|
|
s1 = std::min(1.0, s1);
|
|
|
|
if (std::fabs(s1 - s0) < e) {
|
|
return false;
|
|
}
|
|
|
|
out0 = n0 + s0 * n0_to_n1;
|
|
out1 = n0 + s1 * n0_to_n1;
|
|
|
|
return true;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void FindAdjacentContours(ContourVector::iterator current, const ContourVector &contours) {
|
|
const IfcFloat sqlen_epsilon = static_cast<IfcFloat>(Math::getEpsilon<float>());
|
|
const BoundingBox &bb = (*current).bb;
|
|
|
|
// What is to be done here is to populate the skip lists for the contour
|
|
// and to add necessary padding points when needed.
|
|
SkipList &skiplist = (*current).skiplist;
|
|
|
|
// First step to find possible adjacent contours is to check for adjacent bounding
|
|
// boxes. If the bounding boxes are not adjacent, the contours lines cannot possibly be.
|
|
for (ContourVector::const_iterator it = contours.begin(), end = contours.end(); it != end; ++it) {
|
|
if ((*it).IsInvalid()) {
|
|
continue;
|
|
}
|
|
|
|
// this left here to make clear we also run on the current contour
|
|
// to check for overlapping contour segments (which can happen due
|
|
// to projection artifacts).
|
|
//if(it == current) {
|
|
// continue;
|
|
//}
|
|
|
|
const bool is_me = it == current;
|
|
|
|
const BoundingBox &ibb = (*it).bb;
|
|
|
|
// Assumption: the bounding boxes are pairwise disjoint or identical
|
|
ai_assert(is_me || !BoundingBoxesOverlapping(bb, ibb));
|
|
|
|
if (is_me || BoundingBoxesAdjacent(bb, ibb)) {
|
|
|
|
// Now do a each-against-everyone check for intersecting contour
|
|
// lines. This obviously scales terribly, but in typical real
|
|
// world Ifc files it will not matter since most windows that
|
|
// are adjacent to each others are rectangular anyway.
|
|
|
|
Contour &ncontour = (*current).contour;
|
|
const Contour &mcontour = (*it).contour;
|
|
|
|
for (size_t n = 0; n < ncontour.size(); ++n) {
|
|
const IfcVector2 n0 = ncontour[n];
|
|
const IfcVector2 n1 = ncontour[(n + 1) % ncontour.size()];
|
|
|
|
for (size_t m = 0, mend = (is_me ? n : mcontour.size()); m < mend; ++m) {
|
|
ai_assert(&mcontour != &ncontour || m < n);
|
|
|
|
const IfcVector2 m0 = mcontour[m];
|
|
const IfcVector2 m1 = mcontour[(m + 1) % mcontour.size()];
|
|
|
|
IfcVector2 isect0, isect1;
|
|
if (IntersectingLineSegments(n0, n1, m0, m1, isect0, isect1)) {
|
|
|
|
if ((isect0 - n0).SquareLength() > sqlen_epsilon) {
|
|
++n;
|
|
|
|
ncontour.insert(ncontour.begin() + n, isect0);
|
|
skiplist.insert(skiplist.begin() + n, true);
|
|
} else {
|
|
skiplist[n] = true;
|
|
}
|
|
|
|
if ((isect1 - n1).SquareLength() > sqlen_epsilon) {
|
|
++n;
|
|
|
|
ncontour.insert(ncontour.begin() + n, isect1);
|
|
skiplist.insert(skiplist.begin() + n, false);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
AI_FORCE_INLINE bool LikelyBorder(const IfcVector2 &vdelta) {
|
|
const IfcFloat dot_point_epsilon = static_cast<IfcFloat>(Math::getEpsilon<float>());
|
|
return std::fabs(vdelta.x * vdelta.y) < dot_point_epsilon;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void FindBorderContours(ContourVector::iterator current) {
|
|
const IfcFloat border_epsilon_upper = static_cast<IfcFloat>(1 - 1e-4);
|
|
const IfcFloat border_epsilon_lower = static_cast<IfcFloat>(1e-4);
|
|
|
|
bool outer_border = false;
|
|
bool start_on_outer_border = false;
|
|
|
|
SkipList &skiplist = (*current).skiplist;
|
|
IfcVector2 last_proj_point;
|
|
|
|
const Contour::const_iterator cbegin = (*current).contour.begin(), cend = (*current).contour.end();
|
|
|
|
for (Contour::const_iterator cit = cbegin; cit != cend; ++cit) {
|
|
const IfcVector2 &proj_point = *cit;
|
|
|
|
// Check if this connection is along the outer boundary of the projection
|
|
// plane. In such a case we better drop it because such 'edges' should
|
|
// not have any geometry to close them (think of door openings).
|
|
if (proj_point.x <= border_epsilon_lower || proj_point.x >= border_epsilon_upper ||
|
|
proj_point.y <= border_epsilon_lower || proj_point.y >= border_epsilon_upper) {
|
|
|
|
if (outer_border) {
|
|
ai_assert(cit != cbegin);
|
|
if (LikelyBorder(proj_point - last_proj_point)) {
|
|
skiplist[std::distance(cbegin, cit) - 1] = true;
|
|
}
|
|
} else if (cit == cbegin) {
|
|
start_on_outer_border = true;
|
|
}
|
|
|
|
outer_border = true;
|
|
} else {
|
|
outer_border = false;
|
|
}
|
|
|
|
last_proj_point = proj_point;
|
|
}
|
|
|
|
// handle last segment
|
|
if (outer_border && start_on_outer_border) {
|
|
const IfcVector2 &proj_point = *cbegin;
|
|
if (LikelyBorder(proj_point - last_proj_point)) {
|
|
skiplist[skiplist.size() - 1] = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
AI_FORCE_INLINE bool LikelyDiagonal(IfcVector2 vdelta) {
|
|
vdelta.x = std::fabs(vdelta.x);
|
|
vdelta.y = std::fabs(vdelta.y);
|
|
return (std::fabs(vdelta.x - vdelta.y) < 0.8 * std::max(vdelta.x, vdelta.y));
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void FindLikelyCrossingLines(ContourVector::iterator current) {
|
|
SkipList &skiplist = (*current).skiplist;
|
|
IfcVector2 last_proj_point;
|
|
|
|
const Contour::const_iterator cbegin = (*current).contour.begin(), cend = (*current).contour.end();
|
|
for (Contour::const_iterator cit = cbegin; cit != cend; ++cit) {
|
|
const IfcVector2 &proj_point = *cit;
|
|
|
|
if (cit != cbegin) {
|
|
IfcVector2 vdelta = proj_point - last_proj_point;
|
|
if (LikelyDiagonal(vdelta)) {
|
|
skiplist[std::distance(cbegin, cit) - 1] = true;
|
|
}
|
|
}
|
|
|
|
last_proj_point = proj_point;
|
|
}
|
|
|
|
// handle last segment
|
|
if (LikelyDiagonal(*cbegin - last_proj_point)) {
|
|
skiplist[skiplist.size() - 1] = true;
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
size_t CloseWindows(ContourVector &contours,
|
|
const IfcMatrix4 &minv,
|
|
OpeningRefVector &contours_to_openings,
|
|
TempMesh &curmesh) {
|
|
size_t closed = 0;
|
|
// For all contour points, check if one of the assigned openings does
|
|
// already have points assigned to it. In this case, assume this is
|
|
// the other side of the wall and generate connections between
|
|
// the two holes in order to close the window.
|
|
|
|
// All this gets complicated by the fact that contours may pertain to
|
|
// multiple openings(due to merging of adjacent or overlapping openings).
|
|
// The code is based on the assumption that this happens symmetrically
|
|
// on both sides of the wall. If it doesn't (which would be a bug anyway)
|
|
// wrong geometry may be generated.
|
|
for (ContourVector::iterator it = contours.begin(), end = contours.end(); it != end; ++it) {
|
|
if ((*it).IsInvalid()) {
|
|
continue;
|
|
}
|
|
OpeningRefs &refs = contours_to_openings[std::distance(contours.begin(), it)];
|
|
|
|
bool has_other_side = false;
|
|
for (const TempOpening *opening : refs) {
|
|
if (!opening->wallPoints.empty()) {
|
|
has_other_side = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (has_other_side) {
|
|
|
|
ContourRefVector adjacent_contours;
|
|
|
|
// prepare a skiplist for this contour. The skiplist is used to
|
|
// eliminate unwanted contour lines for adjacent windows and
|
|
// those bordering the outer frame.
|
|
(*it).PrepareSkiplist();
|
|
|
|
FindAdjacentContours(it, contours);
|
|
FindBorderContours(it);
|
|
|
|
// if the window is the result of a finite union or intersection of rectangles,
|
|
// there shouldn't be any crossing or diagonal lines in it. Such lines would
|
|
// be artifacts caused by numerical inaccuracies or other bugs in polyclipper
|
|
// and our own code. Since rectangular openings are by far the most frequent
|
|
// case, it is worth filtering for this corner case.
|
|
if ((*it).is_rectangular) {
|
|
FindLikelyCrossingLines(it);
|
|
}
|
|
|
|
ai_assert((*it).skiplist.size() == (*it).contour.size());
|
|
|
|
SkipList::const_iterator skipbegin = (*it).skiplist.begin();
|
|
|
|
curmesh.mVerts.reserve(curmesh.mVerts.size() + (*it).contour.size() * 4);
|
|
curmesh.mVertcnt.reserve(curmesh.mVertcnt.size() + (*it).contour.size());
|
|
|
|
bool reverseCountourFaces = false;
|
|
|
|
// compare base poly normal and contour normal to detect if we need to reverse the face winding
|
|
if (curmesh.mVertcnt.size() > 0) {
|
|
IfcVector3 basePolyNormal = TempMesh::ComputePolygonNormal(curmesh.mVerts.data(), curmesh.mVertcnt.front());
|
|
|
|
std::vector<IfcVector3> worldSpaceContourVtx(it->contour.size());
|
|
|
|
for (size_t a = 0; a < it->contour.size(); ++a)
|
|
worldSpaceContourVtx[a] = minv * IfcVector3(it->contour[a].x, it->contour[a].y, 0.0);
|
|
|
|
IfcVector3 contourNormal = TempMesh::ComputePolygonNormal(worldSpaceContourVtx.data(), worldSpaceContourVtx.size());
|
|
|
|
reverseCountourFaces = (contourNormal * basePolyNormal) > 0.0;
|
|
}
|
|
|
|
// XXX this algorithm is really a bit inefficient - both in terms
|
|
// of constant factor and of asymptotic runtime.
|
|
std::vector<bool>::const_iterator skipit = skipbegin;
|
|
|
|
IfcVector3 start0;
|
|
IfcVector3 start1;
|
|
|
|
const Contour::const_iterator cbegin = (*it).contour.begin(), cend = (*it).contour.end();
|
|
|
|
bool drop_this_edge = false;
|
|
for (Contour::const_iterator cit = cbegin; cit != cend; ++cit, drop_this_edge = *skipit++) {
|
|
const IfcVector2 &proj_point = *cit;
|
|
|
|
// Locate the closest opposite point. This should be a good heuristic to
|
|
// connect only the points that are really intended to be connected.
|
|
IfcFloat best = static_cast<IfcFloat>(1e10);
|
|
IfcVector3 bestv;
|
|
|
|
const IfcVector3 world_point = minv * IfcVector3(proj_point.x, proj_point.y, 0.0f);
|
|
|
|
for (const TempOpening *opening : refs) {
|
|
for (const IfcVector3 &other : opening->wallPoints) {
|
|
const IfcFloat sqdist = (world_point - other).SquareLength();
|
|
|
|
if (sqdist < best) {
|
|
// avoid self-connections
|
|
if (sqdist < 1e-5) {
|
|
continue;
|
|
}
|
|
|
|
bestv = other;
|
|
best = sqdist;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (drop_this_edge) {
|
|
curmesh.mVerts.pop_back();
|
|
curmesh.mVerts.pop_back();
|
|
} else {
|
|
curmesh.mVerts.push_back(((cit == cbegin) != reverseCountourFaces) ? world_point : bestv);
|
|
curmesh.mVerts.push_back(((cit == cbegin) != reverseCountourFaces) ? bestv : world_point);
|
|
|
|
curmesh.mVertcnt.push_back(4);
|
|
++closed;
|
|
}
|
|
|
|
if (cit == cbegin) {
|
|
start0 = world_point;
|
|
start1 = bestv;
|
|
continue;
|
|
}
|
|
|
|
curmesh.mVerts.push_back(reverseCountourFaces ? bestv : world_point);
|
|
curmesh.mVerts.push_back(reverseCountourFaces ? world_point : bestv);
|
|
|
|
if (cit == cend - 1) {
|
|
drop_this_edge = *skipit;
|
|
|
|
// Check if the final connection (last to first element) is itself
|
|
// a border edge that needs to be dropped.
|
|
if (drop_this_edge) {
|
|
--closed;
|
|
curmesh.mVertcnt.pop_back();
|
|
curmesh.mVerts.pop_back();
|
|
curmesh.mVerts.pop_back();
|
|
} else {
|
|
curmesh.mVerts.push_back(reverseCountourFaces ? start0 : start1);
|
|
curmesh.mVerts.push_back(reverseCountourFaces ? start1 : start0);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
|
|
const Contour::const_iterator cbegin = (*it).contour.begin(), cend = (*it).contour.end();
|
|
for (TempOpening *opening : refs) {
|
|
ai_assert(opening->wallPoints.empty());
|
|
opening->wallPoints.reserve(opening->wallPoints.capacity() + (*it).contour.size());
|
|
for (Contour::const_iterator cit = cbegin; cit != cend; ++cit) {
|
|
|
|
const IfcVector2 &proj_point = *cit;
|
|
opening->wallPoints.push_back(minv * IfcVector3(proj_point.x, proj_point.y, 0.0f));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return closed;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void Quadrify(const std::vector<BoundingBox> &bbs, TempMesh &curmesh) {
|
|
ai_assert(curmesh.IsEmpty());
|
|
|
|
std::vector<IfcVector2> quads;
|
|
quads.reserve(bbs.size() * 4);
|
|
|
|
// sort openings by x and y axis as a preliminiary to the QuadrifyPart() algorithm
|
|
XYSortedField field;
|
|
for (std::vector<BoundingBox>::const_iterator it = bbs.begin(); it != bbs.end(); ++it) {
|
|
if (field.find((*it).first) != field.end()) {
|
|
IFCImporter::LogWarn("constraint failure during generation of wall openings, results may be faulty");
|
|
}
|
|
field[(*it).first] = std::distance(bbs.begin(), it);
|
|
}
|
|
|
|
QuadrifyPart(IfcVector2(), one_vec, field, bbs, quads);
|
|
ai_assert(!(quads.size() % 4));
|
|
|
|
curmesh.mVertcnt.resize(quads.size() / 4, 4);
|
|
curmesh.mVerts.reserve(quads.size());
|
|
for (const IfcVector2 &v2 : quads) {
|
|
curmesh.mVerts.push_back(IfcVector3(v2.x, v2.y, static_cast<IfcFloat>(0.0)));
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void Quadrify(const ContourVector &contours, TempMesh &curmesh) {
|
|
std::vector<BoundingBox> bbs;
|
|
bbs.reserve(contours.size());
|
|
|
|
for (const ContourVector::value_type &val : contours) {
|
|
bbs.push_back(val.bb);
|
|
}
|
|
|
|
Quadrify(bbs, curmesh);
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
IfcMatrix4 ProjectOntoPlane(std::vector<IfcVector2> &out_contour, const TempMesh &in_mesh,
|
|
bool &ok, IfcVector3 &nor_out) {
|
|
const std::vector<IfcVector3> &in_verts = in_mesh.mVerts;
|
|
ok = true;
|
|
|
|
IfcMatrix4 m = IfcMatrix4(DerivePlaneCoordinateSpace(in_mesh, ok, nor_out));
|
|
if (!ok) {
|
|
return IfcMatrix4();
|
|
}
|
|
#ifdef ASSIMP_BUILD_DEBUG
|
|
const IfcFloat det = m.Determinant();
|
|
ai_assert(std::fabs(det - 1) < 1e-5);
|
|
#endif
|
|
|
|
IfcFloat zcoord = 0;
|
|
out_contour.reserve(in_verts.size());
|
|
|
|
IfcVector3 vmin, vmax;
|
|
MinMaxChooser<IfcVector3>()(vmin, vmax);
|
|
|
|
// Project all points into the new coordinate system, collect min/max verts on the way
|
|
for (const IfcVector3 &x : in_verts) {
|
|
const IfcVector3 vv = m * x;
|
|
// keep Z offset in the plane coordinate system. Ignoring precision issues
|
|
// (which are present, of course), this should be the same value for
|
|
// all polygon vertices (assuming the polygon is planar).
|
|
|
|
// XXX this should be guarded, but we somehow need to pick a suitable
|
|
// epsilon
|
|
// if(coord != -1.0f) {
|
|
// assert(std::fabs(coord - vv.z) < 1e-3f);
|
|
// }
|
|
zcoord += vv.z;
|
|
vmin = std::min(vv, vmin);
|
|
vmax = std::max(vv, vmax);
|
|
|
|
out_contour.push_back(IfcVector2(vv.x, vv.y));
|
|
}
|
|
|
|
zcoord /= in_verts.size();
|
|
|
|
// Further improve the projection by mapping the entire working set into
|
|
// [0,1] range. This gives us a consistent data range so all epsilons
|
|
// used below can be constants.
|
|
vmax -= vmin;
|
|
for (IfcVector2 &vv : out_contour) {
|
|
vv.x = (vv.x - vmin.x) / vmax.x;
|
|
vv.y = (vv.y - vmin.y) / vmax.y;
|
|
|
|
// sanity rounding
|
|
vv = std::max(vv, IfcVector2());
|
|
vv = std::min(vv, one_vec);
|
|
}
|
|
|
|
IfcMatrix4 mult;
|
|
mult.a1 = static_cast<IfcFloat>(1.0) / vmax.x;
|
|
mult.b2 = static_cast<IfcFloat>(1.0) / vmax.y;
|
|
|
|
mult.a4 = -vmin.x * mult.a1;
|
|
mult.b4 = -vmin.y * mult.b2;
|
|
mult.c4 = -zcoord;
|
|
m = mult * m;
|
|
|
|
// debug code to verify correctness
|
|
#ifdef ASSIMP_BUILD_DEBUG
|
|
std::vector<IfcVector2> out_contour2;
|
|
for (const IfcVector3 &x : in_verts) {
|
|
const IfcVector3 &vv = m * x;
|
|
|
|
out_contour2.push_back(IfcVector2(vv.x, vv.y));
|
|
ai_assert(std::fabs(vv.z) < vmax.z + 1e-8);
|
|
}
|
|
|
|
for (size_t i = 0; i < out_contour.size(); ++i) {
|
|
ai_assert((out_contour[i] - out_contour2[i]).SquareLength() < 1e-6);
|
|
}
|
|
#endif
|
|
|
|
return m;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
bool GenerateOpenings(std::vector<TempOpening> &openings,
|
|
const std::vector<IfcVector3> &nors,
|
|
TempMesh &curmesh,
|
|
bool check_intersection,
|
|
bool generate_connection_geometry,
|
|
const IfcVector3 &wall_extrusion_axis) {
|
|
OpeningRefVector contours_to_openings;
|
|
|
|
// Try to derive a solid base plane within the current surface for use as
|
|
// working coordinate system. Map all vertices onto this plane and
|
|
// rescale them to [0,1] range. This normalization means all further
|
|
// epsilons need not be scaled.
|
|
bool ok = true;
|
|
|
|
std::vector<IfcVector2> contour_flat;
|
|
|
|
IfcVector3 nor;
|
|
const IfcMatrix4 m = ProjectOntoPlane(contour_flat, curmesh, ok, nor);
|
|
if (!ok) {
|
|
return false;
|
|
}
|
|
|
|
// Obtain inverse transform for getting back to world space later on
|
|
const IfcMatrix4 mInverse = IfcMatrix4(m).Inverse();
|
|
|
|
// Compute bounding boxes for all 2D openings in projection space
|
|
ContourVector contours;
|
|
|
|
std::vector<IfcVector2> temp_contour, temp_contour2;
|
|
IfcVector3 wall_extrusion_axis_norm = wall_extrusion_axis;
|
|
wall_extrusion_axis_norm.Normalize();
|
|
|
|
for (TempOpening &opening : openings) {
|
|
|
|
// extrusionDir may be 0,0,0 on case where the opening mesh is not an
|
|
// IfcExtrudedAreaSolid but something else (i.e. a brep)
|
|
IfcVector3 norm_extrusion_dir = opening.extrusionDir;
|
|
if (norm_extrusion_dir.SquareLength() > 1e-10) {
|
|
norm_extrusion_dir.Normalize();
|
|
} else {
|
|
norm_extrusion_dir = IfcVector3();
|
|
}
|
|
|
|
TempMesh *profile_data = opening.profileMesh.get();
|
|
bool is_2d_source = false;
|
|
if (opening.profileMesh2D && norm_extrusion_dir.SquareLength() > 0) {
|
|
|
|
if (std::fabs(norm_extrusion_dir * wall_extrusion_axis_norm) < 0.1) {
|
|
// horizontal extrusion
|
|
if (std::fabs(norm_extrusion_dir * nor) > 0.9) {
|
|
profile_data = opening.profileMesh2D.get();
|
|
is_2d_source = true;
|
|
}
|
|
} else {
|
|
// vertical extrusion
|
|
if (std::fabs(norm_extrusion_dir * nor) > 0.9) {
|
|
profile_data = opening.profileMesh2D.get();
|
|
is_2d_source = true;
|
|
}
|
|
}
|
|
}
|
|
std::vector<IfcVector3> profile_verts = profile_data->mVerts;
|
|
std::vector<unsigned int> profile_vertcnts = profile_data->mVertcnt;
|
|
if (profile_verts.size() <= 2) {
|
|
continue;
|
|
}
|
|
|
|
// The opening meshes are real 3D meshes so skip over all faces
|
|
// clearly facing into the wrong direction. Also, we need to check
|
|
// whether the meshes do actually intersect the base surface plane.
|
|
// This is done by recording minimum and maximum values for the
|
|
// d component of the plane equation for all polys and checking
|
|
// against surface d.
|
|
|
|
// Use the sign of the dot product of the face normal to the plane
|
|
// normal to determine to which side of the difference mesh a
|
|
// triangle belongs. Get independent bounding boxes and vertex
|
|
// sets for both sides and take the better one (we can't just
|
|
// take both - this would likely cause major screwup of vertex
|
|
// winding, producing errors as late as in CloseWindows()).
|
|
IfcFloat dmin, dmax;
|
|
MinMaxChooser<IfcFloat>()(dmin, dmax);
|
|
|
|
temp_contour.clear();
|
|
temp_contour2.clear();
|
|
|
|
IfcVector2 vpmin, vpmax;
|
|
MinMaxChooser<IfcVector2>()(vpmin, vpmax);
|
|
|
|
IfcVector2 vpmin2, vpmax2;
|
|
MinMaxChooser<IfcVector2>()(vpmin2, vpmax2);
|
|
|
|
for (size_t f = 0, vi_total = 0, fend = profile_vertcnts.size(); f < fend; ++f) {
|
|
|
|
bool side_flag = true;
|
|
if (!is_2d_source) {
|
|
const IfcVector3 face_nor = ((profile_verts[vi_total + 2] - profile_verts[vi_total]) ^
|
|
(profile_verts[vi_total + 1] - profile_verts[vi_total]))
|
|
.Normalize();
|
|
|
|
const IfcFloat abs_dot_face_nor = std::abs(nor * face_nor);
|
|
if (abs_dot_face_nor < 0.9) {
|
|
vi_total += profile_vertcnts[f];
|
|
continue;
|
|
}
|
|
|
|
side_flag = nor * face_nor > 0;
|
|
}
|
|
|
|
for (unsigned int vi = 0, vend = profile_vertcnts[f]; vi < vend; ++vi, ++vi_total) {
|
|
const IfcVector3 &x = profile_verts[vi_total];
|
|
|
|
const IfcVector3 v = m * x;
|
|
IfcVector2 vv(v.x, v.y);
|
|
|
|
//if(check_intersection) {
|
|
dmin = std::min(dmin, v.z);
|
|
dmax = std::max(dmax, v.z);
|
|
//}
|
|
|
|
// sanity rounding
|
|
vv = std::max(vv, IfcVector2());
|
|
vv = std::min(vv, one_vec);
|
|
|
|
if (side_flag) {
|
|
vpmin = std::min(vpmin, vv);
|
|
vpmax = std::max(vpmax, vv);
|
|
} else {
|
|
vpmin2 = std::min(vpmin2, vv);
|
|
vpmax2 = std::max(vpmax2, vv);
|
|
}
|
|
|
|
std::vector<IfcVector2> &store = side_flag ? temp_contour : temp_contour2;
|
|
|
|
if (!IsDuplicateVertex(vv, store)) {
|
|
store.push_back(vv);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (temp_contour2.size() > 2) {
|
|
ai_assert(!is_2d_source);
|
|
const IfcVector2 area = vpmax - vpmin;
|
|
const IfcVector2 area2 = vpmax2 - vpmin2;
|
|
if (temp_contour.size() <= 2 || std::fabs(area2.x * area2.y) > std::fabs(area.x * area.y)) {
|
|
temp_contour.swap(temp_contour2);
|
|
|
|
vpmax = vpmax2;
|
|
vpmin = vpmin2;
|
|
}
|
|
}
|
|
if (temp_contour.size() <= 2) {
|
|
continue;
|
|
}
|
|
|
|
// TODO: This epsilon may be too large
|
|
const IfcFloat epsilon = std::fabs(dmax - dmin) * 0.0001;
|
|
if (!is_2d_source && check_intersection && (0 < dmin - epsilon || 0 > dmax + epsilon)) {
|
|
continue;
|
|
}
|
|
|
|
BoundingBox bb = BoundingBox(vpmin, vpmax);
|
|
|
|
// Skip over very small openings - these are likely projection errors
|
|
// (i.e. they don't belong to this side of the wall)
|
|
if (std::fabs(vpmax.x - vpmin.x) * std::fabs(vpmax.y - vpmin.y) < static_cast<IfcFloat>(1e-10)) {
|
|
continue;
|
|
}
|
|
std::vector<TempOpening *> joined_openings(1, &opening);
|
|
|
|
bool is_rectangle = temp_contour.size() == 4;
|
|
|
|
// See if this BB intersects or is in close adjacency to any other BB we have so far.
|
|
for (ContourVector::iterator it = contours.begin(); it != contours.end();) {
|
|
const BoundingBox &ibb = (*it).bb;
|
|
|
|
if (BoundingBoxesOverlapping(ibb, bb)) {
|
|
|
|
if (!(*it).is_rectangular) {
|
|
is_rectangle = false;
|
|
}
|
|
|
|
const std::vector<IfcVector2> &other = (*it).contour;
|
|
ClipperLib::ExPolygons poly;
|
|
|
|
// First check whether subtracting the old contour (to which ibb belongs)
|
|
// from the new contour (to which bb belongs) yields an updated bb which
|
|
// no longer overlaps ibb
|
|
MakeDisjunctWindowContours(other, temp_contour, poly);
|
|
if (poly.size() == 1) {
|
|
|
|
const BoundingBox newbb = GetBoundingBox2D(poly[0].outer);
|
|
if (!BoundingBoxesOverlapping(ibb, newbb)) {
|
|
// Good guy bounding box
|
|
bb = newbb;
|
|
|
|
ExtractVerticesFromClipper(poly[0].outer, temp_contour, false);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Take these two overlapping contours and try to merge them. If they
|
|
// overlap (which should not happen, but in fact happens-in-the-real-
|
|
// world [tm] ), resume using a single contour and a single bounding box.
|
|
MergeWindowContours(temp_contour, other, poly);
|
|
|
|
if (poly.size() > 1) {
|
|
return TryAddOpenings_Poly2Tri(openings, nors, curmesh);
|
|
} else if (poly.size() == 0) {
|
|
IFCImporter::LogWarn("ignoring duplicate opening");
|
|
temp_contour.clear();
|
|
break;
|
|
} else {
|
|
IFCImporter::LogVerboseDebug("merging overlapping openings");
|
|
ExtractVerticesFromClipper(poly[0].outer, temp_contour, false);
|
|
|
|
// Generate the union of the bounding boxes
|
|
bb.first = std::min(bb.first, ibb.first);
|
|
bb.second = std::max(bb.second, ibb.second);
|
|
|
|
// Update contour-to-opening tables accordingly
|
|
if (generate_connection_geometry) {
|
|
std::vector<TempOpening *> &t = contours_to_openings[std::distance(contours.begin(), it)];
|
|
joined_openings.insert(joined_openings.end(), t.begin(), t.end());
|
|
|
|
contours_to_openings.erase(contours_to_openings.begin() + std::distance(contours.begin(), it));
|
|
}
|
|
|
|
contours.erase(it);
|
|
|
|
// Restart from scratch because the newly formed BB might now
|
|
// overlap any other BB which its constituent BBs didn't
|
|
// previously overlap.
|
|
it = contours.begin();
|
|
continue;
|
|
}
|
|
}
|
|
++it;
|
|
}
|
|
|
|
if (!temp_contour.empty()) {
|
|
if (generate_connection_geometry) {
|
|
contours_to_openings.push_back(std::vector<TempOpening *>(
|
|
joined_openings.begin(),
|
|
joined_openings.end()));
|
|
}
|
|
|
|
contours.push_back(ProjectedWindowContour(temp_contour, bb, is_rectangle));
|
|
}
|
|
}
|
|
|
|
// Check if we still have any openings left - it may well be that this is
|
|
// not the cause, for example if all the opening candidates don't intersect
|
|
// this surface or point into a direction perpendicular to it.
|
|
if (contours.empty()) {
|
|
return false;
|
|
}
|
|
|
|
curmesh.Clear();
|
|
|
|
// Generate a base subdivision into quads to accommodate the given list
|
|
// of window bounding boxes.
|
|
Quadrify(contours, curmesh);
|
|
|
|
// Run a sanity cleanup pass on the window contours to avoid generating
|
|
// artifacts during the contour generation phase later on.
|
|
CleanupWindowContours(contours);
|
|
|
|
// Previously we reduced all windows to rectangular AABBs in projection
|
|
// space, now it is time to fill the gaps between the BBs and the real
|
|
// window openings.
|
|
InsertWindowContours(contours, openings, curmesh);
|
|
|
|
// Clip the entire outer contour of our current result against the real
|
|
// outer contour of the surface. This is necessary because the result
|
|
// of the Quadrify() algorithm is always a square area spanning
|
|
// over [0,1]^2 (i.e. entire projection space).
|
|
CleanupOuterContour(contour_flat, curmesh);
|
|
|
|
// Undo the projection and get back to world (or local object) space
|
|
for (IfcVector3 &v3 : curmesh.mVerts) {
|
|
v3 = mInverse * v3;
|
|
}
|
|
|
|
// Generate window caps to connect the symmetric openings on both sides
|
|
// of the wall.
|
|
if (generate_connection_geometry) {
|
|
CloseWindows(contours, mInverse, contours_to_openings, curmesh);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
bool TryAddOpenings_Poly2Tri(const std::vector<TempOpening> &openings, const std::vector<IfcVector3> &nors,
|
|
TempMesh &curmesh) {
|
|
IFCImporter::LogWarn("forced to use poly2tri fallback method to generate wall openings");
|
|
std::vector<IfcVector3> &out = curmesh.mVerts;
|
|
|
|
bool result = false;
|
|
|
|
// Try to derive a solid base plane within the current surface for use as
|
|
// working coordinate system.
|
|
bool ok;
|
|
IfcVector3 nor;
|
|
const IfcMatrix3 m = DerivePlaneCoordinateSpace(curmesh, ok, nor);
|
|
if (!ok) {
|
|
return false;
|
|
}
|
|
|
|
const IfcMatrix3 mInverse = IfcMatrix3(m).Inverse();
|
|
|
|
IfcFloat coord = -1;
|
|
|
|
std::vector<IfcVector2> contour_flat;
|
|
contour_flat.reserve(out.size());
|
|
|
|
IfcVector2 vmin, vmax;
|
|
MinMaxChooser<IfcVector2>()(vmin, vmax);
|
|
|
|
// Move all points into the new coordinate system, collecting min/max verts on the way
|
|
for (IfcVector3 &x : out) {
|
|
const IfcVector3 vv = m * x;
|
|
|
|
// keep Z offset in the plane coordinate system. Ignoring precision issues
|
|
// (which are present, of course), this should be the same value for
|
|
// all polygon vertices (assuming the polygon is planar).
|
|
|
|
// XXX this should be guarded, but we somehow need to pick a suitable
|
|
// epsilon
|
|
// if(coord != -1.0f) {
|
|
// assert(std::fabs(coord - vv.z) < 1e-3f);
|
|
// }
|
|
|
|
coord = vv.z;
|
|
|
|
vmin = std::min(IfcVector2(vv.x, vv.y), vmin);
|
|
vmax = std::max(IfcVector2(vv.x, vv.y), vmax);
|
|
|
|
contour_flat.push_back(IfcVector2(vv.x, vv.y));
|
|
}
|
|
|
|
// With the current code in DerivePlaneCoordinateSpace,
|
|
// vmin,vmax should always be the 0...1 rectangle (+- numeric inaccuracies)
|
|
// but here we won't rely on this.
|
|
|
|
vmax -= vmin;
|
|
|
|
// If this happens then the projection must have been wrong.
|
|
ai_assert(vmax.Length());
|
|
|
|
ClipperLib::ExPolygons clipped;
|
|
ClipperLib::Polygons holes_union;
|
|
|
|
IfcVector3 wall_extrusion;
|
|
bool first = true;
|
|
|
|
try {
|
|
|
|
ClipperLib::Clipper clipper_holes;
|
|
size_t c = 0;
|
|
|
|
for (const TempOpening &t : openings) {
|
|
const IfcVector3 &outernor = nors[c++];
|
|
const IfcFloat dot = nor * outernor;
|
|
if (std::fabs(dot) < 1.f - 1e-6f) {
|
|
continue;
|
|
}
|
|
|
|
const std::vector<IfcVector3> &va = t.profileMesh->mVerts;
|
|
if (va.size() <= 2) {
|
|
continue;
|
|
}
|
|
|
|
std::vector<IfcVector2> contour;
|
|
|
|
for (const IfcVector3 &xx : t.profileMesh->mVerts) {
|
|
IfcVector3 vv = m * xx, vv_extr = m * (xx + t.extrusionDir);
|
|
|
|
const bool is_extruded_side = std::fabs(vv.z - coord) > std::fabs(vv_extr.z - coord);
|
|
if (first) {
|
|
first = false;
|
|
if (dot > 0.f) {
|
|
wall_extrusion = t.extrusionDir;
|
|
if (is_extruded_side) {
|
|
wall_extrusion = -wall_extrusion;
|
|
}
|
|
}
|
|
}
|
|
|
|
// XXX should not be necessary - but it is. Why? For precision reasons?
|
|
vv = is_extruded_side ? vv_extr : vv;
|
|
contour.push_back(IfcVector2(vv.x, vv.y));
|
|
}
|
|
|
|
ClipperLib::Polygon hole;
|
|
for (IfcVector2 &pip : contour) {
|
|
pip.x = (pip.x - vmin.x) / vmax.x;
|
|
pip.y = (pip.y - vmin.y) / vmax.y;
|
|
|
|
hole.push_back(ClipperLib::IntPoint(to_int64(pip.x), to_int64(pip.y)));
|
|
}
|
|
|
|
if (!ClipperLib::Orientation(hole)) {
|
|
std::reverse(hole.begin(), hole.end());
|
|
// assert(ClipperLib::Orientation(hole));
|
|
}
|
|
|
|
/*ClipperLib::Polygons pol_temp(1), pol_temp2(1);
|
|
pol_temp[0] = hole;
|
|
|
|
ClipperLib::OffsetPolygons(pol_temp,pol_temp2,5.0);
|
|
hole = pol_temp2[0];*/
|
|
|
|
clipper_holes.AddPolygon(hole, ClipperLib::ptSubject);
|
|
}
|
|
|
|
clipper_holes.Execute(ClipperLib::ctUnion, holes_union,
|
|
ClipperLib::pftNonZero,
|
|
ClipperLib::pftNonZero);
|
|
|
|
if (holes_union.empty()) {
|
|
return false;
|
|
}
|
|
|
|
// Now that we have the big union of all holes, subtract it from the outer contour
|
|
// to obtain the final polygon to feed into the triangulator.
|
|
{
|
|
ClipperLib::Polygon poly;
|
|
for (IfcVector2 &pip : contour_flat) {
|
|
pip.x = (pip.x - vmin.x) / vmax.x;
|
|
pip.y = (pip.y - vmin.y) / vmax.y;
|
|
|
|
poly.push_back(ClipperLib::IntPoint(to_int64(pip.x), to_int64(pip.y)));
|
|
}
|
|
|
|
if (ClipperLib::Orientation(poly)) {
|
|
std::reverse(poly.begin(), poly.end());
|
|
}
|
|
clipper_holes.Clear();
|
|
clipper_holes.AddPolygon(poly, ClipperLib::ptSubject);
|
|
|
|
clipper_holes.AddPolygons(holes_union, ClipperLib::ptClip);
|
|
clipper_holes.Execute(ClipperLib::ctDifference, clipped,
|
|
ClipperLib::pftNonZero,
|
|
ClipperLib::pftNonZero);
|
|
}
|
|
|
|
} catch (const char *sx) {
|
|
IFCImporter::LogError("Ifc: error during polygon clipping, skipping openings for this face: (Clipper: " + std::string(sx) + ")");
|
|
|
|
return false;
|
|
}
|
|
|
|
std::vector<IfcVector3> old_verts;
|
|
std::vector<unsigned int> old_vertcnt;
|
|
|
|
old_verts.swap(curmesh.mVerts);
|
|
old_vertcnt.swap(curmesh.mVertcnt);
|
|
|
|
std::vector<std::vector<p2t::Point *>> contours;
|
|
for (ClipperLib::ExPolygon &clip : clipped) {
|
|
|
|
contours.clear();
|
|
|
|
// Build the outer polygon contour line for feeding into poly2tri
|
|
std::vector<p2t::Point *> contour_points;
|
|
for (ClipperLib::IntPoint &point : clip.outer) {
|
|
contour_points.push_back(new p2t::Point(from_int64(point.X), from_int64(point.Y)));
|
|
}
|
|
|
|
p2t::CDT *cdt;
|
|
try {
|
|
// Note: this relies on custom modifications in poly2tri to raise runtime_error's
|
|
// instead if assertions. These failures are not debug only, they can actually
|
|
// happen in production use if the input data is broken. An assertion would be
|
|
// inappropriate.
|
|
cdt = new p2t::CDT(contour_points);
|
|
} catch (const std::exception &e) {
|
|
IFCImporter::LogError("Ifc: error during polygon triangulation, skipping some openings: (poly2tri: " + std::string(e.what()) + ")");
|
|
continue;
|
|
}
|
|
|
|
// Build the poly2tri inner contours for all holes we got from ClipperLib
|
|
for (ClipperLib::Polygon &opening : clip.holes) {
|
|
|
|
contours.push_back(std::vector<p2t::Point *>());
|
|
std::vector<p2t::Point *> &contour = contours.back();
|
|
|
|
for (ClipperLib::IntPoint &point : opening) {
|
|
contour.push_back(new p2t::Point(from_int64(point.X), from_int64(point.Y)));
|
|
}
|
|
|
|
cdt->AddHole(contour);
|
|
}
|
|
|
|
try {
|
|
// Note: See above
|
|
cdt->Triangulate();
|
|
} catch (const std::exception &e) {
|
|
IFCImporter::LogError("Ifc: error during polygon triangulation, skipping some openings: (poly2tri: " + std::string(e.what()) + ")");
|
|
continue;
|
|
}
|
|
|
|
const std::vector<p2t::Triangle *> tris = cdt->GetTriangles();
|
|
|
|
// Collect the triangles we just produced
|
|
for (p2t::Triangle *tri : tris) {
|
|
for (int i = 0; i < 3; ++i) {
|
|
|
|
const IfcVector2 v = IfcVector2(
|
|
static_cast<IfcFloat>(tri->GetPoint(i)->x),
|
|
static_cast<IfcFloat>(tri->GetPoint(i)->y));
|
|
|
|
ai_assert(v.x <= 1.0 && v.x >= 0.0 && v.y <= 1.0 && v.y >= 0.0);
|
|
const IfcVector3 v3 = mInverse * IfcVector3(vmin.x + v.x * vmax.x, vmin.y + v.y * vmax.y, coord);
|
|
|
|
curmesh.mVerts.push_back(v3);
|
|
}
|
|
curmesh.mVertcnt.push_back(3);
|
|
}
|
|
|
|
result = true;
|
|
}
|
|
|
|
if (!result) {
|
|
// revert -- it's a shame, but better than nothing
|
|
curmesh.mVerts.insert(curmesh.mVerts.end(), old_verts.begin(), old_verts.end());
|
|
curmesh.mVertcnt.insert(curmesh.mVertcnt.end(), old_vertcnt.begin(), old_vertcnt.end());
|
|
|
|
IFCImporter::LogError("Ifc: revert, could not generate openings for this wall");
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
} // namespace IFC
|
|
} // namespace Assimp
|
|
|
|
#undef to_int64
|
|
#undef from_int64
|
|
#undef one_vec
|
|
|
|
#endif
|