/** Implementation of the BVH loader */ /* --------------------------------------------------------------------------- Open Asset Import Library (assimp) --------------------------------------------------------------------------- Copyright (c) 2006-2024, assimp team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the assimp team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the assimp team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --------------------------------------------------------------------------- */ #ifndef ASSIMP_BUILD_NO_BVH_IMPORTER #include "BVHLoader.h" #include #include #include #include #include #include #include #include #include namespace Assimp { using namespace Assimp::Formatter; static constexpr aiImporterDesc desc = { "BVH Importer (MoCap)", "", "", "", aiImporterFlags_SupportTextFlavour, 0, 0, 0, 0, "bvh" }; // ------------------------------------------------------------------------------------------------ // Aborts the file reading with an exception template AI_WONT_RETURN void BVHLoader::ThrowException(T &&...args) { throw DeadlyImportError(mFileName, ":", mLine, " - ", args...); } // ------------------------------------------------------------------------------------------------ // Constructor to be privately used by Importer BVHLoader::BVHLoader() : mLine(), mAnimTickDuration(), mAnimNumFrames(), noSkeletonMesh() {} // ------------------------------------------------------------------------------------------------ // Destructor, private as well BVHLoader::~BVHLoader() = default; // ------------------------------------------------------------------------------------------------ // Returns whether the class can handle the format of the given file. bool BVHLoader::CanRead(const std::string &pFile, IOSystem *pIOHandler, bool /*checkSig*/) const { static const char *tokens[] = { "HIERARCHY" }; return SearchFileHeaderForToken(pIOHandler, pFile, tokens, AI_COUNT_OF(tokens)); } // ------------------------------------------------------------------------------------------------ void BVHLoader::SetupProperties(const Importer *pImp) { noSkeletonMesh = pImp->GetPropertyInteger(AI_CONFIG_IMPORT_NO_SKELETON_MESHES, 0) != 0; } // ------------------------------------------------------------------------------------------------ // Loader meta information const aiImporterDesc *BVHLoader::GetInfo() const { return &desc; } // ------------------------------------------------------------------------------------------------ // Imports the given file into the given scene structure. void BVHLoader::InternReadFile(const std::string &pFile, aiScene *pScene, IOSystem *pIOHandler) { mFileName = pFile; // read file into memory std::unique_ptr file(pIOHandler->Open(pFile)); if (file == nullptr) { throw DeadlyImportError("Failed to open file ", pFile, "."); } size_t fileSize = file->FileSize(); if (fileSize == 0) { throw DeadlyImportError("File is too small."); } mBuffer.resize(fileSize); file->Read(&mBuffer.front(), 1, fileSize); // start reading mReader = mBuffer.begin(); mLine = 1; ReadStructure(pScene); if (!noSkeletonMesh) { // build a dummy mesh for the skeleton so that we see something at least SkeletonMeshBuilder meshBuilder(pScene); } // construct an animation from all the motion data we read CreateAnimation(pScene); } // ------------------------------------------------------------------------------------------------ // Reads the file void BVHLoader::ReadStructure(aiScene *pScene) { // first comes hierarchy std::string header = GetNextToken(); if (header != "HIERARCHY") ThrowException("Expected header string \"HIERARCHY\"."); ReadHierarchy(pScene); // then comes the motion data std::string motion = GetNextToken(); if (motion != "MOTION") ThrowException("Expected beginning of motion data \"MOTION\"."); ReadMotion(pScene); } // ------------------------------------------------------------------------------------------------ // Reads the hierarchy void BVHLoader::ReadHierarchy(aiScene *pScene) { std::string root = GetNextToken(); if (root != "ROOT") ThrowException("Expected root node \"ROOT\"."); // Go read the hierarchy from here pScene->mRootNode = ReadNode(); } // ------------------------------------------------------------------------------------------------ // Reads a node and recursively its children and returns the created node; aiNode *BVHLoader::ReadNode() { // first token is name std::string nodeName = GetNextToken(); if (nodeName.empty() || nodeName == "{") ThrowException("Expected node name, but found \"", nodeName, "\"."); // then an opening brace should follow std::string openBrace = GetNextToken(); if (openBrace != "{") ThrowException("Expected opening brace \"{\", but found \"", openBrace, "\"."); // Create a node aiNode *node = new aiNode(nodeName); std::vector childNodes; // and create an bone entry for it mNodes.emplace_back(node); Node &internNode = mNodes.back(); // now read the node's contents std::string siteToken; while (true) { std::string token = GetNextToken(); // node offset to parent node if (token == "OFFSET") ReadNodeOffset(node); else if (token == "CHANNELS") ReadNodeChannels(internNode); else if (token == "JOINT") { // child node follows aiNode *child = ReadNode(); child->mParent = node; childNodes.push_back(child); } else if (token == "End") { // The real symbol is "End Site". Second part comes in a separate token siteToken.clear(); siteToken = GetNextToken(); if (siteToken != "Site") ThrowException("Expected \"End Site\" keyword, but found \"", token, " ", siteToken, "\"."); aiNode *child = ReadEndSite(nodeName); child->mParent = node; childNodes.push_back(child); } else if (token == "}") { // we're done with that part of the hierarchy break; } else { // everything else is a parse error ThrowException("Unknown keyword \"", token, "\"."); } } // add the child nodes if there are any if (childNodes.size() > 0) { node->mNumChildren = static_cast(childNodes.size()); node->mChildren = new aiNode *[node->mNumChildren]; std::copy(childNodes.begin(), childNodes.end(), node->mChildren); } // and return the sub-hierarchy we built here return node; } // ------------------------------------------------------------------------------------------------ // Reads an end node and returns the created node. aiNode *BVHLoader::ReadEndSite(const std::string &pParentName) { // check opening brace std::string openBrace = GetNextToken(); if (openBrace != "{") ThrowException("Expected opening brace \"{\", but found \"", openBrace, "\"."); // Create a node aiNode *node = new aiNode("EndSite_" + pParentName); // now read the node's contents. Only possible entry is "OFFSET" std::string token; while (true) { token.clear(); token = GetNextToken(); // end node's offset if (token == "OFFSET") { ReadNodeOffset(node); } else if (token == "}") { // we're done with the end node break; } else { // everything else is a parse error ThrowException("Unknown keyword \"", token, "\"."); } } // and return the sub-hierarchy we built here return node; } // ------------------------------------------------------------------------------------------------ // Reads a node offset for the given node void BVHLoader::ReadNodeOffset(aiNode *pNode) { // Offset consists of three floats to read aiVector3D offset; offset.x = GetNextTokenAsFloat(); offset.y = GetNextTokenAsFloat(); offset.z = GetNextTokenAsFloat(); // build a transformation matrix from it pNode->mTransformation = aiMatrix4x4(1.0f, 0.0f, 0.0f, offset.x, 0.0f, 1.0f, 0.0f, offset.y, 0.0f, 0.0f, 1.0f, offset.z, 0.0f, 0.0f, 0.0f, 1.0f); } // ------------------------------------------------------------------------------------------------ // Reads the animation channels for the given node void BVHLoader::ReadNodeChannels(BVHLoader::Node &pNode) { // number of channels. Use the float reader because we're lazy float numChannelsFloat = GetNextTokenAsFloat(); unsigned int numChannels = (unsigned int)numChannelsFloat; for (unsigned int a = 0; a < numChannels; a++) { std::string channelToken = GetNextToken(); if (channelToken == "Xposition") pNode.mChannels.push_back(Channel_PositionX); else if (channelToken == "Yposition") pNode.mChannels.push_back(Channel_PositionY); else if (channelToken == "Zposition") pNode.mChannels.push_back(Channel_PositionZ); else if (channelToken == "Xrotation") pNode.mChannels.push_back(Channel_RotationX); else if (channelToken == "Yrotation") pNode.mChannels.push_back(Channel_RotationY); else if (channelToken == "Zrotation") pNode.mChannels.push_back(Channel_RotationZ); else ThrowException("Invalid channel specifier \"", channelToken, "\"."); } } // ------------------------------------------------------------------------------------------------ // Reads the motion data void BVHLoader::ReadMotion(aiScene * /*pScene*/) { // Read number of frames std::string tokenFrames = GetNextToken(); if (tokenFrames != "Frames:") ThrowException("Expected frame count \"Frames:\", but found \"", tokenFrames, "\"."); float numFramesFloat = GetNextTokenAsFloat(); mAnimNumFrames = (unsigned int)numFramesFloat; // Read frame duration std::string tokenDuration1 = GetNextToken(); std::string tokenDuration2 = GetNextToken(); if (tokenDuration1 != "Frame" || tokenDuration2 != "Time:") ThrowException("Expected frame duration \"Frame Time:\", but found \"", tokenDuration1, " ", tokenDuration2, "\"."); mAnimTickDuration = GetNextTokenAsFloat(); // resize value vectors for each node for (std::vector::iterator it = mNodes.begin(); it != mNodes.end(); ++it) it->mChannelValues.reserve(it->mChannels.size() * mAnimNumFrames); // now read all the data and store it in the corresponding node's value vector for (unsigned int frame = 0; frame < mAnimNumFrames; ++frame) { // on each line read the values for all nodes for (std::vector::iterator it = mNodes.begin(); it != mNodes.end(); ++it) { // get as many values as the node has channels for (unsigned int c = 0; c < it->mChannels.size(); ++c) it->mChannelValues.push_back(GetNextTokenAsFloat()); } // after one frame worth of values for all nodes there should be a newline, but we better don't rely on it } } // ------------------------------------------------------------------------------------------------ // Retrieves the next token std::string BVHLoader::GetNextToken() { // skip any preceding whitespace while (mReader != mBuffer.end()) { if (!isspace((unsigned char)*mReader)) break; // count lines if (*mReader == '\n') mLine++; ++mReader; } // collect all chars till the next whitespace. BVH is easy in respect to that. std::string token; while (mReader != mBuffer.end()) { if (isspace((unsigned char)*mReader)) break; token.push_back(*mReader); ++mReader; // little extra logic to make sure braces are counted correctly if (token == "{" || token == "}") break; } // empty token means end of file, which is just fine return token; } // ------------------------------------------------------------------------------------------------ // Reads the next token as a float float BVHLoader::GetNextTokenAsFloat() { std::string token = GetNextToken(); if (token.empty()) ThrowException("Unexpected end of file while trying to read a float"); // check if the float is valid by testing if the atof() function consumed every char of the token const char *ctoken = token.c_str(); float result = 0.0f; ctoken = fast_atoreal_move(ctoken, result); if (ctoken != token.c_str() + token.length()) ThrowException("Expected a floating point number, but found \"", token, "\"."); return result; } // ------------------------------------------------------------------------------------------------ // Constructs an animation for the motion data and stores it in the given scene void BVHLoader::CreateAnimation(aiScene *pScene) { // create the animation pScene->mNumAnimations = 1; pScene->mAnimations = new aiAnimation *[1]; aiAnimation *anim = new aiAnimation; pScene->mAnimations[0] = anim; // put down the basic parameters anim->mName.Set("Motion"); anim->mTicksPerSecond = 1.0 / double(mAnimTickDuration); anim->mDuration = double(mAnimNumFrames - 1); // now generate the tracks for all nodes anim->mNumChannels = static_cast(mNodes.size()); anim->mChannels = new aiNodeAnim *[anim->mNumChannels]; // FIX: set the array elements to nullptr to ensure proper deletion if an exception is thrown for (unsigned int i = 0; i < anim->mNumChannels; ++i) anim->mChannels[i] = nullptr; for (unsigned int a = 0; a < anim->mNumChannels; a++) { const Node &node = mNodes[a]; const std::string nodeName = std::string(node.mNode->mName.data); aiNodeAnim *nodeAnim = new aiNodeAnim; anim->mChannels[a] = nodeAnim; nodeAnim->mNodeName.Set(nodeName); std::map channelMap; // Build map of channels for (unsigned int channel = 0; channel < node.mChannels.size(); ++channel) { channelMap[node.mChannels[channel]] = channel; } // translational part, if given if (node.mChannels.size() == 6) { nodeAnim->mNumPositionKeys = mAnimNumFrames; nodeAnim->mPositionKeys = new aiVectorKey[mAnimNumFrames]; aiVectorKey *poskey = nodeAnim->mPositionKeys; for (unsigned int fr = 0; fr < mAnimNumFrames; ++fr) { poskey->mTime = double(fr); // Now compute all translations for (BVHLoader::ChannelType channel = Channel_PositionX; channel <= Channel_PositionZ; channel = (BVHLoader::ChannelType)(channel + 1)) { // Find channel in node std::map::iterator mapIter = channelMap.find(channel); if (mapIter == channelMap.end()) throw DeadlyImportError("Missing position channel in node ", nodeName); else { int channelIdx = mapIter->second; switch (channel) { case Channel_PositionX: poskey->mValue.x = node.mChannelValues[fr * node.mChannels.size() + channelIdx]; break; case Channel_PositionY: poskey->mValue.y = node.mChannelValues[fr * node.mChannels.size() + channelIdx]; break; case Channel_PositionZ: poskey->mValue.z = node.mChannelValues[fr * node.mChannels.size() + channelIdx]; break; default: break; } } } ++poskey; } } else { // if no translation part is given, put a default sequence aiVector3D nodePos(node.mNode->mTransformation.a4, node.mNode->mTransformation.b4, node.mNode->mTransformation.c4); nodeAnim->mNumPositionKeys = 1; nodeAnim->mPositionKeys = new aiVectorKey[1]; nodeAnim->mPositionKeys[0].mTime = 0.0; nodeAnim->mPositionKeys[0].mValue = nodePos; } // rotation part. Always present. First find value offsets { // Then create the number of rotation keys nodeAnim->mNumRotationKeys = mAnimNumFrames; nodeAnim->mRotationKeys = new aiQuatKey[mAnimNumFrames]; aiQuatKey *rotkey = nodeAnim->mRotationKeys; for (unsigned int fr = 0; fr < mAnimNumFrames; ++fr) { aiMatrix4x4 temp; aiMatrix3x3 rotMatrix; for (unsigned int channelIdx = 0; channelIdx < node.mChannels.size(); ++channelIdx) { switch (node.mChannels[channelIdx]) { case Channel_RotationX: { const float angle = node.mChannelValues[fr * node.mChannels.size() + channelIdx] * float(AI_MATH_PI) / 180.0f; aiMatrix4x4::RotationX(angle, temp); rotMatrix *= aiMatrix3x3(temp); } break; case Channel_RotationY: { const float angle = node.mChannelValues[fr * node.mChannels.size() + channelIdx] * float(AI_MATH_PI) / 180.0f; aiMatrix4x4::RotationY(angle, temp); rotMatrix *= aiMatrix3x3(temp); } break; case Channel_RotationZ: { const float angle = node.mChannelValues[fr * node.mChannels.size() + channelIdx] * float(AI_MATH_PI) / 180.0f; aiMatrix4x4::RotationZ(angle, temp); rotMatrix *= aiMatrix3x3(temp); } break; default: break; } } rotkey->mTime = double(fr); rotkey->mValue = aiQuaternion(rotMatrix); ++rotkey; } } // scaling part. Always just a default track { nodeAnim->mNumScalingKeys = 1; nodeAnim->mScalingKeys = new aiVectorKey[1]; nodeAnim->mScalingKeys[0].mTime = 0.0; nodeAnim->mScalingKeys[0].mValue.Set(1.0f, 1.0f, 1.0f); } } } } // namespace Assimp #endif // !! ASSIMP_BUILD_NO_BVH_IMPORTER