/* --------------------------------------------------------------------------- Open Asset Import Library (ASSIMP) --------------------------------------------------------------------------- Copyright (c) 2006-2008, ASSIMP Development Team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the ASSIMP team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the ASSIMP Development Team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --------------------------------------------------------------------------- */ /** @file Implementation of the STL importer class */ #include "AssimpPCH.h" // internal headers #include "NFFLoader.h" #include "ParsingUtils.h" #include "StandardShapes.h" #include "fast_atof.h" using namespace Assimp; // ------------------------------------------------------------------------------------------------ // Constructor to be privately used by Importer NFFImporter::NFFImporter() { } // ------------------------------------------------------------------------------------------------ // Destructor, private as well NFFImporter::~NFFImporter() { } // ------------------------------------------------------------------------------------------------ // Returns whether the class can handle the format of the given file. bool NFFImporter::CanRead( const std::string& pFile, IOSystem* pIOHandler) const { // simple check of file extension is enough for the moment std::string::size_type pos = pFile.find_last_of('.'); // no file extension - can't read if( pos == std::string::npos)return false; std::string extension = pFile.substr( pos); return !(extension.length() != 4 || extension[0] != '.' || extension[1] != 'n' && extension[1] != 'N' || extension[2] != 'f' && extension[2] != 'F' || extension[3] != 'f' && extension[3] != 'F'); } // ------------------------------------------------------------------------------------------------ #define AI_NFF_PARSE_FLOAT(f) \ SkipSpaces(&sz); \ if (!::IsLineEnd(*sz))sz = fast_atof_move(sz, (float&)f); // ------------------------------------------------------------------------------------------------ #define AI_NFF_PARSE_TRIPLE(v) \ AI_NFF_PARSE_FLOAT(v.x) \ AI_NFF_PARSE_FLOAT(v.y) \ AI_NFF_PARSE_FLOAT(v.z) // ------------------------------------------------------------------------------------------------ #define AI_NFF_PARSE_SHAPE_INFORMATION() \ aiVector3D center, radius(1.0f,std::numeric_limits::quiet_NaN(),std::numeric_limits::quiet_NaN()); \ AI_NFF_PARSE_TRIPLE(center); \ AI_NFF_PARSE_TRIPLE(radius); \ if (is_qnan(radius.z))radius.z = radius.x; \ if (is_qnan(radius.y))radius.y = radius.x; \ currentMesh.radius = radius; \ currentMesh.center = center; // ------------------------------------------------------------------------------------------------ // Imports the given file into the given scene structure. void NFFImporter::InternReadFile( const std::string& pFile, aiScene* pScene, IOSystem* pIOHandler) { boost::scoped_ptr file( pIOHandler->Open( pFile, "rb")); // Check whether we can read from the file if( file.get() == NULL) throw new ImportErrorException( "Failed to open NFF file " + pFile + "."); unsigned int m = (unsigned int)file->FileSize(); // allocate storage and copy the contents of the file to a memory buffer // (terminate it with zero) std::vector mBuffer2(m+1); file->Read(&mBuffer2[0],m,1); const char* buffer = &mBuffer2[0]; mBuffer2[m] = '\0'; // mesh arrays - separate here to make the handling of // the pointers below easier. std::vector meshes; std::vector meshesWithNormals; std::vector meshesLocked; MeshInfo* currentMeshWithNormals = NULL; MeshInfo* currentMesh = NULL; ShadingInfo s; // current material info // degree of tesselation unsigned int iTesselation = 4; char line[4096]; const char* sz; unsigned int sphere = 0,cylinder = 0,cone = 0,numNamed = 0, dodecahedron = 0,octahedron = 0,tetrahedron = 0, hexahedron = 0; while (GetNextLine(buffer,line)) { if ('p' == line[0]) { MeshInfo* out = NULL; // 'pp' - polygon patch primitive if ('p' == line[1]) { if (meshesWithNormals.empty()) { meshesWithNormals.push_back(MeshInfo(true)); currentMeshWithNormals = &meshesWithNormals.back(); } sz = &line[2];out = currentMeshWithNormals; } // 'p' - polygon primitive else { if (meshes.empty()) { meshes.push_back(MeshInfo(false)); currentMesh = &meshes.back(); } sz = &line[1];out = currentMesh; } SkipSpaces(sz,&sz); m = strtol10(sz); // ---- flip the face order out->vertices.resize(out->vertices.size()+m); if (out == currentMeshWithNormals) { out->normals.resize(out->vertices.size()); } for (unsigned int n = 0; n < m;++n) { if(!GetNextLine(buffer,line)) { DefaultLogger::get()->error("NFF: Unexpected EOF was encountered"); continue; } aiVector3D v; sz = &line[0]; AI_NFF_PARSE_TRIPLE(v); out->vertices[out->vertices.size()-n-1] = v; if (out == currentMeshWithNormals) { AI_NFF_PARSE_TRIPLE(v); out->normals[out->vertices.size()-n-1] = v; } } out->faces.push_back(m); } // 'f' - shading information block else if ('f' == line[0] && IsSpace(line[1])) { SkipSpaces(&line[1],&sz); // read just the RGB colors, the rest is ignored for the moment sz = fast_atof_move(sz, (float&)s.color.r); SkipSpaces(&sz); sz = fast_atof_move(sz, (float&)s.color.g); SkipSpaces(&sz); sz = fast_atof_move(sz, (float&)s.color.b); // check whether we have this material already - // although we have the RRM-Step, this is necessary here. // otherwise we would generate hundreds of small meshes // with just a few faces - this is surely never wanted. currentMesh = currentMeshWithNormals = NULL; for (std::vector::iterator it = meshes.begin(), end = meshes.end(); it != end;++it) { if ((*it).bLocked)continue; if ((*it).shader == s) { if ((*it).bHasNormals)currentMeshWithNormals = &(*it); else currentMesh = &(*it); } } if (!currentMesh) { meshes.push_back(MeshInfo(false)); currentMesh = &meshes.back(); currentMesh->shader = s; } if (!currentMeshWithNormals) { meshesWithNormals.push_back(MeshInfo(true)); currentMeshWithNormals = &meshesWithNormals.back(); currentMeshWithNormals->shader = s; } } // 's' - sphere else if ('s' == line[0] && IsSpace(line[1])) { meshesLocked.push_back(MeshInfo(false,true)); MeshInfo& currentMesh = meshesLocked.back(); currentMesh.shader = s; sz = &line[1]; AI_NFF_PARSE_SHAPE_INFORMATION(); // we don't need scaling or translation here - we do it in the node's transform StandardShapes::MakeSphere(iTesselation, currentMesh.vertices); currentMesh.faces.resize(currentMesh.vertices.size()/3,3); // generate a name for the mesh ::sprintf(currentMesh.name,"sphere_%i",sphere++); } // 'dod' - dodecahedron else if (!strncmp(line,"dod",3) && IsSpace(line[3])) { meshesLocked.push_back(MeshInfo(false,true)); MeshInfo& currentMesh = meshesLocked.back(); currentMesh.shader = s; sz = &line[4]; AI_NFF_PARSE_SHAPE_INFORMATION(); // we don't need scaling or translation here - we do it in the node's transform StandardShapes::MakeDodecahedron(currentMesh.vertices); currentMesh.faces.resize(currentMesh.vertices.size()/3,3); // generate a name for the mesh ::sprintf(currentMesh.name,"dodecahedron_%i",dodecahedron++); } // 'oct' - octahedron else if (!strncmp(line,"oct",3) && IsSpace(line[3])) { meshesLocked.push_back(MeshInfo(false,true)); MeshInfo& currentMesh = meshesLocked.back(); currentMesh.shader = s; sz = &line[4]; AI_NFF_PARSE_SHAPE_INFORMATION(); // we don't need scaling or translation here - we do it in the node's transform StandardShapes::MakeOctahedron(currentMesh.vertices); currentMesh.faces.resize(currentMesh.vertices.size()/3,3); // generate a name for the mesh ::sprintf(currentMesh.name,"octahedron_%i",octahedron++); } // 'tet' - tetrahedron else if (!strncmp(line,"tet",3) && IsSpace(line[3])) { meshesLocked.push_back(MeshInfo(false,true)); MeshInfo& currentMesh = meshesLocked.back(); currentMesh.shader = s; sz = &line[4]; AI_NFF_PARSE_SHAPE_INFORMATION(); // we don't need scaling or translation here - we do it in the node's transform StandardShapes::MakeTetrahedron(currentMesh.vertices); currentMesh.faces.resize(currentMesh.vertices.size()/3,3); // generate a name for the mesh ::sprintf(currentMesh.name,"tetrahedron_%i",tetrahedron++); } // 'hex' - hexahedron else if (!strncmp(line,"hex",3) && IsSpace(line[3])) { meshesLocked.push_back(MeshInfo(false,true)); MeshInfo& currentMesh = meshesLocked.back(); currentMesh.shader = s; sz = &line[4]; AI_NFF_PARSE_SHAPE_INFORMATION(); // we don't need scaling or translation here - we do it in the node's transform StandardShapes::MakeHexahedron(currentMesh.vertices); currentMesh.faces.resize(currentMesh.vertices.size()/3,3); // generate a name for the mesh ::sprintf(currentMesh.name,"hexahedron_%i",hexahedron++); } // 'tess' - tesselation else if (!strncmp(line,"tess",4) && IsSpace(line[4])) { sz = &line[5];SkipSpaces(&sz); iTesselation = strtol10(sz); } // 'c' - cone else if ('c' == line[0] && IsSpace(line[1])) { meshesLocked.push_back(MeshInfo(false,true)); MeshInfo& currentMesh = meshes.back(); currentMesh.shader = s; sz = &line[1]; aiVector3D center1, center2; float radius1, radius2; AI_NFF_PARSE_TRIPLE(center1); AI_NFF_PARSE_FLOAT(radius1); AI_NFF_PARSE_TRIPLE(center2); AI_NFF_PARSE_FLOAT(radius2); // compute the center point of the cone/cylinder center2 = (center2-center1)/2.f; currentMesh.center = center1+center2; center1 = -center2; // generate the cone - it consists of simple triangles StandardShapes::MakeCone(center1, radius1, center2, radius2, iTesselation, currentMesh.vertices); currentMesh.faces.resize(currentMesh.vertices.size()/3,3); // generate a name for the mesh if (radius1 != radius2) ::sprintf(currentMesh.name,"cone_%i",cone++); else ::sprintf(currentMesh.name,"cylinder_%i",cylinder++); } // '#' - comment else if ('#' == line[0]) { const char* sz;SkipSpaces(&line[1],&sz); if (!IsLineEnd(*sz))DefaultLogger::get()->info(sz); } } // copy all arrays into one large meshes.reserve(meshes.size()+meshesLocked.size()+meshesWithNormals.size()); meshes.insert(meshes.end(),meshesLocked.begin(),meshesLocked.end()); meshes.insert(meshes.end(),meshesWithNormals.begin(),meshesWithNormals.end()); // now generate output meshes. first find out how many meshes we'll need std::vector::const_iterator it = meshes.begin(), end = meshes.end(); for (;it != end;++it) { if (!(*it).faces.empty()) { ++pScene->mNumMeshes; if ((*it).name[0])++numNamed; } } // generate a dummy root node - assign all unnamed elements such // as polygons and polygon patches to the root node and generate // sub nodes for named objects such as spheres and cones. aiNode* const root = new aiNode(); root->mName.Set(""); root->mNumChildren = numNamed; root->mNumMeshes = pScene->mNumMeshes-numNamed; aiNode** ppcChildren; unsigned int* pMeshes; if (root->mNumMeshes) pMeshes = root->mMeshes = new unsigned int[root->mNumMeshes]; if (root->mNumChildren) ppcChildren = root->mChildren = new aiNode*[root->mNumChildren]; if (!pScene->mNumMeshes)throw new ImportErrorException("NFF: No meshes loaded"); pScene->mMeshes = new aiMesh*[pScene->mNumMeshes]; pScene->mMaterials = new aiMaterial*[pScene->mNumMaterials = pScene->mNumMeshes]; for (it = meshes.begin(), m = 0; it != end;++it) { if ((*it).faces.empty())continue; const MeshInfo& src = *it; aiMesh* const mesh = pScene->mMeshes[m] = new aiMesh(); mesh->mNumVertices = (unsigned int)src.vertices.size(); mesh->mNumFaces = (unsigned int)src.faces.size(); // generate sub nodes for named meshes if (src.name[0]) { aiNode* const node = *ppcChildren = new aiNode(); node->mParent = root; node->mNumMeshes = 1; node->mMeshes = new unsigned int[1]; node->mMeshes[0] = m; node->mName.Set(src.name); // setup the transformation matrix of the node node->mTransformation.a4 = src.center.x; node->mTransformation.b4 = src.center.y; node->mTransformation.c4 = src.center.z; node->mTransformation.a1 = src.radius.x; node->mTransformation.b2 = src.radius.y; node->mTransformation.c3 = src.radius.z; ++ppcChildren; } else *pMeshes++ = m; // copy vertex positions mesh->mVertices = new aiVector3D[mesh->mNumVertices]; ::memcpy(mesh->mVertices,&src.vertices[0],sizeof(aiVector3D)*mesh->mNumVertices); if (src.bHasNormals) { ai_assert(src.normals.size() == src.vertices.size()); // copy normal vectors mesh->mNormals = new aiVector3D[mesh->mNumVertices]; ::memcpy(mesh->mNormals,&src.normals[0],sizeof(aiVector3D)*mesh->mNumVertices); } // generate faces unsigned int p = 0; aiFace* pFace = mesh->mFaces = new aiFace[mesh->mNumFaces]; for (std::vector::const_iterator it2 = src.faces.begin(), end2 = src.faces.end(); it2 != end2;++it2,++pFace) { pFace->mIndices = new unsigned int [ pFace->mNumIndices = *it2 ]; for (unsigned int o = 0; o < pFace->mNumIndices;++o) pFace->mIndices[o] = p++; } // generate a material for the mesh MaterialHelper* pcMat = (MaterialHelper*)(pScene-> mMaterials[m] = new MaterialHelper()); mesh->mMaterialIndex = m++; aiString s; s.Set(AI_DEFAULT_MATERIAL_NAME); pcMat->AddProperty(&s, AI_MATKEY_NAME); pcMat->AddProperty(&src.shader.color,1,AI_MATKEY_COLOR_DIFFUSE); pcMat->AddProperty(&src.shader.color,1,AI_MATKEY_COLOR_SPECULAR); } pScene->mRootNode = root; }