/* --------------------------------------------------------------------------- Open Asset Import Library (ASSIMP) --------------------------------------------------------------------------- Copyright (c) 2006-2008, ASSIMP Development Team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the ASSIMP team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the ASSIMP Development Team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --------------------------------------------------------------------------- */ /** @file Implementation of the DXF importer class */ #include "AssimpPCH.h" #include "DXFLoader.h" #include "ParsingUtils.h" #include "fast_atof.h" #include "MaterialSystem.h" using namespace Assimp; // AutoCAD Binary DXF #define AI_DXF_BINARY_IDENT ("AutoCAD Binary DXF\r\n\x1a\0") #define AI_DXF_BINARY_IDENT_LEN (24) // color indices for DXF - 16 are supported static aiColor4D g_aclrDxfIndexColors[] = { aiColor4D (0.6f, 0.6f, 0.6f, 1.0f), aiColor4D (1.0f, 0.0f, 0.0f, 1.0f), // red aiColor4D (0.0f, 1.0f, 0.0f, 1.0f), // green aiColor4D (0.0f, 0.0f, 1.0f, 1.0f), // blue aiColor4D (0.3f, 1.0f, 0.3f, 1.0f), // light green aiColor4D (0.3f, 0.3f, 1.0f, 1.0f), // light blue aiColor4D (1.0f, 0.3f, 0.3f, 1.0f), // light red aiColor4D (1.0f, 0.0f, 1.0f, 1.0f), // pink aiColor4D (1.0f, 0.6f, 0.0f, 1.0f), // orange aiColor4D (0.6f, 0.3f, 0.0f, 1.0f), // dark orange aiColor4D (1.0f, 1.0f, 0.0f, 1.0f), // yellow aiColor4D (0.3f, 0.3f, 0.3f, 1.0f), // dark gray aiColor4D (0.8f, 0.8f, 0.8f, 1.0f), // light gray aiColor4D (0.0f, 00.f, 0.0f, 1.0f), // black aiColor4D (1.0f, 1.0f, 1.0f, 1.0f), // white aiColor4D (0.6f, 0.0f, 1.0f, 1.0f) // violet }; #define AI_DXF_NUM_INDEX_COLORS (sizeof(g_aclrDxfIndexColors)/sizeof(g_aclrDxfIndexColors[0])) // invalid/unassigned color value aiColor4D g_clrInvalid = aiColor4D(std::numeric_limits::quiet_NaN(),0.f,0.f,1.f); // ------------------------------------------------------------------------------------------------ // Constructor to be privately used by Importer DXFImporter::DXFImporter() { // nothing to do here } // ------------------------------------------------------------------------------------------------ // Destructor, private as well DXFImporter::~DXFImporter() { // nothing to do here } // ------------------------------------------------------------------------------------------------ // Returns whether the class can handle the format of the given file. bool DXFImporter::CanRead( const std::string& pFile, IOSystem* pIOHandler) const { // simple check of file extension is enough for the moment std::string::size_type pos = pFile.find_last_of('.'); // no file extension - can't read if( pos == std::string::npos) return false; std::string extension = pFile.substr( pos); return !(extension.length() != 4 || extension[0] != '.' || extension[1] != 'd' && extension[1] != 'D' || extension[2] != 'x' && extension[2] != 'X' || extension[3] != 'f' && extension[3] != 'F'); } // ------------------------------------------------------------------------------------------------ bool DXFImporter::GetNextLine() { if(!SkipLine(&buffer)) return false; if(!SkipSpaces(&buffer))return GetNextLine(); return true; } // ------------------------------------------------------------------------------------------------ bool DXFImporter::GetNextToken() { if (bRepeat) { bRepeat = false; return true; } SkipSpaces(&buffer); groupCode = strtol10s(buffer,&buffer); if(!GetNextLine())return false; // copy the data line to a separate buffer char* m = cursor, *end = &cursor[4096]; while (!IsLineEnd ( *buffer ) && m < end) *m++ = *buffer++; *m = '\0'; GetNextLine(); return true; } // ------------------------------------------------------------------------------------------------ // Imports the given file into the given scene structure. void DXFImporter::InternReadFile( const std::string& pFile, aiScene* pScene, IOSystem* pIOHandler) { boost::scoped_ptr file( pIOHandler->Open( pFile)); // Check whether we can read from the file if( file.get() == NULL) throw new ImportErrorException( "Failed to open DXF file " + pFile + ""); // read the contents of the file in a buffer unsigned int m = (unsigned int)file->FileSize(); std::vector buffer2(m+1); buffer = &buffer2[0]; file->Read( &buffer2[0], m,1); buffer2[m] = '\0'; bRepeat = false; mDefaultLayer = NULL; // check whether this is a binaray DXF file - we can't read binary DXF files :-( if (!strncmp(AI_DXF_BINARY_IDENT,buffer,AI_DXF_BINARY_IDENT_LEN)) throw new ImportErrorException("DXF: Binary files are not supported at the moment"); // now get all lines of the file while (GetNextToken()) { if (2 == groupCode) { // ENTITIES and BLOCKS sections - skip the whole rest, no need to waste our time with them if (!::strcmp(cursor,"ENTITIES") || !::strcmp(cursor,"BLOCKS")) if (!ParseEntities())break; else bRepeat = true; // other sections - skip them to make sure there will be no name conflicts else { while (GetNextToken()) { if (!groupCode && !::strcmp(cursor,"ENDSEC"))break; } } } // print comment strings else if (999 == groupCode) { DefaultLogger::get()->info(std::string( cursor )); } else if (!groupCode && !::strcmp(cursor,"EOF")) break; } // find out how many valud layers we have for (std::vector::const_iterator it = mLayers.begin(),end = mLayers.end(); it != end;++it) { if (!(*it).vPositions.empty())++pScene->mNumMeshes; } if (!pScene->mNumMeshes) throw new ImportErrorException("DXF: this file contains no 3d data"); pScene->mMeshes = new aiMesh*[ pScene->mNumMeshes ]; m = 0; for (std::vector::const_iterator it = mLayers.begin(),end = mLayers.end(); it != end;++it) { if ((*it).vPositions.empty())continue; // generate the output mesh aiMesh* pMesh = pScene->mMeshes[m++] = new aiMesh(); const std::vector& vPositions = (*it).vPositions; const std::vector& vColors = (*it).vColors; // check whether we need vertex colors here aiColor4D* clrOut; const aiColor4D* clr = NULL; for (std::vector::const_iterator it2 = (*it).vColors.begin(), end2 = (*it).vColors.end(); it2 != end2; ++it2) { if ((*it2).r == (*it2).r) // check against qnan { clrOut = pMesh->mColors[0] = new aiColor4D[vPositions.size()]; for (unsigned int i = 0; i < vPositions.size();++i) clrOut[i] = aiColor4D(0.6f,0.6f,0.6f,1.0f); clr = &vColors[0]; break; } } pMesh->mNumFaces = (unsigned int)vPositions.size() / 4u; pMesh->mFaces = new aiFace[pMesh->mNumFaces]; aiVector3D* vpOut = pMesh->mVertices = new aiVector3D[vPositions.size()]; const aiVector3D* vp = &vPositions[0]; for (unsigned int i = 0; i < pMesh->mNumFaces;++i) { aiFace& face = pMesh->mFaces[i]; // check whether we need four indices here if (vp[3] != vp[2]) { face.mNumIndices = 4; } else face.mNumIndices = 3; face.mIndices = new unsigned int[face.mNumIndices]; for (unsigned int a = 0; a < face.mNumIndices;++a) { *vpOut++ = vp[a]; if (clr) { if (std::numeric_limits::quiet_NaN() != clr[a].r) *clrOut = clr[a]; ++clrOut; } face.mIndices[a] = pMesh->mNumVertices++; } vp += 4; } } // generate the output scene graph pScene->mRootNode = new aiNode(); pScene->mRootNode->mName.Set(""); if (1 == pScene->mNumMeshes) { pScene->mRootNode->mMeshes = new unsigned int[ pScene->mRootNode->mNumMeshes = 1 ]; pScene->mRootNode->mMeshes[0] = 0; } else { pScene->mRootNode->mChildren = new aiNode*[ pScene->mRootNode->mNumChildren = pScene->mNumMeshes ]; for (m = 0; m < pScene->mRootNode->mNumChildren;++m) { aiNode* p = pScene->mRootNode->mChildren[m] = new aiNode(); p->mName.length = ::strlen( mLayers[m].name ); ::strcpy(p->mName.data, mLayers[m].name); p->mMeshes = new unsigned int[p->mNumMeshes = 1]; p->mMeshes[0] = m; p->mParent = pScene->mRootNode; } } // generate a default material MaterialHelper* pcMat = new MaterialHelper(); aiString s; s.Set(AI_DEFAULT_MATERIAL_NAME); pcMat->AddProperty(&s, AI_MATKEY_NAME); aiColor4D clrDiffuse(0.6f,0.6f,0.6f,1.0f); pcMat->AddProperty(&clrDiffuse,1,AI_MATKEY_COLOR_DIFFUSE); clrDiffuse = aiColor4D(1.0f,1.0f,1.0f,1.0f); pcMat->AddProperty(&clrDiffuse,1,AI_MATKEY_COLOR_SPECULAR); clrDiffuse = aiColor4D(0.05f,0.05f,0.05f,1.0f); pcMat->AddProperty(&clrDiffuse,1,AI_MATKEY_COLOR_AMBIENT); pScene->mNumMaterials = 1; pScene->mMaterials = new aiMaterial*[1]; pScene->mMaterials[0] = pcMat; // --- everything destructs automatically --- } // ------------------------------------------------------------------------------------------------ bool DXFImporter::ParseEntities() { while (GetNextToken()) { if (!groupCode) { if (!::strcmp(cursor,"3DFACE")) if (!Parse3DFace()) return false; else bRepeat = true; if (!::strcmp(cursor,"POLYLINE") || !::strcmp(cursor,"LWPOLYLINE")) if (!ParsePolyLine()) return false; else bRepeat = true; if (!::strcmp(cursor,"ENDSEC")) return true; } } return false; } // ------------------------------------------------------------------------------------------------ void DXFImporter::SetLayer(LayerInfo*& out) { for (std::vector::iterator it = mLayers.begin(),end = mLayers.end(); it != end;++it) { if (!::strcmp( (*it).name, cursor )) { out = &(*it); break; } } if (!out) { // we don't have this layer yet mLayers.push_back(LayerInfo()); out = &mLayers.back(); ::strcpy(out->name,cursor); } } // ------------------------------------------------------------------------------------------------ void DXFImporter::SetDefaultLayer(LayerInfo*& out) { if (!mDefaultLayer) { mLayers.push_back(LayerInfo()); mDefaultLayer = &mLayers.back(); } out = mDefaultLayer; } // ------------------------------------------------------------------------------------------------ bool DXFImporter::ParsePolyLine() { bool ret = false; LayerInfo* out = NULL; std::vector positions; std::vector colors; std::vector indices; unsigned int flags = 0; while (GetNextToken()) { switch (groupCode) { case 0: { if (!::strcmp(cursor,"VERTEX")) { aiVector3D v;aiColor4D clr(g_clrInvalid); unsigned int idx[4] = {0xffffffff,0xffffffff,0xffffffff,0xffffffff}; ParsePolyLineVertex(v, clr, idx); if (0xffffffff == idx[0]) { positions.push_back(v); colors.push_back(clr); } else { // check whether we have a fourth coordinate if (0xffffffff == idx[3]) { idx[3] = idx[2]; } indices.reserve(indices.size()+4); for (unsigned int m = 0; m < 4;++m) indices.push_back(idx[m]); } bRepeat = true; } else if (!::strcmp(cursor,"ENDSEQ")) { ret = true; } break; } // flags --- important that we know whether it is a polyface mesh case 70: { flags = strtol10(cursor); break; }; // optional number of vertices case 71: { positions.reserve(std::min(std::max(100u, strtol10(cursor)),100000000u)); break; } // optional number of faces case 72: { indices.reserve(std::min(std::max(100u, strtol10(cursor)),100000000u) * 4u); break; } // 8 specifies the layer case 8: { SetLayer(out); break; } } } if (!(flags & 64)) { DefaultLogger::get()->warn("DXF: Only polyface meshes are currently supported"); return ret; } if (positions.size() < 3 || indices.size() < 3) { DefaultLogger::get()->warn("DXF: Unable to parse POLYLINE element - not enough vertices"); return ret; } // use a default layer if necessary if (!out)SetDefaultLayer(out); flags = (unsigned int)(out->vPositions.size()+indices.size()); out->vPositions.reserve(flags); out->vColors.reserve(flags); // generate unique vertices for (std::vector::const_iterator it = indices.begin(), end = indices.end(); it != end; ++it) { unsigned int idx = *it; if (idx > positions.size()) { DefaultLogger::get()->error("DXF: Polyface mesh index os out of range"); idx = (unsigned int) positions.size(); } out->vPositions.push_back(positions[idx-1]); // indices are one-based. out->vColors.push_back(colors[idx-1]); // indices are one-based. } return ret; } // ------------------------------------------------------------------------------------------------ bool DXFImporter::ParsePolyLineVertex(aiVector3D& out,aiColor4D& clr, unsigned int* outIdx) { bool ret = false; while (GetNextToken()) { switch (groupCode) { case 0: ret = true;break; // todo - handle the correct layer for the vertex // x position of the first corner case 10: out.x = fast_atof(cursor);break; // y position of the first corner case 20: out.y = -fast_atof(cursor);break; // z position of the first corner case 30: out.z = fast_atof(cursor);break; // POLYFACE vertex indices case 71: outIdx[0] = strtol10(cursor);break; case 72: outIdx[1] = strtol10(cursor);break; case 73: outIdx[2] = strtol10(cursor);break; case 74: outIdx[3] = strtol10(cursor);break; // color case 62: clr = g_aclrDxfIndexColors[strtol10(cursor) % AI_DXF_NUM_INDEX_COLORS]; break; }; if (ret)break; } return ret; } // ------------------------------------------------------------------------------------------------ bool DXFImporter::Parse3DFace() { bool ret = false; LayerInfo* out = NULL; aiVector3D vip[4]; // -- vectors are initialized to zero aiColor4D clr(g_clrInvalid); while (GetNextToken()) { switch (groupCode) { case 0: ret = true;break; // 8 specifies the layer case 8: { SetLayer(out); break; } // x position of the first corner case 10: vip[0].x = fast_atof(cursor);break; // y position of the first corner case 20: vip[0].y = -fast_atof(cursor);break; // z position of the first corner case 30: vip[0].z = fast_atof(cursor);break; // x position of the second corner case 11: vip[1].x = fast_atof(cursor);break; // y position of the second corner case 21: vip[1].y = -fast_atof(cursor);break; // z position of the second corner case 31: vip[1].z = fast_atof(cursor);break; // x position of the third corner case 12: vip[2].x = fast_atof(cursor);break; // y position of the third corner case 22: vip[2].y = -fast_atof(cursor);break; // z position of the third corner case 32: vip[2].z = fast_atof(cursor);break; // x position of the fourth corner case 13: vip[3].x = fast_atof(cursor);break; // y position of the fourth corner case 23: vip[3].y = -fast_atof(cursor);break; // z position of the fourth corner case 33: vip[3].z = fast_atof(cursor);break; // color case 62: clr = g_aclrDxfIndexColors[strtol10(cursor) % AI_DXF_NUM_INDEX_COLORS]; break; }; if (ret)break; } // use a default layer if necessary if (!out)SetDefaultLayer(out); // add the faces to the face list for this layer out->vPositions.push_back(vip[0]); out->vPositions.push_back(vip[1]); out->vPositions.push_back(vip[2]); out->vPositions.push_back(vip[3]); // might be equal to the third for (unsigned int i = 0; i < 4;++i) out->vColors.push_back(clr); return ret; }